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What is the most fair way 
to share a good between people, 
given their competing interests?

2Thursday, January 6, 2011



Electricity
production

Bandwidth
sharing
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• The Internet is made up of smaller independent networks.

INTERNET AUTONOMOUS 
SYSTEMS

• They wish to have connectivity to 
each other.
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• The Internet is made up of smaller independent networks.

INTERNET AUTONOMOUS 
SYSTEMS

• They wish to have connectivity to 
each other.

• Network owners are 
willing to sell transit
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INTERNET AUTONOMOUS 
SYSTEMS

• How can we efficiently organize supply and demand?
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INTERNET AUTONOMOUS 
SYSTEMS

• How can we efficiently organize supply and demand?

Economic efficiency
Leave the users well-off.

Computational efficiency
Scale to the size of the Internet

There is a fundamental
tradeoff between them.
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Link with !xed capacity C>0

THE PROPORTIONAL 
ALLOCATION MECHANISM

Q users
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Link with !xed capacity C>0

1. User    submits a payment of 

THE PROPORTIONAL 
ALLOCATION MECHANISM

Q users

2. Capacity is allocated proportionally to the bids. If you pay $50 
out of $100, you receive one half.

$$$

q bq
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Link with !xed capacity C>0

1. Let                                             be a set of demand 
functions.

THE PROPORTIONAL 
ALLOCATION MECHANISM

Q users

D = {D(p, b) = b/p | b > 0}
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Link with !xed capacity C>0

1. Let                                             be a set of demand 
functions.

THE PROPORTIONAL 
ALLOCATION MECHANISM

Q users

2. User q chooses a demand function 
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D = {D(p, b) = b/p | b > 0}

Dq(p) = D(p, bq) ∈ D
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Link with !xed capacity C>0

3. The mechanism chooses a price    so that

THE PROPORTIONAL 
ALLOCATION MECHANISM

Q users

4. User q buys           at price 
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Link with !xed capacity C>0

THE PROPORTIONAL 
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Link with !xed capacity C>0

THE PROPORTIONAL 
ALLOCATION MECHANISM

Q users
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=⇒ Dq(p) =
bq
p

=
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q bq
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THAT WAS AN EXAMPLE 
OF A PRICING MECHANISM

• We focus on pricing mechanisms.

• A single price minimizes communication with the users.

• Pricing is standard tool for sharing resources, e.g. road tolls, 
electricity pricing.
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• We measure welfare loss using the price of anarchy.

ECONOMIC EFFICIENCY OF 
THE PROP. ALLOC. MECH.

• User q has utility:

• Every user makes his best bid given the others’ bids: 

bq ∈ argmax
b

Uq(b,b−q)

Uq(dq) = Vq(dq)� �� �
value

− pdq����
money
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ECONOMIC EFFICIENCY OF 
THE PROP. ALLOC. MECH.

Uq(dq) = Vq(dq)− pdq
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ECONOMIC EFFICIENCY OF 
THE PROP. ALLOC. MECH.

Uq(dq) = Vq(dq)− p dq(bq)� �� �
allocation
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Uq(dq) = Vq(dq)− p(bq)� �� �
price

dq(bq)� �� �
allocation
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THE PROP. ALLOC. MECH.
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Uq(dq) = Vq(dq)− p(bq)� �� �
price

dq(bq)� �� �
allocation

ECONOMIC EFFICIENCY OF 
THE PROP. ALLOC. MECH.

dq =
θq�
i
θi

C =
θq

p

C > 0
θq, q ∈ Q

θr, r ∈ R

p =
�

i
θi

C
µdq

Uq(dq) = Vq(dq)� �� �
value

− pdq����
money

Theorem. (Kelly, 1997) When users do not exercise their mar-
ket power, the Kelly mechanism is optimal. It maximizes

�

q∈Q

Vq(dq)

Ur(sr) = µsr − Cr(sr)

�

q∈Q

Vq(dq)

dq(µ) =
θq

µ

sr(µ) = 1− θr

µ
�

q∈Q

θq

µ
=

�

r∈R

�
1− θr

µ

�
=⇒ µ =

�
q∈Q

θq +
�

r∈R
θr

R

Uq(θq; θ−q) = Vq(dq(θq; θ−q))− µ(θq; θ−q)dq(θq; θ−q)
θq ∈ arg max

θ
Uq(θ, θ−q)

ϕ :=
A(dNE)
A(dOPT )

A(d) :=
�

q∈Q

Vq(dq)

dq =
θq

µ

sr = 1− θr

µ

µ =
�

q∈Q
θq +

�
r∈R

θr

R

1
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Uq(dq) = Vq(dq)− p(bq)� �� �
price

dq(bq)� �� �
allocation

ECONOMIC EFFICIENCY OF 
THE PROP. ALLOC. MECH.A(d) :=

�

q∈Q

Vq(dq)

dq =
θq

µ

sr = 1− θr

µ

µ =
�

q∈Q
θq +

�
r∈R

θr

R

Theorem. (Johari and Tsitsiklis, 2004) Given some natural

assumptions on the utility functions, the price of anarchy in

Kelly’s mechanism is 3/4.

Assumption. For all q ∈ Q, the valuation functions Vq(dq) :
R+ → R+ are strictly increasing and concave. Over dq > 0,
the functions are differentiable. At dq = 0, the right derivative

exists, and is denoted V �
q (0).

bleh

Assumption. For all r ∈ R, there exists a continuous, convex,

and strictly increasing function pr(t) : R+ → R+ such that

pr(0) = 0, and for all sr ≥ 0 we have:

Cr(sr) =
ˆ sr

0
p(t)dt

and for sr ∈ (−∞, 0) we have Cr(sr) = 0.

arrgh

maximize
Q�

q=1

Vq(dq)−
R�

r=1

Cr(sr)

such that
Q�

q=1

dq =
R�

r=1

sr

0 ≤ sr ≤ 1
0 ≤ dq

ϕ :=
A(dNE , sNE)

A(dOPT , sOPT )

A(d, s) =
�

q∈Q

Vq(dq)−
�

r∈R

Cr(dr)

2
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SUPPLY-SIDE PROPORTIONAL 
ALLOCATION MECHANISM
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SUPPLY-SIDE PROPORTIONAL 
ALLOCATION MECHANISM

A(d) :=
�

q∈Q

Vq(dq)

dq =
θq

µ

sr = 1− θr

µ

µ =
�

q∈Q
θq +

�
r∈R

θr

R

Theorem. (Johari and Tsitsiklis, 2004) Given some natural

assumptions on the utility functions, the price of anarchy in

Kelly’s mechanism is 3/4.

bleh

Theorem. (Johari, 2004) Given some natural assumptions on

the cost functions, the price of anarchy in Kelly’s supply-side

mechanism is 1/2.

Assumption. For all q ∈ Q, the valuation functions Vq(dq) :
R+ → R+ are strictly increasing and concave. Over dq > 0,
the functions are differentiable. At dq = 0, the right derivative

exists, and is denoted V �
q (0).

bleh

Assumption. For all r ∈ R, there exists a continuous, convex,

and strictly increasing function pr(t) : R+ → R+ such that

pr(0) = 0, and for all sr ≥ 0 we have:

Cr(sr) =
ˆ sr

0
p(t)dt

and for sr ∈ (−∞, 0) we have Cr(sr) = 0.

arrgh

maximize
Q�

q=1

Vq(dq)−
R�

r=1

Cr(sr)

such that
Q�

q=1

dq =
R�

r=1

sr

0 ≤ sr ≤ 1
0 ≤ dq

ϕ :=
A(dNE , sNE)

A(dOPT , sOPT )

A(d, s) =
�

q∈Q

Vq(dq)−
�

r∈R

Cr(dr)

2
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But in reality, competition occurs on 
both sides of the market.
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WHY STUDY TWO-SIDED 
PRICING MECHANISMS?

• Real-world markets are two-sided.

• Current pricing mechanisms apply only to one-sided markets.

• VCG mechanisms cannot be used in the two-sided setting.
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TWO-SIDED PROPORTIONAL 
ALLOCATION MECHANISM

Q users

Central
authority 
at a link
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A TWO-SIDED MARKET

• Users’ utilities are: • The optimal solution is:

dq =
θq

p
=

θq�
i θi

C

C > 0

θq, q ∈ Q

θr, r ∈ R

p =
�

i θi

C

µdq

Uq(dq) = Vq(dq)� �� �
value

− pdq����
money

Uq(θ) = Vq(dq(θ))� �� �
value

− p(θ)dq(θ)� �� �
money

Uq(dq) = Vq(dq)� �� �
value

− p(dq)dq� �� �
money

Ur(sr) = p(sr)sr� �� �
money

−Cr(sr)� �� �
costs

Theorem. (Kelly, 1997) When users do not exercise their mar-
ket power, the Kelly mechanism is optimal. It maximizes

�

q∈Q

Vq(dq)

Ur(sr) = µsr − Cr(sr)

�

q∈Q

Vq(dq)

dq(µ) =
θq

µ

sr(µ) = 1− θr

µ

�

q∈Q

θq

µ
=

�

r∈R

�
1− θr

µ

�
=⇒ µ =

�
q∈Q θq +

�
r∈R θr

R

Uq(θq; θ−q) = Vq(dq(θq; θ−q))− µ(θq; θ−q)dq(θq; θ−q)

θq ∈ arg max
θ

Uq(θ, θ−q)

1

dq =
θq

p
=

θq�
i θi

C

C > 0

θq, q ∈ Q

θr, r ∈ R

p =
�

i θi

C

µdq

Uq(dq) = Vq(dq)� �� �
value

− pdq����
money

Uq(θ) = Vq(dq(θ))� �� �
value

− p(θ)dq(θ)� �� �
money

Uq(dq) = Vq(dq)� �� �
value

− p(dq)dq� �� �
money

Ur(sr) = p(sr)sr� �� �
money

−Cr(sr)� �� �
costs

Theorem. (Kelly, 1997) When users do not exercise their mar-
ket power, the Kelly mechanism is optimal. It maximizes

�

q∈Q

Vq(dq)

Ur(sr) = µsr − Cr(sr)

�

q∈Q

Vq(dq)

dq(µ) =
θq

µ

sr(µ) = 1− θr

µ

�

q∈Q

θq

µ
=

�

r∈R

�
1− θr

µ

�
=⇒ µ =

�
q∈Q θq +

�
r∈R θr

R

Uq(θq; θ−q) = Vq(dq(θq; θ−q))− µ(θq; θ−q)dq(θq; θ−q)

θq ∈ arg max
θ

Uq(θ, θ−q)

1

maximize
Q�

q=1

Vq(dq)−
R�

r=1

Cr(sr)

such that supply equals demand

minimize
U,d,s

�
q Uq(dNE

q ) +
�

r Ur(sNE
r )

�
q Uq(dOPT

q ) +
�

r Ur(sOPT
r )

such that dNE

q ,sNE

r form a Nash equilibrium allocation

dOPT

q ,sOPT

r form an optimal allocation

Theorem. The price of anarchy of the two-sided market in-
volving R > 1 suppliers equals

s2(S2 + 4Ss+ 2s2)

S(S + 2s)

where S = R− 1, and s is the unique positive root of the poly-
nomial

γ(s) = 16s4 + 10S2s(3s− 2) + S3(5s− 4) + Ss2(49s− 24)

Furthermore, this bound is tight.

bleh

Corollary. The worst inefficiency occurs when R = 2. It
equals approximately 0.588727.

�
q Uq(dNE

q ) +
�

r Ur(dNE
r )

�
q Uq(dOPT

q ) +
�

r Ur(dOPT
r )

minimize
�

q Uq(dNE
q ) +

�
r Ur(sNE

r )
�

q Uq(dOPT
q ) +

�
r Ur(sOPT

r )

such that dNE
q and sNE

r form a Nash equilibrium allocation

dNE
q and sNE

r form an optimal allocation

U �
q(dq)

�
1− dq

R

�
≥ p if dq > 0

U �
q(dq)

�
1− dq

R

�
≤ p

C �
r(sr)

�
1 +

sr
R− 1

�
≤ p if 0 < sr ≤ 1

C �
r(sr)

�
1 +

sr
R− 1

�
≥ p if 0 ≤ sr < 1

3

(Valuations are concave.)

(Marginal costs are convex.)
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MAIN RESULT

Theorem. The price of anarchy of the two-sided market in-
volving R > 1 suppliers equals

s2(S2 + 4Ss + 2s2)
S(S + 2s)

where S = R− 1, and s is the unique positive root of the poly-
nomial

γ(s) = 16s4 + 10S2s(3s− 2) + S3(5s− 4) + Ss2(49s− 24)

Furthermore, this bound is tight.

bleh

Corollary. The worst inefficiency occurs when R = 2. It
equals approximately 0.588727.

bleh

Theorem. In the two-sided mechanism extended to networks,
the price of anarchy is

inf
S

s2(S2 + 4Ss + 2s2)
S(S + 2s)

where s is the unique positive root of the polynomial

γ(s) = 16s4 + 10S2s(3s− 2) + S3(5s− 4) + Ss2(49s− 24)

This value can be numerically evaluated to approximately 0.588727.
Furthermore, this bound is tight.

bleh

Definition. A smooth two-sided market-clearing mechanism
is a tuple of functions (D,S), D : (0,∞) × [0,∞) → R, S :
(0,∞) × [0,∞) → R such that for all Q, R, and for all θ ∈
RQ+R, θ �= 0, θ ≥ 0, there exists a unique p > 0 that satisfies
the following equation

Q�

q=1

Dq(p, θq) =
R�

r=1

Sr(p, θr)

We denote it as p(θ).

bleh

Theorem. (D,S) is a smooth two-sided market-clearing mech-
anism satisfying the three axioms if and only if there exist dif-
ferentiable functions a(p), b(p) : (0,∞) → [0,∞) such that for
all θ, p

D(θ, p) = a(p)θ
S(θ, p) = 1− b(p)θ

3
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OBSERVATIONS

• Supply-side competition improves the price of anarchy.

• In a fully competitive market, the price of anarchy equals 0.64.
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OBSERVATIONS

• Demand-side competition worsens the price of anarchy!

• The best price of anarchy occurs in a monopsony market. It 
equals 0.72.
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PROOF TECHNIQUE

•We formulate the price of anarchy as an optimization problem 
and analytically compute its solution.

maximize
Q�

q=1

Vq(dq)−
R�

r=1

Cr(sr)

such that supply equals demand

minimize
U,d,s

�
q Uq(dNE

q ) +
�

r Ur(sNE
r )

�
q Uq(dOPT

q ) +
�

r Ur(sOPT
r )

such that dNE

q ,sNE

r form a Nash equilibrium allocation

dOPT

q ,sOPT

r form an optimal allocation

Theorem. The price of anarchy of the two-sided market in-
volving R > 1 suppliers equals

s2(S2 + 4Ss+ 2s2)

S(S + 2s)

where S = R− 1, and s is the unique positive root of the poly-
nomial

γ(s) = 16s4 + 10S2s(3s− 2) + S3(5s− 4) + Ss2(49s− 24)

Furthermore, this bound is tight.

bleh

Corollary. The worst inefficiency occurs when R = 2. It
equals approximately 0.588727.

�
q Uq(dNE

q ) +
�

r Ur(dNE
r )

�
q Uq(dOPT

q ) +
�

r Ur(dOPT
r )

minimize
�

q Uq(dNE
q ) +

�
r Ur(sNE

r )
�

q Uq(dOPT
q ) +

�
r Ur(sOPT

r )

such that dNE
q and sNE

r form a Nash equilibrium allocation

dNE
q and sNE

r form an optimal allocation

U �
q(dq)

�
1− dq

R

�
≥ p if dq > 0

U �
q(dq)

�
1− dq

R

�
≤ p

C �
r(sr)

�
1 +

sr
R− 1

�
≤ p if 0 < sr ≤ 1

C �
r(sr)

�
1 +

sr
R− 1

�
≥ p if 0 ≤ sr < 1

3
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PROOF TECHNIQUE

1. Derive necessary and sufficient conditions for an allocation to 
be Nash equilibrium:

Theorem. The price of anarchy of the two-sided market in-
volving R > 1 suppliers equals

s2(S2 + 4Ss + 2s2)
S(S + 2s)
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bleh

Corollary. The worst inefficiency occurs when R = 2. It
equals approximately 0.588727.

U �
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R

�
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�
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R

�
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C �
r(sr)

�
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sr

R− 1

�
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C �
r(sr)

�
1 +

sr

R− 1

�
≥ p if 0 ≤ sr < 1

bleh
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r=1
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We denote it as p(θ).

bleh
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2. Show that the worst case occurs with linear utilities and 
marginal costs.

NE is unchanged 
because derivative is 
unchanged.

But the utility at OPT 
may be better.

Vold

Vnew
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Theorem. When extended to networks, the mechanism has the
same price of anarchy as in the single link case – approximately
0.588727.

Corollary. When extended to a general economy of N goods,
the mechanism has the same price of anarchy of 0.588727,
under some mild assumptions on costs and utilities.
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Theorem. The price of anarchy of the two-sided market in-
volving R > 1 suppliers equals

s2(S2 + 4Ss + 2s2)
S(S + 2s)

where S = R− 1, and s is the unique positive root of the poly-
nomial

γ(s) = 16s4 + 10S2s(3s− 2) + S3(5s− 4) + Ss2(49s− 24)

Furthermore, this bound is tight.

bleh

Corollary. The worst inefficiency occurs when R = 2. It
equals approximately 0.588727.

bleh

Theorem. In the two-sided mechanism extended to networks,
the price of anarchy is

inf
S

s2(S2 + 4Ss + 2s2)
S(S + 2s)

where s is the unique positive root of the polynomial

γ(s) = 16s4 + 10S2s(3s− 2) + S3(5s− 4) + Ss2(49s− 24)

This value can be numerically evaluated to approximately 0.588727.
Furthermore, this bound is tight.
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EXTENSION TO NETWORKS

• At each link, there is an 
independent instance of the 
single-link market.

• Consumers buy capacity in 
order to transmit flow from 
s to t.

s1

t1

s2

t2θ1

θ2

θ3

Q users

(s1,t1)(s2,t2)

R providers

(b1,b2,...)
r
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s2((R− 1)2 + 4(R− 1)s + 2s2)

(R− 1)(R− 1 + 2s)
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0 ≤ µ1,2 < 1
s(1 + s/R− 1)) ≥ µ1,2

µ1,2 ∈ R

Theorem. When extended to networks, the mechanism has the
same price of anarchy as in the single link case – approximately
0.588727.
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(R− 1)(R− 1 + 2s)
such that 0 < s ≤ 1

0 ≤ µ1,2 < 1
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Theorem. When extended to networks, the mechanism has the
same price of anarchy as in the single link case – approximately
0.588727.

Corollary. When extended to a general economy of N goods,
the mechanism has the same price of anarchy of 0.588727,
under some mild assumptions on costs and utilities.
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TWO-SIDED MARKET-
CLEARING MECHANISMS

• A two-sided market-clearing mechanism is a pair of sets of 
functions:                                   and S = {S(b, p) | b > 0}D = {D(b, p) | b > 0}
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TWO-SIDED MARKET-
CLEARING MECHANISMS

• Consider the market-clearing mechanisms for which

• The utility to each user in concave is his bid:

• D is bounded from below and S is bounded from above.

• When users have no market power, the mechanism 
achieves an optimal allocation.

Uq(dq) = Vq(D(p(�b), bq)− p(�b)D(p(�b), bq)
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OPTIMALITY

Lemma. Under some mild assumptions, every mechanism that
accepts a scalar message θ from each user must allocate demand
and supply according to:

D(θ, p) = a(p)θ
S(θ, p) = 1− b(p)θ

where a(p), b(p) ≥ 0 are some functions of the price p > 0.

Theorem. Within the class of mechanisms for which a(p) =
b(p) for all p > 0, the mechanism presented here achieves the
best possible price of anarchy.
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and supply according to:

D(θ, p) = a(p)θ
S(θ, p) = 1− b(p)θ

where a(p), b(p) ≥ 0 are some functions of the price p > 0.

Theorem. Among the mechanisms that have a(p) = b(p) for
all p > 0, the mechanism presented here is the only one that
achieves the best possible price of anarchy of 0.588727.

bleh

7

29Thursday, January 6, 2011



IN CONCLUSION

Our results were to:

• Extend the proportional allocation mechanism to two-sided 
markets.

• Establish a tight bound on the price of anarchy in both the 
single and multi-resource settings.

• Establish the optimality of the mechanism within a large 
class.
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