
Chapter 1

Learning from Data

The aim of this course is to introduce the fundamentals of machine learning.
Our goal is to cover key fundamental topics, with an emphasis on theoretical and
conceptual foundations. We will not cover every popular machine learning algo-
rithm. We will—however—cover the key principles that you need in order to un-
derstand every popular machine learning algorithm. For this reason, this course
is organized around key concepts—such as decision boundaries, likelihood-based
modeling, and information theory—rather than individual methods. In this
chapter, we begin with a brief and high-level overview of some key concepts and
definitions, which re-occur throughout all the chapters of this course.

1.1 What is Machine Learning?

There is no canonical definition of machine learning. If you Google the defini-
tion, you will get the following text, from Oxford Languages:

The use and development of computer systems that are able to learn
and adapt without following explicit instructions, by using algo-
rithms and statistical models to analyze and draw inferences from
patterns in data.

The key point is that we have some kind of computer system, which is able to
learn, adapt, and draw inferences from data. This is a broad reaching definition,
but machine learning encompasses a very wide range of methods.

Machine learning in the real world In the past decade, machine learn-
ing has become more and more prevalent in our everyday lives. Some of
the most obvious examples of machine learning impacting our day-to-day
lives include

• content recommendation (e.g., used by Google and Facebook),

• text classification (e.g., to classify spam emails),

• image classification (e.g., for automated diagnoses from x-rays),
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• text generation (e.g., for automated translation and dialogue),

• time-series forecasting (e.g., used by hedge funds to pick stocks).
In this course, we will often focus on machine learning as an abstract prob-
lem, without focusing on a particular real-world use case. However, it is
critically important that we keep these use cases in mind, both as a mo-
tivation and also to ensure that we consider the ethical grounding of our
algorithms.

1.2 Datasets, Features and Targets

The one thing that every machine learning application has in common is data.
Indeed, the key factor distinguishing machine learning from more general forms
of artificial intelligence (AI)—such as expert systems—is that machine learning
models learn from data, rather than relying on pre-defined rules.1

The core of any machine learning application, and the single thing that we
will always assume, is access to a dataset D. In most settings, we assume that
this dataset consists of a set of examples D = {(xi, yi), i = 1...n}. The x 2 X

values are often called features, while the y 2 Y are usually called targets or

labels. The goal of machine learning—generally speaking—is to learn a mapping

f : X ! Y (1.1)

from features to targets, based on the training data. The features are typically
represented as vectors, whereas the target is usually a single value. Conceptu-
ally, the features are the information that we are using to make the prediction,
while the target label is what we are trying to predict.

Accuracy and loss

Typically, the goal is to find a function that is able to approximate the feature-
to-target mapping that is implicit in our dataset, i.e., we want

f(x) ⇡ y, 8(x, y) 2 D. (1.2)

In many cases, we have some error or loss metric L : Y⇥Y ! R, which measures
the di↵erence between a model prediction ŷ = f(x) and a true value y. The
goal is to find a function that gives a small (or minimal) loss on our training
data. Alternatively, we can consider accuracy metrics, which measure how close
our model’s output is to the true value. When using an accuracy metric, we are
trying to find a model that maximizes the accuracy.

1As we will see—however—there is plenty of hand-crafting and rule-like methods that go
into modern machine learning models.
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For instance, the simplest loss metric—called the 0-1 loss—will give a value
of 1 if the prediction is incorrect and 0 otherwise:

L0-1(y, ŷ) =

(
1 if y 6= ŷ

0 otherwise
(1.3)

The simplest accuracy metric is just the complement of the 0-1 loss: we get a
1 for making correct predictions and a 0 otherwise. Often we will average our
loss or accuracy over the dataset, e.g., to get the percentage accuracy.

Binary, categorical, and real values

The features and targets in our machine learning model can be real valued,
categorical (i.e., discrete), or binary. This is why we used the generic domain X

for the features and Y for the targets in the equations above. The nature of the
target has a major influence on the task. In the case where the target is binary
(i.e., y 2 {0, 1}) or discrete (i.e., y 2 Z), we typically refer to the learning task
as classification, since we are classifying among a discrete set of categories. We
refer to cases where the target is real-valued (i.e., y 2 R) as regression problems.

The nature of the features also important, but it does not have such a strong
influence on algorithm design. It is possible to mix and match features of di↵er-
ent types within a single problem, and often we will see problems that involve
both real-valued and categorical features. Note also that the di↵erent types of
features are special cases of one another, in a mathematical sense: categorical
(i.e., discrete) values (e.g., integers) are a subset of the full space of real num-
bers (i.e., Z ⇢ R), while binary 0/1 values are a subset of the integers (i.e.,
{0, 1} ⇢ Z). For this reason, we will often assume that features are real-valued
without a loss of generality.

Example 1. Spam classification. In the example of spam classification, our

target is a binary variable (i.e., whether the email is spam). The di↵erent di-

mensions of the feature vector x might correspond to binary indicators regarding

the content of the email: one feature might indicate the presence of all caps; an-

other feature might indicate the presence of of an attachment; etc (Figure 1.1).

Example 2. Automated diagnostics. Another example of a classification

task might involve classifying images of skin lesions to determine if they are

benign or malignant tumors. In this case, the output y might be a categorical

variable (e.g., classify as “benign”, “malignant”, or “no lesion”). The di↵erent

dimensions of the feature vector x might correspond to properties of the tumor,

which have been extracted from the image via pre-processing, such as its size

(real-valued) or its texture (categorical). Alternatively, we might consider using

the raw image as an input feature vector x.
2

Example 3. Stock price prediction. Predicting the price of a stock would be

an example of a regression task, since the target would be real-valued in this case.

2Note that the image is technically a matrix, but we can simply reshape it a vector.
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Figure 1.1: Example of features that we might extract for spam classification.

The features for stock price prediction might be a mix of binary, categorical, and

real-valued: we might use historical stock price values (real-valued), indicators

for mentions of the stock on social media (binary), or ratings from analysts

(categorical).

1.3 Testing Sets and Generalization

Generalization is a critical aspect of machine learning. We do not want a model
that can only achieve good performance a small sample of datapoints. We want
a model that can achieve strong performance on many datapoints and even

datapoints that we have not seen before. For this reason, in machine learning
we always separate our data into disjoint sets: a training set Dtrn and testing
set Dtst. We use the training set to train or optimize our model, but we use
the testing set to measure our model’s performance. The critical point is that
the the only time we ever get to use the test set is when we evaluate the final

performance of our model.
Why is this separation of training and testing important? Well, if we don’t

do this, then our model can achieve strong performance on the training set
simply by memorizing the training data. In other words, we could define our
prediction function f to simply be a lookup table, where3

f(x) =

(
yi if 9(xi, yi) 2 Dtrn : x = xi

undefined otherwise.
(1.4)

This function would always achieve perfect accuracy (or zero loss) on the train-
ing set. However, if we run this function on new datapoints from the test set, its
predictions will be undefined. A model that simply memorizes the training data
is useless in the real world. We want models that can make useful predictions
on points they have not seen before.

Throughout this course, we will develop more refined and formal definitions
of memorization and generalization. At this point, however, it is critical to

3Note that this assumes all the training points are unique.
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Figure 1.2: A rough taxonomy of some popular machine learning tasks.

understand that we must always hold out a portion of the data as a hidden test
set, which is only used for evaluation.

1.4 Supervised and Unsupervised Learning

In the previous sections, we discussed machine learning tasks where the goal is
to infer a target label from some features. We also assumed that we were given a
training set containing known feature-target pairs. Strictly speaking, this form
of machine learning—where we are given labelled training examples—is known
as supervised machine learning. We call it supervised because the model is given
explicit feedback about the kinds of errors that it is making. Supervised tasks
are usually distinguished based on whether we have real-valued or categorical
features, using the terms regression and classification—respectively—for these
two di↵erent tasks. In addition, in the case of classification, we often distinguish
between tasks where every point has a single label (i.e., multi-class classifica-
tion) and tasks where each point might have multiple labels (i.e., multi-label
classification).

Another popular setting for machine learning is unsupervised learning. In
unsupervised learning, we are only given access to the features and no labels
for our datapoints. The goal of unsupervised learning techniques is to uncover
useful structure in the data, including tasks such as generative modeling (i.e.,
learning to generate data), clustering, and detecting anomalies. We will cover
a number of unsupervised methods in the latter portion of this course.

Lastly, beyond unsupervised and supervised learning, there are other more
exotic forms of machine learning. This includes the popular task of reinforce-
ment learning, where we must learn to make sequential decisions based on de-
layed feedback. There are also variants of machine learning that border between
these di↵erent areas, such as semi-supervised learning (which combines unsu-
pervised and supervised learning) and structured prediction (which combines
reinforcement learning and supervised learning). These more exotic forms of
machine learning will not be covered in this course, but are the focus of many
graduate-level machine learning courses.


