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Abstract

A central task of artificial intelligence is the de-
sign of artificial agents that act towards spec-
ified goals in partially observed environments.
Since such environments frequently include in-
teraction over time with other agents with their
own goals, reasoning about such interaction re-
lies on sequential game-theoretic models such
as extensive-form games or some of their suc-
cinct representations such as multi-agent influ-
ence diagrams. The current algorithms for cal-
culating equilibria either work with inefficient
representations, possibly doubly exponential in
the number of time steps, or place strong as-
sumptions on the game structure. In this paper,
we propose a sampling-based approach, which
calculates extensive-form correlated equilibria
with small representations without placing such
strong assumptions. Thus, it is practical in situ-
ations where the previous approaches would fail.
In addition, our algorithm allows control over
characteristics of the target equilibrium, e.g., we
can ask for an equilibrium with high social wel-
fare. Our approach is based on a multiplicative-
weight update algorithm analogous to AdaBoost,
and Markov chain Monte Carlo sampling. We
prove convergence guarantees and explore the
utility of our approach on several moderately
sized multi-player games.

1 INTRODUCTION

The goal of artificial intelligence is the design of arti-
ficial agents achieving specified objectives in real-world
environments. Such environments often include interac-
tions with other agents (artificial or human) with their own
goals. Game theory provides a useful framework to reason
about such interactions. Unfortunately, the majority of cur-
rent computational techniques were developed for one-step

games, in which each agent takes a single action without
observing actions of others. Such techniques are inade-
quate in more realistic settings when the interaction hap-
pens over time and agents can partially observe actions of
others, such as in a game of poker, in a political negotiation,
or in a business interaction among multiple parties. These
settings are traditionally modeled as extensive-form games
(EFGs) [Kuhn, 1953], described in detail in Section 2.

Techniques developed for one-step games suffer from two
principal drawbacks when applied to EFGs. First, their rep-
resentations are linear in the number of possible determin-
istic behaviors of a single agent across all possible situa-
tions that can arise during the game. Since the number of
possible situations can grow exponentially in the number of
time steps, the number of possible deterministic behaviors
can grow doubly exponentially in the number of time steps.
We seek to limit this explosion. Second, solution concepts
which are tractable and desirable in one-step games (such
as correlated equilibria) become intractable or undesirable
in sequential settings. We seek to develop tractable solu-
tions since, concurring with Papadimitriou [2005], we be-
lieve that “[i]ntractability of an equilibrium concept would
make it implausible as a model of behavior.”

Several existing approaches partially address these chal-
lenges. The sequence-form representation [Koller and
Meggido, 1992] is linear in the number of possible situa-
tions rather than behaviors, but in order to create this rep-
resentation without unfolding the entire game-tree, the un-
derlying EFG is typically required to have a special struc-
ture, for example, be represented as a multi-agent influ-
ence diagram [Koller and Milch, 2001]. The extensive-form
correlated equilibrium [Forges and von Stengel, 2002] is
a solution concept both more tractable and more natural
in sequential games than concepts developed for one-step
games. However, existing algorithms for computing this
type of equilibrium either only treat special cases, such as
two-player games without chance moves [Forges and von
Stengel, 2002], or delegate potentially intractable subprob-
lems to an outside oracle [Gordon et al., 2008].

In this paper, we propose a sampling-based approximate
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Figure 1: The job market game. Left: An EFG representa-
tion. Nodes connected by dotted lines belong to the same
information sets. Right: A MAID representation. Decision
nodes are depicted as rectangles, utility nodes as diamonds.

approach to finding extensive-form correlated equilibria.
Our approach is fully general in that it applies to multi-
player games with chance moves and arbitrary utility func-
tions. Our technique is applicable to very large EFGs with-
out imposing any requirements on their structure, except
for the standard assumption of perfect recall and the ability
to “simulate the game”, i.e., the ability to determine how
an action in a given situation leads to a new situation. We
formalize this notion by defining succinct EFGs in Sec-
tion 2.1. The space complexity of our algorithm is no worse
than the space complexity of algorithms developed for spe-
cial types of EFGs, and in some cases our representations
may be significantly smaller. Thus, we get the benefits of
the sequence-form representation without imposing strong
assumptions on the underlying game.

Our algorithm finds extensive-form correlated equilibria
of maximum entropy or minimum relative entropy, possi-
bly under additional constraints. This formulation yields
boosting-style updates with a favorable convergence rate.
In addition, the possibility of including additional con-
straints allows finding equilibria of high social welfare or
equilibria that are consistent with an observed behavior. As
subroutines, our algorithm uses best-response calculations
and MCMC sampling. We explore the utility of our algo-
rithm on three examples: a two-player toy example, a game
with a large number of weakly interacting players, and a
three-player poker variant. Our poker variant uses a deck
of eight cards and includes one round of betting. This is
quite small compared with state of the art for two-person
zero-sum games (see, e.g., [Gilpin and Sandholm, 2006]).
However, nonzero-sum or multi-player games are gener-
ally believed to be much more challenging than zero-sum
games, and we believe that no existing technique would be
able to calculate equilibria for our example.

2 DEFINITIONS

Let N be the number of players, denoted as n = 1, . . . ,N;
randomness is modeled as an additional “nature” player,
denoted nat; when we say “player” we typically mean a
regular player n and refer to nature explicitly. An extensive-

form game (EFG) is represented by a game tree, where in-
ner nodes are partitioned into information sets. Each infor-
mation set i belongs to a unique player n or nature, who is
required to act upon reaching nodes in that information set.
The player knows only the identity of the information set,
but cannot distinguish among the nodes in it; thus, informa-
tion sets represent partial information. Nodes in the same
information set have the same number of outgoing edges,
corresponding to actions that a player can take. The game
begins in the root of the tree; players and nature take turns
until reaching a leaf. Each leaf ` contains an assignment
of utilities un(`) ∈ R to individual players, jointly denoted
u(`) ∈ RN . Collections of information sets of players and
nature are denoted I(n) and I(nat). The number of actions
available in the information set i is Ai. We assume that
Ai ≥ 2 and denote actions as a = 1, . . . ,Ai.

A deterministic behavior of the player n is described by
a pure strategy, which is a tuple sn = (si)i∈I(n) with si ∈

{1, . . . ,Ai} specifying which action to take in each infor-
mation set. The vector s = (sn)n≤N of pure strategies of
all players is referred to as the strategy profile. Nature’s
pure strategies, denoted snat = sI(nat) (we use set subscripts
to denote tuples), are referred to as scenarios. We assume
that scenarios are sampled from a fixed distribution pnat
which factors as pnat(snat) = ∏i∈I(nat) pi(si). As common
in game theory, we restrict our attention to EFGs with per-
fect recall. Perfect recall means that players do not forget
any information over the course of the game. Formally,
this requires that paths reaching nodes in an information set
i ∈ I(n) are indistinguishable by n, i.e., they contain iden-
tical sequences of information sets of the player n, and the
player n took identical actions in those information sets.
For nature’s information sets we only assume that the same
information set does not appear on the same path more than
once (this is a weaker condition than perfect recall).

Given a strategy profile s and a scenario snat, the game tree
reaches a unique leaf `; we write u(s,snat) for the utility
vector u(`) achieved at `. Taking expectation over nature’s
randomness, the vector of expected utilities is defined as

u(s) = Enat[u(s,snat)] .

The function u(s), defined implicitly by an EFG, is referred
to as the strategic form of the EFG.

Some components of a pure strategy sn for the player n
may be irrelevant—the components specifying actions for
information sets that cannot be reached given the actions
of n earlier in the game. By setting such components to a
“don’t care” value ∗, we obtain a smaller set of determinis-
tic strategies called reduced strategies, and denoted s∗n.

Let Sn and S∗n denote sets of pure and reduced strategies
of n, and S and S∗ sets of pure and reduced strategy pro-
files, respectively. Algorithms developed for strategic-form
games (i.e., games where each player takes only one action



and cannot observe actions of others) typically require time
and space polynomial in |S∗| = ∏n|S∗n|, or, in some cases
(e.g., [Papadimitriou, 2005]), ∑n|S∗n|, which may still be
prohibitively large. A more efficient class of algorithms
developed specifically for EFGs uses the sequence-form
representation, which is equivalent to the randomized be-
havioral strategy, describing for each information set of a
given player the probability of taking an action a. We refer
to the size of this representation as the sequence complex-
ity, denoted Γ = ∑n Γn, where Γn = ∑i∈I(n) Ai. Note that
|Sn|= ∏i∈I(n) Ai, hence we obtain

|S∗n| ≤ |Sn|< 2Γn , |S∗| ≤ |S|< 2Γ

(we used Ai < 2Ai for Ai ∈N). Since Ai ≥ 2, we also obtain
that Γn/2≤ |S∗n|. It is not too difficult to construct examples
where |S∗n| ≥ 2Ω(Γn) [von Stengel et al., 2002]. Hence, al-
gorithms based on sequence form are usually significantly
more efficient than algorithms working with strategic form.

Fig. 1 gives an example of an EFG corresponding to the job
market game between the student and the employer (dis-
cussed by Spence [1973] and others, our version along the
lines of Forges and von Stengel [2002]). In this game, the
student first decides to study or not to study. The student
then comes to a job interview and is asked a question. The
employer hears the student’s answer and decides whether
to hire the student or not. The student benefits by being
hired and suffers slightly by studying. The employer ben-
efits by hiring a student that studied and suffers by hiring
one who did not. We use this game as a running example,
but our goal is to reason about much larger EFGs.

2.1 SUCCINCT EXTENSIVE-FORM GAMES

We study EFGs whose game trees are potentially too large
to be stored in memory explicitly. Therefore, we work with
implicit representations which we call succinct EFGs.

We define the type of an EFG as a pair (Γ,rmax) where Γ is
the sequence complexity (or any upper bound on sequence
complexity) and rmax ∈ R is a regret bound. We define re-
gret formally below, but here we note that it is bounded by
the range of a player’s utility values. By a succinct EFG,
we mean a representation of an EFG which supports the
following queries:

• (Γ,rmax), the type,

• hstart, the root of the game tree,

• infoset(h), the information set corresponding to the
node h; value nil is returned when h is a leaf,

• player(i), the player (or nature) acting in the informa-
tion set i,

• Ai, the number of actions in the information set i,

• next(h,a), the node reached after taking action a in h,

• pi(a), nature’s randomness (only defined if
player(i) = nat),

• u(`), the utility vector in the leaf `.

A prime example of succinct EFGs are multiagent influ-
ence diagrams (MAIDs) [Koller and Milch, 2001]. Multia-
gent influence diagrams are game-theoretic generalizations
of Bayes nets. Similar to Bayes nets, MAIDs are repre-
sented by directed acyclic graphs. They have three types
of nodes: (i) decision nodes, where a specified player as-
signs a variable given the values of the parent variables, (ii)
chance nodes, where nature randomly assigns a variable
conditioned on the values of the parent variables (iii) utility
nodes, where a specified player receives utility as a function
of the values of the parent variables. Fig. 1 shows a MAID
corresponding to the job market game. It is straightfor-
ward to check that MAIDs indeed support all of the queries
outlined above (see, for example, the description of how
MAIDs represent EFGs [Blum et al., 2006]).

This paper provides a solution to two problems that are not
addressed by MAIDs. The first problem is that MAIDs can-
not represent context-specific independence. For example,
each play in a MAID consists of the same number of ac-
tions, whereas in succinct EFGs the number of actions can
depend on the actions that have been played. The second
problem is that MAID algorithms rely on clique tree rep-
resentations and thus have both space and time complexity
polynomial in the size of the largest clique in this tree, i.e.,
exponential in treewidth, and therefore superpolynomial in
sequence complexity. Our approach employs representa-
tions and relies on operations that are strictly polynomial
in sequence complexity. We demonstrate these two prob-
lems on two examples.

Our first example is a poker variant called Indian poker. In
Indian poker, players receive one card each. They hold it
against their forehead, so they can see others’ cards, but
not their own. At the beginning, each player contributes an
ante of $1. After the cards are dealt, players take turns of
either entering the game and paying an additional $1 (ac-
tion ‘bet’) or not entering the game (action ‘pass’). If all
three players choose ‘pass’, their ante is returned. If some
player chooses ‘bet’, betting continues until the turn of the
player who placed the first bet. Thus, players have an op-
portunity to match the bet, but they are only allowed to bet
once. We consider a version with three players and assume
that the deck consists of C cards with distinct values.

A natural representation of Indian poker by a MAID con-
sists of three chance nodes for cards dealt to individual
players, five decision nodes for the maximum of five bets,
and utility nodes for payoffs to individual players. Since
the decision nodes have incoming edges from all the pre-
vious bets and from the cards dealt to the other two play-
ers, the MAID representation has a sequence complexity
ΓMAID = C2(2 + 4 + 8 + 16 + 32) = 62C2. Using non-



Input: succinct EFG, payoff importance vector w ∈ RN

target precision ε> 0, failure probability δ> 0
Output: ε-approximate EFCE
Let T̄ := T̄ (ε/3), Mnat := Mnat(ε/3,δ/2), M := M(ε/3,δ/2T̄ )
p̃nat←Mnat independent samples from pnat
Let λ1 = 0
For t = 1,2, . . . , T̄ :
• q̃t ←M independent samples from q̄t(s) ∝ ew·ũ(s)−λt ·r̃(s)

• φ∗ = argmaxφ Ẽt [r̃φ(s)]
r∗ = Ẽt [r̃φ∗(s)]
• if r∗ < 2ε/3 then return q̃t

else δ∗ =
1

2rmax +2ε/3
ln

(
rmax− r∗+2ε/3

rmax + r∗

)
λt+1,φ =

{
λt,φ−δ∗ if φ= φ∗

λt,φ otherwise

Figure 2: Main algorithm.

MAID succinct EFGs, we can do better: we can terminate
the game early if the fourth and fifth bet do not occur. We
can also account for the fact that nature must assign differ-
ent cards to each player. The result is a sequence complex-
ity Γ = 24C(C− 1). To contrast MAID algorithms with
our algorithm further, note that a maximum clique in the
MAID representation includes all chance nodes, all deci-
sion nodes and exactly one utility node (which takes val-
ues from {−2,−1,0,3,4}), and thus its size is C3 ·25 ·5 =
160C3. For C = 8, this equals 8.2× 104, whereas the se-
quence complexity is only 1.3×103.

The second example is the grid game [Vickrey and Koller,
2002], which is played on an L-by-L grid by L2 players.
Locations on the grid correspond to distinct players. Each
player has three actions, and his payoffs depend only on the
actions of his neighbors. Specifically, his payoff is the sum
of payoffs in independent games with each of his neigh-
bors. Payoffs to each player in each game are specified
by a separate 3-by-3 matrix with entries chosen indepen-
dently uniformly at random from [0,1]. Since the treewith
of the resulting graph is L, the maximum clique size is 3L,
whereas the sequence complexity is only Γ = 3L2. Our
algorithm has space complexity polynomial in Γ and there-
fore achieves significant savings over MAID algorithms.

2.2 EQUILIBRIA IN EFGS

Equilibria are solution concepts developed to reason about
interactions of utility-maximizing players. They describe
situations in which none of the players have incentives to
change their behavior. Such stability typically requires ran-
domization.

The most popular equilibrium concept is a Nash equi-
librium. In a Nash equilibrium, individual players pick
their actions at random from a distribution among their
best responses to the play of others. For example, in
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the unique Nash equilibrium of rock-paper-scissors, each
player chooses uniformly at random among the three pos-
sible actions. Nash equilibria always exist, but many prob-
lems related to finding Nash equilibria are NP-hard even
for games in strategic form [Conitzer and Sandholm, 2003;
Blum et al., 2006]. Moreover, in certain applications, the
concept of a Nash equilibrium may be too restrictive be-
cause of the assumption that each player randomizes inde-
pendently. In many real-world situations, players can im-
prove their payoffs by correlating their behavior according
to an outside signal; an example is correlation of drivers’
behavior at an intersection by a traffic light. Both the
computational tractability and correlation among players
in one-step games are addressed by a correlated equilib-
rium [Aumann, 1974]. In addition to attractive computa-
tional properties, correlated equilibria can be motivated be-
haviorally as results of adaptive behavior [Hart and Mas-
Colell, 2000]. We are not aware of a similar result for Nash
equilibria except for trivial cases such as zero-sum games.

Formally, a correlated equilibrium is implemented by an
external mechanism called a moderator which draws a
strategy profile s from some distribution p(s) and reveals
the portion sn to the player n. The joint distribution p(s)
is called a correlated equilibrium if none of the players can
improve their expected utility based on the information pro-
vided. Each correlated equilibrium p(s) can also be viewed
as a Nash equilibrium in the extended game where nature
first draws s and the individual players take actions with the
additional information consisting of the suggestion sn.

While finding correlated equilibria is more tractable than
finding Nash equilibria, the existing algorithms, such
as [Papadimitriou, 2005], were developed for strategic-
form games and are therefore polynomial in the number
of reduced strategies, which can be exponential in the se-
quence complexity. Moreover, the mechanism suggested
by the correlated equilibrium is unnatural in sequential set-
tings, because the moderator must reveal the entire strategy
sn to each player up front; for example, in a poker game,
the moderator would need to tell each player what to do in
every possible situation that can arise during the game.

Instead of correlated equilibria we study their generaliza-
tion to sequential settings called extensive-form correlated
equilibria [Forges and von Stengel, 2002]. Similar to a



correlated equilibrium, an extensive-form correlated equi-
librium (EFCE) is a probability distribution over strategy
profiles implemented by a moderator. The moderator, how-
ever, does not reveal entire strategies to players at the be-
ginning of the game. Instead it suggests actions only when
players reach the relevant information sets during the game.
A player can either follow the moderator’s suggestion or
deviate. When players deviate, they stop receiving sugges-
tions and must follow their own strategies.

We formalize this behavior by the notion of a causal devia-
tion [Gordon et al., 2008]. Causal deviations of the player n
are characterized by triples (itrig,atrig,sdev

n ) as follows: the
player n follows suggestions of the moderator until receiv-
ing the suggestion atrig in the information set itrig. If such
a suggestion is received, the player begins to deviate and
play according to sdev

n . The pair (itrig,atrig) is referred to as
the trigger, the strategy sdev

n as the deviation strategy.

For computational and notational convenience, we use an
equivalent definition of the EFCE due to Gordon et al.
[2008], in which the moderator shows individual players
their entire strategies sn, but, distinctly from the correlated
equilibrium, players cannot deviate to arbitrary strategies
s′n after seeing sn. Instead they may only apply causal devi-
ations, represented as maps φitrig,atrig,sdev

n
: sn 7→ s′n such that

s′i =

{
sdev

i if sitrig = atrig and i is reachable from itrig

si otherwise.

Formally, p is an EFCE if and only if for all n and all causal
deviations φ of n,

Ep[un(s−n,φ(sn))]≤ Ep[un(s−n,sn)] , (1)

i.e., deviating from the moderator’s suggestion by follow-
ing the map φ provides no improvement. (We use s−n to
denote the vector of strategies of all agents except n.) The
pointwise difference

un(s−n,φ(sn))−un(s−n,sn)

is denoted as rφ(s) and referred to as the regret (of s for not
deviating according to φ). The set of causal deviations is
denoted Φ and includes the identity map Id, corresponding
to no deviation. Eq. (1) thus requires that the expected re-
gret be non-positive for all deviations φ ∈Φ. If the expected
regret is bounded above by a positive constant ε, we call the
distribution p an ε-approximate EFCE or simply ε-EFCE.
At this point, we can define a regret bound as a value rmax
such that rmax ≥ |rφ(s)| for all s and φ.

An important subtlety in our definition of ε-EFCE is that Φ

only considers a single trigger at a time. By using multiple
triggers, a player could gain more. We can bound the total
gain of the player n by εΓn ≤ εΓ since the player n has
only Γn triggers. In our experiments below, we set ε small
enough to account for this factor.

We stress that the revelation of the entire strategy and re-
striction to causal deviations are only for notational and
computational convenience. In practice, we still implement
an EFCE using a sequential moderator, and players are free
to deviate however they wish.

Even though the number of causal deviations φ is much
smaller then the number of all possible deviations, it is
still prohibitively large to enumerate explicitly. In princi-
ple we need to consider all possible deviation strategies
across all triggers, which yields |Φ| ≈ ∑n Γn|S∗n|. In next
section we show how despite this explosion it is possible to
derive representations polynomial in the logarithm of this
size, log|Φ| ≤ log(Γ|S|)≤ logΓ+ log|S|= O(Γ).

To understand effects of the distinction between corre-
lated equilibria and EFCEs, consider the job market game.
As Forges and von Stengel [2002] show, in this game the
only correlated and Nash equilibria are non-cooperative:
the student never studies and the employer never hires. On
the other hand EFCEs for this game include cooperative
outcomes. The problem with correlated equilibria in this
game is that the moderator needs to reveal the entire strat-
egy to the student at the beginning of the game and if the
student is allowed to choose an arbitrary deviation (not nec-
essarily causal), he will always choose not to study.

3 MAIN ALGORITHM

In this section we derive a coordinate descent algorithm for
calculating EFCEs. Similar to Nash and correlated equi-
libria, there may be many distributions satisfying the zero-
regret condition of Eq. (1) and hence many EFCEs. De-
pending on the application, some of these equilibria may
be more desirable than others. For example, in mecha-
nism design, we seek equilibria with high social welfare;
in game-theoretic modeling, we seek equilibria consistent
with observed data. Our algorithm allows exploration of
the set of equilibria, which facilitates such tasks.

We calculate equilibria of maximum entropy, with a bias
term specifying additional properties we might be inter-
ested to optimize. The maximum-entropy condition deter-
mines a unique equilibrium and also leads to an efficient
coordinate-descent procedure analogous to a popular clas-
sification algorithm AdaBoost [Freund and Schapire, 1997,
1999]. Specifically, we consider the optimization problem

max
p

[
H(p)+w ·Ep[u(s)]

]
s.t. Ep[rφ(s)]≤ 0 for all φ ∈Φ

(2)

where H(p) = Ep[− ln p] denotes the entropy, and w is the
vector of importance weights that we attach to the expected
utilities of individual players. If w = 0, the unique solution
of Eq. (2) is the maximum entropy EFCE. Setting w 6= 0
allows us to explore the set of EFCEs by biasing the solu-
tion toward equilibria that maximize a linear combination



of the players’ utilites. Instead of utilities, we could include
expectations of other quantities of interest.

The optimization problem above has |S| variables and |Φ|
constraints. As we argued earlier, these are prohibitively
large for even moderately sized games. For example, in In-
dian poker with eight cards, there are about 10168 strategy
profiles and up to 1070 causal deviations. Our algorithm
manages to solve Eq. (2) with representations only loga-
rithmic in these quantities. We use sampling to address the
size of S and dynamic programming to address the size of
Φ. Before we describe these approaches, we discuss an
idealized version of the algorithm, which assumes that we
can enumerate all s’s and φ’s.

By Theorem 2 of Dudı́k et al. [2007], the solution of Eq. (2)
is a limit of exponential-family densities of the form

qλ(s) ∝ ew·u(s)−λ·r(s)

where λ ∈ [0,∞)Φ and r(s) denotes the vector rΦ(s). In
the limit these distributions minimize the partition function
Zλ = ∑s ew·u(s)−λ·r(s). We solve Eq. (2) by the coordinate-
descent algorithm SUMMET [Dudı́k et al., 2007], which in
this particular case reduces to AdaBoost.

AdaBoost (and SUMMET) calculate a sequence of param-
eters λt (beginning with λ1 = 0) and the corresponding den-
sities qt parametrized by λt . In the t-th iteration (round
of boosting), the algorithm finds the deviation φ with the
largest regret on qt and updates the corresponding coordi-
nate:

λt+1,φ = λt,φ−
1

2rmax
ln

(
rmax−Et [rφ(s)]
rmax +Et [rφ(s)]

)
(3)

where Et is the expectation according to qt .

An attractive feature of this algorithm is that the number of
rounds required for the convergence of the expected regret
to zero does not depend on the number of deviations. The
number of rounds is sensitive to the value of w, but for
w = 0 it grows only logarithmically with |S|. Specifically,
if p∗ is the equilibrium solving Eq. (2), we are guaranteed
to find qλ with regret of less than ε after at most

D(p∗ ‖ q0)
− 1

2 ln(1−ε2/r2
max)

≤ 2r2
maxD(p∗ ‖ q0)
ε2

≡ T (ε) (4)

rounds, where D(p ‖ q) = Ep[ln(p/q)] is the relative en-
tropy (or KL-divergence), and the upper bound follows by
the inequality ln(1 + x) ≤ x. (See [Freund and Schapire,
1999].) For w = 0, the distribution q0 is uniform over S and
therefore D(p∗ ‖ q0) ≤ ln|S|. Since ln|S| ≤ Γ, we obtain
that T (ε) grows at most linearly with the sequence com-
plexity. Since in each round only a single coordinate of λ
is updated, the parameter vector remains sparse.

As mentioned at the outset, the algorithm described so far
is impractical because the number of strategy profiles and

the number of causal deviations can be very large. To over-
come these limitations, we approximate the distribution qt
by a sample from qt using a Markov-chain Monte Carlo
(MCMC) algorithm described in Section 3.3, and search
for the best deviation on the sample using the algorithm of
Section 3.2. Another problem, which may arise in games
with frequent nature moves, is that the regret calculation
Enat[r(s,snat)], which is a subroutine of both the MCMC
sampling algorithm and the best deviation search, may be
intractable. We address this problem by taking a sample
from pnat. This is straightforward, because pnat takes a
product form. If the size of I(nat) is prohibitively large
(it could be easily superpolynomial in Γ), it is possible to
take a more compact sample from a surrogate distribution
along the lines of Ng and Jordan [2000].

Let M and Mnat denote the number of sampled strategy pro-
files and scenarios, and q̃t and p̃nat the resulting empirical
distributions. Let r̃φ(s) denote the approximate regret cal-
culated using p̃nat. Denote by Mnat(ε,δ) any value Mnat
such that with probability at least 1−δ

|r̃φ(s)− rφ(s)| ≤ ε for all φ, s. (5)

Similarly, let M(ε,δ) be any value M such that for all dis-
tributions q over S, if q̃ is an empirical distribution of M
independent samples from q, then with probability at least
1−δ ∣∣Eq[r̃φ(s)]−Eq̃[r̃φ(s)]

∣∣≤ ε for all φ. (6)

Balancing the convergence of the original algorithm
with approximation errors due to scenario sampling and
strategy-profile sampling yields the algorithm in Fig. 2.
Next, we describe details of this balancing and prove that
our algorithm returns an ε-EFCE with high probability. We
use additional notation q̄λ for the exponential family based
on regrets and utilities calculated using p̃nat instead of pnat.

The first step is a technical claim analogous to Corollary 9
of Freund and Schapire [1999]. The original claim estab-
lishes that the algorithm with exact updates (Eq. 3) finds
an ε-approximate equilibrium in T (ε) rounds. Since we
cannot evaluate expectations under qλ or even under q̄λ, we
work with a lower bound on Es∼q̄t [r̃φ(s)], which we can
obtain using the MCMC sample from q̄t . Specifically, we
work with updates

λt+1,φ = λt,φ−
1

2r̃max
ln

(
r̃max− rt

r̃max + rt

)
(7)

where r̃max ≥ |r̃φ(s)| and rt is a non-negative lower bound
on Eq̄t [r̃φ], i.e., 0≤ rt ≤ Eq̄t [r̃φ]. In our algorithm, we pick
φ for which we can find the largest lower bound rt .
Claim 1. Let p̄∗ be the solution of Eq. (2) with rφ replaced
by r̃φ. If the update of Eq. (7) is used in each round, the
number of iterations in which rt ≥ ε is at most

D(p̄∗ ‖ q̄0)
− 1

2 ln(1−ε2/r̃2
max)

≤ 2r̃2
maxD(p̄∗ ‖ q̄0)
ε2

≡ T̄ (ε) . (8)



Claim 1 follows by a minor modification of the proof of
Corollary 9 of Freund and Schapire [1999] and its proof is
therefore omitted. Similar to Eq. (4), for w = 0, we obtain
that T̄ (ε) = O(Γ/ε2). We can now state the theorem about
convergence of our algorithm.

Theorem 2. Let functions M(ε,δ), Mnat(ε,δ), and T̄ (ε) be
defined as above. Then the algorithm of Fig. 2 returns an
ε-approximate EFCE with probability at least 1−δ.

Proof. We only analyze the case when Eq. (5) holds for
p̃nat with ε replaced by ε/3, and Eq. (6) holds for all q̃t
with q replaced by q̄t and ε by ε/3. By the union bound
and definitions of Mnat and M, this happens with probabil-
ity at least 1−δ. In this case, r̃max can be set to rmax +ε/3.
Whenever the algorithm performs an update, we have by
Eq. (6) that |Eq̄t [r̃φ∗(s)]− r∗| ≤ ε/3. Since r∗ ≥ 2ε/3, we
obtain that ε/3 ≤ r∗− ε/3 ≤ Eq̄t [r̃φ∗(s)]. By Claim 1 this
can happen at most T̄ (ε/3) times. Thus, the algorithm en-
counters r∗ < 2ε/3 during its T̄ (ε/3) rounds and returns
the corresponding q̃t . Since Ẽt [r̃φ(s)] < 2ε/3 for all φ, by
Eq. (5) we also obtain that Ẽt [rφ(s)]≤ ε. Thus, the returned
distribution q̃t is an ε-approximate EFCE.

In practice, if the algorithm does not find an ε-EFCE in T̄
rounds, we do not terminate, but continue until the approx-
imate regret drops below a specified value. To complete
the algorithm, we need to provide settings for M, Mnat, and
implement MCMC sampling and the best deviation search.
By Hoeffding’s inequality and the union bound, we can use

Mnat(ε,δ)=
2r2

max ln(|S||Φ|/δ)
ε2

,M(ε,δ)=
2r̃2

max ln(|Φ|/δ)
ε2

.

To derive M(ε,δ), we can assume that r̃max = rmax +ε′ for
a suitable ε′ (as we did in the proof of Theorem 2). From
the previous section, ln|S| ≤ Γ and ln|Φ| = O(Γ). Hence
we obtain that both M and Mnat scale at most linearly with
sequence complexity. The two remaining pieces of our al-
gorithm are the best deviation search and MCMC sampling,
which we describe next.

3.1 SIMULATION AND BEST-RESPONSE TREES

Both our best-deviation calculation and our MCMC algo-
rithm rely on tree representations derived from the game
tree restricted to a sample of strategy profiles and a sample
of scenarios. Let T denote the game tree. For a set S̃ of
strategy profiles and a set S̃nat of scenarios, we define the
simulation tree T(S̃, S̃nat) as the tree of possible plays when
players and nature are restricted to play only according to
strategy profiles and scenarios in S̃ and S̃nat. If strategy pro-
files and scenarios are drawn from distributions supported
on S̃ and S̃nat we say that players and nature are simulated
by the respective distributions. We write Th(S̃, S̃nat) for the
subtree of the simulation tree beginning in the node h.

In addition to simulation trees, we also consider best-
response trees representing best-response games, in which
all players except for one are simulated by some distribu-
tion. The unsimulated player maximizes his utility by play-
ing the best response to the simulated players. For nota-
tional convenience, we define best-response trees relative
to full strategy profiles. For a single strategy profile s and a
single scenario snat, the best-response tree Tn(s,snat) is the
union of paths T

(
(s′n,s−n),snat

)
across all s′n ∈ Sn. The best-

response tree for S̃ and S̃nat, written as Tn(S̃, S̃nat), is the
union of Tn(s,snat) across all s ∈ S̃ and snat ∈ S̃nat. Similar
to simulation trees, we also consider best-response subtrees
beginning at a concrete node h.

The best-response complexity for the player n is defined as
the maximum size of Tn(s,snat)

Λn = sup
s,snat

|Tn(s,snat)| .

The best-response complexity of a game is defined as Λ =
maxn Λn. If d denotes the depth of the game tree, we obtain
that Λn/d ≤ Γn. Note that Λn is approximately exponential
in the number of actions that the player n can take during
the game, whereas Γn is also exponential in the amount of
information that the player can observe. Thus, it is straight-
forward to construct examples when Λn� Γn.

3.2 BEST DEVIATION

Recall that EFCE is characterized by the zero-regret con-
dition over causal deviations and each causal deviation φ
is described by a trigger (itrig,atrig) and a deviation strat-
egy sdev

n . The key challenge is that the number of deviation
strategies can be very large. We overcome this by dynamic
programming.

We extend the simulation tree for a given set of scenarios
and strategy profiles, so that when simulating an action a
in an information set i, the simulated player is allowed to
deviate from simulation and enter the best-response tree be-
ginning in that node. We refer to the resulting tree as the
deviation tree and the corresponding game as the deviation
game. The best response of each player in the deviation
game consists of a set of triggers (where the player benefits
by deviating) and, for each trigger, the best deviation strat-
egy. It is straightforward to verify that thanks to the perfect
recall assumption, the best deviation and the correspond-
ing regret can be calculated by dynamic programming in
time linear in the size of the deviation tree. To derive an
upper bound on this size, first consider a single scenario
snat and a single strategy profile s. The resulting deviation
tree consists of at most d simulated actions, each possibly
giving rise to a best-response tree of size at most Λ. Sum-
ming across all possible scenario-profile pairs we find that
the deviation tree size is at most O(dΛMMnat), which is
polynomial in Γ.
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Figure 4: Indian poker experiments. Left: Log-log plot of regret and memory usage with an increasing number of rounds.
After the initial period of about 1000 rounds, the regret r∗ appears to converge much faster than predicted by the bound
r∗ ∝ 1/

√
t. Right: Equilibria payoffs for various settings of the weight vector, for multiple randomization seeds of the

MCMC algorithm. Squares indicates the setting of w = 0 (maximum entropy runs); diamonds indicate the remaining runs
with arrows pointing in the direction of the weight vector w. As expected, the equilibrium payoffs are approximately biased
in the direction of w relative to the maximum equilibrium solutions.

3.3 MCMC SAMPLING

The goal of the MCMC sampling step is to obtain a sam-
ple from the current EFCE estimate q̄t . In our sampling
algorithm, we do not work with full strategy profiles s, but
instead work with their partial versions which we call skele-
tons. They are the minimum portions of strategy profiles
needed to evaluate q̄t(s). More precisely, the skeleton of a
strategy profile s relative to a set of scenarios S̃nat and a set
of causal deviations Ψ with Id ∈Ψ is defined as the partial
strategy profile sskel such that (sskel)i = si if the information
set i is reachable under some combination of a deviation
and a scenario from Ψ and S̃nat, and (sskel)i = ∗ otherwise.
Thus, ũ(sskel) and r̃Ψ(sskel) are well defined and equal to
ũ(s) and r̃Ψ(s). We consider skeletons relative to the set
of scenarios sampled at the beginning of the algorithm and
the set of deviations Ψ containing the identity and the best
deviations from the first t rounds of the algorithm.

Formally, we sample full strategy profiles using slice
Metropolis-Hastings (MH) sampling (see, for example,
[Andrieu et al., 2003]). Slices in our case correspond to
sets of strategy profiles s with identical skeletons. We alter-
natingly transition from a strategy profile s to s′ according
to the MH algorithm, and from s′ to s′′ uniformly within
the same slice. We use slice sampling for two reasons. On
one hand, it improves mixing of the Markov chain. On the
other hand, it means that when transitioning from s′ to s′′,
we can “forget” actions in all information sets except for
those in the skeleton. When accessing non-skeleton infor-
mation sets in the next MH transition, the corresponding
action si is sampled uniformly from {1, . . . ,Ai}.

To implement MH sampling, we need to define a proposal
distribution q̂(s′ | s). We implement q̂ by first randomly
picking one of the information sets in sskel, and then flip-

ping the action si according to target probabilities q̄t(s′)
where s′ = (s−i,s′i) with s′i ∈ {1, . . . ,Ai}. Formally, we
assume a predefined conditional probability q̂(i | s), zero
whenever (sskel)i = ∗, and define

q̂(s′ | s) = ∑
i

q̂(i | s)1(s′−i = s−i)
q̄t(s−i,s′i)

∑s′′i
q̄t(s−i,s′′i )

= ∑
i

q̂(i | s)1(s′−i = s−i)
ew·ũ(s−i,s′i)−λt ·r̃(s−i,s′i)

∑s′′i
ew·ũ(s−i,s′′i )−λt ·r̃(s−i,s′′i )

.

We use q̂(i | s) uniform over i in the skeleton of s. The
resulting acceptance probability is min

(
1, |sskel|/|s′skel|

)
where |sskel| and |s′skel| denote the sizes of supports of the
given skeletons (the numbers of entries different from ∗).

For an efficient implementation of sampling, we use a
simulation tree T(s, S̃nat) where s is the random vari-
able of the Markov chain. We calculate regret val-
ues r̃φ for φitrig,atrig,sdev

n
∈ Ψ using simulation subtrees

Th(s, S̃nat) as well as subtrees corresponding to the devi-
ation Th

(
(s−n,sdev

n ), S̃nat
)
, where h is taken from the set of

nodes corresponding to the suggestion atrig in itrig. As be-
fore, we organize computations for all φ ∈Ψ in a single tree
whose size is at most O(dΛMnat). While building this tree
requires time linear in its size, steps of the Markov chain
affect only small portions of it. Again, space complexity is
at most polynomial in Γ.

3.4 IMPROVING CONVERGENCE

Despite favorable convergence guarantees, in initial ver-
sions of our experiments (Section 4) we found that the al-
gorithm of Fig. 2 may be too slow in practice. Instead of
the update suggested by the algorithm, we perform a line
search to find the update that decreases the dual objective



Zλ the most (the normalization is only over the support of
q̃t and therefore is not prohibitively expensive). Empiri-
cally, this leads to large improvements in the rate of conver-
gence (see Section 4). While this strategy does not break
the convergence proof for the exact-update algorithm, in
approximate settings it may overfit the current sample q̃t .
Therefore, we allow at most a constant-fold increase over
the original update and also stop the line search at the point
when the “effective sample size” of the reweighted distri-
bution would drop below a specified threshold (see below).

Another source of inefficiency is MCMC sampling at the
beginning of each round. The sampling step is computa-
tionally expensive and potentially quite wasteful, because
in each round the distribution q̄t changes only slighly. To
avoid wasteful sampling, we use a reweighted q̃t for sev-
eral iterations until the logarithm of the effective sam-
ple size (measured by the entropy of the weights) drops
below a specified threshold (similar to Welling et al.
[2003] and Broderick et al. [2007]). Further substantial
speedup comes from employing the same deviation tree be-
tween MCMC sampling steps. If carefully implemented,
the intermediate results of dynamic programming can be
reused in consecutive rounds. The combination of the
MCMC-sample reuse and efficient data structures leads to
a running-time decrease by several orders of magnitude.
(Details about the efficient implementation of weight up-
dates will be provided in the extended version.)

The final modification to the basic algorithm comes from
the observation that in the initial rounds it is wasteful to
use a large number of samples M. In fact the number of
sampled strategy profiles should be just sufficient to deter-
mine the deviation with the largest regret. To determine
regret to the precision of ε ≈ r∗ we need no more than
O(1/ε2) = O(1/r∗2) samples. From Claim 1, we expect
that r∗= O(1/

√
t). Hence, it suffices to increase M linearly

with t. In our experiments, we use sample size 100+ t/10.

4 EXPERIMENTS

We evaluate our algorithm on three games introduced ear-
lier: the job market game, an eight-card version of Indian
poker, and the grid game. In Indian poker, which is the
only game with chance moves, we enumerate all possible
scenarios (the total of 336 deals) and thus obtain exact re-
grets. All our experiments were performed on an Intel Core
2 Duo processor running at 2.66GHz with 4GB of RAM.

We ran our algorithm on the job market game with weight
vectors w = (0,0) and w = (1,1), ten times for each, with
different random seeds for the MCMC algorithm. The for-
mer case corresponds to maximizing entropy, the latter to
maximizing the sum of entropy and social welfare (the sum
of payoffs). In all cases our algorithm converged to an ex-
act equilibrium in less than 15 rounds. In the maximum
entropy case, we observed some variance among solutions.

In ten runs, the payoff to the student ranged from 2.1 to
2.7, the payoff to the employer from 0.1 to 0.5. In each
equilibrium we observed significant correlation between
the student and the employer. The probability of coop-
erative behavior (the student studies and then gets hired)
ranged between 26% and 36%. Results in the second case
were qualitatively different. The algorithm always found a
fully cooperative solution with payoffs (4,5) where the stu-
dent always studies and always gets hired. The equilibrium
distribution itself, however, varied in relative proportions
of the correct answer being ‘yes’ or ‘no’.

Indian poker is more challenging: unlike the job market
game with four reduced strategies for each player and the
total of 16 reduced strategy profiles, Indian poker admits
9C(C−1), 10C(C−1), and 16C(C−1) reduced strategies, respec-
tively, for its three players, yielding the total of more than
103C(C−1) reduced strategy profiles. Thus, for C = 8, each
player has at least 1053 reduced strategies and the total
number of reduced strategy profiles is more than 10168. Ob-
viously, strategic-form algorithms cannot be applied in this
case. On the other hand, the sequence complexity for C = 8
is only 1.3× 103, so our algorithm can solve this problem
easily.

We ran our algorithm for the maximum entropy case as well
as for weight vectors (100,0,0), (0,100,0), and (0,0,100),
each for five different MCMC random seeds. We explored
the convergence of regret, space complexity, and the type
of solutions. In Fig. 4, on the left, we show log-log plots re-
porting convergence of the regret and an increase in mem-
ory use as a function of the number of rounds. We stopped
the algorithm when regret dropped to about 10−4 of its ini-
tial value. According to the bound of Eq. (4), log regret
should be decreasing with the slope −0.5. However, after
initial 1000 rounds, the convergence dramatically improves
and the slope appears to be around −1.5; i.e., r∗ ∝ t−1.5

rather than r∗ ∝ t−0.5.

On the right-hand side of Fig. 4, we plot the resulting pay-
off vectors. In all cases, player1 on average loses money
to player2 and player3. This is to be expected since the
game is asymmetric and players that move later in the game
have more information. Arrows in the plot correspond
to nonzero weight vectors; since the sum of payoffs is 0,
weight vectors (w1,w2,w3) and (w1−w3,w2−w3,0) are
equivalent; we plot the latter. As expected, for nonzero
vectors w, equilibrium payoffs are pushed from the maxi-
mum entropy solution approximately in the direction of w.

Finally, we explore the performance of our algorithm on
grid games with sizes ranging from 5-by-5 to 20-by-20.
These games are particularly challenging for exact ap-
proaches, such as the MAID algorithm of Blum et al.
[2006], which are polynomial in the size of the largest
clique. For our largest grid, the clique size is 320 ≈
3.5× 109, which is infeasible for exact approaches. For



each grid size, we randomly generated five games and ran
our algorithm to the convergence of 10−3 of the initial re-
gret. In Fig. 3, we report average running times and mem-
ory use (standard deviations are approximately equal to the
thickness of the line). Log-log plots indicates polynomial
dependence on Γ of both the running time (slightly faster
than quadratic) and the memory use (faster than linear but
slower than quadratic). For a comparison, note that Blum
et al. [2006] report the performance of an exact algorithm
only up to the size 6-by-6, corresponding to the clique size
729 (with the reported running time 80s on a single-core
Intel Xeon).

5 CONCLUSION

We have introduced an equilibrium calculation approach
for sequential games that is based on coordinate descent
and MCMC sampling. Unlike previous approaches, our al-
gorithm relies on representations polynomial in sequence
complexity. There are many possible directions for future
research, such as incorporating more sophisticated best-
deviation algorithms or improving sampling. Another al-
ternative is to consider smaller sets of deviations, or possi-
bly to formulate the best-deviation problem in a way that
would allow easy application of external algorithms, akin
to base learners in boosting. Many bounds in our analy-
sis, such as bounds on the number of sampled scenarios
and strategy profiles, are quite loose and a tighter analy-
sis might provide better understanding of parameters con-
tributing to complexity of equilibrium calculation. For ex-
ample, it would be interesting to outline cases when our
algorithm (or its modification) is polynomial in the best-
response complexity Λ rather than the sequence complex-
ity Γ. Finally, it would be of great interest to explore al-
ternatives to sampling, such as variational approximations,
belief propagation, or lifted inference.
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