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Abstract

In this paper we build on previous work
which uses inferences techniques, in partic-
ular Markov Chain Monte Carlo (MCMC)
methods, to solve parameterized control
problems. We propose a number of mod-
ifications in order to make this approach
more practical in general, higher-dimensional
spaces. We first introduce a new target dis-
tribution which is able to incorporate more
reward information from sampled trajecto-
ries. We also show how to break strong cor-
relations between the policy parameters and
sampled trajectories in order to sample more
freely. Finally, we show how to incorporate
these techniques in a principled manner to
obtain estimates of the optimal policy.

1 Introduction

The inference and learning approach for solving
stochastic control and planning tasks, pioneered by
many scientists (Dayan and Hinton, 1997; Attias, 2003;
Doucet and Tadic, 2004; Verma and Rao, 2006; Tou-
ssaint and Storkey, 2006; Toussaint et al., 2006; Pe-
ters and Schaal, 2007), has enjoyed substantial success
in the field of robotics (Toussaint et al., 2008; Kober
and Peters, 2008; Hoffman et al., 2009; Vijayakumar
et al., 2009). A significant body of empirical evidence
in these papers also indicates that these methods can
often outperform traditional stochastic planning and
control methods, as well as more recent policy gradi-
ent schemes.

Notably, with the exception of (Doucet and Tadic,
2004; Hoffman et al., 2007a), the proposed algorithms
have all been variants of the expectation-maximization
(EM) procedure; see (Toussaint and Storkey, 2006) for
a description of the EM approach. In the E step, a
belief propagation algorithm is used to estimate the

marginal distributions of the latent variables. To ob-
tain analytical expressions for the belief updates, re-
searchers following this line of work have been forced
to truncate the time horizon of the Markov decision
process (MDP). Moreover, they have had to focus on
either discrete or linear-Gaussian models; where an
abundant sea of alternatives already exists. Despite
this, the EM approach was a key initial step in the de-
velopment of more sophisticated inference and learning
techniques for fully and partially observed MDPs.

These new inference and learning methods for stochas-
tic control and planning have led to progress along
several frontiers. First, the new methods apply natu-
rally to structured MDPs, such as dynamic Bayesian
network controllers, and hence can benefit from a rich
body of knowledge in the fields of statistical inference
and factored representations (Toussaint et al., 2008).

Second, the inference and learning approach opens up
room for looking at the problem from a new angle,
with the potential of leading to new insights and fos-
tering innovation. For example, this strategy enabled
(Hoffman et al., 2009) to relax the quadratic cost con-
straint in the classical and ubiquitous linear quadratic
controllers via an EM algorithm with a tractable E
step, but with general error functions. In that work,
the authors also show that such an algorithm is equiv-
alent to a policy gradient method where the simulation
component is replaced by exact and efficient computa-
tions.

Third, the adoption of Monte Carlo EM has allowed
for the extension of these methods to more general
(hybrid discrete-continuous, nonlinear, non-Gaussian)
state and action spaces (Hoffman et al., 2007a,b;
Kober and Peters, 2008). The demonstrations with
robots in (Kober and Peters, 2008) are particularly im-
pressive. However, as noted in (Hoffman et al., 2007a),
the forward-backward procedure in the Monte Carlo
E step can be very computationally expensive. To
avoid this, (Kober and Peters, 2008) use only forward
simulation. This is an adequate pragmatic solution



provided that the state space is not high-dimensional
and/or that the rewards are not rare events (e.g. fairly
flat reward functions with occasional narrow peaks).
We note however that with increasing dimension, the
probability of hitting a high reward (for many re-
ward functions used in practice) becomes exponen-
tially small.

To attack larger dimensional spaces with potentially
rare rewards, (Hoffman et al., 2007a) proposes to sam-
ple from a trans-dimensional target distribution that is
proportional to the reward function. Hence, the sam-
ples are guided to areas of high reward. This target
distribution arises from a formulation of the stochastic
control problem as one of carrying out Bayesian infer-
ence for an infinite mixture of finite-horizon MDPs,
where the reward occurs at the last step of each MDP.
A reversible jump MCMC algorithm (Green, 1995)
is then developed to draw the states, actions, pol-
icy parameters and horizon lengths from the trans-
dimensional target distribution. By doing this, they
overcome the need for truncating the MDP that exists
with the EM approach. They show that their pro-
posed MCMC algorithm outperforms various Monte
Carlo EM and policy search methods on a simple sim-
ulation example.

In this paper we propose several modifications and
methodology improvements over (Hoffman et al.,
2007a) that we believe are essential to make the
method practical in more general, higher-dimensional
state and policy spaces. First, we derive a new trans-
dimensional target distribution that incorporates the
rewards at all time steps. The need for the reward
to occur only in the last time step of each mixture
component was essential for deriving efficient two-filter
smoothers in discrete MDPs (Toussaint and Storkey,
2006). The approach in (Hoffman et al., 2007a) inher-
ited this restrictive requirement. However, we point
out here that this requirement can be eliminated when
adopting reversible jump MCMC algorithms. Within
the MCMC framework, it is possible to introduce more
informative target distributions that incorporate all
the rewards without deteriorating the computational
efficiency of the algorithm. In fact, as we show in the
next subsection and the experimental section, the new
target distributions can result in more efficient control
algorithms.

Second, we note that the correlations among the vari-
ables of MDPs are very strong because of the natural
time dependencies in these models. These correlations
are one of the main causes of poor mixing times in
high-dimensions. To overcome this fundamental prob-
lem, we propose a reformulation of the target distribu-
tion in terms of independent noise variables and deter-
ministic transformations. This not only leads to huge

improvements in mixing time, but also allows for the
adoption of the common random numbers technique
for variance reduction, which has been shown to per-
form well in control tasks (Ng and Jordan, 2000).

Our third major contribution addresses the problem
of obtaining point estimates of the policy parameters.
Whereas (Hoffman et al., 2007a) leaves the question of
choosing a point estimate open, we present a strategy
for finding these estimates by optimizing the marginal
distribution of the policy parameters. This improve-
ment has its roots in an elegant method developed for
myopic Bayesian experimental design (Müller, 1998;
Müller et al., 2004).

2 Description of the Model

We will assume a controlled Markov process over
states, actions, and rewards (Xn, Un, Rn) evolving ac-
cording to

• an initial state model: x0 ∼ µ(x0),
• a parameterized policy: un ∼ p(un|xn, θ),
• a transition model: xn+1 ∼ p(xn+1|xn, un),
• and deterministic rewards: rn = r(xn, un).1

In this paper we will be working in a model-based
framework, in which these models are assumed to be
known. Our goal is then to find the policy parameters
θ∗ which maximize the discounted expected reward

J(θ) = E[
∑∞
n=0γ

n r(Zn)],

where Zn = (Xn, Un) is the state/action pair at time
n and γ < 1 is a discount factor.

Following (Toussaint and Storkey, 2006), it is then pos-
sible to rewrite the expected reward as the expectation

J(θ) = (1− γ)−1 E[r(ZK)],

which is taken with respect to the trans-dimensional
distribution

p(k, z0:k|θ) = (1− γ) γk p(z0|θ)
k∏

n=1

p(zn|zn−1, θ). (1)

Here, the marginal distribution over trajectory lengths
corresponds to the term p(k) = (1 − γ)γk. Building
on this result, (Hoffman et al., 2007a) introduced a
reversible jump MCMC algorithm to produce samples
of (k, z0:k, θ) from a distribution with density

p(k, z0:k, θ) ∝ r(zk) p(k, z0:k|θ) p(θ), (2)

where p(θ) is some prior distribution over θ chosen to
ensure that our distribution is proper. We should note

1More generally the rewards could be stochastic, but we
will assume otherwise in order to simplify later notation.



here that the use of this density requires a positive
reward model, however this is easy to ensure so long
as the rewards are bounded. If the integral

∫
J(θ) dθ

is finite we can choose an improper prior p(θ) ∝ 1.
Another reasonable choice is a uniform distribution
on a bounded region of the parameter space. This
restricts the search for θ∗ to a fixed region but does not
alter the expected reward surface inside that region.

By construction the target distribution (2) admits a
marginal p(θ) ∝ J(θ) p(θ) as desired. Note that only
the reward at the last time step of the MDP appears
in this distribution. In the following subsection, we
will show that it is possible to derive an alternative
distribution that accounts for the sum of rewards at
all time steps. The experiments will show that this
new distribution has desirable properties.

2.1 Summing over all rewards

As mentioned above, the distribution utilized in (Hoff-
man et al., 2007a) and given by Equation 2 relies on
weighting by rewards obtained at the end of the sam-
pled trajectory. This formulation was crucial to the
development of EM-based procedures such as (Tous-
saint and Storkey, 2006) in order to obtain efficient
recursions. In the case of sampling-based procedures,
however, we can greatly improve upon earlier methods
by instead using the entire sequence of rewards r0:k.
We can first rearrange those terms which depend on
the discount factor γ,

J(θ) = (1− γ)−1
∞∑
n=0

∫
r(zn) p(n, z0:n|θ) dz0:n

= (1− γ)
∞∑
n=0

γn

1− γ

∫
r(zn) p(z0:n|n, θ) dz0:n

using the series expansion of γn/(1− γ) we can write

= (1− γ)
∞∑
n=0

( ∞∑
k=n

γk

)∫
r(zn) p(z0:n|n, θ) dz0:n

finally, by changing the order of summation we obtain

= (1− γ)
∞∑
k=0

γk
k∑

n=0

∫
r(zn) p(z0:n|n, θ) dz0:n

=
∞∑
k=0

∫ ( k∑
n=0

r(zn)

)
p(k, z0:k|θ) dz0:k.

This reformulation allows us to introduce the new tar-
get distribution

p̃(k, z0:k, θ) ∝
(∑k

n=0 r(zn)
)
p(k, z0:k|θ) p(θ), (3)

which just as before results in a marginal proportional
to the expected reward.

3 Explicit noise variables

While theoretically sound, sampling from (2) or (3) re-
quires a carefully tuned proposal distribution in order
to accurately explore the posterior. In many cases the
policy parameters θ and the sequence of state/action
pairs z0:k (as well as the individual steps within that
sequence) will be highly correlated, resulting in a
Markov chain which mixes very poorly over these vari-
ables. Blocking the variables can improve the mixing
time of the Markov chain. Here, however, we adopt an
even more efficient sampling strategy. In many models
both the transition model and the policy take the form
of deterministic functions with added noise2, i.e.

un = πθ(xn) + φn and xn+1 = f(xn, un) + ψn+1.

where εn = (φn, ψn) denotes the noise (i.e. stochastic)
components which are distributed according to

p(εn|θ) = p(ψn) p(φn|θ).

Under this distribution the initial-state is a special
case, however it becomes notationally convenient to
consider this as “fully stochastic” and write ψ0 = x0.
Here we allow the noise φn to depend upon θ so that
the policy can control exploratory noise. In more gen-
eral settings it might also make sense to let x0 depend
upon θ, but here we assume that the initial state is
uncontrolled.

Under these circumstances, the strong correlation ex-
hibited by zn and zn+1 is mostly due to the deter-
ministic components. We remind the reader that it
is this strong correlation that causes any MCMC al-
gorithm to mix poorly. We can limit this problem
by sampling ε0:k rather than the state/path terms.
This is an idea closely related to the techniques dis-
cussed by (Papaspiliopoulos et al., 2003). Under this
re-parameterization, the new target distribution is

p̃(k, ε0:k, θ) ∝
(∑k

n=0 r(zn)
)
p(k) p(ε0:k|k, θ). (4)

Although we have eliminated the need to sample zn, we
must still calculate it in order to compute the reward
at time n; this calculation is, however, deterministic
given zn−1 and εn.

The reformulation mitigates the mixing problems
due to the strong dependencies between θ and z0:k
as well as between zn+1 and zn that were caused
by the deterministic components of p(un|xn, θ) and
p(xn+1|xn, un). The dependencies between the vari-
ables in this new artificial joint distribution are purely

2In this paper we present additive noise models purely
for ease of exposition. It is trivial to generalize this
approach to models where states are given by xn+1 =
f(xn, un, ψn+1) and actions by un = πθ(xn, φn) for any
functions f and πθ.



due to the reward function r and in many cases will
be comparatively weak.

Apart from its decorrelating effect, this technique has
a secondary benefit as a variance reduction technique.
The noise terms ε0:k can act as common random num-
bers, in a way that is closely related to the idea of fix-
ing random seeds in policy search (i.e. PEGASUS (Ng
and Jordan, 2000)). In particular, we can fix the noise
variables for a predetermined number of MCMC moves
updating the policy. In doing this, both θn and θn−1

will depend on the same random seeds (noise terms).
Consequently, the variance of the policy update will be
reduced. This is a direct consequence of the fact that
the variance of the difference of two estimators based
on Monte Carlo simulations is equal to the sum of the
individual variances of each estimator minus their joint
covariance (Spall, 2005).

4 Marginal Optimization

4.1 Annealing

So far we have defined a distribution p̃(k, z0:k, θ)
(Equation (3)) for which the policy parameter θ is
marginally distributed as J(θ) p(θ). Our goal however
is to estimate the maximum θ∗ = arg maxθ J(θ).

If J(θ) happens to have a strongly dominant and
highly peaked mode around the global maximum θ∗,
we can justify sampling from p̃(k, z0:k, θ) and deriv-
ing a point estimate of θ∗ by averaging the samples’ θ
components. This is the approach taken in (Hoffman
et al., 2007a). However, in general the assumption of
such a favorable J(θ) is unrealistic. If J(θ) is multi-
modal or fairly flat then this approach will yield poor
estimates.

Instead, let us consider p̃ν(θ) ∝ J(θ)ν p(θ). For large
exponents ν the probability mass of this distribution
will concentrate on the global maximum θ∗. If we
could sample from p̃ν(θ), then the generated samples
would allow us to derive a much better point estimate
of θ∗. Note however that this is not as simple as it
might seem at first glance. For example raising the
joint density in Equation (3) to the power of ν will
not result in a distribution with this desired marginal.

A method for generating samples from marginal dis-
tributions of this form was proposed in (Müller, 1998;
Müller et al., 2004) in the context of optimal design
and independently in (Doucet et al., 2002) in the con-
text of marginal maximum a posteriori estimation.
The trick is to define an artificial distribution jointly
over multiple simulated trajectories. To simplify no-
tation let us first define ζj = {kj , z0:kj

} to represent
one simulated trajectory. Furthermore we will denote

the accumulated (non discounted) reward along one
simulated trajectory as R(ζj) =

∑kj

n=0 r(zn).

The appropriate artificial target distribution is then

p̃ν(θ, ζ1:ν) ∝ p(θ)
∏ν
j=1R(ζj) p(ζj |θ), (5)

where ν is a positive integer and p(ζj |θ) is given by
Equation (1). It is easy to verify that this distribution
does indeed admit the desired marginal distribution
p̃ν(θ) ∝ J(θ)ν p(θ). However, because the modes of
J(θ)ν will typically be narrow and widely separated for
large ν, sampling from this distribution using Markov
chain Monte Carlo techniques directly is difficult.

Therefore, we take a simulated annealing approach (as
in (Müller, 1998; Müller et al., 2004; Doucet et al.,
2002)) in which we start sampling from p̃ν with ν=1,
and then slowly increase ν over time according to an
annealing schedule. Increasing ν slowly enough allows
the chain to efficiently explore the whole parameter
space before becoming more constrained to the major
modes for larger values of ν.

One limitation of Equation (5) is that the annealing
schedule is limited to full integer steps. However, we
can further generalize this approach to allow for a real
valued annealing schedule by defining the modified tar-
get distribution

p̃ν(θ, ζ1:dνe) ∝

p(θ)

bνc∏
j=1

R(ζj) p(ζj |θ)

R(ζdνe)ν−bνc p(ζdνe|θ), (6)

where ν is now real valued and bνc and dνe denote the
integer valued floor and ceiling of ν.

For integer values of ν, this distribution again admits
the marginal p̃ν(θ) ∝ J(θ)ν p(θ) as before. While this
does not hold for the intermediate distributions with
real valued ν, these distributions provide a smooth
bridge between the integer steps. This allows for more
gradual annealing, thereby reducing the variance of
the overall sampler.

While in theory we should let ν approach infinity, in
practice this is not computationally feasible. Instead
we choose an annealing schedule that plateaus at a
final integer value νmax, at which point the chain is
run for another M iterations. These last M samples
from p̃νmax(θ) are then used as the basis of a point
estimate of θ∗.

4.2 Clustering

If J(θ) has a unique maximum and νmax is sufficiently
large, the final samples from pνmax

(θ) will all be con-
centrated around θ∗. In this case averaging the L final



Require: an initial sample θ(0)

1: initialize our trajectories with ζ0 given θ(0)

2: initialize ν := 1
3: for i = 1 to N do
4: for all trajectories ζj do
5: perform a birth or death move on ζj
6: if i is divisible by nup

perform an update move on ζj
7: end for
8: sample θ(i) given θ(i−1)

9: update ν with some annealing schedule
10: sample a new trajectory ζ(i)

dνe if necessary
11: end for
12: cluster all {θ(i)} obtained under νmax

Figure 1: The reversible-jump MDP algorithm.

samples can provide a good estimate of θ∗. In prac-
tice however, it is possible that pνmax still has multiple
modes with significant probability mass. In this case
simple averaging can lead to a poor estimate.

To provide a better point estimate under these circum-
stances we cluster the final samples and use the center
of the largest cluster as our estimate of θ∗. For the
clustering we use simple agglomerative clustering us-
ing average linkage (UPGMA). Other techniques such
as for example mean shift clustering (Cheng, 1995)
could be used instead. Note however that the popular
K-Means algorithm is not suited for this purpose as it
tends to split high density areas into multiple clusters.

5 Algorithm

While we cannot directly sample from the annealed
distribution in (6), a Markov chain targeting this dis-
tribution can be constructed. For a given θ a combi-
nation of birth, death, and blocked update moves are
used to propose updates for each trajectory in {ζj}.
The birth and death moves allow us to mix across tra-
jectories of different dimensions, and it is here that
we need to bring in the machinery of reversible jump
MCMC. Finally, given the trajectory samples we can
update θ using Metropolis-Hastings. Acceptance prob-
abilities for these various moves are described later,
and pseudo-code for the algorithm is given in Figure 1.

Before describing the acceptance ratios for this algo-
rithm, however, we should first discuss the relation-
ship between the different trajectory terms. Although
the reward and state/action terms are deterministic
given the noise variables, we can see from Equation (6)
that they must still be computed in order to evaluate

x0
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φ0ψ0

ε0

z0
x1

u1

r1

φ1ψ1

ε1

z1
xk

uk

rk

φkψk

εk

zk
· · ·

θ

Figure 2: A graphical model depicting the interactions
between state/action, noise, and reward terms (as well
as any dependency on θ).

the target density (up to a normalizing constant). As
noted before, though, modifying εn or inserting a new
term ε∗n requires that we recalculate all following state,
action, and reward terms—a fact that can be readily
verified via the graphical model shown in Figure 2. In
this work the fact that we are working directly with
the noise variables means that we are updating the
actual states zn only indirectly. Birth/death moves at
intermediate points in a trajectory would shift the se-
quence of random variates, which effectively combines
the birth/death move with a potentially high dimen-
sional blocked update move. This would lead to lower
acceptance rates and worse mixing of the chain in ad-
dition to higher computational cost. We therefore only
sample birth and death moves at the end of a trajec-
tory (i.e. for n = k) and update intermediate noise
terms using the largest block size for which the ac-
ceptance ratios remain reasonable. Using birth/death
moves only at the end of the trajectory is theoretically
valid because the update moves eventually update all
states.

At every iteration and for each trajectory we will pro-
pose a new trajectory ζ∗j given ζj and θ. The trajec-
tories are conditionally independent given θ, and as a
result we can write the acceptance probability for each
proposed move as min(1, α), where

α =
p̃ν(ζ∗j |θ)
p̃ν(ζj |θ)

·
q(ζj |ζ∗j )
q(ζ∗j |ζj)

for some proposal density q. Since each trajectory can
be sampled independently we will drop the j indices
and write the internal variables for each trajectory as
ζ = (k, ε0:k, z0:k). We will also define the “annealing



exponent” for each trajectory, as β = ν − bνc if ζ is
the final trajectory and β = 1 otherwise.

At each iteration we propose a birth move with proba-
bility bk or a death move with probability dk = 1−bk.3

Proposing a birth move involves sampling a new noise
term ε∗k+1 and calculating z∗k+1; we accept with prob-
ability min(1, αbirth), where

αbirth =
p(k + 1)
p(k)

dk+1

bk

p(ε1:k) p(ε∗k+1)
p(ε1:k) q(ε∗k+1)

[
R(z0:k, z∗k+1)
R(z0:k)

]β
= γ

dk+1

bk

[
R(z0:k, z∗k+1)
R(z0:k)

]β
.

The simplification in this last step is due to the fact
that we are able to sample directly from the noise
model, and as a result q = p. If a death move
is proposed we need only remove the last noise and
state/action term and hence there is no need to sam-
ple. The acceptance ratio for this move can be ob-
tained by inverting the birth move ratio, and as a
result we will accept with probability min(1, αdeath),
where

αdeath =
1
γ

bk−1

dk

[
R(z0:k−1)
R(z0:k)

]β
.

Every nup iterations a fixed-dimensional update move
is proposed. We will first randomly select a block of
nblock variables [a, b]. Given this block we can sample
new noise terms ε∗a:b and calculate the corresponding
path terms z∗a:b and z∗b+1:k. The move will be accepted
with probability min(1, αupdate), where

αupdate =
p(ε∗a:b) q(εa:b)
p(εa:b) q(ε∗a:b)

[
R(z0:a−1, z

∗
a:b, z

∗
b+1:k)

R(z0:a−1, za:b, z∗b+1:k)

]β
=
[
R(z0:a−1, z

∗
a:b, z

∗
b+1:k)

R(z0:k)

]β
.

Finally, given the trajectories {ζj} we can sample a
new set of policy parameters θ∗ from the proposal dis-
tribution q(θ∗|θ). This new policy requires us to recal-
culate the state/action components for each trajectory,
resulting in ζ∗j . These new policy parameters are then
accepted with probability min(1, αmh) where

αmh =

∏bνc
j=0R(ζ∗j ) p(ζ∗j |θ∗)∏bνc
j=0R(ζj) p(ζj |θ)

R(ζ∗dνe)
ν−bνc p(ζ∗dνe|θ

∗)

R(ζdνe)ν−bνc p(ζdνe|θ)
· q(θ|θ

∗)
q(θ∗|θ)

p(θ∗)
p(θ)

.

This form of the acceptance ratio is completely gen-
eral, however a number of assumptions can be made

3In general we will let these terms be constant for all k,
but it must be the case that b0 = 1 in order to ensure that
we do not “kill off” chains of length one.

in practice which greatly simplify its form. A common
choice for the proposal q is a symmetric distribution
such that q(θ, θ′) = q(θ′, θ). If the proposal distri-
bution is symmetric and the prior p(θ) is uniformly
distributed, as noted in Section 2, then the final two
terms of this acceptance ratio will cancel. Finally, if
additionally the policy noise φ0:k is independent of θ,
or if the policy is deterministic, the acceptance ratio
simplifies to

αmh =

[∏bνc
j=0R(ζ∗j )

]
R(ζ∗dνe)

ν−bνc[∏bνc
j=0R(ζj)

]
R(ζdνe)ν−bνc

.

If there is exploitable structure in θ we can also pro-
pose blocked updates of the parameters.

6 Experiments

6.1 Linear-Gaussian models

We first experiment with linear-Gaussian transition
models of the form

f(xn, un) = Axn +Bun +N (0,Σ), and
πθ(xn) = Kxn +m for θ = (K,m).

This model is particularly interesting if we allow for
multimodal rewards, as this will in general induce a
multimodal expected reward surface. Figure 3 con-
trasts samples taken from both the non-annealed and
annealed distribution (with annealing factor ν = 20)
on a model with 1D state- and action-spaces. In this
example we can see that the simple approach of av-
eraging samples {θ(i)} results in a very poor estimate
of the policy parameters, whereas both clustering and
annealing are correctly able to recover the optimum.

6.2 Particles with force-fields

For a more challenging control problem we chose to
simulate a physical system in which a number of re-
pellers are affecting the fall of particles released from
within a start region. The goal is to direct the path
of the particles through high reward regions of the
state space in order to maximize the accumulated dis-
counted reward. The four-dimensional state-space in
this problem consists of a particle’s position and ve-
locity (p, ṗ) for p ∈ R2. Actions consist of repelling
forces acting on the particle. Additionally, the parti-
cle is affected by gravity and a frictional force resisting
movement.

The deterministic policy is parameterized by k repeller
positions ri and strengths wi with a functional form



(a) non-annealed samples (b) annealed samples

(c) reward model (d) Trajectories, averaged

(e) Trajectories, clustered (f) Trajectories, annealed

Figure 3: Linear-Gaussian example with multimodal
reward, shown in (c). The top two plots show samples
of the 2D policy parameters, where (a) displays those
samples taken without annealing, and (b) those with
annealing. Simple averaging of the sampled parame-
ters in (a) leads to an estimate given by the red trian-
gle, whereas the green diamond is the point estimate
found by clustering these same samples. Also shown
(d-f) are sample trajectories under these 3 different es-
timates where the y-axis gives the discrete time index.

given by

πθ(p, ṗ) =
k∑
i=1

wi
p− ri
‖p− ri‖3

.

That is, each repeller pushes the particles directly
away from it with a force inversely proportional to
its distance from the particle. In our experiments the
particle’s start position is uniformly distributed within
a rectangular region (shown in yellow in Figures 4 and
5). At each time step the particle’s position and ve-
locity are updated using simple deterministic physical
forward simulation and a small amount of Gaussian
transition noise is added to the particle’s velocity.

In Figure 4 we use this particle model to show the
benefits of the proposed summed reward formulation
(Equation (3)) over the target distribution which only
uses rewards at the last time step (Equation (2)). We

employ the noise variable parameterization and the
annealing and clustering techniques discussed in Sec-
tions 3 and 4 in both samplers.

The reward model used in this example is composed
of multiple circular reward zones. A high constant
reward is awarded inside these zones and close to no
reward outside. Note that the discontinuous and mul-
timodal nature of this reward surface makes for a very
challenging control problem. In this and the following
experiments we are searching for the optimal place-
ment and strengths of two repellers, resulting in a 6
dimensional control problem. In our implementation
we are updating the 6 policy components in 4 blocks
for the positions and strengths of the two repellers.

When evaluating the reward at the last step only, the
sampler has difficulties crossing the gaps between the
reward zones, as indicated by the relatively low accep-
tance ratios of birth and death moves, see Figure 4(b).
This leads to the sampler getting stuck in local min-
ima, resulting in poor policy estimates. The summed
rewards formulation on the other hand allows for bet-
ter mixing over path lengths, making it more likely to
find the high reward zone at the bottom. This ulti-
mately results in much better policies.

Note how the policy found using our summed rewards
approach and visualized in Figure 4(d) uses the two
repellers to not only direct the particles towards the
high reward zone but to also slow them down inside
this zone in order to accumulate as much reward as
possible.

Figure 5 compares the algorithm described in this pa-
per with the PEGASUS technique (Ng and Jordan,
2000) using numerically computed gradients. In par-
ticular we are interested in learning using deterministic
policies, and PEGASUS can be used directly in this
setting. We compared 10 runs of each algorithm on
the particle system model shown in the bottom two
subplots, where the reward model is a single Gaus-
sian in position-space. Even though the reward model
is unimodal, the resulting expected reward surface is
highly multimodal: two such modes are displayed in
the bottom two subplots. The poor performance and
high variance of PEGASUS is mainly due to these local
maxima, as well as plateaus in the reward surface.

Figure 6 uses the same problem from the previous
experiment to compare the sampler based on the
noise-variable formulation with the reversible jump ap-
proach used in (Hoffman et al., 2007a). By examining
the resulting policy estimates we can see that the pro-
posed reformulation significantly outperforms the pre-
vious method on this model. This results from the
older method’s poor mixing over trajectories, as evi-
denced by the extremely low acceptance rate for path
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Figure 4: Comparison of a sampler evaluating the reward only at the last step of a simulated trajectory and our
proposed sampler, which sums all rewards along the trajectory. The problem, shown in (a), features multiple
reward zones, with the bottom-most zone yielding a 50 times higher reward than the others. The average
acceptance ratios for both samplers are displayed in (b), while (c) compares the expected rewards for the policies
found using 10 runs of each sampler. The final two plots visualize two of the computed policies; one for the
summed reward formulation in (d) and one when only evaluating the reward at the last step in (e).

updates. In order to explore the space of trajecto-
ries at all, this method therefore needs to shrink tra-
jectories using death moves and subsequently re-grow
them using birth moves. However, the acceptance ra-
tios for such birth and death moves are themselves
significantly lower than for our proposed sampler, ren-
dering this way of mixing in trajectory space inefficient
as well. The earlier work of (Hoffman et al., 2007a)
was able to avoid these inefficiencies by using a hand
crafted proposal mechanism that helped to break the
state-space dependencies. This proposal was chosen
in an ad hoc, model-dependent manner, however, and
unlike our approach is not applicable to more general
problems.

7 Conclusion

In this paper we have presented several important
improvements to the approach of (Hoffman et al.,
2007a) for solving general MDPs using reversible
jump MCMC. The experiments provide clear evidence
that the proposed modifications are needed to attack
higher-dimensional stochastic decision problems. In
particular, the experimental results show that signif-
icant improvements are obtained when incorporating
more reward information (Figure 4) and when using
the explicit noise variables to break state-space depen-
dencies and reduce variance (Figure 6). It is also clear
that the proposed simulated annealing and clustering
techniques allow us to find better point estimates of
the optimal policy (Figure 3). Finally, we observed fa-
vorable performance of the proposed approach in com-
parison to state-of-the-art techniques such as PEGA-
SUS (Figure 5).

The repellers example used a 4-dimensional state space
and 6-dimensional policy space. Scaling to higher di-
mensional state spaces should be possible in principle.
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Figure 5: Comparison with PEGASUS on the repellers
model, averaged over 10 runs, where error-bars display
one standard deviation. The x-axis displays the num-
ber of samples taken from the transition model. Also
shown are (a) a “bad” local maxima found by PEGA-
SUS, and (b) a “good” policy found by our sampler.

As long as there is structure in the state space, one
can adopt standard Rao-Blackwellization and block-
ing techniques to efficiently carry out inference in the
Bayesian network. The main difficulty here lies in deal-
ing with the dimensionality of the policy space, where
often there seems to be much less structure to exploit.
How to recruit more structure or gradients (when the
model is differentiable) is an ongoing research direc-
tion.



standard aux.noise0

5

10

15

20

Ex
pe

ct
ed

 re
w

ar
d,

 J
(θ

)
Final expected reward estimates

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 ra

tio

Mean acc. ratio for birth/death moves

Standard RJMDP
Auxiliary noise RJMDP

0 2000 4000 6000 8000 10000
Iteration

0.0
0.2
0.4
0.6
0.8

Ac
ce

pt
an

ce
 ra

tio

Mean acc. ratio for update moves

Standard RJMDP
Auxiliary noise RJMDP

Figure 6: Comparison between the explicit noise vari-
able approach and the standard approach of (Hoffman
et al., 2007a) on the particle system model. The left-
most plot shows the expected rewards for the final poli-
cies found by both methods across 10 runs. The right
plots display the averaged acceptance ratios for birth
and death moves and the acceptance ratios for trajec-
tory update moves.
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