
The effectiveness of type-based unboxing

Xavier Leroy

Vincent Foley-Bourgon
COMP-763 - Fall 2013

McGill University

September 2013

Plan

1. About the paper

2. The Big Idea

3. Type-directed unboxing

4. Type-directed unboxing overhead

5. Type-directed unboxing GC overhead

6. Untyped unboxing

7. Experimental results

2 / 37

About the paper

3 / 37

About the paper

I Written by Xavier Leroy, INRIA

I Published in 1997

I Presented at the “Types in Compilation” workshop of ICFP
’97

4 / 37

The Big Idea

5 / 37

Why do we need boxing?
C, Pascal

I All data types are known at compile-time

I Efficient memory layout

I Efficient calling conventions

6 / 37

Why do we need boxing?
ML

I Polymorphism and type abstraction

I Compile-time type 6= Run-time type

v a l t r i p l i c a t e : ’ a −> ’ a a r r a y
l e t t r i p l i c a t e x = [| x ; x ; x |]

7 / 37

Why do we need boxing?
ML

I Abandon C-style representation

I Revert to Lisp-style representation

I All data structures fit a common format (e.g. one word)

8 / 37

Boxing and unboxing
Explanation

Boxing: heap-allocating and handling through a pointer
Unboxing: getting at the primitive data through the pointer

9 / 37

Boxed values
So, what’s the problem?

I In tight loops, the constant boxing and unboxing is a major
bottleneck

I Especially true in numerical applications

I Need a strategy to avoid unnecessary boxing/unboxing

I Some strategies rely on type information

I Others rely on program analysis, apply equally well to
dynamically-typed languages

10 / 37

Monomorphisation

I Possible solution: monomorphisation

I Duplicate and specialize all generic functions for each type
instanciation

I No major increase in code size

I Not viable for OCaml /

11 / 37

Type-directed unboxing

12 / 37

Coercions

I Coercions between boxed and unboxed representations
inserted at type specialization points

I Generic code always operates on boxed values

I Monomorphic code can take advantage of unboxed
representations

I , Efficient register-based calling conventions

I / Does not support deep unboxing (e.g. arrays of unboxed
elements)

13 / 37

Run-time type inspection

I Run-time representation of static types maintained

I Extra arguments for polymorphic functions

I Extra fields for structures

I Generic code inspects those run-time type expressions

I , Supports arbitrary unboxing in data structures

I / Not very good with register-based calling conventions

14 / 37

Tag-based unboxing

I Used in dynamically-typed languages

I Type information is attached to the data structure

I Small set of base types, encoded at the bit level

15 / 37

Tag-based unboxing
OCaml

I 1-bit tagging

I Two kinds of arrays

I Arrays of tagged ints or pointers

I Arrays of unboxed floats

I Arrays with a concrete type: generate code for accessing
arrays of pointers or floats

I Arrays with statically unknown type: test tag at run-time, and
if float array, perform unboxing of floats

16 / 37

Type-directed unboxing
overhead

17 / 37

Coercions

I Often, no overhead (boxing+unboxing would’ve happened
anyway)

I Some examples show long sequence of successive
unboxing+boxing before data is actually used

18 / 37

Run-time type inspection

Can anyone guess what the sources of overhead for RTTI are?

19 / 37

Run-time type inspection

I More arguments to pass

I Heap allocations to build tree of type expressions

I Testing the type expressions

I “Several techniques have been proposed to reduce overhead of
type building or type inspection, but not both.”

20 / 37

Tag-based unboxing

I Shares some of the costs of RTTI, but not all

I In OCaml, tags are stored with GC information

I No overhead to function calls

I Run-time cost relatively small (one load, one compare)

I Extra conditional branches

I E.g.: OCaml 1.05: polymorphic array copy is 10x slower than
int array copy, and 8x slower than float array copy

I In OCaml 4.00, näıve polymorphic array copy is ∼2.5x slower
than either int or float array copy

21 / 37

Type-directed unboxing GC
overhead

22 / 37

Overhead in GC

What might be a source of overhead (and headaches) with an
unboxing strategy?

23 / 37

Getting the roots in the stack

I Without unboxing, all values on the stack are either tagged
ints or pointers

I With unboxing, some values are unboxed ints or floats

I Need to distinguish between boxed and unboxed values

I One possibility (used by OCaml): maintain a table of the
pointers in the frame

24 / 37

Mixture of pointers and raw data in blocks

I With some unboxing strategies, heap blocks will contain
pointers interleaved with unboxed values

I E.g. heap block containing a string * float * int list

value

I The string and list are boxed

I The float is unboxed

I Maintain a table of the primitive types (pointer, int, float) in
the block header

25 / 37

Untyped unboxing

26 / 37

Local unboxing

I Boxing and unboxing that cancel each other out in the same
function body are eliminated by a dataflow analysis

I How many boxing/unboxing operations in the following
example?

l e t f (a : f l o a t a r r a y) (x : f l o a t) =
l e t y = a . (0) ∗ . x i n
y +. 1 . 0

I Simple and very effective on numerical code

I Could be extended to inter-procedural analysis

27 / 37

Known functions and partial inlining

I Functions in ML are usually curried

l e t f a b c = a + b + c
=>
l e t f =

fun a −>
fun b −>

fun c −> a+b+c

I Have two entry points: standard (curried) and quick (all
arguments supplied)

I A control-flow analysis can determine if all arguments are
supplied, and use the quick entry point

I In OCaml test suite, 80% to 100% of all function calls use the
quick entry point

28 / 37

Experimental results

29 / 37

Match-ups

I Gallium 1 vs Gallium 1

I One version is using coercion-based unboxing

I The other is using fully boxed, tagged data representations

I Gallium 2 vs OCaml

I Gallium 2: coercion-based, tag-based unboxing of float arrays

I OCaml: mostly-tagged data representation, local unboxing of
floats, multiple function entry points, tag-based unboxing of
float arrays

30 / 37

Gallium 1 vs Gallium 1

Test Unboxing Boxed Test type

takeushi 3.00 5.09 fun calls, int arith
integral 0.80 2.83 float arith, loops
sumlist 3.60 3.45 lists, int arith
sieve 1.00 0.94 int arith, lists, polymorphism
boyer 1.80 2.76 fun calls, symbols
knuth-bendix 0.90 0.98 symbols, polymorphism
quad quad succ 6.58 2.40 Church numbers

31 / 37

Gallium 1 vs Gallium 1

32 / 37

Gallium 1 vs Gallium 1

I Unboxing strategy yields a noticeable performance boost in
many tests

I quad quad succ shows off one of the performance overhead
of coercion-based unboxing

33 / 37

Gallium 2 vs OCaml
Test Gallium 2 OCaml Description

bdd 19.0 12.3 term processing, hash tables
bdd * 17.8 11.0 bdd, bounds checking off
boyer 0.52 0.62 term processing, fun calls
fft 3.49 2.00 float arith, float arrays
fft * 2.02 1.58 fft, bounds checking off
fib 0.33 0.34 int arith, fun calls
genlex 0.69 0.76 lexing, parsing, symbols
knuth-bendix 3.00 2.47 term processing, fun calls
mandelbrot 2.52 7.31 float arith, loops
nucleic 0.88 0.89 float arith, trees
quad quad succ 0.53 0.12 Church numerals, polymorphism
quicksort 1.44 0.65 int arrays, loops
quicksort * 0.54 0.43 quicksort, bounds checking off
sieve 1.03 1.01 int arith, lists
solitaire 1.51 0.56 arrays, loops
solitaire * 0.41 0.38 solitaire, bounds checking off
takeushi 0.41 0.39 int arith, fun calls

34 / 37

Gallium 2 vs OCaml

35 / 37

Gallium 2 vs OCaml

I Despite less sophisticated unboxing strategy, OCaml matches
and beats Gallium 2 in most tests

I Floating-point tests (fft, nucleic) show that the local unboxing
strategy of OCaml is just as effective as the more general
strategy of Gallium 2.

I The only test (mandelbrot) where Gallium 2 is significantly
faster is due to Gallium removing 2 levels of indirection while
OCaml removes only 1

36 / 37

〈/presentation〉

37 / 37

