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The Title
Alias Analysis for Optimization of Dynamic Languages

The title says it all!

I What do we want? To optimize programs!

I Which programs? Those written in dynamic languages!

I What tool will we use? Alias analysis!
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The Big Idea

“Dynamic languages such as Python allow programs to be
written more easily using high-level constructs such as
comprehensions for queries and using generic code.”
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The Big Idea

Efficient execution of these programs requires powerful
optimizations:

I Incrementalization of queries

I Specialization of generic code

Both require precise and scalable alias analysis
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Incrementalization

What is incrementalization?

“Given a program f and an operation ⊕, a program f ′ is called
an incremental version of f under ⊕ if f ′ computes f(x⊕ y)
efficiently by making use of f(x).”1

1Source: Efficiency by Incrementalization: an Introduction, Liu 2000
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Incrementalization

Example:

I f = sort

I ⊕ = cons

I f ′ = insort

sort(cons(y, x)) = insort(y, sort(x))

Θ(n lg n) ⊃ Θ(n)
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The Big Idea

I InvTS: incrementalization optimization,
(source, alias-analysis result) → target

I Psyco: specializing JIT, modified to accept statically
computed alias and type information
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The Big Idea

I Perform alias analysis on a program

I Run InvTS ‖ Psyco

I Get a faster program

Better alias analysis =⇒ Faster programs
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Question #1

Why would a better alias analysis yield faster programs?
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Answer #1

Improved precision allows an optimizer more opportunities to
perform more transformations.
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The Analysis

1. Parse Python program into an AST

2. Analyze types and construct CFG 2

3. Construct a sparse evaluation graph (SEG) from the CFG
by removing CFG nodes that do not affect aliases

4. Do the described alias analysis

2Apply steps 1 and 2 recursively for import statements
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The Analysis
Parsing Python

Very easy to do with Python’s stdlib:

import ast

with open("main.py") as f:

root = ast.parse(f.read ())

next_step(root)

Done.
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The Analysis
Precise type analysis

Inference algorithm that computes not only the basic types, but
also values, ranges of values, number of elements in a collection,
etc.

Basic types:

I none

I primitive types: int, float, bool

I collection types: string, list, tuple, set, dict

I module

I class

I instance

I function

I method

I union: combine different types together

I > and ⊥
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The Analysis
Precise type analysis

Precise types:
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The Analysis
Precise type analysis

I Any set {t1, ..., tn} has a minimal super type: > if any ti is
>, otherwise the maximal type of the union of all ti.

I Limit for the size of type description: no more than 60 type
names.

I Generalization: going from a type to a supertype of smaller
size when the size of a type exceeds a constant.

Example:

union(intval(2), intval(4), intval(8)) =⇒
union(intrange(2, 4), intval(8))
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The Analysis
Constructing the CFG

Type Analysis
(build CFG)

until fixed point

Refinement

max 30 times
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The Analysis
Constructing the CFG

Analysis: start at program entry and visit and interpret each
program node. Types of variables and expressions start at ⊥
and go up until fixed-point.

Refinement:

I Clone functions so that there is one clone for each different
combination of basic types of arguments

I Eliminate code that is dead for the argument types, and fix
the call sites

I Inline function calls when that doesn’t increase the number
of program nodes.
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The Analysis
Dynamic features

Authors claim that handling of most nodes is obvious, but give
some details on how to handle the dynamic features of Python.

I won’t go into all of them, but let’s look at our friend eval.
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Question #2

There are two cases to handle for eval:

I What do you think are the two cases?
(Hint: remember Ismail’s first presentation)

I How do you handle each case?
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The Analysis
Eval

The analysis distinguishes two cases:

I If the argument type is a union of constant strings, inner
function nodes are created and edges are added
appropriately. Return type is the minimum super type of
the newly-created functions.

I Otherwise, the return type of eval is >.
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The Analysis
Question #3

What is alias analysis?
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The Analysis

Alias analysis: compute pairs of variables and fields that refer
to the same object.3

i n t o = 42 ;
i n t ∗p , ∗q ;
p = &o ;
q = &o ;

o 42

p q

3Undecidable in general.
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The Analysis

Their proposed alias analysis:

I “May” analysis (over-approximation)

I Inter-procedural

I Is flow-sensitive

I Is context-sensitive (trace sensitivity)

I Uses precise type analysis

I Uses a compressed representation
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The Analysis
Flow sensitivity

#removes all instances of O from collection C

def removeObject(C,O):

if isinstance(C,set):

if O in C:

C.remove(O)

if isinstance(C,list):

for n in range(C.count(O)):

C.remove(O)

Incrementalization is going to add guards before the remove
method calls; with flow sensitivity, the alias set of C can be
different at the two different call sites, and if the alias set has
only one member, the guard can be removed.
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The Analysis
Types to improve precision

Only allow alias pairs that have compatible types.

“Our experiments show that using precise types significantly
increases alias analysis precision compared to using basic
types.”

Mais pourquoi!?
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The Analysis
Trace sensitivity

Context sensitivity necessary for precise alias analysis.
Traditional n-CFA not great with dynamic languages:

I If n is small, precision suffers

I If n is larger, memory usage becomes unacceptably high
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The Analysis
Trace sensitivity

I Inline non-recursive calls

I Inline recursive calls once

I Merge alias pairs from the inlined procedures into the
corresponding SEG node

I Remove inlined nodes (save memory)
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The Analysis
Trace sensitivity

“Our trace-sensitive analysis is always at least as precise as, and
in our experiments always more precise than,
context-insensitive analyses. The increased precision is because
our algorithm distinguishes aliasing information in different
contexts during analysis, even though it subsequently merges
information for different contexts.”
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The Analysis
Compressed representation

To reduce memory usage, they introduce a “simple, but
important optimization”.

If a node as a single predecessor, the alias pairs are not stored
directly, but as a diff of the predecessor node.

Reduces memory consumption by 10x
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The Experiments
Disclaimer

All tables and figures are taken from the article.
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The Experiments
The setup

18 variants of the analysis:

I Flow-insensitive + Context insensitive

I Flow-insensitive + Context sensitive

I Flow-sensitive + Context insensitive

I Flow-sensitive + Context sensitive

I Flow-sensitive + Trace sensitive

I Flow-sensitive + Trace sensitive + extra clones 4

Each is combined with no type checking, basic type checking
and precise type checking.

4Recursive functions are inlined twice
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The Experiments
Effect on incrementalization
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The Experiments
Effect on incrementalization
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The Experiments
Effect on specialization
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The Experiments
Alias set size
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The Experiments
Memory usage
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The Offer
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We’ve seen in presentations this semester that
dynamically-typed languages present hard challenges:

I Optimizations are harder

I Static analyses are less precise

I Development tools are more rudimentary

I No machine-checked form of “documentation”

I No safety net for maintenance and refactorings

I No ability to encode compiler-checked invariants
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Cost of dynamic typing

These represent the price of using dynamically-typed languages.

1. What does it buy us?

2. Is it worth the price?

You have answers or opinions? Come see me and let’s discuss
this over a beer!
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