The effectiveness of type-based unboxing

Xavier Leroy

Vincent Foley-Bourgon
COMP-763 - Fall 2013
McGill University

September 2013

Plan

N o A~ b

About the paper

The Big Idea

Type-directed unboxing
Type-directed unboxing overhead
Type-directed unboxing GC overhead
Untyped unboxing

Experimental results

)

37

About the paper

About the paper

> Written by Xavier Leroy, INRIA
> Published in 1997

» Presented at the "Types in Compilation” workshop of ICFP
'97

37

The Big Idea

Why do we need boxing?
C, Pascal

» All data types are known at compile-time
» Efficient memory layout

» Efficient calling conventions

37

Why do we need boxing?
ML

» Polymorphism and type abstraction
» Compile-time type # Run-time type

val triplicate : 'a —> 'a array
let triplicate x = [|x; x; x|]

37

Why do we need boxing?
ML

» Abandon C-style representation
» Revert to Lisp-style representation

» All data structures fit a common format (e.g. one word)

37

Boxing and unboxing

Explanation

Boxing: heap-allocating and handling through a pointer
Unboxing: getting at the primitive data through the pointer

X > | X

Boxed values
So, what's the problem?

> In tight loops, the constant boxing and unboxing is a major
bottleneck

» Especially true in numerical applications
» Need a strategy to avoid unnecessary boxing/unboxing
» Some strategies rely on type information

» Others rely on program analysis, apply equally well to
dynamically-typed languages

10/37

Monomorphisation

v

Possible solution: monomorphisation

v

Duplicate and specialize all generic functions for each type
instanciation

» No major increase in code size

Not viable for OCaml ®

v

11/37

Type-directed unboxing

Coercions

» Coercions between boxed and unboxed representations
inserted at type specialization points

» Generic code always operates on boxed values

» Monomorphic code can take advantage of unboxed
representations

» © Efficient register-based calling conventions

» @ Does not support deep unboxing (e.g. arrays of unboxed
elements)

13 /37

Run-time type inspection

v

Run-time representation of static types maintained
» Extra arguments for polymorphic functions

» Extra fields for structures

v

Generic code inspects those run-time type expressions

v

© Supports arbitrary unboxing in data structures

v

® Not very good with register-based calling conventions

14 /37

Tag-based unboxing

> Used in dynamically-typed languages
» Type information is attached to the data structure

» Small set of base types, encoded at the bit level

15 /37

Tag-based unboxing
OCaml

> 1-bit tagging
» Two kinds of arrays
» Arrays of tagged ints or pointers

> Arrays of unboxed floats

» Arrays with a concrete type: generate code for accessing
arrays of pointers or floats

> Arrays with statically unknown type: test tag at run-time, and
if float array, perform unboxing of floats

16 /37

Type-directed unboxing
overhead

Coercions

» Often, no overhead (boxing+unboxing would've happened
anyway)

» Some examples show long sequence of successive
unboxing—+boxing before data is actually used

18 /37

Run-time type inspection

Can anyone guess what the sources of overhead for RTTI are?

19/37

Run-time type inspection

> More arguments to pass

v

Heap allocations to build tree of type expressions

v

Testing the type expressions

v

“Several techniques have been proposed to reduce overhead of
type building or type inspection, but not both.”

20 /37

Tag-based unboxing

» Shares some of the costs of RTTI, but not all

» In OCaml, tags are stored with GC information

> No overhead to function calls

» Run-time cost relatively small (one load, one compare)
» Extra conditional branches

» E.g.: OCaml 1.05: polymorphic array copy is 10x slower than
int array copy, and 8x slower than float array copy

» In OCaml 4.00, naive polymorphic array copy is ~2.5x slower
than either int or float array copy

21/37

Type-directed unboxing GC
overhead

Overhead in GC

What might be a source of overhead (and headaches) with an
unboxing strategy?

23 /37

Getting the roots in the stack

» Without unboxing, all values on the stack are either tagged
ints or pointers

» With unboxing, some values are unboxed ints or floats
> Need to distinguish between boxed and unboxed values

» One possibility (used by OCaml): maintain a table of the
pointers in the frame

24 /37

Mixture of pointers and raw data in blocks

» With some unboxing strategies, heap blocks will contain
pointers interleaved with unboxed values

» E.g. heap block containing a string * float * int list
value

» The string and list are boxed

» The float is unboxed

» Maintain a table of the primitive types (pointer, int, float) in
the block header

25 /37

Untyped unboxing

Local unboxing

v

Boxing and unboxing that cancel each other out in the same
function body are eliminated by a dataflow analysis

» How many boxing/unboxing operations in the following
example?

let f (a: float array) (x: float) =
let y = a.(0) . x in
y +. 1.0

v

Simple and very effective on numerical code

v

Could be extended to inter-procedural analysis

27 /37

Known functions and partial inlining

» Functions in ML are usually curried

let f abc=a+b+c
==
let f =
fun a —>
fun b —>
fun ¢ —> a+b+c

» Have two entry points: standard (curried) and quick (all
arguments supplied)

» A control-flow analysis can determine if all arguments are
supplied, and use the quick entry point

» In OCaml test suite, 80% to 100% of all function calls use the
quick entry point

28 /37

Experimental results

Match-ups

» Gallium 1 vs Gallium 1
» One version is using coercion-based unboxing
» The other is using fully boxed, tagged data representations
» Gallium 2 vs OCaml
» Gallium 2: coercion-based, tag-based unboxing of float arrays

» OCaml: mostly-tagged data representation, local unboxing of
floats, multiple function entry points, tag-based unboxing of
float arrays

30/37

Gallium 1 vs Gallium 1

Test Unboxing | Boxed | Test type

takeushi 3.00 5.09 | fun calls, int arith

integral 0.80 2.83 | float arith, loops

sumlist 3.60 3.45 | lists, int arith

sieve 1.00 | 0.94 | int arith, lists, polymorphism
boyer 1.80 2.76 | fun calls, symbols
knuth-bendix 0.90 0.98 | symbols, polymorphism
quad quad succ 6.58 | 2.40 | Church numbers

31

37

Gallium 1 vs Gallium 1

Gallium 1 vs Gallium1

M Unboxing

takeushi B Boxed

integral

sumlist

sieve

Test

boyer

Knuth-bendix

Quad-quad-succ

Time (s)

32/37

Gallium 1 vs Gallium 1

» Unboxing strategy yields a noticeable performance boost in
many tests

» quad quad succ shows off one of the performance overhead
of coercion-based unboxing

33/37

Gallium 2 vs OCaml

Test Gallium 2 | OCaml | Description

bdd 19.0 12.3 | term processing, hash tables
bdd * 17.8 11.0 | bdd, bounds checking off
boyer 0.52 0.62 | term processing, fun calls

fft 3.49 2.00 | float arith, float arrays

fft * 2.02 1.58 | fft, bounds checking off

fib 0.33 0.34 | int arith, fun calls

genlex 0.69 0.76 | lexing, parsing, symbols
knuth-bendix 3.00 2.47 | term processing, fun calls
mandelbrot 2.52 7.31 | float arith, loops

nucleic 0.88 0.89 | float arith, trees

quad quad succ 0.53 0.12 | Church numerals, polymorphism
quicksort 1.44 0.65 | int arrays, loops

quicksort * 0.54 0.43 | quicksort, bounds checking off
sieve 1.03 1.01 | int arith, lists

solitaire 1.51 0.56 | arrays, loops

solitaire * 0.41 0.38 | solitaire, bounds checking off
takeushi 0.41 0.39 | int arith, fun calls .

Gallium 2 vs OCaml

bdd

bdd *

boyer

fft

it

fib

genlex
knuth-bendix
mandelbrot
nucleic

quad quad succ
quicksort
quicksart *
sieve
solitaire
solitaire *
takeushi

Test

Gallium 2 vs OCaml

20

M Gallium 2
W ccaml

35/37

Gallium 2 vs OCaml

» Despite less sophisticated unboxing strategy, OCaml| matches
and beats Gallium 2 in most tests

» Floating-point tests (fft, nucleic) show that the local unboxing
strategy of OCaml is just as effective as the more general
strategy of Gallium 2.

» The only test (mandelbrot) where Gallium 2 is significantly
faster is due to Gallium removing 2 levels of indirection while
OCaml removes only 1

36 /37

(/presentation)

