
MatJuice

Vincent Foley-Bourgon

COMP-621 - Winter 2014
McGill University

April 2014

Outline

I Overview of MatJuice

I Demo

I Technical details

I Future work

I Questions

2 / 32

Overview

3 / 32

What is MatJuice?

I A source-to-source compiler from MATLAB to JavaScript1;

I Uses the McLab framework;

I Outputs readable2 JavaScript code;

I Aims for a correct translation;

I Whenever we need to choose between simplicity and
performance, we pick the former;

I We’ll introduce optimizations once we have a solid and
fairly complete implementation.

1My two favorite languages in the world! /s
2Nicely indented and formatted.

4 / 32

What is MatJuice?

I A source-to-source compiler from MATLAB to JavaScript1;

I Uses the McLab framework;

I Outputs readable2 JavaScript code;

I Aims for a correct translation;

I Whenever we need to choose between simplicity and
performance, we pick the former;

I We’ll introduce optimizations once we have a solid and
fairly complete implementation.

1My two favorite languages in the world! /s
2Nicely indented and formatted.

5 / 32

Why MATLAB?

I Widely used by scientists and engineers3;

I Presents “interesting” challenges from a compiler point of
view4;

I Benefit from all the work that went into McLab.

3Estimated 2M users
4Remember Nishanth’s presentation?

6 / 32

Why JavaScript?

I Most widely available language;

I JavaScript engines keep improving and performance is
now very good;

I Allow MATLAB users to put their work on the web and
integrate with web services.

7 / 32

Demo

8 / 32

Technical details

9 / 32

Compiler flow

MATLAB source code Tamer IR JavaScript AST PrettyBase JavaScript source code

10 / 32

Compiler flow
Matlab source code

function s = signint(n)
if n < 0

s = -1
elseif n > 0

s = 1
else

s = 0
end

end

11 / 32

Compiler flow
Tamer code

function [s] = signint(n)
mc_t4 = 0;
[mc_t3] = lt(n, mc_t4);
if mc_t3

mc_t0 = 1;
[s] = uminus(mc_t0);

else
mc_t2 = 0;
[mc_t1] = gt(n, mc_t2);
if mc_t1

s = 1;
else

s = 0;
end

end
end

12 / 32

Compiler flow
JavaScript source code

function signint(n) {
var mc_t0 , mc_t1 , mc_t2 , s, mc_t3 , mc_t4;
mc_t4 = 0;
mc_t3 = lt(n, mc_t4);
if (mc_t3) {

mc_t0 = 1;
s = uminus(mc_t0);

}
else {

mc_t2 = 0;
mc_t1 = gt(n, mc_t2);
if (mc_t1) {

s = 1;
}
else {

s = 0;
}

}
return s;

} 13 / 32

JavaScript AST

Why use another IR instead of outputting JavaScript directly?

I More modular: concerns such as proper indentation are
moved down the pipeline;

I Easier to manipulate a tree than raw text;

I For example, finding all the lhs variables and adding var
declarations.

I In the future, we can apply JavaScript-specific
optimizations.

14 / 32

JavaScript AST

I Written with JastAdd;

I Described in a high-level grammar language;

I Automatically translated to Java code;

I Aspect system is used to convert AST to PrettyBase tree.

15 / 32

JavaScript AST

I Nodes for the different JavaScript expressions and
statements necessary to translate Tamer;

I Doesn’t respect the JavaScript grammar, made simpler.

16 / 32

JavaScript AST

Conversion from Tamer to JavaScript AST

I Tamer has a visitor pattern interface;

I I don’t use it.

The tirAnalyze method returns void; that makes it harder than
necessary to accumulate the result of translating children
nodes.

I use mutually recursive methods, which makes the code
much easier to write and read.

17 / 32

JavaScript AST

Conversion from Tamer to JavaScript AST

I Tamer has a visitor pattern interface;

I I don’t use it.

The tirAnalyze method returns void; that makes it harder than
necessary to accumulate the result of translating children
nodes.

I use mutually recursive methods, which makes the code
much easier to write and read.

18 / 32

JavaScript AST

Conversion from Tamer to JavaScript AST

I Tamer has a visitor pattern interface;

I I don’t use it.

The tirAnalyze method returns void; that makes it harder than
necessary to accumulate the result of translating children
nodes.

I use mutually recursive methods, which makes the code
much easier to write and read.

19 / 32

Pretty printing

Another IR?! Yes!!

I Language agnostic: could be targeted by other backends;

I Small number of nodes (4); conversion to string is very
short (< 30 lines);

I Expose high-level combinators (e.g. parenthesized,
separatedBy, etc.).

20 / 32

Pretty printing

I Design shamelessly copied from Peyton-Jones and Lester5;

I < 150 lines of code;

I Created before the project was started; design and API
didn’t need to be changed.

5http://research.microsoft.com/en-us/um/people/simonpj/papers/
pj-lester-book/

21 / 32

http://research.microsoft.com/en-us/um/people/simonpj/papers/pj-lester-book/
http://research.microsoft.com/en-us/um/people/simonpj/papers/pj-lester-book/

Benchmarks

22 / 32

Benchmarks

I MATLAB 2013a, Firefox 28, Chrome 33;

I Times are in seconds;

I Average over 10 runs.

MATLAB JS (FF) JS (Cr) MatJuice (FF) MatJuice (Cr)
collatz(100000) 0.5601 0.8388 0.0323 9.0951 0.0523
bubbleSort6 0.4609 2.1369 0.6017 6.7054 0.6211

6Array of size 4096
23 / 32

Benchmarks

I MATLAB 2013a, Firefox 28, Chrome 33;

I Times are in seconds;

I Average over 10 runs.

MATLAB JS (FF) JS (Cr) MatJuice (FF) MatJuice (Cr)
collatz(100000) 0.5601 0.8388 0.0323 9.0951 0.0523

bubbleSort6 0.4609 2.1369 0.6017 6.7054 0.6211

6Array of size 4096
24 / 32

Benchmarks

I MATLAB 2013a, Firefox 28, Chrome 33;

I Times are in seconds;

I Average over 10 runs.

MATLAB JS (FF) JS (Cr) MatJuice (FF) MatJuice (Cr)
collatz(100000) 0.5601 0.8388 0.0323 9.0951 0.0523
bubbleSort6 0.4609 2.1369 0.6017 6.7054 0.6211

6Array of size 4096
25 / 32

Future

26 / 32

Future

I Fix incorrect semantics (e.g. pass-by-value);

I Some optimizations, e.g.: copy-on-write arrays;

I Statically transforming plus(x,y) into x+y when x and y are
scalars;

I More built-ins + framework to support different kinds of
arguments;

I Design a declarative DSL to avoid writing everything by
hand;

I Use static analysis information to specialize calls to the
proper function;

I Fix underlying Tamer framework to properly support
recursive functions.

27 / 32

Future

http://github.com/sable/mclab/tree/javascript-backend

28 / 32

http://github.com/sable/mclab/tree/javascript-backend

Questions?

29 / 32

Bonus!

Figuring out the proper translation to balance browser
performance is going to be tricky.

30 / 32

Copying an array

Method 1
var i = a.length;
while (i--) { b[i] = a[i]; }

Method 2
var b = a.concat ();

31 / 32

Copying an array

ops/second (higher is better)

Firefox Chrome
Method 1 1.6M 1.1M
Method 2 0.6M 1.6 M

32 / 32

