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Combinatorial Auctions with Item Bidding

n bidders

m items 1 2 3 4 5 6

v4({1}) = 10
v4({2}) = 20
v4({1, 2}) = 20

...

Each item is sold in a separate second-price auction.

Bidders usually cannot express their preferences.

Might have to pay for multiple items although they only want one.
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Setting
[Christodoulou/Kovács/Schapira, JACM 2016]

Set of n bidders N, set of m items M

Each bidder i has valuation function vi : 2M → R≥0

Each bidder i reports a bid bi,j ≥ 0 for every item j

Each item j is sold to bidder i that maximizes bi,j

Has to pay 2nd highest bid: maxi′ 6=i bi′,j

Each bidder i tries to maximize his/her utility

ui(b) = vi(Si)−
∑
j∈Si

max
i′ 6=i

bi′,j ,

where Si is the set of items bidder i wins under b
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Example

Two bidders, two items
v1({1}) = 2, v1({2}) = 1, v1({1, 2}) = 2
v2({1}) = 1, v2({2}) = 2, v2({1, 2}) = 2

b1,1 = 0, b1,2 = 1
b2,1 = 1, b2,2 = 0

0 11 11 0

1 2

Bidder 1 wins item 2; bidder 2 wins item 1.

No bidder wants to unilaterally deviate⇒ pure Nash equilibrium
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Equilibrium Concepts

Definition

A bid profile b is a pure Nash equilibrium if for all bidders i and all b′i

ui(b) ≥ ui(b′i , b−i)

Other equilibrium concepts:

mixed Nash

correlated

Bayes-Nash
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Questions

How good are (pure Nash, mixed Nash, correlated,
Bayes-Nash, . . . ) equilibria?

Do they always exist?

If so, can they be computed in polynomial time?

If so, can they be reached by simple dynamics?
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Price of Anarchy

Given b call SW (b) =
∑

i∈N vi(Si) social welfare of b

Compare to OPT (v) = max(S∗1 , . . . ,S∗n ) is partition
∑

i∈N vi(S∗i )

Price of Anarchy

PoA = max
v1,...,vn

max
b∈PNE

OPT (v)

SW (b)

Two bidders, one item: v1 = 0, v2 = 1
b1 = 1, b2 = 0 is pure Nash equilibrium, SW (b) = 0, OPT (v) = 1

Therefore restrict attention to equilibria with weak no-overbidding:∑
j∈S bi,j ≤ vi(S) if bidder i wins set S
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Classes of valuation functions

A function vi : 2M → R≥0 is . . .

additive if vi(S) =
∑

j∈S vi,j for some vi,j ≥ 0

unit demand if vi(S) = maxj∈S vi,j for some vi,j ≥ 0

fractionally subadditive or XOS if
vi(S) = max`

∑
j∈S v`

i,j for some v`
i,j ≥ 0

subadditive if vi(S ∪ T ) ≤ vi(S) + vi(T )

Additive Unit demand XOS Subadditive
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Examples

vi({1}) = 2, vi({2}) = 1, vi({1, 2}) = 2
is unit demand

Every submodular function is XOS,
e.g. vi(S) = min{ci ,

∑
j∈S vi,j}

vi(S) =


0 if |S| = 0

1 if |S| = 1 or |S| = 2

2 if |S| = 3
is subadditive but not XOS
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Price of Anarchy: Bound for XOS Valuations
[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

Consider XOS valuations v. Let b be a pure Nash equilibrium. Then
SW (b) ≥ 1

2 OPT (v).

Proof for unit-demand valuations:
Let ji be the item that bidder i gets in OPT (v).

Bidder i could deviate to b′i,j such that b′i,j = vi,j if j = ji and 0 otherwise.

ui(b) ≥ ui(b′i , b−i) ≥ vi,ji −maxi′ bi′,ji .

⇒
∑

i∈N ui(b) +
∑

j∈M maxi′ bi′,j ≥
∑

i∈N vi,ji = OPT (v)∑
i∈N ui(b) ≤ SW (b) by definition,∑
j∈M maxi′ bi′,j ≤ SW (b) by no-overbidding

“Smoothness” proof:
Deviation does not depend on b
⇒ extends to mixed Nash, correlated,
Bayes-Nash equilibria
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[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

Consider XOS valuations v. Let b be a pure Nash equilibrium. Then
SW (b) ≥ 1

2 OPT (v).

Proof for unit-demand valuations:
Let ji be the item that bidder i gets in OPT (v).

Bidder i could deviate to b′i,j such that b′i,j = vi,j if j = ji and 0 otherwise.

ui(b) ≥ ui(b′i , b−i) ≥ vi,ji −maxi′ bi′,ji .

⇒
∑

i∈N ui(b) +
∑

j∈M maxi′ bi′,j ≥
∑

i∈N vi,ji = OPT (v)∑
i∈N ui(b) ≤ SW (b) by definition,∑
j∈M maxi′ bi′,j ≤ SW (b) by no-overbidding

“Smoothness” proof:
Deviation does not depend on b
⇒ extends to mixed Nash, correlated,
Bayes-Nash equilibria

Thomas Kesselheim 13/38



Bound is tight

Two bidders, two items
v1({1}) = 2, v1({2}) = 1, v1({1, 2}) = 2
v2({1}) = 1, v2({2}) = 2, v2({1, 2}) = 2

b1,1 = 0, b1,2 = 1
b2,1 = 1, b2,2 = 0

0 1 1 0

1 2

SW (b) = 2, OPT (v) = 4
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Further Results

Roughgarden, STOC 2009, Syrgkanis/Tardos, STOC 2013, . . . :
General smoothness framework for Price of Anarchy

Bhawalkar/Roughgarden, SODA 2011:
Subadditive valuations: PoA = 2 for pure Nash,
PoA = O(log m) via smoothness

Feldman/Fu/Gravin/Lucier, STOC 2013:
Subadditive valuations: constant PoA for Bayes-Nash equilibria,
not a smoothness proof

More results on simultaneous first-price auctions, generalized second
price, greedy auctions, . . .
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Complexity of Equilibria (1/3)
[Dobzinski/Fu/Kleinberg, SODA 2015]

Submodular valuations: Computing an equilibrium with good
welfare is essentially as easy as computing an allocation with good
welfare.

Subadditive valuations: Computing an equilibrium requires
exponential communication.

XOS valuations: “If there exists an efficient algorithm that finds an
equilibrium, it must use techniques that are very different from our
current ones.”
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Complexity of Equilibria (2/3)
[Cai/Papadimitriou, EC 2014]

One unit-demand bidder, others additive:

Computing Bayes-Nash equilibrium in such auctions is PP-hard

Finding an approximate Bayes-Nash equilibrium is NP-hard

Recognizing a Bayes-Nash equilibrium is intractable
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Complexity of Equilibria (3/3)
[Daskalakis/Syrgkanis, FOCS 2016]

Unit-demand valuations: There are no polynomial-time no-regret
learning algorithms, unless RP ⊇ NP
Reason: Huge strategy spaces

Alternative concept: No-envy learning. Only decide which items to
buy but not the bids
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Best-Response Dynamics

bi is best response to b−i if

ui(bi , b−i) ≥ ui(b′i , b−i) for all b′i

Best-Response Dynamics with Round-Robin Activation

Activate bidders in order 1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . .
Every bidder switches to a best response

Best responses usually not unique:

Two bidders, one item.

If b1 = 1 and v2 = 2, then every b2 > 1 is a best response to b1
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Potential Procedure
[Christodoulou/Kovács/Schapira, JACM 2016]

All valuation functions are XOS, that is,
vi(S) = max`

∑
j∈S v`

i,j for some v`
i,j ≥ 0

When bidder i gets activated:

Determine S that maximizes vi(S)−
∑

j∈S maxk 6=i bk ,j

Let ` be such that vi(S) =
∑

j∈S v`
i,j .

bi,j = v`
i,j if j ∈ S and 0 otherwise

Note: Updates fulfill strong no-overbidding:
For every S ⊆ M and every i and t :

∑
j∈S bt

i,j ≤ vi(S).
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Potential Procedure: Convergence
[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

The Potential Procedure reaches a fixed point (pure Nash equilibrium)
after finitely many steps.
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Core Lemma

Define declared welfare: DW (b) =
∑

j∈M maxi∈N bi,j .

Lemma

If i makes an improvement step from bt to bt+1, then
DW (bt+1)− DW (bt) ≥ ui(bt+1)− ui(bt).

Proof. Suppose i previously won set S, now wins S′.

By choice of updates:
∑

j∈S bt
i,j ≤ vi(S)

∑
j∈S′ b

t+1
i,j = vi(S′)

DW (bt+1)− DW (bt)
=
∑

j∈S′(bt+1
i,j −maxi′ 6=i bt+1

i′,j )−
∑

j∈S(bt
i,j −maxi′ 6=i bt+1

i′,j )

≥ vi(S′)−
∑

j∈S′ maxi′ 6=i bt+1
i′,j −

(
vi(S)−

∑
j∈S maxi′ 6=i bt+1

i′,j

)
= ui(bt+1)− ui(bt)
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Potential Procedure: Convergence
[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

The Potential Procedure reaches a fixed point (pure Nash equilibrium)
after finitely many steps.

Proof.
Define declared welfare: DW (b) =

∑
j∈M maxi∈N bi,j .

If i makes an improvement step from bt to bt+1, then
DW (bt+1)− DW (bt) ≥ ui(bt+1)− ui(bt).

Every increase in utility is lower-bounded by some ε > 0.
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Potential Procedure: Convergence
[Christodoulou/Kovács/Schapira, JACM 2016]

Theorem

The Potential Procedure reaches a fixed point (pure Nash equilibrium)
after finitely many steps.

Theorem

It may take an exponential number of steps (in m) to reach a fixed point.
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Potential Procedure: Welfare Guarantee
[Dütting/K., SODA 2017]

Theorem

Let bidders be activated in order 1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . .. Let bt

denote bid vector after t-th update.
Then SW (bt) ≥ 1

3 OPT (v) for all t ≥ n.

t

SW (bt)

n nm

1
3 OPT (v)

1
2 OPT (v)
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Lemma∑n
i=1 ui(bi) ≤ DW (bn).

Proof. Suppose bidder i ’s update buys him the set of items S′

ui(bi) =
∑
j∈S′

(
bi

i,j −max
k 6=i

bi
k ,j

)
.

Define: z i
j = maxk≤i bi

k ,j for all j .

We have:
∑

j∈S′(bi
i,j −maxk 6=i bi

k ,j) ≤
∑

j∈M(z i
j − z i−1

j )

Reason:

For j 6∈ S′: z i
j ≥ z i−1

j by definition.

For j ∈ S′, bi
i,j = z i

j and

maxk 6=i bi
k ,j ≥ maxk<i bi

k ,j = maxk<i bi−1
k ,j = z i−1

j .
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Lemma∑n
i=1 ui(bi) ≤ DW (bn).

Proof. Suppose bidder i ’s update buys him the set of items S′

ui(bi) =
∑
j∈S′

(
bi

i,j −max
k 6=i

bi
k ,j

)
.

Define: z i
j = maxk≤i bi

k ,j for all j .

We have:
∑

j∈S′(bi
i,j −maxk 6=i bi

k ,j) ≤
∑

j∈M(z i
j − z i−1

j )

Overall: ∑
i∈N

ui(bi) ≤
∑
i∈N

∑
j∈M

(z i
j − z i−1

j ) =
∑
j∈M

(zn
j − z0

j )

=
∑
j∈M

max
k

bn
k ,j = DW (bn)
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Lemma

Let S∗1 , . . . ,S
∗
n be any feasible allocation. We have∑

i ui(bi) ≥
∑

i∈N vi(S∗i )− DW (bn)− DW (b0).

Proof. Bidder i could have bought the set of items S∗i .

ui(bi) ≥ vi(S∗i )−
∑
j∈S∗i

max
k 6=i

bi
k ,j

Define pt
j = maxi bt

i,j for all items j . We have: maxk 6=i bi
k ,j ≤ pn

j + p0
j .

Thus
ui(bi) +

∑
j∈S∗i

(pn
j + p0

j ) ≥ vi(S∗i ) .

And therefore

n∑
i=1

ui(bi) +
n∑

i=1

∑
j∈S∗i

(pn
j + p0

j ) ≥
n∑

i=1

vi(S∗i ) .
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Potential Procedure: Welfare Guarantee
[Dütting/K., SODA 2017]

Theorem

Let bidders be activated in order 1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . .. Let bt

denote bid vector after t-th update.
Then SW (bt) ≥ 1

3 OPT (v) for all t ≥ n.

t

SW (bt)

n nm

1
3 OPT (v)

1
2 OPT (v)
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Potential Procedure: Welfare Guarantee
[Dütting/K., SODA 2017]

Theorem

Let bidders be activated in order 1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . .. Let bt

denote bid vector after t-th update.
Then SW (bt) ≥ 1

3 OPT (v) for all t ≥ n.

Proof.∑
i ui(bi) ≤ DW (bn)∑
i ui(bi) ≥ OPT (v)− DW (bn)− DW (b0)

DW (b0) ≤ DW (bn) ≤ DW (bt)

⇒ DW (bt) ≥ 1
3 OPT (v)

Let S1, . . . ,Sn be allocation in bt , then DW (bt) =
∑

i

∑
j∈Si

bn
i,j .

By strong no-overbidding:
∑

j∈Si
bt

i,j ≤ vi(Si). So DW (bt) =∑
i

∑
j∈Si

bt
i,j ≤

∑
i vi(Si) = SW (b).
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How to bid if valuations are only subadditive?

vi(S) =


0 if |S| = 0

1 if |S| = 1 or |S| = 2

2 if |S| = 3

How to best respond to (0, 0, 0)?

( 2
3 ,

2
3 ,

2
3 ) bids 4

3 > 1 on {1, 2} (i.e. overbidding)

( 1
2 ,

1
2 ,

1
2 ) is strongly no-overbidding but bids only 3

2 on {1, 2, 3}

Generally: No pure Nash equilibria that fulfill strong no overbidding
[Bhawalkar/Roughgarden, SODA 2011]
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Aggressive and Safe Bids

Declared utility: uD
i (b) =

∑
j∈S bi,j −maxk 6=i bk ,j , if i wins S under b

We call bid bi by bidder i against bids b−i α-aggressive if
uD

i (b) ≥ α ·maxb′i
ui(b′i , b−i).

A best response dynamic is β-safe if it ensures that
uD

i (b) ≤ β · ui(b) for all players i and reachable bid profiles b.

Theorem

In β-safe round-robin bidding dynamic with α-aggressive bid updates at
any time step t ≥ n

SW (bt) ≥ α

(1 + α + β)β
· OPT (v).
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Best Response Dynamics for Subadditive Valuations

Use: S 7→ vi(S)−
∑

j∈S maxk 6=i bk ,j is subadditive

Implies: Can be approximated by XOS function

Consequence: α = 1
log m -aggressive, β = 1-safe dynamics

Theorem

For subadditive valuations, there is a round-robin best-response
dynamic such that at any time step t ≥ n

SW (bt) = Ω
(

1
log m

)
· OPT (v).

Theorem

For subadditive valuations, for every best-response dynamic there is an
instance such that for infinitely many t

SW (bt) = O
(

log log m
log m

)
· OPT (v).
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Convergence rate after n-th step

t

SW (bt)

n nm

1
3 OPT (v)

1
2 OPT (v)

?

In case of XOS valuations:

Reach 1
3 OPT (v) after n steps (tight)

Reach 1
2 OPT (v) eventually (tight)

How fast is convergence in between?
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What about single-minded valuations?

Valuation functions of the form

vi(S) =

{
ci if S ⊇ Ti

0 otherwise

for |Ti | ≤ k .

More generally: MPH-k valuations
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Relation to Smoothness?

So far: Techniques similar to price-of-anarchy analyses via smothness

Is there a general connection?
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How do no-regret dynamics converge?

So far: Mainly use convergence to correlated equilibria, analyze those.

How fast? How difficult are single steps?

Can we guarantee any better approximation than O(log m) in case of
subadditive functions?
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Other auction formats?

Design mechanisms with better price of anarchy
Limitations: [Roughgarden, FOCS 2014]

Design mechanisms that are easier to play
Example: [Devanur/Morgenstern/Srygkanis/Weinberg, EC 2015]

Consider other settings than combinatorial auctions

Thank you!
Questions?
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