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ABSTRACT
We consider the problem of fair division, where a set of indivisible

goods should be distributed fairly among a set of agents with com-

binatorial valuations. To capture fairness, we adopt the notion of

shares, where each agent is entitled to a fair share, based on some

fairness criterion, and an allocation is considered fair if the value of

every agent (weakly) exceeds her fair share. A share-based notion is

considered universally feasible if it admits a fair allocation for every

profile of monotone valuations. A major question arises: is there

a non-trivial share-based notion that is universally feasible? The

most well-known share-based notions, namely the proportional

share and the maximin share, are not universally feasible, nor are

any constant approximations of them.

We propose a novel share notion, where an agent assesses the

fairness of a bundle by comparing it to her valuation in a random

allocation. In this framework, a bundle is considered 𝑞-quantile
fair, for 𝑞 ∈ (︀0, 1⌋︀, if it is at least as good as a bundle obtained in a

uniformly random allocation with probability at least 𝑞. Our main

question is whether there exists a constant value of 𝑞 for which the

𝑞-quantile share is universally feasible.

Our main result establishes a strong connection between the fea-

sibility of quantile shares and the classical Erdős Matching Conjec-

ture. Specifically, we show that if a version of this conjecture is true,

then the
1

2𝑒
-quantile share is universally feasible. Furthermore, we

provide unconditional feasibility results for additive, unit-demand

and matroid-rank valuations for constant values of 𝑞. Finally, we

discuss the implications of our results for other share notions.

CCS CONCEPTS
• Mathematics of computing → Combinatorics; • Theory of
computation→ Algorithmic game theory and mechanism design.
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1 INTRODUCTION
Fair division, the problem of allocating resources in a fair manner,

has emerged as a prominent and crucial area of research that has

attracted considerable attention in the literature. This challenging

problem arises in various practical applications, ranging from clas-

sical examples like the division of inherited estates, international

border settlements, and the allocation of public resources and gov-

ernment spending, to modern applications such as assigning seats

in college courses, allocating computational resources, distributing

the electromagnetic spectrum, and managing airport traffic.

Fair division model. We consider the problem of allocating a set

of indivisible goods (︀𝑚⌋︀ = {1, . . . ,𝑚} among 𝑛 agents. Every agent

𝑖 ∈ (︀𝑛⌋︀ has a valuation function 𝑣𝑖 ∶ 2(︀𝑚⌋︀ → R+ that assigns a real
value to every bundle of goods. The function 𝑣𝑖 is monotone, namely

𝑣𝑖(𝑆′) ≤ 𝑣𝑖(𝑆) for all 𝑆
′ ⊆ 𝑆 ⊆ (︀𝑚⌋︀. The class of all monotone

valuation functions will be denoted by𝒱 . An allocation is a partition
of the set of goods among the agents; it is denoted by S = (𝑆1, ..., 𝑆𝑛),
where 𝑆𝑖 ⊆ (︀𝑚⌋︀ denotes the bundle allocated to agent 𝑖 ∈ (︀𝑛⌋︀, and
𝑆1 ⊍𝑆2 ⊍ ...⊍𝑆𝑛 = (︀𝑚⌋︀. The ultimate goal is to find a fair allocation,
according to some natural notion of fairness.

Over the years, different notions of fair allocation have been

introduced, capturing various interpretations of fairness. Some

examples include envy-freeness [25] and its variants (e.g., EF1,

EFX) [12, 13]. Others consider egalitarian objectives such as max-

imizing the utility of the worst-off agent [8], or maximizing the

product of the agent utilities, known as the Nash welfare objec-

tive [13, 38, 45]. Another approach, which we adopt in this paper,

is based on the notion of shares. Examples include the proportional

share [49] and the maximin share [12].

The notion of a “share". Following the terminology of [6], a share
𝜏 = 𝜏(𝑣𝑖 , 𝑛) is a function that maps a pair (𝑣𝑖 , 𝑛) to a real value, with
the interpretation that any allocation among the 𝑛 agents that gives

agent 𝑖 a bundle of value at least 𝜏(𝑣𝑖 , 𝑛) is acceptable by agent 𝑖 ,

thus considered fair towards agent 𝑖 . We emphasize that, unlike

some of the other approaches mentioned above, the share-based

notion of fairness towards agent 𝑖 depends only on this agent’s
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valuation, and the number of agents; it is not affected by the valu-

ations of other agents or the bundles they receive. Consequently,

an allocation S is said to be fair towards agent 𝑖 if 𝑣𝑖(𝑆𝑖) ≥ 𝜏 . An
allocation S is said to be fair if it is fair towards all agents 𝑖 ∈ (︀𝑛⌋︀.
For a definition of a share to be meaningful with respect to some

valuation class 𝒰 ⊆ 𝒱 , it should be feasible for the class 𝒰 .

Definition 1.1 (Feasible share). A share 𝜏 is feasible for the valua-
tion class 𝒰 if for every 𝑣1, ..., 𝑣𝑛 ∈ 𝒰 there exists a fair allocation

S = (𝑆1, ..., 𝑆𝑛), namely, an allocation S such that 𝑣𝑖(𝑆𝑖) ≥ 𝜏(𝑣𝑖 , 𝑛)
for every 𝑖 ∈ (︀𝑛⌋︀.

A share that is feasible for all monotone valuations is termed

universally feasible.

Definition 1.2 (Universal feasibility). A share 𝜏 is universally fea-
sible if it is feasible for the class of all monotone valuations.

To the best of our knowledge, none of the notions of shares

in the literature is universally feasible (except for trivial cases).

For example, the maximin share (MMS) of an agent is the value

the agent obtains by partitioning the goods into 𝑛 bundles, at her

choice, and receiving the worst one among them [12]. The maximin

share is known to be infeasible, even for additive valuations [24, 46],

but a constant fraction of MMS is feasible for additive valuations

[2, 33, 46], as well as submodular and XOS valuations [33]. However,

for general valuations, no constant fraction of MMS is feasible (see

the full version [7] for an example).

As another example, the proportional share of an agent is defined

by 𝜏(𝑣𝑖 , 𝑛) = 𝑣𝑖((︀𝑚⌋︀)⇑𝑛, namely, it is a 1⇑𝑛 fraction of agent 𝑖’s

valuation for the grand bundle. The proportional share is infeasible

for any constant fraction. This can be easily seen by considering

the scenario of a single good and many agents.

These examples motivate the following question: Does there exist
a natural share notion that is universally feasible (i.e., feasible for all
monotone valuations)?

Quantile shares. In what follows we define our new notion of

shares, termed quantile shares. According to this notion, an agent

deems a bundle fair or unfair, based on how it compares to a uni-

formly random bundle; namely, a random bundle 𝑋𝑖 ∈ Δ(2(︀𝑚⌋︀)
that contains every good with probability

1

𝑛
, independently across

all goods. (Equivalently, this is the random allocation of an agent

when choosing an allocation uniformly at random among all 𝑛
𝑚

possible allocations.) Specifically, a bundle𝑇 is said to be 𝑞-quantile

fair towards agent 𝑖 (or in short, 𝑞-fair) if the probability that 𝑇 is

(weakly) better for 𝑖 than the random bundle 𝑋𝑖 , is at least 𝑞.

A formal definition follows. Recall that the 𝑞-quantile of a real-

valued distribution with CDF 𝐹 is defined by sup{𝑡 ∈ R ⋃︀ 𝐹(𝑡) < 𝑞}.

Definition 1.3 (𝑞-quantile share, 𝑞-fair). The 𝑞-quantile share
𝜏𝑞(𝑣𝑖 , 𝑛) is the 𝑞-quantile of the distribution 𝑣𝑖(𝑋𝑖) ∈ Δ(R+). A
bundle 𝑇 is said to be 𝑞-quantile fair towards agent 𝑖 (or in short,

𝑞-fair) if 𝑣𝑖(𝑇 ) ≥ 𝜏𝑞(𝑣𝑖 , 𝑛).1

Note that quantile shares are ordinal in nature. Indeed, to deter-

mine whether a particular bundle is fair for an agent, her ordinal

1

Interestingly, if instead of considering quantiles of a distribution 𝑣𝑖(𝑋𝑖) we consider

its expectation, then for an additive valuation 𝑣𝑖 we get precisely the definition of the

proportional share.

preferences over the bundles suffice; no cardinal information is

required. An alternative motivation for this notion is introduced

below in Section 1.2.

1.1 Our Results
We find an interesting connection between the feasibility of 𝑞-

quantile shares and the famous ErdősMatching Conjecture. Roughly

speaking, we show that if the Erdős Matching Conjecture is true,

then the
1

2𝑒
-quantile share is universally feasible. To the best of

our knowledge, this is the first non-trivial notion of shares that is

universally feasible. More specifically, we show the following:

Theorem (see Theorem 3.2). If the Erdős Matching Conjecture
is true (even for a specified special case), then for every 𝑛 ∈ N, the
1

2𝑒
-quantile share is feasible for any profile of identical (across agents)

monotone valuation.

Theorem (see Theorem 3.4). If the Rainbow Erdős Matching
Conjecture is true (even for a specified special case), then for every
𝑛 ∈ N, the 1

2𝑒
-quantile share is universally feasible.

These positive results are tight up to a factor of 2; we show that

the
1

𝑒
-quantile share is infeasible (see Proposition 2.2).

We then turn to unconditional feasibility results for special cases.

For additive valuations, we show the following:

Proposition (see Proposition 4.2). For every profile of additive
valuations, the 𝑞-quantile share is feasible for every 𝑞 < 0.14

𝑒
, as

𝑛 →∞.

For unit-demand and matroid-rank valuations, we identify the

critical value of 𝑞 = 1⇑𝑒 as the switching point from feasibility to

infeasibility.

Proposition (see Propositions 4.6 and 4.10). For every pro-
file of unit-demand valuations or of matroid-rank valuations, the
𝑞-quantile share is feasible for every 𝑞 < 1

𝑒
and infeasible for every

𝑞 > 1

𝑒
for sufficiently large 𝑛.

A few remarks are in order.

First, for small values of 𝑛 and𝑚, one can verify by exhaustive

search that for general monotone valuations, the threshold for

feasibility is exactly (1 − 1

𝑛
)𝑛−1, which approaches

1

𝑒
as 𝑛 grows.

In Section 5.1.1, we discuss our use of computer search towards

discovering the critical threshold for 𝑛 ∈ {3, 4} and small𝑚.

Second, it is interesting to note that for identical valuations, the

above feasibility results imply associated lower bounds on the quan-

tiles of the maximin share and proportional share (see Section 5.2).

Third, unlike other share notions (e.g., maximin share), quan-

tile shares can essentially be efficiently computed. Moreover, for

additive, unit-demand and matroid-rank valuations, our existence

results suggest constructive algorithms (see Section 5.3).

Finally, in Section 5.4 we show that the feasibility of the 𝑞-

quantile share for constant 𝑞 does not extend to the allocation

of chores (bads).

1.2 Quantile Shares as Vetoes
We next provide an alternative interpretation of quantile shares.

Consider a scenario where an allocator is unaware of the agent

valuations, and every agent reports a veto list of allocations they
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deem unacceptable. The allocator’s goal is to come up with an

allocation that is not contained in the collective veto lists submitted

by the agents.

Fairness here is captured by the fact that each agent is limited to

the same size for their veto list. Formally, let 𝑏 denote the maximal

size of the veto list submitted by every agent, and let 𝐿𝑖 be the veto

list of agent 𝑖 , where ⋃︀𝐿𝑖 ⋃︀ ≤ 𝑏. The following natural question arises:

How large can the parameter 𝑏 be while ensuring the existence of

an allocation S ∉ ⋃𝑖 𝐿𝑖 for all possible list reports?
Clearly, this question is meaningful only when restricting at-

tention to veto lists that satisfy a monotonicity condition. (In the

absence of this restriction, one can easily see that 𝑛
𝑚⇑𝑛 is a tight

threshold. Indeed, since the total number of allocations is 𝑛
𝑚
, then

if 𝑏 ≥ 𝑛𝑚⇑𝑛, then the agent lists might cover the entire set of possi-

ble allocations, and if 𝑏 < 𝑛𝑚⇑𝑛, then there must exist an allocation

that does not belong to the union of all veto lists.)

Definition 1.4. A veto list 𝐿𝑖 is monotonicity-consistent2 if

(𝑆𝑖 , 𝑆−𝑖) = S ∈ 𝐿𝑖 ⇒ (𝑆′𝑖 , 𝑆′−𝑖) = S′ ∈ 𝐿𝑖

for every 𝑆
′
𝑖 ⊆ 𝑆𝑖 and every 𝑆

′
−𝑖 .

The question then becomes: How large can 𝑏 be while ensuring

the existence of an allocation S ∉ ⋃𝑖 𝐿𝑖 for all possible monotonicity-

consistent list reports? This question turns out to be equivalent to

the feasibility of 𝑞-quantile shares, either for the full class of mono-

tone valuations𝒱 or for its subclass𝒱01 of monotone 0⇑1-valuations
𝑢𝑖 ∶ 2(︀𝑚⌋︀ → {0, 1}. This is cast in the following proposition.

Proposition 1.5. The following three statements are equivalent:

(1) For all monotonicity-consistent lists 𝐿1, ..., 𝐿𝑛 of size at most 𝑏
there exists S ∉ ⋃𝑖 𝐿𝑖 .

(2) For 𝑞 = (𝑏 + 1)⇑𝑛𝑚 the 𝑞-quantile share is universally feasible.
(3) For 𝑞 = (𝑏 + 1)⇑𝑛𝑚 the 𝑞-quantile share is feasible for all

monotone 0⇑1-valuations.

Proof. (2⇒ 3) is trivial. Thus, it remains to prove that (1⇒ 2)

and (3⇒ 1).

We first show that (1⇒ 2). If the 𝑞-quantile share is infeasible

for the profile of monotone valuations 𝑣1, ..., 𝑣𝑛 , then let 𝐿𝑖 = {S ∶
𝑣𝑖(𝑆𝑖) < 𝜏𝑞(𝑣𝑖 , 𝑛)}. Note that ⋃︀𝐿𝑖 ⋃︀ ≤ 𝑏 because we have at most

𝑏 allocations whose value for agent 𝑖 is strictly worse than the

(𝑏 + 1)’th worst value. The fact that 𝜏𝑞 is infeasible implies that for

every allocation S = (𝑆1, ..., 𝑆𝑛) there exists an agent 𝑖 for whom

𝑣𝑖(𝑆𝑖) < 𝜏𝑞(𝑣𝑖 , 𝑛); namely S ∈ 𝐿𝑖 .
We next show that (3 ⇒ 1). Let 𝐿1, ..., 𝐿𝑛 be a collection of

monotonicity-consistent veto lists of size at most 𝑏. Note that

whether or not S ∈ 𝐿𝑖 depends only on 𝑆𝑖 , and this dependence

is monotone. Hence, for each 𝑖 ∈ (︀𝑛⌋︀, we can define a monotone

0⇑1-valuation 𝑢𝑖 by: 𝑢𝑖(𝑆𝑖) = 0 if S ∈ 𝐿𝑖 and 𝑢𝑖(𝑆𝑖) = 1 if S ∉ 𝐿𝑖 .
Then in a random allocation we have 𝑢𝑖(𝑋𝑖) = 0 with probability

at most 𝑏⇑𝑛𝑚 and 𝑢𝑖(𝑋𝑖) = 1 with the remaining probability. Since

𝑏⇑𝑛𝑚 < 𝑞, the 𝑞-quantile of 𝑢𝑖(𝑋𝑖) is 1. The feasibility of the 𝑞-

quantile share implies the existence of an allocation S = (𝑆1, ..., 𝑆𝑛)
such that 𝑢𝑖(𝑆𝑖) = 1 for all 𝑖 ∈ (︀𝑛⌋︀, or equivalently S ∉ ⋃𝑖 𝐿𝑖 . □

2

Note that monotonicity-consistency does not allow an agent to interfere in the

allocation of others. This is captured by the requirement for the case 𝑆𝑖 = 𝑆
′
𝑖 .

Let us now revisit our question with Proposition 1.5 in hand.

Recall that in the absence of the monotonicity restriction on the

veto lists, feasibility can only be maintained if 𝑏 < 𝑛𝑚⇑𝑛, that is,
the fraction of vetoed allocations shrinks as the number of agents

grows. In contrast, our main results imply that under monotonicity-

consistent lists, the size of the lists can be as large as 𝑏 = ⟨︀𝑛𝑚⇑(2𝑒)⧹︀.
Namely, the fraction of vetoed allocations can be constant, inde-

pendent of the number of agents and the valuation profiles, while

still ensuring feasibility.

1.3 Additional Related Literature
Broadly, the two main types of fairness notions are share-based
fairness and envy-based fairness. The notion of a fair share has

remained central to the fair division literature ever since its formal

study commenced with the work of Banach, Knaster and Stein-

haus [49] in the 1940s. They worked on the problem of fairly divid-

ing a heterogeneous divisible good (i.e., cake-cutting), and devised

a procedure to attain the proportional share, in which each of the

𝑛 agents gets a bundle (or piece of the cake) of value at least a

1

𝑛
-fraction of their value for the set of all items (or the entire cake).

Several notable papers about proportional cake division have since

been published ([16, 18, 22]).

However, with indivisible items it is easy to see that proportion-

ality is unattainable: consider the case of two agents and a single

good. In this setting, Budish [12] defined a new share-based fairness

notion called the maximin share (MMS). For additive valuations, the

MMS is weakly smaller than the proportional share; however, Bud-

ish [12] left open the problem of whether an MMS allocation (one

in which every agent receives a bundle of value at least its maximin

share) always exists. Procaccia andWang [46] show that the MMS is

not always feasible even for additive valuations, thereby initiating

a line of research into the existence of feasible approximations and

relaxations of the MMS ([2, 33, 46]).

More recently, Babaioff and Feige [6] formally define the gen-

eral notion of shares and focus on several desirable properties of

shares. One of these properties is self-maximization which, roughly

speaking, incentivizes agents to report their valuation truthfully

under a worst-case fair allocation. While the maximin share is itself

infeasible, it is self-maximizing. By contrast, while some multiplica-

tive approximations of the maximin share are known to be feasible,

no such approximation is self-maximizing [6]. It is easy to see that

our notion of quantile shares is self-maximizing. Another desirable

property is being undominated: it should be impossible to promise

more value to the agents and still maintain feasibility. We notice

that in the class of unit-demand valuations, where we exactly deter-

mine the critical value 𝑞 for feasibility, the corresponding 𝑞-quantile

share is undominated.

The idea of measuring the satisfaction of agents via quantiles

is not new. For two agents, the criterion of exceeding the median

quantile has been considered in [15]. Exceeding a general quantile

for two agent allocation problems has been considered in [44].

For envy-based notions of fairness, the notion of envy-freeness
up to one good (EF1) is, to the best of our knowledge, the only notion
whose feasibility has been proved for general valuation functions

(see [12]). This notion of fairness relaxes the envy-freeness require-

ment by allowing an agent to remove one good from the bundle of
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the opponent before examining whether she envies her. Stronger

envy-based fairness notions, such as envy-freeness up to any good
(EFX), remain open even for additive valuations.

2 PRELIMINARY OBSERVATIONS
As a warm-up, we present several simple (positive and negative)

results on the feasibility of 𝑞-quantile shares. First, we use the union

bound to obtain the following feasibility result for the class 𝒱 of all

monotone valuations.

Proposition 2.1. For every 𝑛,𝑚 ∈ N the 1⇑𝑛-quantile share is
universally feasible.

Proof. By Proposition 1.5, it suffices to show that given any

veto lists 𝐿1, ..., 𝐿𝑛 , each of size strictly less than 𝑛
𝑚⇑𝑛 = 𝑛

𝑚−1
,

there exists an allocation S ∉ ⋃𝑖 𝐿𝑖 This follows from the union

bound. □

A straightforward infeasibility result is implied by a scenario in

which 𝑛 − 1 goods with strictly positive values are allocated to 𝑛

agents, which inevitably implies the existence of an agent that gets

nothing. This example leads to the following upper bound.

Proposition 2.2. For every 𝑛,𝑚 ∈ N such that 𝑚 ≥ 𝑛 − 1, the
𝑞-quantile share is infeasible for 𝑞 > (1− 1

𝑛
)𝑛−1. In particular, asymp-

totically (as 𝑛 →∞) the 𝑞-quantile share is infeasible for 𝑞 > 1

𝑒
.

Proof. Let 𝑣𝑖 be a valuation that satisfies 𝑣𝑖(𝑆𝑖) > 0 if 𝑆𝑖 ∩ (︀𝑛 −
1⌋︀ ≠ ∅ and 𝑣𝑖(𝑆𝑖) = 0 otherwise. Every allocation S has at least one
agent 𝑖 who receives none of the goods from (︀𝑛 − 1⌋︀, and hence

𝑣𝑖(𝑆𝑖) = 0. In the random allocation, for agent 𝑖’s bundle 𝑋𝑖 we

have

P(︀𝑣𝑖(𝑋𝑖) = 0⌋︀ = (1 −
1

𝑛
)
𝑛−1

.

Therefore, for 𝑞 > (1 − 1

𝑛
)𝑛−1 the 𝑞-quantile of 𝑣𝑖(𝑋𝑖) is strictly

positive, and hence the bundle 𝑆𝑖 with 𝑣𝑖(𝑆𝑖) = 0 is not 𝑞-fair

towards agent 𝑖 . □

Remark 1. Later, we will consider special classes of valuations. In
each of these classes, there is a valuation 𝑣𝑖 that satisfies 𝑣𝑖(𝑆𝑖) > 0
iff 𝑆𝑖 ∩ (︀𝑛 − 1⌋︀ ≠ ∅. Therefore, the 1⇑𝑒 + 𝑂(1⇑𝑛) upper bound of
Proposition 2.2 applies to all these classes without any modification
to the proof.

Propositions 2.1 and 2.2 precisely determine the critical value of

𝑞 at which 𝑞-quantile shares shift from being feasible to infeasible,

for the case of two agents.

Corollary 2.3. For 𝑛 = 2 the 1

2
-quantile share is the largest

feasible quantile share.

However, as 𝑛 becomes larger the gap between the feasibility

result of Proposition 2.1 and the infeasibility result of Proposition

2.2 increases; the largest feasible value of 𝑞 is located in the interval

(︀ 1
𝑛
, (1− 1

𝑛
)𝑛−1⌋︀ ≈ (︀ 1

𝑛
, 1
𝑒
⌋︀. The main question that we try to address

in this paper is:

Are 𝑞-quantile shares feasible for a constant 𝑞 > 0 that is
independent of 𝑛 and𝑚?

3 FEASIBILITY OF QUANTILE SHARES VIA
ERDŐS MATCHING CONJECTURES

Our main results show that the 𝑞-quantile share is universally feasi-

ble for a constant 𝑞, under the assumption that the Erdős Matching

Conjecture is true. We first present the result for the case of identi-

cal valuations (Section 3.1). Thereafter, we extend these arguments

to general (non-identical) valuations (Section 3.2).

3.1 Identical Valuations
In this section, we restrict attention to the case where all agents

have an identical (monotone) valuation function 𝑣𝑖 = 𝑣 ∈ 𝒱 .
Our main result uncovers a surprising connection between the

feasibility of quantile shares and the well-known Erdős Matching

Conjecture. We start this section by describing the conjecture and

its connection to our problem.

Erdős’ conjecture considers the following question: what is the
maximum size of a family of 𝑘-element subsets of an 𝑚-element
set if it has no collection of 𝑛 pairwise disjoint sets? To state it, we

need the following terminology and notation. An 𝑙-matching is a

collection of 𝑙 pairwise disjoint sets. Given a family of sets ℱ , the
matching number 𝜈(ℱ) is the maximal 𝑙 such that an 𝑙-matching

from ℱ exists. The Erdős Matching Conjecture gives a bound on

the maximum cardinality of ℱ subject to the condition 𝜈(ℱ) < 𝑛.
Concretely, the conjecture focuses on the case where the family

consists of 𝑘-element sets over the universe (︀𝑚⌋︀ and states the

following.

Conjecture (Erdős Matching Conjecture [19]). For every
𝑚,𝑘,𝑛 ∈ N such that𝑚 ≥ 𝑘𝑛, and everyℱ ⊆ ((︀𝑚⌋︀

𝑘
) for which 𝜈(ℱ) <

𝑛, we have

⋃︀ℱ⋃︀ ≤ max{(𝑚
𝑘
) − (𝑚 − 𝑛 + 1

𝑘
),(𝑘𝑛 − 1

𝑘
)(︀.

The expressions (𝑚
𝑘
)−(𝑚−𝑛+1

𝑘
) and (𝑘𝑛−1

𝑘
) have simple interpre-

tations in this context. One strategy for constructing a large family

of sets with no 𝑛-matching is to enforce the property that every set

includes at least one element from (︀𝑛 − 1⌋︀. Then an intersection

between 𝑛 sets must occur somewhere in these 𝑛−1 elements. Such

a construction yields ⋃︀ℱ⋃︀ = (𝑚
𝑘
) − (𝑚−𝑛+1

𝑘
). Another strategy for

constructing a large family of sets with no 𝑛-matching is to reduce

the universe from which the elements are taken. Reducing it to

(︀𝑘𝑛 − 1⌋︀ is sufficient to prevent an 𝑛-matching. Such a construc-

tion yields ⋃︀ℱ⋃︀ = (𝑘𝑛−1
𝑘

). The conjecture states that for every 𝑘,𝑛
and𝑚 ≥ 𝑘𝑛, one of these two constructions is optimal (that is, it

constructs the largest possible family with no 𝑛-matching).

This conjecture has received considerable attention over more

than half a century. The special case 𝑛 = 2 is the well-known Erdős-

Ko-Rado theorem [20]. The conjecture is trivial when 𝑘 = 1, was
proved by Erdős and Gallai [21] for the case 𝑘 = 2, and was proved

much more recently in a sequence of works for the case 𝑘 = 3

([27, 30, 42]). The conjecture was established for sufficiently large

𝑚 (compared to 𝑛 and 𝑘) by many authors; the conditions on how

large𝑚 needs to be have become weaker over time, but they are

still stronger than the conjectured𝑚 ≥ 𝑘𝑛; see e.g., [19, 26, 29, 36]
to mention just a few.
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Wewill utilize the Erdős Matching Conjecture for the case where

𝑛 is fixed, 𝑘 →∞ and𝑚 = 𝑛(𝑘 + 1). In this case it can be verified

that (𝑚
𝑘
) − (𝑚−𝑛+1

𝑘
) ≥ (𝑘𝑛−1

𝑘
); see the full version [7] for a proof.

Thus the special case of the Erdős Matching Conjecture that we

need is the following.

Conjecture 3.1 (Erdős Matching Conjecture – special case).

For every 𝑛 there exists 𝑘0 such that for every 𝑘 ≥ 𝑘0,𝑚 = (𝑘 + 1)𝑛,
and every ℱ ⊆ ((︀𝑚⌋︀

𝑘
) for which 𝜈(ℱ) < 𝑛, we have

⋃︀ℱ⋃︀ ≤ (𝑚
𝑘
) − (𝑚 − 𝑛 + 1

𝑘
).

To the best of our knowledge, the Erdős Matching Conjecture

remains a conjecture in this special case.
3

Connection to quantile shares. To establish a connection between

our problem and the Erdős Matching Conjecture we utilize Propo-

sition 1.5 and consider 0⇑1-valuations. The connection to the Erdős

Matching Conjecture follows from the following analogies. We set

ℱ = {𝑆𝑖 ⊆ (︀𝑚⌋︀ ∶ 𝑢(𝑆𝑖) = 1}. Namely, ℱ is the collection of subsets

in which an agent gets a value of 1 and hence is satisfied. The notion

of an 𝑛-matching of subsets of (︀𝑚⌋︀ corresponds to an allocation: we

cannot allocate the same good to two different agents; i.e., pairwise

disjointness. With this interpretation, the Erdős Matching Conjec-

ture states that if no allocation yields every agent a value of 1 (i.e.,

𝜈(ℱ) < 𝑛), then there are not too many subsets in which an agent

has a value of 1 (i.e., ⋃︀ℱ⋃︀ is bounded from above).

Despite this tight connection of the two problems, there is an ob-

vious obstacle: In the allocation problem, we are allowed to allocate

to agents different numbers of goods, whereas the Erdős Matching

Conjecture deals with 𝑘-subsets, namely corresponds to the case

where all agents get the same number of goods 𝑘 . Somewhat sur-

prisingly, it turns out that a careful choice of the number of goods

that we allocate to the agents,
4
combined with the Kruskal-Katona

theorem (see below) implies a feasibility result for a constant 𝑞. We

formulate below the special case of the Kruskal-Katona Theorem

that we utilize in the proof.

Theorem (Kruskal-Katona Theorem (Lovász’s simplified

formulation) [40]). Let 𝒢𝑘 ⊆ (
(︀𝑚⌋︀

𝑘
) be a family of 𝑘-subsets. For

every 𝑘′ ≤ 𝑘 we define 𝜕𝑘′𝒢𝑘 ⊆ (
(︀𝑚⌋︀

𝑘′ ) by
5

𝜕𝑘′𝒢𝑘 = {𝑆
′ ∈ ((︀𝑚⌋︀

𝑘′
) ∶ ∃𝑆 ∈ 𝒢𝑘 s.t. 𝑆′ ⊆ 𝑆}.

If ⋃︀𝒢𝑘 ⋃︀ ≥ (𝑚
′

𝑘
) for some𝑚′ ≤𝑚 then ⋃︀𝜕𝑘′𝒢𝑘 ⋃︀ ≥ (𝑚

′
𝑘′ ).

We are now ready to formulate and prove the result for identical

valuations.

Theorem 3.2. If the Erdős Matching Conjecture is true for the
special case of Conjecture 3.1, then for every 𝑛,𝑚 ∈ N the 1

2𝑒
-quantile

share is feasible for any profile of identical valuations in 𝒱 .
3

A somewhat “close" region in which the conjecture is known to be true is 𝑘𝑛 ≤𝑚 ≤

(𝑘 + 𝜖𝑘)𝑛 for some constant 0 < 𝜖𝑘 < 1 that does not depend on 𝑛 [28].

4

The naive choice of 𝑘 = ⟩︀𝑚
𝑛
(︁ does not provide a desired feasibility result. But

𝑘 = ⟩︀𝑚
𝑛
(︁ − 1 does.

5

𝜕𝑘′𝒢𝑘 is called the shadow of 𝒢𝑘 on (
(︀𝑚⌋︀
𝑘′ ).

Proof. By Proposition 1.5 it suffices to prove that the
1

2𝑒
-quantile

share is feasible for every profile of identical valuations in 𝒱01. We

fix some 𝜖 > 0 and prove the feasibility of the ( 1

2𝑒
− 𝜖)-quantile

share; this will suffice because the critical value of feasibility is

located on the discrete grid of
1

𝑛𝑚
.

Note that feasibility of the 𝑞-quantile share for𝑚
′
implies feasi-

bility of the 𝑞-quantile share for every𝑚
′′ <𝑚′ because we can set

the marginal contribution of the last𝑚
′−𝑚′′ goods to be identically

0. Therefore we can assume without loss of generality that𝑚 is

large enough (to be specified below). Moreover, we can choose𝑚

to satisfy that𝑚⇑𝑛 is an integer.

Note that ⋃︀𝑋𝑖 ⋃︀ – the number of goods that agent 𝑖 receives in a ran-

dom allocation – is distributed according to 𝐵𝑖𝑛(𝑚, 1⇑𝑛). For a fixed
𝑛, by the Central Limit Theorem we know that lim𝑚→∞ P(︀⋃︀𝑋𝑖 ⋃︀ <
𝑚⇑𝑛⌋︀ = 1⇑2. We set𝑚 to satisfy:

(1) 𝑚⇑𝑛 is an integer.

(2) 𝑚⇑𝑛 − 1 ≥ 𝑘0 for the 𝑘0 in Conjecture 3.1.

(3) P(︀⋃︀𝑋𝑖 ⋃︀ <𝑚⇑𝑛⌋︀ ≥ 1⇑2 − 𝜖 .
Let 𝑢 ∈ 𝒱01, let ℱ = {𝑆 ∶ 𝑢(𝑆) = 1}, and for each 𝑘 let ℱ𝑘 =

ℱ ∩ ((︀𝑚⌋︀
𝑘
). Similarly let 𝒢 = {𝑆 ∶ 𝑢(𝑆) = 0}, and let 𝒢𝑘 = 𝒢 ∩ (

(︀𝑚⌋︀

𝑘
).

If ℱ contains a matching of size 𝑛, then (by monotonicity) there is

an allocation S with 𝑢(𝑆𝑖) = 1 for all 𝑖 ∈ (︀𝑛⌋︀. Thus we may assume

that 𝜈(ℱ) < 𝑛, and in particular that 𝜈(ℱ𝑘) < 𝑛 for 𝑘 =𝑚⇑𝑛 − 1. By
the Erdős Matching Conjecture (the special case of Conjecture 3.1),

we have

⋃︀ℱ𝑘 ⋃︀ ≤ (
𝑚

𝑘
) − (𝑚 − 𝑛 + 1

𝑘
),

or equivalently

⋃︀𝒢𝑘 ⋃︀ ≥ (
𝑚 − 𝑛 + 1

𝑘
).

Let 𝑘
′ ≤ 𝑘 . The monotonicity of 𝑢 implies that 𝜕𝑘′𝒢𝑘 ⊆ 𝒢𝑘′ , and

therefore by the Kruskal-Katona Theorem we get

⋃︀𝒢𝑘′ ⋃︀ ≥ (
𝑚 − 𝑛 + 1

𝑘′
).

The fraction of 𝑘
′
-sets in which an agent has a 0 value is bounded

from below by:

⋃︀𝒢𝑘′ ⋃︀
(𝑚
𝑘′)
≥
(𝑚−𝑛+1

𝑘′ )
(𝑚
𝑘′)

= (𝑚 − 𝑘
′) ⋅ (𝑚 − 𝑘′ − 1) ⋅ ... ⋅ (𝑚 − 𝑛 − 𝑘′ + 2)
𝑚 ⋅ (𝑚 − 1) ⋅ ... ⋅ (𝑚 − 𝑛 + 2)

= (1 − 𝑘
′

𝑚
) ⋅ (1 − 𝑘

′

𝑚 − 1) ⋅ ... ⋅ (1 −
𝑘
′

𝑚 − 𝑛 + 2)

≥ (1 − 𝑘
′

𝑚 − 𝑛 + 2)
𝑛−1

≥ (1 − 𝑘

𝑚 − 𝑛 + 2)
𝑛−1

≥ (1 − 𝑘

𝑚 − 𝑛 )
𝑛−1

= (1 − 1

𝑛
)
𝑛−1

≥ 1

𝑒
.

In a random allocation, the probability that an agent will have a 0

value is at least ( 1
2
−𝜖) 1

𝑒
. Indeed, with probability at least ( 1

2
−𝜖) the

random bundle𝑋𝑖 will satisfy ⋃︀𝑋𝑖 ⋃︀ < 𝑚
𝑛
, i.e., ⋃︀𝑋𝑖 ⋃︀ ≤ 𝑘 . Conditional on

⋃︀𝑋𝑖 ⋃︀ = 𝑘′ ≤ 𝑘 , the probability of having 0 value is at least 1

𝑒
(because

the conditional distribution is uniform over ((︀𝑚⌋︀
𝑘′ )). Therefore, the

( 1

2𝑒
− 𝜖)-quantile of 𝑢(𝑋𝑖) is located at 0 and agents are satisfied

even if they get a value of 0. □
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3.2 General Valuations
To apply the techniques of Section 3.1 to general valuations (not

necessarily identical) a stronger version of the conjecture is needed.

Instead of having a single family ℱ (which reflects the valuation

of an agent), we have 𝑛 possibly different families ℱ1
, ...,ℱ𝑛

, one

for each agent. Interestingly, such a variant of the Erdős Matching

Conjecture has been studied in the literature; see [1, 31, 36, 39, 41].

Given ℱ1
, . . . ,ℱ𝑛 ⊆ ((︀𝑚⌋︀

𝑘
), a rainbow matching in (ℱ1

, . . . ,ℱ𝑛)
is a collection of pairwise disjoint sets 𝑆1, . . . , 𝑆𝑛 , where 𝑆𝑖 ∈ ℱ𝑖 for
each 𝑖 ∈ (︀𝑛⌋︀. The collection of families is cross-dependent if it has
no rainbow matching.

Conjecture (Rainbow Erdős Matching Conjecture [1, 36]).

For every𝑚,𝑘,𝑛 ∈ N such that𝑚 ≥ 𝑘𝑛, and every cross-dependent
collection of families ℱ1

, . . . ,ℱ𝑛 ⊆ ((︀𝑚⌋︀
𝑘
), we have

min

𝑖∈(︀𝑛⌋︀
⋃︀ℱ𝑖 ⋃︀ ≤ max{(𝑚

𝑘
) − (𝑚 − 𝑛 + 1

𝑘
),(𝑘𝑛 − 1

𝑘
)(︀.

The Rainbow Erdős Matching Conjecture generalizes the Erdős

Matching Conjecture because one can set ℱ𝑖 = ℱ for all 𝑖 ∈ (︀𝑛⌋︀
which gives precisely the Erdős Matching Conjecture. Similarly

to Section 3.1, we will need the validity of the conjecture for the

following special case.

Conjecture 3.3 (Rainbow Erdős Matching Conjecture -

special case). For every 𝑛 there exists 𝑘0 such that for every 𝑘 ≥
𝑘0,𝑚 = (𝑘 + 1)𝑛, and every cross-dependent collection of families
ℱ1

, . . . ,ℱ𝑛 ⊆ ((︀𝑚⌋︀
𝑘
), we have

min

𝑖∈(︀𝑛⌋︀
⋃︀ℱ𝑖 ⋃︀ ≤ (𝑚

𝑘
) − (𝑚 − 𝑛 + 1

𝑘
).

Analogously to the case of identical valuations, we have the

following result for general monotone valuations.

Theorem 3.4. If the Rainbow Erdős Matching Conjecture is true
for the special case of Conjecture 3.3, then for every 𝑛,𝑚 ∈ N the
1

2𝑒
-quantile share is universally feasible.

Proof. As in the proof of Theorem 3.2, it suffices to consider a

profile of 0⇑1-valuations 𝑢1, . . . ,𝑢𝑛 ∈ 𝒱01, and prove the feasibility

of the ( 1

2𝑒
− 𝜖)-quantile share (for arbitrary 𝜖 > 0). Moreover, we

may assume that the ( 1

2𝑒
− 𝜖)-quantile of every 𝑢𝑖 is equal to 1.

Indeed, any 𝑢𝑖 whose quantile is 0 places no constraints on the

allocation, so we may replace such 𝑢𝑖 by an arbitrary 𝑢
′
𝑖 whose

quantile is 1. Furthermore, we set𝑚 to satisfy conditions 1–3 as in

the previous proof.

Assume for the sake of contradiction that no allocation ensures

𝑢𝑖(𝑆𝑖) = 1 for all 𝑖 ∈ (︀𝑛⌋︀. We define ℱ𝑖 = {𝑆𝑖 ∶ 𝑢𝑖(𝑆𝑖) = 1}, and let

ℱ𝑖
𝑘 = ℱ

𝑖 ∩ ((︀𝑚⌋︀
𝑘
). Thus, for 𝑘 =𝑚⇑𝑛 − 1, the collection ℱ1

𝑘 , . . . ,ℱ
𝑛
𝑘

is cross-dependent. By the Rainbow Erdős Matching Conjecture

(the special case of Conjecture 3.3), we have

⋃︀ℱ𝑖
𝑘 ⋃︀ ≤ (

𝑚

𝑘
) − (𝑚 − 𝑛 + 1

𝑘
)

for some 𝑖 ∈ (︀𝑛⌋︀. We repeat the same arguments as in the proof of

Theorem 3.2 to deduce that in a random allocation this particular

agent 𝑖 must have a probability of at least ( 1
2
− 𝜖) 1

𝑒
to have a 0

value. This contradicts the fact that the ( 1

2𝑒
− 𝜖)-quantile of 𝑢𝑖 is

located at 1. □

4 UNCONDITIONAL FEASIBILITY RESULTS
Theorems 3.2 and 3.4 provide quite surprising and reasonably tight

bounds on the critical value of feasibility for quantile shares. In

particular, asymptotically (as𝑛 →∞), the critical threshold between

feasibility and infeasibility is conjectured to reside in (︀ 1

2𝑒
, 1
𝑒
⌋︀ (we

recall the bound of Proposition 2.2). An obvious shortcoming of

these results is the fact that they rely on conjectures (well-known

conjectures, but yet conjectures). In this section, we present some

unconditional positive results for special classes of valuations. For

any valuation function 𝑣 ∶ 2(︀𝑚⌋︀ → R+ we denote by 𝑣( 𝑗 ⋃︀ 𝑆) the
marginal value of 𝑗 ∈ (︀𝑚⌋︀ given the set 𝑆 ⊆ (︀𝑚⌋︀, that is 𝑣( 𝑗 ⋃︀ 𝑆) =
𝑣(𝑆 ∪ { 𝑗}) − 𝑣(𝑆).

4.1 Additive Valuations
The class of additive valuations is the most well-studied class of

valuations in the context of fairness. We denote by𝑤(𝑖, 𝑗) the value
agent 𝑖 has for good 𝑗 (where𝑤(𝑖, 𝑗) ≥ 0 for all 𝑖, 𝑗 ).

Definition 4.1. The valuation function 𝑣𝑖 is additive if 𝑣𝑖(𝑆) =
∑𝑗∈𝑆 𝑤(𝑖, 𝑗) for all 𝑆 ⊆ (︀𝑚⌋︀.

We prove the following feasibility result for constant values of 𝑞.

Proposition 4.2. For every 𝑛,𝑚 ∈ N the 0.14(1 − 1

𝑛
)𝑛-quantile

share is feasible for the class of additive valuations. In particular,
asymptotically (as 𝑛 →∞) the 𝑞-quantile share is feasible for every
𝑞 < 0.14

𝑒
.

In comparison with Theorem 3.4, this Proposition provides a

worse bound (
0.14
𝑒

versus
0.5
𝑒
) and is applicable to additive valua-

tions only. However, it does not rely on any conjectures.

The proof of Proposition 4.2 relies on deviation of sums inequal-
ities. These inequalities bound the probability that the sum of in-

dependent random variables will exceed its mean. Several such

inequalities have been suggested in the literature [23, 32, 48].
6
For

our purposes, the special case of Bernoulli random variables will

play a role. For this special case, the following inequality has been

established.

Lemma (Arieli et al. [3]). For every 𝑝 ∈ (︀0, 1⌋︀, 𝑚 ∈ N and
𝑤1, . . . ,𝑤𝑚 ≥ 0, if 𝑏1, . . . , 𝑏𝑚 are i.i.d. Bernoulli(𝑝) random variables,
then

P

⎨⎝⎝⎝⎝⎪

𝑚

∑
𝑗=1

𝑤 𝑗𝑏 𝑗 ≥
⎛
⎝

𝑚

∑
𝑗=1

𝑤 𝑗

⎞
⎠
𝑝

⎬⎠⎠⎠⎠⎮
≥ 0.14𝑝.

This Lemma follows from the inequality of Feige [23] and its

subsequent improvement by Garnett [32].
7
By flipping the roles

of 0 and 1 in the Bernoulli random variables we get the following

equivalent formulation.

6

Interestingly, some connections between the deviation of sums inequalities and the

Erdős Matching Conjecture have been established [29, 43].

7

Any further improvement of the constant in the Feige-Garnett inequality would carry

over directly to the Lemma. Such an improvement, from 0.14 to 0.1798, has appeared

in an unpublished manuscript of Guo et al. [34].
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Lemma 4.3. For every 𝑝 ∈ (︀0, 1⌋︀, 𝑚 ∈ N and 𝑤1, . . . ,𝑤𝑚 ≥ 0, if
𝑏1, . . . , 𝑏𝑚 are i.i.d. Bernoulli(𝑝) random variables, then

P

⎨⎝⎝⎝⎝⎪

𝑚

∑
𝑗=1

𝑤 𝑗𝑏 𝑗 ≤
⎛
⎝

𝑚

∑
𝑗=1

𝑤 𝑗

⎞
⎠
𝑝

⎬⎠⎠⎠⎠⎮
≥ 0.14(1 − 𝑝).

We now turn to the proof of Proposition 4.2.

Proof of Proposition 4.2. We will show that the round-robin

algorithm terminates with an allocation in which every agent is

0.14(1 − 1

𝑛
)𝑛-satisfied. The round-robin algorithm has𝑚 steps. In

every step 𝑡 = 𝑑𝑛 + 𝑖 ∈ (︀𝑚⌋︀ the algorithm allocates to agent 𝑖 her

most preferable good from the remaining𝑚 − 𝑡 + 1 goods, breaking
ties in favor of the lowest-indexed good.

We first show that agent 1 ends up being 0.14(1 − 1

𝑛
)-satisfied

in the round-robin algorithm. For simplicity of notation, we let

𝑤 𝑗 =𝑤(1, 𝑗) be the value of agent 1 for good 𝑗 . Assumewithout loss

of generality that𝑤1 ≥ ⋯ ≥𝑤𝑚 ; namely that agent 1’s preferences

over goods are in decreasing order.We denote by 𝑎1, ..., 𝑎𝑘 the goods

that were allocated to agent 1. We denote by𝑊
1

𝑅𝑅 =𝑤𝑎1 + ... +𝑤𝑎𝑘

the value of agent 1 in the round-robin algorithm. Note that 𝑎1 ≤ 1,
𝑎2 ≤ 𝑛 + 1,..., and 𝑎𝑘 ≤ (𝑘 − 1)𝑛 + 1, because in step 𝑡 = 𝑑𝑛 + 1, in
the worst case, the goods (︀𝑑𝑛⌋︀ were already allocated. Therefore,

𝑊
1

𝑅𝑅 ≥𝑤1 +𝑤𝑛+1 +⋯ +𝑤(𝑘−1)𝑛+1

≥ 1
𝑛
(︀𝑤1 + ... +𝑤𝑛⌋︀ +

1

𝑛
(︀𝑤𝑛+1 + ... +𝑤2𝑛⌋︀ + ...

+ 1

𝑛
(︀𝑤(𝑘−1)𝑛+1 + ... +𝑤𝑚⌋︀ =

1

𝑛
∑

𝑗∈(︀𝑚⌋︀

𝑤 𝑗 .

For additive valuations, the value of agent 1 in a random allo-

cation can be written as 𝑣1(𝑋1) = ∑𝑗∈(︀𝑚⌋︀𝑤 𝑗𝑏 𝑗 where 𝑏1, ..., 𝑏𝑚

are i.i.d. Bernoulli( 1
𝑛
) random variables. By Lemma 4.3 we get

that with probability at least 0.14(1 − 1

𝑛
) her realized value will be

(weakly) below the expectation
1

𝑛 ∑𝑗∈(︀𝑚⌋︀𝑤 𝑗 and hence (weakly)

below what she actually gets in the round-robin algorithm:𝑊
1

𝑅𝑅 .

Namely agent 1 is 0.14(1 − 1

𝑛
)-satisfied.

Now we turn to prove that every agent 𝑖 = 2, ..., 𝑛 is 0.14(1 −
1

𝑛
)𝑖 -satisfied. We observe that after 𝑖 − 1 steps of the round-robin

algorithm agent 𝑖 plays the role of agent 1 with one difference: a

set of 𝑖 − 1 goods, which we denote by 𝐴 ⊆ (︀𝑚⌋︀, has already been

eliminated from the pool of goods. We denote by 𝐸 the event that

agent 𝑖 does not get any good from 𝐴 in a random allocation. Note

that P(︀𝐸⌋︀ = (1 − 1

𝑛
)𝑖−1.

We repeat the above arguments for agent 𝑖 instead of agent

1 when we condition the random bundle 𝑋𝑖 on the event 𝐸. We

denote by𝑊
𝑖
𝑅𝑅 the value of agent 𝑖 in the round-robin algorithm.

By the arguments above we get P(︀𝑣𝑖(𝑋𝑖) ≤𝑊 𝑖
𝑅𝑅 ⋃︀ 𝐸⌋︀ ≥ 0.14(1− 1

𝑛
).

Therefore,

P(︀𝑣𝑖(𝑋𝑖) ≤𝑊 𝑖
𝑅𝑅⌋︀ ≥ P(︀𝐸⌋︀ ⋅ P(︀𝑣𝑖(𝑋𝑖) ≤𝑊 𝑖

𝑅𝑅 ⋃︀ 𝐸⌋︀

≥ (1 − 1

𝑛
)
𝑖−1

⋅ 0.14(1 − 1

𝑛
) = 0.14(1 − 1

𝑛
)
𝑖

.

Namely, agent 𝑖 is 0.14(1 − 1

𝑛
)𝑖 -satisfied. Hence every agent is

0.14(1 − 1

𝑛
)𝑛-satisfied. □

For additive valuations, it is well-known that the allocation out-

put by the round-robin algorithm satisfies the envy-based fairness

notion of EF1 (envy-freeness up to one good), i.e., for every pair

of agents 𝑖, 𝑗 for which 𝑖 envies 𝑗 , there is a good 𝑔 in 𝑗 ’s bundle

such that 𝑖 no longer envies 𝑗 ’s bundle without 𝑔. Observe that the

arguments for agent 𝑖 ∈ {2, ..., 𝑛} in the proof of Proposition 4.2 in

fact apply to all agents in every EF1 allocation. Specifically, we can

replace the set of 𝑖 − 1 goods removed by round-robin in the first

𝑖 − 1 steps (in the above analysis) by a set of at most 𝑛 − 1 goods
that remove agent 𝑖’s envy towards every other agent (to satisfy

the EF1 constraints), and obtain the same bound on the quantile.

This gives the following stronger proposition.

Proposition 4.4. For every 𝑛,𝑚 ∈ N and every instance with
additive valuations, every EF1 allocation is 0.14(1− 1

𝑛
)𝑛-fair towards

all agents.

4.2 Unit-Demand Valuations
In the class of unit-demand valuations every good 𝑗 ∈ (︀𝑚⌋︀ has a
value of𝑤(𝑖, 𝑗) ≥ 0 for agent 𝑖 .

Definition 4.5. The valuation function 𝑣𝑖 is unit-demand if 𝑣𝑖(𝑆) =
max𝑗∈𝑆 𝑤(𝑖, 𝑗) for all 𝑆 ⊆ (︀𝑚⌋︀.

We prove the following tight feasibility result for 𝑞 = (1− 1

𝑛
)𝑛−1.

The tightness follows from Proposition 2.2.

Proposition 4.6. For every 𝑛,𝑚 ∈ N the (1 − 1

𝑛
)𝑛−1-quantile

share is feasible for the class of unit-demand valuations. In particular,
the 1

𝑒
-quantile share is feasible for this class.

Proof. The proof is similar to that of Proposition 4.2 but is,

in fact, simpler. We consider the round-robin algorithm, and we

observe that agent 1 is 1-satisfied, because she is allowed to pick her

most favorable good. By the arguments in the proof of Proposition

4.2 we deduce that agent 𝑖 is (1− 1

𝑛
)𝑖−1-satisfied. Thus every agent

is (1 − 1

𝑛
)𝑛−1-satisfied. □

Once again, an analogue of Proposition 4.4 applies for all EF1

allocations when the agents have unit-demand valuations. This

follows from the fact that in any instance with unit-demand valua-

tions and at least 𝑛 goods, any EF1 allocation gives every agent a

good whose value is at least as high as her 𝑛
th
-most valuable good.

Proposition 4.7. For every 𝑛,𝑚 ∈ N and every instance with unit-
demand valuations, every EF1 allocation is (1 − 1

𝑛
)𝑛−1-fair towards

all agents.

We remark that round-robin fails to achieve a constant quantile

for larger valuation classes. Indeed, it is not clear how the definition

of round-robin extends to such valuations. A natural choice is to

select, for each agent, a good with the highest marginal value in

each round. The following example shows that with this choice,

even for XOS valuations, round-robin results in a quantile that is

exponentially small in 𝑛.

Example 4.8. Suppose the 𝑛 agents have an identical XOS val-

uation function over𝑚 = 𝑛2 goods, given by the maximum over

𝑛 additive functions 𝑓1, . . . , 𝑓𝑛 . The 𝑛
2
goods are bundled into 𝑛

groups, each with 𝑛 identical goods. The function 𝑓1 assigns value
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1 + 𝜖⇑2 for each good in group 1, and value 𝜖⇑2ℓ for each good

in group ℓ , for 2 ≤ ℓ ≤ 𝑛. Every other function 𝑓𝑖 , for 2 ≤ 𝑖 ≤ 𝑛,

assigns value 1 for goods in group 𝑖 and 0 for all other goods. In a

random allocation, with all but exponentially small probability, an

agent gets at least two goods from some group, obtaining a value

of at least 2. By contrast, the round-robin algorithm defined above

assigns exactly one good from each group to each agent; thus every

agent obtains a final value of less than 1+ 𝜖 , which for 𝜖 < 1 has an
exponentially small quantile.

Note that the allocation produced by the round-robin algorithm

in the above example is envy-free and therefore EF1. Consequently,

an analogue of Propositions 4.4 and 4.7 does not hold for this class,

and does not hold for all monotone valuations.

4.3 Matroid-Rank Valuations
A monotone valuation function 𝑣 is submodular if the marginal

contribution of a good decreases as the set increases, i.e., 𝑣( 𝑗 ⋃︀ 𝑆′) ≤
𝑣( 𝑗 ⋃︀ 𝑆) for 𝑆 ⊆ 𝑆′. Unfortunately, an unconditional feasibility proof

of 𝑞-quantile shares for constant 𝑞 remains elusive for submodular

valuations.

However, there is an important subclass of submodular valua-

tions for which we can prove that
1

𝑒
is the critical threshold for

feasibility for large values of 𝑛, without relying on conjectures.

These are the matroid-rank valuations, namely those valuation

functions 𝑣 ∶ 2(︀𝑚⌋︀ → N0 (where N0 = N ∪ {0}), for which there

exists a matroid𝑀 on (︀𝑚⌋︀ so that 𝑣(𝑆) is the rank of 𝑆 in𝑀 .

Definition 4.9. The valuation function 𝑣𝑖 is matroid-rank if 𝑣𝑖 is

the rank function of somematroid𝑀 = ((︀𝑚⌋︀,ℐ) over the ground set
(︀𝑚⌋︀. The rank function assigns to each set 𝑆 ⊆ (︀𝑚⌋︀ the cardinality
of a largest independent subset of 𝑆 , i.e., 𝑣𝑖(𝑆) = max𝐼∈ℐ,𝐼⊆𝑆 ⋃︀𝐼 ⋃︀.

It is known that these are precisely the submodular valuations 𝑣

which satisfy 𝑣(∅) = 0 and 𝑣( 𝑗 ⋃︀ 𝑆) ∈ {0, 1} for every 𝑆 and every 𝑗 .

The literature has identified several kinds of resource-allocation set-

tings where matroid-rank valuations arise naturally: see e.g., [5, 10].

Typically, those are contexts in which the agents’ values are deter-

mined by solving (suitably structured) combinatorial optimization

problems.

Proposition 4.10. For every 𝑛,𝑚 ∈ N and for 𝑞 = max{ 1

𝑒
−

1

2

⌈︂
𝑛(𝑛−1)

, 1
𝑛
} the 𝑞-quantile share is feasible for the class of matroid-

rank valuations. In particular, asymptotically (as 𝑛 → ∞) the 𝑞-
quantile share is feasible for every 𝑞 < 1

𝑒
.

Note that
1

𝑒
− 1

2

⌈︂
𝑛(𝑛−1)

> 1

𝑛
for 𝑛 ≥ 5, so the

1

𝑛
term in the

maximum is relevant only for 𝑛 = 2, 3, 4. The proof below utilizes

the underlying matroid structure of the valuations and the powerful

Edmonds’ Matroid Intersection Theorem.

Theorem (Edmonds’ Matroid Intersection Theorem [17]).

Let𝑀1,𝑀2 be two matroids on the same ground set 𝐸, with respective
families of independent sets ℐ1,ℐ2 and rank functions 𝜌1, 𝜌2. We have

max

𝐼∈ℐ1∩ℐ2
⋃︀𝐼 ⋃︀ = min

𝐴⊆𝐸
(︀𝜌1(𝐴) + 𝜌2(𝐸 ∖𝐴)⌋︀.

Proof of Proposition 4.10. Proposition 2.1 proves the feasibil-

ity of the
1

𝑛
-quantile share. It remains to prove the feasibility of the

( 1
𝑒
− 1

2

⌈︂
𝑛(𝑛−1)

)-quantile share.
The feasibility of the maximin share for matroid-rank valuations

was shown by Barman and Verma [9]. It is therefore sufficient to

prove that for matroid-rank valuations the maximin share has a

quantile of at least
1

𝑒
− 1

2

⌈︂
𝑛(𝑛−1)

. Hereafter, we fix an agent 𝑖 with

matroid-rank valuation 𝑣 and omit the agent’s index notation for

clarity.

We denote by𝑀 the matroid over the ground set (︀𝑚⌋︀ that repre-
sents 𝑣 . Namely, 𝑣(𝑆) is the maximum size of an independent set

of𝑀 that is contained in 𝑆 . We denote by 𝑘 the maximin share of 𝑣 .

Namely, 𝑘 is the maximal value 𝑘
′
for which there exist 𝑛 disjoint

independent (in𝑀) sets 𝑆1, ..., 𝑆𝑛 with ⋃︀𝑆 𝑗 ⋃︀ = 𝑘′.
Let 𝑣(𝑆) = min{𝑣(𝑆), 𝑘 + 1} which is also a matroid-rank val-

uation, and let 𝑀 be the corresponding matroid. We define two

matroids over the ground set (︀𝑛⌋︀ × (︀𝑚⌋︀.
● 𝑀

⊕
is the direct sum of 𝑛 copies of𝑀 . Namely, its indepen-

dent sets are those 𝑆 ⊆ (︀𝑛⌋︀ × (︀𝑚⌋︀ such that for every 𝑖 ∈ (︀𝑛⌋︀
the set { 𝑗 ∈ (︀𝑚⌋︀ ∶ (𝑖, 𝑗) ∈ 𝑆} is independent in𝑀 . The corre-

sponding rank function is denoted by 𝜌𝑀⊕ ∶ 2(︀𝑛⌋︀×(︀𝑚⌋︀ → N0.
● 𝑁 is the partition matroid with respect to the blocks (︀𝑛⌋︀×{ 𝑗}
for 𝑗 ∈ (︀𝑚⌋︀. Namely, its independent sets are those 𝑆 ⊆
(︀𝑛⌋︀ × (︀𝑚⌋︀ such that for every 𝑗 ∈ (︀𝑚⌋︀ we have ⋃︀{𝑖 ∶ (𝑖, 𝑗) ∈
𝑆}⋃︀ ≤ 1. The corresponding rank function is denoted by

𝜌𝑁 ∶ 2(︀𝑛⌋︀×(︀𝑚⌋︀ → N0.
Note that a common independent set of𝑀

⊕
and 𝑁 corresponds

to a collection of 𝑛 disjoint independent sets of 𝑀 . Since 𝑘 is the

maximin share we know that there is no common independent set

of𝑀
⊕
and 𝑁 of size (𝑘 + 1)𝑛. Now Edmonds’ Matroid Intersection

Theorem implies the existence of a subset 𝐴 ⊆ (︀𝑛⌋︀ × (︀𝑚⌋︀ such that

𝜌𝑀⊕(𝐴) + 𝜌𝑁 (((︀𝑛⌋︀ × (︀𝑚⌋︀) ∖𝐴) < (𝑘 + 1)𝑛. (1)

Let 𝐴𝑖 = { 𝑗 ∈ (︀𝑚⌋︀ ∶ (𝑖, 𝑗) ∈ 𝐴}. Equation (1) can be equivalently

written as

∑
𝑖∈(︀𝑛⌋︀

𝑣(𝐴𝑖) + ⋃︀ ⋃
𝑖∈(︀𝑛⌋︀

((︀𝑚⌋︀ ∖𝐴𝑖)⋃︀ < (𝑘 + 1)𝑛. (2)

Replacing each𝐴𝑖 by𝐴0 = ∩𝑖∈(︀𝑛⌋︀𝐴𝑖 weakly decreases the left-hand

side of Equation (2) because the first term weakly decreases while

the second term remains unchanged. Therefore we get

𝑛 ⋅ 𝑣(𝐴0) +𝑚 − ⋃︀𝐴0⋃︀ < (𝑘 + 1)𝑛. (3)

This implies that 𝑣(𝐴0) ≤ 𝑘 . Hence, writing 𝑡 = 𝑘 + 1 − 𝑣(𝐴0), we
have 𝑡 ≥ 1. With this notation Equation (3) is equivalent to

𝑚 − ⋃︀𝐴0⋃︀ ≤ 𝑡𝑛 − 1. (4)

For every bundle𝑋 ⊆ (︀𝑚⌋︀we argue that the condition ⋃︀𝑋∖𝐴0⋃︀ ≤ 𝑡−1
implies that 𝑣(𝑋) ≤ 𝑘 , namely that the agent’s value for the bundle

𝑋 is weakly lower than the maximin share. Indeed,

𝑣(𝑋) ≤ 𝑣(𝑋 ∩𝐴0) + ⋃︀𝑋 ∖𝐴0⋃︀ ≤ 𝑣(𝐴0) + ⋃︀𝑋 ∖𝐴0⋃︀
≤ 𝑣(𝐴0) + 𝑡 − 1 = 𝑘.

For a random bundle 𝑋 that includes every good with probability

1⇑𝑛, the distribution of ⋃︀𝑋 ∖ 𝐴0⋃︀ is binomial with 𝑚 − ⋃︀𝐴0⋃︀ trials
and probability of success 1⇑𝑛. This distribution is stochastically



Fair Division viaQuantile Shares STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

dominated by a binomial distribution 𝑌 with 𝑡𝑛 − 1 trials and prob-

ability of success 1⇑𝑛 (by Equation (4)). Therefore, it is sufficient to

prove that for every 𝑛 ≥ 2, 𝑡 ≥ 1, and 𝑌 ∼ 𝐵𝑖𝑛(𝑡𝑛 − 1, 1
𝑛
) we have

P(︀𝑌 < 𝑡⌋︀ ≥ 1

𝑒
− 1

2

⌈︂
𝑛(𝑛−1)

.

Let 𝑍 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛( 𝑡𝑛−1
𝑛

). Romanowska [47] bounded the total

variation distance between any binomial distribution with success

probability 𝑝 and its approximating Poisson distribution by
𝑝

⌋︂
1−𝑝

.

In our case 𝑝 = 1

𝑛
, so this bound becomes

1⌈︂
𝑛(𝑛−1)

. It follows that

for every subset 𝑅 ofN0 we have ⋃︀P(︀𝑌 ∈ 𝑅⌋︀−P(︀𝑍 ∈ 𝑅⌋︀⋃︀ ≤ 1

2

⌈︂
𝑛(𝑛−1)

.

Therefore we can deduce that

P(︀𝑌 < 𝑡⌋︀ = P(︀𝑌 ≤ 𝑡𝑛 − 1
𝑛

⌋︀ ≥ P(︀𝑍 ≤ 𝑡𝑛 − 1
𝑛

⌋︀ − 1

2

⌈︂
𝑛(𝑛 − 1)

≥ 1

𝑒
− 1

2

⌈︂
𝑛(𝑛 − 1)

.

The last inequality follows from Teicher [50] who proved that the re-

alization of any Poisson distribution is weakly below its expectation

with probability greater than 1⇑𝑒 . □

Remark 2. For 𝑛 ≥ 2 let us denote

𝑞𝑛 = inf
𝑡∈N
P(︀𝑌𝑡 < 𝑡⌋︀, where 𝑌𝑡 ∼ 𝐵𝑖𝑛(𝑡𝑛 − 1,

1

𝑛
).

We showed in the proof above that for any given 𝑛, the 𝑞𝑛-quantile
share is feasible for the class of matroid-rank valuations. In this form,
the result is actually tight: take 𝑚 = 𝑡𝑛 − 1, and let each agent’s
valuation be represented by the uniform matroid of rank 𝑡 over (︀𝑚⌋︀.
We conjecture that in fact 𝑞𝑛 = (1 − 1

𝑛
)𝑛−1, i.e., for any given 𝑛 the

infimum is attained at 𝑡 = 1. If true, this would show that (1− 1

𝑛
)𝑛−1

is the critical value for feasibility of quantile shares in the class of
matroid-rank valuations, for any given 𝑛. While we are unable to
prove this conjecture exactly, in Proposition 4.10 we estimate 𝑞𝑛 up to
an error term which vanishes as 𝑛 →∞.

4.4 Supermodular Valuations
A valuation function is supermodular if the marginal contribution

of a good increases as the set increases.

Definition 4.11. The valuation function 𝑣𝑖 is supermodular if

𝑣𝑖( 𝑗 ⋃︀ 𝑆′) ≥ 𝑣𝑖( 𝑗 ⋃︀ 𝑆) for 𝑆 ⊆ 𝑆′ ⊆ (︀𝑚⌋︀ ∖ { 𝑗}.

The class of supermodular monotone valuations is as general as

the class of all monotone valuations in the context of feasibility of

quantile shares.

Proposition 4.12. For every 𝑞 ∈ (︀0, 1⌋︀, if the 𝑞-quantile share is
feasible for the class of supermodular monotone valuations, then the
𝑞-quantile share is universally feasible.

Proof. Given 𝑞 ∈ (︀0, 1⌋︀, 𝑖 ∈ (︀𝑛⌋︀ and a monotone valuation 𝑣𝑖 ∶
2
(︀𝑚⌋︀ → R+, we construct a supermodular monotone valuation

𝑢𝑖 ∶ 2(︀𝑚⌋︀ → R+ as follows.

The valuation 𝑣𝑖 induces a weak total order ⪯𝑣𝑖 over the set of
bundles 2

(︀𝑚⌋︀
. We break ties in an arbitrary monotonic manner to

derive a strict total order ≺𝑖 over the set of bundles 2
(︀𝑚⌋︀

. It has

been proved by Chambers and Echenique [14] that there exists a

supermodular valuation 𝑢𝑖 that has the same strict total order ≺𝑖
over the set of bundles.

If the 𝑞-quantile share is feasible for 𝑢1, . . . ,𝑢𝑛 , there exists an

allocation in which 𝑢𝑖(𝑆𝑖) is located weakly above the 𝑞-quantile

of 𝑢𝑖(𝑋𝑖). Note that the same allocation places 𝑣𝑖(𝑆𝑖)weakly above
the 𝑞-quantile of 𝑣𝑖(𝑋𝑖), because for every realization 𝑇𝑖 of 𝑋𝑖 we

have 𝑣𝑖(𝑆𝑖) < 𝑣𝑖(𝑇𝑖) ⇒ 𝑢𝑖(𝑆𝑖) < 𝑢𝑖(𝑇𝑖). Therefore the 𝑞-quantile
share is universally feasible. □

5 DISCUSSION
5.1 The Gap Between the Constants
Assuming the Erdős Matching Conjectures are true, we have shown

that the largest value of 𝑞 for which the 𝑞-quantile share is univer-

sally feasible lies in the interval (︀ 1

2𝑒
, 1
𝑒
⌋︀. It remains an open problem

to close this
1

2𝑒
gap between the two bounds.

We discuss directions to improve the
1

2𝑒
bound (Theorems 3.2

and 3.4). The techniques for proving feasibility results in this paper

focus on allocations with almost equal-sized bundles for all agents.

In particular, Theorems 3.2 and 3.4 allocate to every agent 𝑘 = 𝑚
𝑛
−1

goods, and do not specify how to allocate the remaining 𝑛 goods;

in any case, no agent will have more than 𝑘 + 𝑛 goods. The round-

robin algorithm in Propositions 4.2 and 4.6 allocates to every agent

⟨︀𝑚
𝑛
⧹︀ or [︂𝑚

𝑛
⌉︂ goods. The following example demonstrates that in

order to improve the
1

2𝑒
bound we must exploit the possibility of

allocating goods unequally. In other words, the
1

2𝑒
bound is tight if

every agent must get (approximately) the same number of goods.

Example 5.1. Let 𝛿 > 0 be arbitrarily small. We will construct

instances of the allocation problem with 𝑛 agents and 𝑚 goods

(where 1 << 𝑛 <<𝑚) satisfying: for every allocation (𝑆1, . . . , 𝑆𝑛) in
which ⋃︀𝑆𝑖 ⋃︀ ≤ 𝑚

𝑛
+ 𝑜(

⌈︂
𝑚
𝑛
) for all 𝑖 ∈ (︀𝑛⌋︀, there exists an agent who

is not ( 1

2𝑒
+ 𝛿)-satisfied.

First, we choose 𝑛 large enough so that (1 − 1

𝑛
)𝑛−1 ≤ 1

𝑒
+ 𝛿 .

Next, for any such 𝑛, we choose𝑚 large enough so that for 𝑌 ∼
𝐵𝑖𝑛(𝑚 − 𝑛 + 1, 1

𝑛
) we will have, by the Central Limit Theorem,

P(︀𝑌 ≤ 𝑚
𝑛
+ 𝑜(

⌈︂
𝑚
𝑛
)⌋︀ ≤ 1

2
+ 𝛿 . Finally, for any such 𝑛 and 𝑚, we

choose 𝜖 > 0 small enough so that 𝜖(𝑚
𝑛
+ 𝑜(

⌈︂
𝑚
𝑛
)) < 1.

For these choices of 𝑛,𝑚 and 𝜖 , consider identical additive valua-

tions for all agents, in which the value of every good 𝑗 ∈ (︀𝑛 − 1⌋︀ is
𝑤 𝑗 = 1, and the value of every good 𝑗 ∈ {𝑛,𝑛 + 1, . . . ,𝑚} is𝑤 𝑗 = 𝜖 ;
we call the former 1-goods and the latter 𝜖-goods.

Let (𝑆1, . . . , 𝑆𝑛) be an allocation in which ⋃︀𝑆𝑖 ⋃︀ ≤ 𝑚
𝑛
+ 𝑜(

⌈︂
𝑚
𝑛
) for

all 𝑖 ∈ (︀𝑛⌋︀. Let 𝑖 be an agent who gets no 1-good, and therefore

has 𝑣𝑖(𝑆𝑖) ≤ 𝜖(𝑚𝑛 + 𝑜(
⌈︂

𝑚
𝑛
)) < 1. In a random allocation we have

𝑣𝑖(𝑋𝑖) ≤ 𝜖(𝑚𝑛 + 𝑜(
⌈︂

𝑚
𝑛
)) exactly when the following two indepen-

dent events happen: agent 𝑖 gets no 1-good, and at most
𝑚
𝑛
+𝑜(

⌈︂
𝑚
𝑛
)

𝜖-goods. By our choices above, the probability of these two events

happening is at most ( 1
𝑒
+ 𝛿)( 1

2
+ 𝛿) < 1

2𝑒
+ 𝛿 (here we assume,

w.l.o.g., that 𝛿 < 1

2
− 1

𝑒
). This shows that 𝑆𝑖 is not ( 1

2𝑒
+ 𝛿)-fair

towards agent 𝑖 , as claimed.

Note that in this example the
1

𝑒
-quantile share is at most 𝜖(𝑚 −

𝑛+ 1), the total value of the 𝜖-goods. Hence, when 𝜖(𝑚−𝑛+ 1) ≤ 1,
we can give all the 𝜖-goods to one agent and one 1-good to every

other agent, so that everyone will be
1

𝑒
-satisfied. This allocation

uses bundles whose sizes significantly differ.
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We tend to conjecture that
1

𝑒
for 𝑛 →∞ (and more ambitiously

(1 − 1

𝑛
)𝑛−1 for any given 𝑛) is the correct critical threshold for the

feasibility of quantile shares. For special valuation classes, such as

unit-demand and matroid-rank, we prove this in Propositions 4.6

and 4.10. Additional evidence is provided by the case 𝑛 = 2, where
the critical value is (1 − 1

𝑛
)𝑛−1 = 1

2
(see Corollary 2.3). Below, we

show that for 𝑛 = 3 and small values of𝑚, the critical threshold is

(1 − 1

𝑛
)𝑛−1 = 4

9
.

Proposition 5.2. For 𝑛 = 3 and for 2 ≤ 𝑚 ≤ 6 the 4

9
-quantile

share is the largest universally feasible quantile share.

The infeasibility of any larger quantile share is stated in Proposi-

tion 2.2. The feasibility of the
4

9
-quantile share is proved by utilizing

the fact that it suffices to consider 0⇑1-valuations, and a carefully

chosen case analysis.
8
The full proof is deferred to the full ver-

sion [7].

5.1.1 Results from Computer Simulation. In addition to the above

results, we conduct a computer simulation towards verifying our

conjecture. The simulation is based on exhaustive search, and certi-

fies that the critical value is exactly (1 − 1

𝑛
)𝑛−1 for specified values

of 𝑛 and𝑚; i.e., the example described in Proposition 2.2 is tight.

As we showed previously, it is sufficient to consider monotone

0⇑1-valuations. Note that in the example in Proposition 2.2, the

agent under consideration has value 1 in exactly 𝑛
𝑚−𝑛+1 ⋅ (︀𝑛𝑛−1 −

(𝑛−1)𝑛−1⌋︀ allocations, which is the number of allocations in which

that agent receives an item in the set (︀𝑛−1⌋︀. Consequently, our goal
is to prove that if every agent has value 1 in at least 𝑛

𝑚−𝑛+1 ⋅(︀𝑛𝑛−1−
(𝑛 − 1)𝑛−1⌋︀ + 1 allocations (out of the total 𝑛𝑚 allocations), then

there is an allocation in which every agent has value 1. Equivalently,

there is no instance in which every agent has value 0 in at most

𝑛
𝑚−𝑛+1 ⋅ (︀(𝑛 − 1)𝑛−1⌋︀ − 1 allocations, but in which none of the

allocations satisfies every agent.

For specified values of 𝑛 and𝑚, we prove this statement by solv-

ing the following integer program using Gurobi, a commercially-

available IP solver. The integer program has a 0/1 variable 𝑥(𝑖,𝑆) for

every agent 𝑖 and every subset 𝑆 of the goods, indicating the value

that agent 𝑖 has for the set 𝑆 (therefore the collection of variables

(𝑥(𝑖,𝑆) ∶ 𝑖 ∈ (︀𝑛⌋︀, 𝑆 ∈ 2(︀𝑚⌋︀) together specify the complete profile of

agent valuations). We then add the following sets of constraints:

● monotonicity constraints, which enforce monotonicity on

every agent’s valuation; i.e., for each agent 𝑖 and nonempty

set 𝑆 we add the constraints 𝑥(𝑖,𝑆) ≥ 𝑥(𝑖,𝑆′) for all 𝑆′ ⊂ 𝑆 ∶
⋃︀𝑆′⋃︀ = ⋃︀𝑆 ⋃︀ − 1;
● a threshold constraint for every agent, which enforces that

the number of 0-valued allocations for that agent is at most

𝑛
𝑚−𝑛+1 ⋅ (︀(𝑛 − 1)𝑛−1⌋︀ − 1; and

● an allocation constraint for every allocation, which ensures

that some agent is unhappy, i.e. receives a set of value 0, in

that allocation.

The above integer program is computationally tractable for 𝑛 = 3
and𝑚 ≤ 9, and for 𝑛 = 4, 5 and𝑚 ≤ 8. For all of these values, Gurobi
reported the infeasibility of the above program, proving that the

critical value is indeed (1− 1

𝑛
)𝑛−1. As a sanity check, we modify the

8

Such techniques seem to be inapplicable for large values of 𝑛 and𝑚.

threshold constraints to increase the threshold by one, that is, we

allow for the number of 0-valued allocations for each agent to be at

most 𝑛
𝑚−𝑛+1 ⋅ (︀(𝑛 − 1)𝑛−1⌋︀. In each of the above cases, the solver

discovered a feasible solution under the new threshold constraints.

The above experiments lead to the following proposition.

Proposition 5.3. For 𝑛 = 3 and 𝑚 ≤ 9, and for 𝑛 = 4, 5 and
𝑚 ≤ 8, the (1− 1

𝑛
)𝑛−1-quantile share is the largest universally feasible

quantile share.

Remark 3. While the Rainbow Erdős Matching Conjecture implies
that the 1

2𝑒
-quantile share is universally feasible, in order to uncondi-

tionally prove the feasibility of the 𝑞-quantile share for some constant
𝑞 > 0, it suffices to prove the following approximate version of the
conjecture.

Conjecture 5.4 (Approximate Rainbow EMC – special case).

There exists some constant 𝐶 > 0 such that for every 𝑛 there exists 𝑘0
such that for every 𝑘 ≥ 𝑘0,𝑚 = (𝑘 + 1)𝑛, and every cross-dependent
collection of families ℱ1

, . . . ,ℱ𝑛 ⊆ ((︀𝑚⌋︀
𝑘
), we have

min

𝑖∈(︀𝑛⌋︀
⋃︀ℱ𝑖 ⋃︀ ≤ (𝑚

𝑘
) −𝐶 ⋅ (𝑚 − 𝑛 + 1

𝑘
).

To the best of our knowledge, even such an approximate version of
the EMC has not been established. Proving it could be of independent
interest to the combinatorics community.

5.2 Comparison of Quantile Shares with Other
Notions of Shares

As mentioned above, the two most extensively studied notions of

shares are the maximin share and the proportional share. A natural

question to study when comparing these notions of shares is the

following: Assume that a bundle is fair towards agent 𝑖 with respect

to the maximin share. Does this imply that it is also fair with respect

to the notion of quantile shares studied here? Or equivalently: Is
there a good lower bound on the quantile of the maximin share?9

Similarly, we can ask the same question for the proportional share.

5.2.1 Maximin Share. Interestingly, all the feasibility results in the

paper (conditional or unconditional on conjectures) in the case of

identical valuations can be equivalently viewed as lower bounds on

the quantile of the maximin share. This is implied by the following

general observation. We denote by 𝜏𝑀𝑀(𝑣𝑖 , 𝑛) the maximin share.

Proposition 5.5. Let 𝒰 ⊆ 𝒱 be a class of valuations. The 𝑞-
quantile share is feasible for every profile of 𝑛 identical valuations in
𝒰 if and only if the quantile of 𝜏𝑀𝑀(𝑢,𝑛) is at least 𝑞 for all 𝑢 ∈ 𝒰 .

Proof. If the 𝑞-quantile share is feasible then for every 𝑢 ∈ 𝒰 ,
an allocation that is 𝑞-fair towards all the agents (having valuation

𝑢) witnesses that the quantile of the maximin share is at least 𝑞.

Conversely, if the quantile of 𝜏𝑀𝑀(𝑢,𝑛) is at least𝑞, then a partition
of (︀𝑚⌋︀ into 𝑛 bundles attaining the maximin value is an allocation

that is 𝑞-fair towards all the agents (having valuation 𝑢). □

9

No upper bound on the quantile of the maximin share can be bounded away from 1

as 𝑛 →∞. For example, if there is a single good to allocate then the maximin share is

0 and its quantile is 1 − 1

𝑛
. The same example demonstrates that the quantile of the

proportional share might be as high as 1 − 1

𝑛
.
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Proposition 5.5 implies in particular that the quantile of the

maximin share is always at least
1

2𝑒
assuming the Erdős Matching

Conjecture (Theorem 3.2). Moreover, an unconditional asymptotic

lower bound of
0.14
𝑒

(respectively,
1

𝑒
) is valid for additive (respec-

tively, unit-demand and matroid-rank) valuations as a corollary to

Proposition 4.2 (respectively, Propositions 4.6 and 4.10).

5.2.2 Fractions of the Maximin Share. As mentioned above, an

active research direction has been to derive feasibility results for

fractions of the maximin share in cases where the maximin share

is infeasible. Unlike quantile shares, this direction is hopeless for

general monotone valuations, since no constant fraction of the

maximin share is feasible for this class.

In view of the feasibility of constant quantile shares, as opposed

to the infeasibility of high enough fractions of the maximin share,

one might hypothesize that quantile shares are less demanding

fairness criteria than fractions of the maximin share. The following

example demonstrates that the above hypothesis is wrong in gen-

eral; namely there are (simple) instances in which quantile shares

are more demanding than fractions of the maximin share.

Example 5.6. Consider the case in which many identical goods

with value 1 each (additively) are allocated. For every 𝜖 > 0 the

(1− 𝜖)-maximin share is located at (1− 𝜖)⟨︀𝑚
𝑛
⧹︀. On the other hand,

by the Central Limit Theorem, for every 𝑞 > 0 the 𝑞-quantile share
is located at

𝑚
𝑛
−Θ𝑞(

⌈︂
𝑚
𝑛
).

Namely, for every 𝑛 ∈ N and 𝜖,𝑞 > 0, for sufficiently large𝑚, the

𝑞-quantile share notion is more demanding here than the (1 − 𝜖)-
maximin share.

The above example indicates that the positive results for quantile

shares are derived for general valuations not because quantiles are

less demanding, but because they measure fairness in different units

which are arguably more suitable for general valuations.

5.2.3 1-out-of-𝑑 MMS. Beyond multiplicative fractions of the max-

imin share, another natural method to relax this share notion is to

consider, for each agent 𝑖 , the maximum value that the agent can

guarantee for itself by partitioning the goods into 𝑑 > 𝑛 bundles

and selecting a bundle of minimum value. Unlike fractions of the

maximin share, the 1-out-of-𝑑 MMS only depends on each agent’s

ordinal ranking over the bundles. It is known that for additive val-

uations, 1-out-of-⟨︀3𝑛⇑2⧹︀MMS allocations always exist [35], but the

(non-)existence of 1-out-of-(𝑛 + 1) MMS allocations remains an

open problem.

In the above example (Example 5.6), the 1-out-of-𝑑 MMS is lo-

cated at ⟨︀𝑚
𝑑
⧹︀, which for 𝑑 ≥ 𝑛 + 1 is smaller than the 𝑞-quantile

share (located at
𝑚
𝑛
−Θ𝑞(

⌈︂
𝑚
𝑛
)) for sufficiently large𝑚.

5.2.4 Proportional Share. The proportional share makes sense

mainly for additive valuations. Its exclusive focus on the full bundle

(︀𝑚⌋︀ can hardly be justified outside of this class. For the class of

additive valuations, a lower bound of 0.14(1 − 1

𝑛
) on the quantile

of the proportional share follows immediately from Lemma 4.3.

5.3 Computation
Many of the suggested notions of shares in the literature are hard

to compute and hard to approximate for general monotone valu-

ations. For example, the maximin share is known to be NP-hard

to approximate to any factor even for instances where an MMS

allocation exists. While computing the exact value of the 𝑞-quantile

share for a given 𝑞 may require exponentially many queries, the

probability of getting at most a given value can be straightforwardly

approximated by sampling realizations from the uniformly random

allocation (even for the general class of monotone valuations).

For the classes of additive, unit-demand, and matroid-rank val-

uations, our proofs suggest an efficient algorithm for computing

a 𝑞-fair allocation for the values of 𝑞 that admit 𝑞-fair allocations.

However, the existence of such a poly-time algorithm for general

monotone valuations remains an interesting open problem. In par-

ticular, our proofs for general valuations are not constructive.

5.4 Allocation of Bads
Fair division has been studied not only for the allocation of goods

but also for the allocation of bads (see e.g., [4, 11, 37]); namely, the

case where 𝑣 ∶ 2(︀𝑚⌋︀ → R− is monotonically decreasing. We note

that the feasibility of the 𝑞-quantile share for constant 𝑞 does not

extend to this case. For example, if a single bad is allocated (𝑚 = 1)
the agent who receives this bad has a quantile of

1

𝑛
. One can easily

show using the arguments of Proposition 2.1 that in this context

the critical threshold between feasibility and infeasibility is 𝑞 = 1

𝑛
.
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