
Chapter 11

Regularization

Building machine learning models is all about finding a balance between sim-
plicity and complexity. We want models that are powerful enough to fit the
complex trends in our data, but we also do not want these models to have ex-
cessive variance and overfit. In an ideal world, we could always collect larger
and larger training sets, which would allow us to combat overfitting and reli-
ably optimize complex models. In practice, however, we are often stuck with
fixed-size training sets and must reduce overfitting by simplifying our models.

So far, when discussing model complexity, we have primarily discussed the
idea of adding or removing features from a model. Adding more features gener-
ally makes a model more complex. Similarly, removing features is a good way to
simplify a model that is overfitting. However, this approach is a relatively blunt
instrument. Ideally, we would like an approach that can tune the complexity of
our models in a more fine-grained way, without throwing away potentially useful
feature information. This is the motivation behind the method of regularization.

11.1 Penalizing Complexity

Regularizing a machine learning model is equivalent to penalizing its complexity.
As a consequence, the most straightforward way to regularize a model is to add
a penalty term to the optimization problem, which penalizes complex models.
The idea is that we want to replace our standard loss term L(y, f(x)) with a
penalized version

Lreg(y, f(x)) = L(y, f(x)) + �⌦(f), (11.1)

where ⌦ is some measure of the model’s complexity and � 2 R is a hyperpa-
rameter controlling the strength of the regularization. Thus, rather than simply
penalizing models for making incorrect predictions, we also want to penalize
models if they are overly complex, with the motivation that simpler models will
tend to generalize better.

The primary challenge in implementing Equation 11.1 is how we quantify
model complexity. In Chapter 10 we mentioned the idea of quantifying a model’s
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complexity by measuring the size of its model class. In practice, we cannot
use this idea to penalize model complexity—however—because (a) we want a
measure of complexity specific to a particular model and not a whole model
class and (b) most model classes in the real world are infinite.

11.1.1 Weight decay and L2 regularization

The most popular and ubiquitous approach to penalizing model complexity goes
by many names. Its often known as L2 regularization, Tikhonov regularization,
or weight decay. The idea is quite simple. We penalize the Euclidean norm (also
known as the L2 norm) of the model’s parameter vector:

Lreg(y, fw(x)) = L(y, f(x)) + �kwk
2
. (11.2)

By penalizing the norm of the parameter vector, we force the model to find
solutions that involve smaller parameter coe�cients. This e↵ectively reduces the
space of possible models. Moreover, reducing the magnitude of the parameter
coe�cients intuitively reduces the variance of our model, since we are e↵ectively
reducing the dynamic range of our prediction values.

L2 regularization is the go-to approach for any machine learning model that
uses continuous parameters. (Note that even if our model has parameter matri-
ces or tensors—rather than vectors—we can simply flatten them to vectors when
computing the regularization term.) It is also convex and easily di↵erentiable,
which makes it naturally suitable for any application involving gradient descent.
In practice, L2 regularization is included in most machine learning models by
default.

11.1.2 Enforcing sparsity and L1 regularization

L2 regularization penalizes models based on the Euclidean norm of the pa-
rameter vector, which is also known as the L2 norm. Could other norms also
be useful as penalty terms? In fact, the second most popular regularization
approach—commonly known as L1 regularization or lasso regularization—takes
exactly this approach. Instead of using the Euclidean or L2 norm, we use the
L2 norm, which generalizes the absolute value to vectors:

|x| =
mX

j=1

|x[j]|. (11.3)

Using this norm, we can regularize our model in a manner analogous to L2
regularization

Lreg(y, fw(x)) = L(y, f(x)) + �|w|. (11.4)

Like L2 regularization, L1 regularization penalizes the magnitude of the
model parameters. However, the behavior of L1 regularization is quite di↵er-
ent. In practice, L1 regularization tends to lead to sparse solutions, where
many of the parameter weights are set to zero. The geometric intuition for this
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Figure 11.1: Illustration of L2 regularization (left), compared to L1 regulariza-
tion (right) in a two dimensional parameter space. The red circles show regions
of space with constrained magnitudes, according to either the L1 or L2 norm.
The blue contours correspond to the loss function.1

phenomenon in two-dimensions is shown in Figure 11.1. We can think of L2 reg-
ularization as constraining model parameters to lie within a sphere of bounded
radius, since we are penalizing the Euclidean norm. In other words, if we con-
sider all weight vectors w that have equal norm kwk then we will form a circle
or spherical shape. On the other hand, L1 regularization constrains the model
parameters to lie within a diamond-shaped region, as shown in Figure 11.1. As
a result, the set of constrained L1-regularized parameters tends to intersect the
contours of the loss function along the axes of the parameter space (i.e., along
points where some dimensions are equal to zero).

Optimizing L1 regularized models The attentive reader will have no-
ticed that the L1 penalty violates a key property that we want in optimiza-
tion: it is not smooth. This is a major drawback of L1 regularization, and
there are two strategies to avoid it, and we cannot naively apply gradient
descent to L1-regularized models. One strategy to get around this is to
apply specially designed optimization algorithms, which do not need the
smoothness requirement. An alternative approach relies on the notion of
subgradient descent, which generalizes gradient descent to convex but not-
necessarily-di↵erentiable functions. The theory of subgradients is covered
in more advanced machine learning courses. However, the consequence in
the case of L1 regularization is that we can use

@|w|

@w
= sign(w) (11.5)

as a stand-in for the derivative of the L1 norm (i.e., the absolute value)
when performing gradient descent.
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11.1.3 Controlling the strength of regularization

E↵ectively employing either L1 or L2 regularization requires choosing the strength
of the regularization, i.e., the � value. This value is one of the most frequent
and important hyperparameters in machine learning. There is no a priori way
to know what the right value is, and we must use a validation set (or cross
validation) to choose it. (Recall from Chapter 2 that validation sets data used
to estimate model performance when choosing hyperparameters; we never train
our models on a validation set!) It is essential to note that the best � value
might not give the highest training accuracy. We want to choose a � that will
give the best accuracy when generalizing to unseen data, and the only way to
measure this is by using a validation set.

11.2 Early Stopping and Gradient Descent

L1 and L2 regularization are e↵ective and ubiquitous approaches to reduce over-
fitting. When in doubt, L2 regularization is almost always the right starting
point if you find that your model is overfitting. However, there is another
strategy to reduce overfitting that is becoming increasingly popular in machine
learning: early stopping.

The early stopping approach is only applicable in cases where gradient de-
scent is being used, and it is generally only employed with stochastic minibatch
gradient descent. The basic idea in early stopping is that we intentionally stop
gradient descent before the model parameters have converged. The intuition
is that models are generally increasing in complexity as gradient descent pro-
gresses. Thus, if we can stop the training early, we can prevent our model from
overfitting to the training data.

An e↵ective strategy for choosing when to stop gradient descent involves a
held-out validation set. After every k iterations of gradient descent, we evaluate
our model’s performance on the validation set. If at any point we see the model’s
performance on the validation set has decreased compared to the last time we
evaluated, then we know that we should stop training.


