Theory Assignment 3 (Practice) COMP 451 - Fundamentals of Machine Learning

Prof. William L. Hamilton

Winter 2021

Question 1 [7 points]

Let $\mathcal{X} = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$ denote a set of points in \mathbb{R}^m . Let

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \tag{1}$$

Show that the following inequality holds

$$\sum_{i=1}^{n} \|\mathbf{x}_{i} - \bar{\mathbf{x}}\|^{2} \leq \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{q}\|^{2}, \forall \mathbf{q} \in \mathbb{R}^{m}.$$
(2)

In other words, show that taking the mean of a set of points is the optimal choice in order to minimize the average distance to the points in that set.

Solution.

For any $\mathbf{q} \in \mathbb{R}^m$ we have that

$$\sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{q}\|^{2} = \sum_{i=1}^{n} \|(\mathbf{x}_{i} - \bar{\mathbf{x}}) + (\bar{\mathbf{x}} - \mathbf{q})\|^{2}$$
(3)

$$=\sum_{i=1}^{n} \|\mathbf{x}_{i} - \bar{\mathbf{x}}\|^{2} + \|\bar{\mathbf{x}} - \mathbf{q}\|^{2} + 2(\mathbf{x}_{i} - \bar{\mathbf{x}})(\bar{\mathbf{x}} - \mathbf{q})$$
(4)

$$= n \|\bar{\mathbf{x}} - \mathbf{q}\|^2 + \sum_{i=1}^n \|\mathbf{x}_i - \bar{\mathbf{x}}\|^2 + 2(\mathbf{x}_i - \bar{\mathbf{x}})^\top (\bar{\mathbf{x}} - \mathbf{q})$$
(5)

$$= n \|\bar{\mathbf{x}} - \mathbf{q}\|^2 + \sum_{i=1}^n \|\mathbf{x}_i - \bar{\mathbf{x}}\|^2 + 2\left(\mathbf{x}_i^\top \bar{\mathbf{x}} - \mathbf{x}_i^\top \mathbf{q} - \|\bar{\mathbf{x}}\|^2 + \bar{\mathbf{x}}^\top \mathbf{q}\right)$$
(6)

$$= n \|\bar{\mathbf{x}} - \mathbf{q}\|^{2} + 2\left(\left(\sum_{i=1}^{n} \mathbf{x}_{i}\right)^{\top} \bar{\mathbf{x}} - \left(\sum_{i=1}^{n} \mathbf{x}_{i}\right)^{\top} \mathbf{q} - m \|\bar{\mathbf{x}}\|^{2} + m\bar{\mathbf{x}}^{\top}\mathbf{q}\right) + \sum_{i=1}^{n} \|\mathbf{x}_{i} - \bar{\mathbf{x}}\|^{2}$$
(7)

$$= n \|\bar{\mathbf{x}} - \mathbf{q}\|^{2} + 2\left(m\|\bar{\mathbf{x}}\|^{2} - m\bar{\mathbf{x}}^{\top}\mathbf{q} - m\|\bar{\mathbf{x}}\|^{2} + m\bar{\mathbf{x}}^{\top}\mathbf{q}\right) + \sum_{i=1}^{n} \|\mathbf{x}_{i} - \bar{\mathbf{x}}\|^{2}$$
(8)

$$= n \|\bar{\mathbf{x}} - \mathbf{q}\|^2 + \sum_{i=1}^n \|\mathbf{x}_i - \bar{\mathbf{x}}\|^2$$
(9)

$$\geq \sum_{i=1}^{n} \|\mathbf{x}_i - \bar{\mathbf{x}}\|^2 \tag{10}$$

Question 2 [7 points]

In class we introduced the Gaussian mixture model (GMM). In this question, we will consider a mixture of Bernoulli distributions. Here, our data points will be defined as *m*-dimensional vectors of binary values $\mathbf{x} \in \{0, 1\}^m$.

First, we will introduce a single multivariate Bernoulli distribution, which is defined by a mean vector μ

$$P(\mathbf{x}|\boldsymbol{\mu}) = \prod_{j=0}^{m-1} \boldsymbol{\mu}[j]^{\mathbf{x}[j]} (1 - \boldsymbol{\mu}[j])^{(1 - \mathbf{x}[j])}.$$
(11)

Thus, we see that a the individual binary dimensions are independent for a single multivariate Bernoulli. Now, we can define a mixture of K multivariate Bernoulli distributions as follows

$$P(\mathbf{x}|\Theta) = \sum_{k=0}^{K-1} \pi_k P(\mathbf{x}|\boldsymbol{\mu}_k)$$
(12)

$$=\sum_{k=0}^{K-1} \pi_k \prod_{j=0}^{m-1} \boldsymbol{\mu}[j]^{\mathbf{x}[j]} (1-\boldsymbol{\mu}[j])^{(1-\mathbf{x}[j])}$$
(13)

(14)

where $\Theta = \{\boldsymbol{\mu}_k, \pi_k, k = 0, ..., K - 1\}$ are the parameters of the mixture and $P(\mathbf{x}|\boldsymbol{\mu}_k)$ is the probability assigned to the point by each individual component in the model.

Now, suppose that we partition the datapoints \mathbf{x} into two parts $\mathbf{x} = [\mathbf{x}_a, \mathbf{x}_b]$ so that $\mathbf{x}_a \in \{0, 1\}^{m-d}$ and $\mathbf{x}_b \in \{0, 1\}^d$. Show that the conditional distribution

$$P(\mathbf{x}_a | \mathbf{x}_b) \tag{15}$$

is itself a Bernoulli mixture distribution and provide expressions for the mixing coefficients and the component/cluster densities.

Solution.

First, we can apply the rules of probability to find that

$$P(\mathbf{x}_a | \mathbf{x}_b) = \frac{P(\mathbf{x}_a, \mathbf{x}_b)}{P(\mathbf{x}_b)}$$
(16)

$$=\frac{P(\mathbf{x})}{P(\mathbf{x}_b)}\tag{17}$$

$$=\frac{\sum_{k=0}^{K-1}\pi_k P(\mathbf{x}|\boldsymbol{\mu}_k)}{P(\mathbf{x}_b)}$$
(18)

$$=\sum_{k=0}^{K-1} \frac{\pi_k}{P(\mathbf{x}_b)} P(\mathbf{x}|\boldsymbol{\mu}_k).$$
(19)

Thus, we see that $P(\mathbf{x}_a|\mathbf{x}_b)$ is a mixture distribution with the same component density as before but with the mixture coefficients given by $\frac{\pi_k}{P(\mathbf{x}_b)}$. The term $P(\mathbf{x}_b)$ can be computed via marginalization as

$$P(\mathbf{x}_b) = \sum_{\mathbf{c} \in \{0,1\}^{m-d}} \sum_{k=0}^{K-1} \pi_k \prod_{j=0}^{m-d-1} \boldsymbol{\mu}[j]^{\mathbf{c}[j]} (1 - \boldsymbol{\mu}[j])^{(1 - \mathbf{c}[j])} \prod_{j=d}^{m-1} \boldsymbol{\mu}[j]^{\mathbf{x}_b[j]} (1 - \boldsymbol{\mu}[j])^{(1 - \mathbf{x}_b[j])}.$$
 (20)

Question 3 [4 points]

Recall that the low dimensional codes in PCA are defined as

$$\mathbf{z}_i = \mathbf{U}^\top (\mathbf{x}_i - \boldsymbol{\mu}),\tag{21}$$

where \mathbf{U} is a matrix containing the top-k eigenvectors of the covariance matrix as rows and

$$\boldsymbol{\mu} = \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|-1} \mathbf{x}_i \tag{22}$$

Show that

$$\bar{\mathbf{z}} = \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|-1} \mathbf{z}_i = 0.$$
(23)

Solution. We have that

$$\frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|-1} \mathbf{z}_i = \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|-1} (\mathbf{U}^\top (\mathbf{x}_i - \boldsymbol{\mu}))$$
(24)

$$= \mathbf{U}^{\top} \left(\frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|-1} \mathbf{x}_i - \boldsymbol{\mu} \right)$$
(25)

$$= \mathbf{U}^{\top} \left(\frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|-1} \mathbf{x}_i - \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|-1} \boldsymbol{\mu} \right)$$
(26)

$$=\mathbf{U}^{\top}\left(\boldsymbol{\mu}-\boldsymbol{\mu}\right) \tag{27}$$

$$=0$$
 (28)

Question 4 [short answers; 2 points each]

a) True or false: Soft K-means and a Gaussian mixture model are equivalent.

b) Suppose you are learning a decision tree for email spam classification. Your current sample of the training data has the following distribution of labels:

[43+, 30-]

i.e., the training sample has 43 examples that are spam and 30 that are not spam. Now, you are choosing between two candidate tests.

Test 1 (T1) tests whether the number of words in the email is greater than 20 and would result in the following splits:

- num_words > 20 : [13+, 20-]
- num_words ≤ 20 : [30+, 10-]

Test 2 (T2) tests whether the email contains spelling errors and would result in the following splits:

- spelling_error: [30+, 15-]
- no_spelling_error: [13+, 15-]

Which test should you use to split the data? I.e., which test provides a higher information gain?

c) True or false: If we transform some input features using PCA, then the covariance matrix of the resulting transformed features is diagonal.

Solution.

a) False. The GMM also includes the covariance matrices as parameters.

b) The first test (T1) is better, since it has a lower conditional entropy (and thus higher information gain). The conditional entropy of T1 is

$$H(data \mid T1) = -\frac{33}{73} \left(\frac{13}{33} \log_2\left(\frac{13}{33}\right) + \frac{20}{33} \log_2\left(\frac{20}{33}\right)\right) - \frac{40}{73} \left(\frac{30}{40} \log_2\left(\frac{30}{40}\right) + \frac{10}{40} \log_2\left(\frac{10}{40}\right)\right) \approx 0.882$$
(29)

while the conditional entropy of T2 is

$$H(data \mid T2) = -\frac{45}{73} \left(\frac{30}{45} \log_2\left(\frac{30}{45}\right) + \frac{15}{45} \log_2\left(\frac{15}{45}\right) \right) - \frac{28}{73} \left(\frac{13}{28} \log_2\left(\frac{13}{28}\right) + \frac{15}{28} \log_2\left(\frac{15}{28}\right) \right) \approx 0.948$$
(30)

c) True, since the basis vectors in PCA are all orthogonal.