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Question 1 [6 points]

Recall that the k-NN model is defined by the prediction function

fk-NN(x) = MAJ ({yi : (xi, yi) ∈ Dtrn ∧ ∃<k(yj ,xj) ∈ Dtrn : d(x,xi) > d(x,xj)}) , (1)

where MAJ is the majority vote function. Assume that we are using the Euclidean distance function, con-
sidering a binary 0-1 classification task with two-dimensional features, and that we are evaluating accuracy
using the 0-1 loss:

L(y, ŷ) =

{
0 if y = ŷ

1 otherwise.
(2)

Lastly, assume that ties in the majority vote function are broken randomly with a 50/50 probability (i.e.,
if we have equal positive and negative classes in the nearest neighbor set, then we flip a coin to make the
prediction), and assume that we are evaluating the expected accuracy in light of this randomness.

Prove or provide a counter-example to the following claim: if we assume that our dataset is linearly
separable with geometric margin γ, then the expected training error of a k-NN monotonically increases as a
function of k for k ≥ 1.

Hint: Remember that the nearest neighbor of a training point is always itself !

Solution. The claim is false. For example, suppose we have the following training dataset:

point 1: ([0, 1], 1)

point 2: ([0, 2.1], 1)

point 3: ([0, 2.1], 1)

point 4: ([0, 0], 0)

point 5: ([0,−0.2], 0)

point 6: ([0,−0.2], 0)

Now, for k = 2 we will have that point 1 is misclassified with 50% probability, since its two nearest neighbors
are itself and point 4. All other points will be correctly classified: points 2/3 and points 5/6 are identical
and from the same class, guaranteeing correct classification; point 4 is correctly classified because its nearest
neighbors are points 5/6. Moving up to k = 3, point 1 is now correctly classified, since points 2/3 are included
in its set of nearest neighbors. All the other points remain correctly classified, since the points added to their
nearest neighbor set are from the same class.
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Question 2 [6 points]

For this question, you should refer to the details and notation for the perceptron algorithm (i.e., Algorithm
1) in Chapter 3 of the notes. Provide a proof for the following lemma, which we we used to prove the
perceptron convergence theorem:

Lemma 1. Assume that there exists some γ > 0 and some set of optimal parameters w∗ such that
yi(w

∗)>xi ≥ γ for all (xi, yi) ∈ Dtrn. The norm of the weight vector ‖w(k)‖ increases at most linearly
with each update in Algorithm 1. In particular, if assume that ‖xi‖ < R,∀i ∈ Dtrn, then ‖w(k)‖2 ≤ R2k,
where k denotes the number of updates in Algorithm 1.

Solution. By the definition of the perceptron update on a point (x, y) we have that

‖w(k)‖2 = (w(k))>w(k) (3)

=
(
w(k−1) + yx

)> (
w(k−1) + yx

)
(4)

= (w(k−1))>w(k−1) + 2yx>w(k−1) + y2x>x (5)

≤ (w(k−1))>w(k−1) + x>x (6)

≤ ‖w(k−1)‖2 +R2 (7)

Note that we only make updates when we make mistakes, so we can safely assume that 2yx>w(k−1) < 0,
since y and x>w(k−1) must have opposite signs. The proof is completed by simple induction on k. The
inductive step is given by Equation 7 and the base case for k = 0 is given by ‖w(0)‖2 = ‖0‖2 = 0 = 0R2.
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Question 3 [6 points]

In class, we were introduced to Bernoulli Naive Bayes and the Gaussian Naive Bayes models. In this question,
you will derive that maximum likelihood parameters for a Poisson Naive Bayes model. In a Poisson Naive
Bayes model, the feature likelihoods are defined following distribution:

p(x[j] | y = k) =
θ
x[j]
j,k e

−θj,k

x[j]!
. (8)

As in the Bernoulli Naive Bayes model, the θj,k parameter determines the likelihood for the jth feature,
assuming the point belongs to class k.

Part 1 [2 points]

Assume we are in a binary classification setting. Write an expression for the log-odds ratio of the Poisson
Naive Bayes model. Use the notation from Equation 8 above and use θk = P (y = k) to denote the estimated
class likelihoods.

Part 2 [4 points]

Derive the maximum likelihood estimates for the Poisson Naive Bayes parameters, i.e., give maximum
likelihood estimates for the θj,k parameters.

Solution.

Part 1

The log-odds ratio is given by

log(p(y = 1 | x)

log(p(y = 0 | x)
= log(θ1)− log(θ0) +

m∑
j=1

x[j] (log(θj,1)− log(θj,0))− θj,1 + θj,0

Part 2

To derive the maximum likelihood estimates for the θj,k parameters, we only need to consider the parts of the
log-likelihood that depend on the θj,k term. All other terms will be zero. Moreover, without loss of generality
we assume that k = 1. Given these simplifications we have that

∂

∂θj,1
logL(D; Θ) =

∂

∂θj,1

∑
(x,y)∈D

y(x[j] log(θj,1)− θj,1)

=
∑

(x,y)∈D

y

(
x[j]

θj,1
− 1

)
,
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and setting this to zero and solving we get∑
(x,y)∈D

y

(
x[j]

θj,1
− 1

)
= 0

∑
(x,y)∈D

y

(
x[j]

θj,1

)
=

∑
(x,y)∈D

y

θj,1 =

∑
(x,y)∈D yx∑
(x,y)∈D y

And in general we get that

θj,k =

∑
(x,y)∈D:y=k x[j]

|(x, y) ∈ D : y = k|
. (9)

In other words, we just take the average value of the feature for points belonging to class k.

Question 4 [short answers; 2 points each]

Answer each question with 1-3 sentences for justification, potentially with equations/examples for support.

a) True or false: Bernoulli Naive Bayes always correctly classifies all training points if the dataset is linearly
separable.

b) Consider the following dataset:

point 1: ([0, 1], 1)

point 2: ([1, 0], 1)

point 3: ([0, 0],−1)

point 4: ([1, 1],−1)

Is the perceptron algorithm guaranteed to converge on this dataset?
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c) Consider the following dataset:

point 1: ([0.5, 1], 1)

point 2: ([0.2, 0.5], 1)

point 3: ([0.9, 0.9], 0)

point 4: ([1.5, 1.5], 0)

What class will a Gaussian Naive Bayes model predict for point [1.1, 1.1]?

Solution.
a) This is false. If there are many more points from one class then the class priors can lead to a misclas-
sification even if the data is separable. For example, suppose we have a dataset consisting of 5 identical
points ([1, 0], 1), 5 identical points ([0, 1], 1), and one point ([1, 1], 0). This dataset is linearly separable, but
the model will predict class 1 for the training point ([1, 1], 0), since 0.5× 0.5× 10

11 > 1× 1× 1
11 .

b) The data is not linearly separable. (It is the exclusive-or function). Thus, the perceptron is not guaranteed
to converge.

c) The GNB model will predict class 0, since the input point is closer to the mean of the points from class 0.
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