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Abstract

Recent theory work has found that a special
type of spatial partition tree – called a ran-
dom projection tree – is adaptive to the in-
trinsic dimension of the data from which it
is built. Here we examine this same ques-
tion, with a combination of theory and ex-
periments, for a broader class of trees that
includes k-d trees, dyadic trees, and PCA
trees. Our motivation is to get a feel for (i)
the kind of intrinsic low dimensional struc-
ture that can be empirically verified, (ii) the
extent to which a spatial partition can ex-
ploit such structure, and (iii) the implications
for standard statistical tasks such as regres-
sion, vector quantization, and nearest neigh-
bor search.

1 INTRODUCTION

A spatial partitioning tree recursively divides space
into increasingly fine partitions. The most popular
such data structure is probably the k-d tree, which
splits the input space into two cells, then four, then
eight, and so on, all with axis-parallel cuts. Each re-
sulting partitioning has cells that are axis-aligned hy-
perrectangles (see Figure 1, middle). Once such a hier-
archical partitioning is built from a data set, it can be
used for standard statistical tasks. When a new query
point q arrives, that point can quickly be moved down
the tree to a leaf cell (call it C). For classification, the
majority label of the data points in C can be returned.
For regression, it will be the average of the response
values in C. For nearest neighbor search, the closest
point to q in C can be returned; of course, this might
not be q’s nearest neighbor overall, but if the cell C is
sufficiently small, then it will at any rate be a point
close enough to q to have similar properties.

Figure 1: Examples of Spatial Trees. Left: dyadic tree
– cycles through coordinates and splits the data at the
mid point. Middle: k-d tree – picks the coordinate
direction with maximum spread and splits the data at
the median value. Right: RP tree – picks a random
direction from the unit sphere and split the data at
the median value.

There are different ways to build a k-d tree, depend-
ing on which split coordinate is chosen at each stage.
There are also many other types of spatial partitioning
trees, such as dyadic trees (Figure 1, left) and PCA
trees. We are interested in understanding the rela-
tive merits of these different data structures, to help
choose between them. A natural first step, therefore,
is to look at the underlying statistical theory. This
theory, nicely summarized in Chapter 20 of [DGL96],
says that the convergence properties of tree-based es-
timators can be characterized in terms of the rate at
which cell diameters shrink as you move down the tree.
The more rapidly these cells shrink, the better.

For k-d trees, these cell diameters can shrink very
slowly when the data is high-dimensional. For D-
dimensional data, it may require D levels of the tree
(and thus at least 2D data points) to just halve the di-
ameter. Thus k-d trees suffer from the same curse
of dimensionality as other nonparametric statistical
methods. But what if the data has low intrinsic dimen-
sion; for instance, if it lies close to a low-dimensional
manifold? We are interested in understanding the be-
havior of spatial partitioning trees in such situations.

Some recent work [DF08] provides new insights into
this problem. It begins by observing that there is more



than one way to define a cell’s diameter. The statis-
tical theory has generally considered the diameter to
be the distance between the furthest pair of points on
its boundary (if it is convex, then this is the distance
between the furthest pair of vertices of the cell). It
is very difficult to get bounds on this diameter unless
the cells are of highly regular shape, such as hyperrect-
angles. A different, more flexible, notion of diameter
looks at the furthest pair of data points within the cell,
or even better, the typical interpoint distance of data
within the cell (see Figure 3). It turns out that rates
of convergence for statistical estimators can be given
in terms of these kinds of data diameter (specifically,
in terms of the rate at which these diameters decrease
down the tree). Moreover, these data diameters can
be bounded even if the cells are of unusual shapes.
This immediately opens the door to analyzing spatial
partitioning trees that produce non-rectangular cells.

[DF08] introduced random projection trees – in which
the split at each stage is at the median along a di-
rection chosen at random from the surface of the unit
sphere (Figure 1, right) – and showed that the data
diameter of the cells decreases at a rate that depends
only on the intrinsic dimension of the data, not D:

Let d be the intrinsic dimension of data
falling in a particular cell C of an RP tree.
Then all cells O(d) levels below C have at
most half the data diameter of C.

(There is no dependence on the ambient dimension
D.) They proved this for two notions of dimension:
Assouad dimension, which is standard in the litera-
ture on analysis on metric spaces, and a new notion
called local covariance dimension, which means simply
that small enough neighborhoods of the data set have
covariance matrices that are concentrated along just a
few eigendirections.

We are interested in exploring these phenomena more
broadly, and for other types of trees. We start by ex-
amining the notion of local covariance dimension, and
contrast it with other notions of dimension through
a series of inclusion results. To get more intuition,
we then investigate a variety of data sets and exam-
ine the extent to which these data verifiably have low
local covariance dimension. The results suggest that
this notion is quite reasonable and is of practical use.
We then consider a variety of spatial partition trees:
(i) k-d trees (of two types), (ii) dyadic trees, (iii) ran-
dom projection trees, (iv) PCA trees, and (v) 2-means
trees. We give upper and lower bounds on the diame-
ter decrease rates achieved by these trees, as a function
of local covariance dimension. Our strongest upper
bounds on these rates are for PCA trees and 2-means
trees, followed by RP trees. On the other hand, dyadic

trees and k-d trees are weaker in their adaptivity. Our
next step is to examine these effects experimentally,
again on a range of data sets. We also investigate how
the diameter decrease rate is correlated with perfor-
mance in standard statistical tasks like regression and
nearest neighbor search.

2 INTRINSIC DIMENSION

Let X denote the space in which data lie. In this
paper, we’ll assume X is a subset of R

D, and that the
metric of interest is Euclidean (L2) distance. How can
we characterize the intrinsic dimension of X ? This
question has aroused keen interest in many different
scientific communities, and has given rise to a variety
of definitions. Here are four of the most successful such
notions, arranged in decreasing order of generality:

• Covering dimension

• Assouad dimension

• Manifold dimension

• Affine dimension

The most general is the covering dimension: the small-
est d for which there is a constant C > 0 such that for
any ǫ > 0, X has an ǫ-cover of size C(1/ǫ)d. This
notion lies at the heart of much of empirical process
theory. Although it permits many kinds of analysis
and is wonderfully general, for our purposes it falls
short on one count: for nonparametric estimators, we
need small covering numbers for X , but also for in-
dividual neighborhoods of X . Thus we would like this
same covering condition (with the same constant C) to
hold for all L2-balls in X . This additional stipulation
yields the Assouad dimension, which is defined as the
smallest d such that for any (Euclidean) ball B ⊂ R

D,
X ∩B can be covered by 2d balls of half the radius.

At the bottom end of the spectrum is the affine di-
mension, which is simply the smallest d such that X
is contained in a d-dimensional affine subspace of R

D.
It is a tall order to expect this to be smaller than D,
although we may hope that X lies close to such a sub-
space. A more general hope is that X lies on (or close
to) a d-dimensional Riemannian submanifold of R

D.
This notion makes a lot of intuitive sense, but in order
for it to be useful either in algorithmic analysis or in
estimating dimension, it is necessary to place condi-
tions on the curvature of the manifold. [NSW06] has
recently suggested a clean formulation in which the
curvature is captured by a single value which they call
the condition number of the manifold. Similar notions
have earlier been used in the computational geometry
literature [AB98].



In what sense is our list arranged by decreasing gen-
erality? If X has an affine dimension of d, it certainly
has manifold dimension at most d (whatever the re-
striction on curvature). Similarly, low Assouad di-
mension implies small covering numbers. The only
nontrivial containment result is that if X is a d-
dimensional Riemannian submanifold with bounded
curvature, then sufficiently small neighborhoods of X
(where this neighborhood radius depends on the cur-
vature) have Assouad dimension O(d). This result is
formalized and proved in [DF08]. The containment
is strict: there is a substantial gap between mani-
folds of bounded curvature and sets of low Assouad
dimension, on account of the smoothness properties
of the former. This divide is not just a technicality
but has important algorithmic implications. For in-
stance, a variant of the Johnson Lindenstrauss lemma
states that when a d-dimensional manifold (of bounded
curvature) is projected onto a random subspace of di-
mension O(d/ǫ2), then all interpoint distances are pre-
served within 1±ǫ [BW07], [Cla07]. This does not hold
for sets of Assouad dimension d [IN07].

None of these four notions arose in the context of data
analysis, and it is not clear that any of them is well-
suited to the dual purpose of (i) capturing a type of in-
trinsic structure that holds (verifiably) for many data
sets and (ii) providing a formalism in which to ana-
lyze statistical procedures. In addition, they all de-
scribe sets, whereas in statistical contexts we are more
interested in characterizing the dimension of a proba-
bility distribution. The recent machine learning litera-
ture, while appealing to the manifold idea for intuition,
seems gradually to be moving towards a notion of “lo-
cal flatness”. [DF08] formalized this notion and called
it the local covariance dimension.

2.1 LOCAL COVARIANCE DIMENSION

Definition 1. Let µ be any measure over R
D and let

S be its covariance matrix. We say that µ has covari-
ance dimension (d, ǫ) if the largest d eigenvalues of S
account for (1− ǫ) fraction of its trace. That is, if the
eigenvalues of S are λ1 ≥ λ2 ≥ · · · ≥ λD, then

λ1 + · · ·+ λd ≥ (1− ǫ)(λ1 + · · ·+ λD).

A distribution has covariance dimension (d, ǫ) if all
but an ǫ fraction of its variance is concentrated in a
d-dimensional affine subspace. Equivalently, the pro-
jection of the distribution onto this subspace leads to
at most an ǫ total loss in squared distances. It is,
in general, too much to hope that an entire data dis-
tribution would have low covariance dimension. But
we might hope that this property holds locally; or
more precisely, that all (or most) sufficiently-small
neighborhoods have low covariance dimension. At this

stage, we could make this definition more complicated
by quantifying the “most” or “sufficiently small” (as
[DF08] did to some extent), but it will turn out that
we don’t need to do this in order to state our theorems,
so we leave things as they are.

Intuitively, the local covariance condition lies some-
where between manifold dimension and Assouad di-
mension, although it is more general in that it merely
requires points to be close to a locally flat set, rather
than exactly on it.

2.2 EXPERIMENTS WITH DIMENSION

Covariance dimension is an intuitive notion, and re-
calls standard constructs in statistics such as mixtures
of factor analyzers. It is instructive to see how it might
be estimated from samples, and whether there is evi-
dence that many data sets do exhibit low covariance
dimension.

First let’s set our expectations properly. Even if data
truly lies near a low-dimensional manifold structure,
this property would only be apparent at a certain scale,
that is, when considering neighborhoods whose radii
lie within an appropriate range. For larger neighbor-
hoods, the data set might seem slightly higher dimen-
sional: the union of a slew of local low-dimensional
subspaces. And for smaller neighborhoods, all we
would see is pure noise, and the data set would seem
full-dimensional.

Thus we will empirically estimate covariance dimen-
sion at different resolutions. First, we determine the
diameter ∆ of the dataset X by computing the maxi-
mum interpoint distance, and we choose multiple val-
ues r ∈ [0,∆] as our different scales (radii). For each
such radius r, and each data point point x ∈ X, we
compute the covariance matrix of the data points lying
in the ball B(x, r), and we determine (using a standard
eigenvalue computation) how many dimensions suffice
for capturing a (1− ǫ) fraction of the variance. In our
experiments, we try ǫ = 0.1 and 0.01. We then take
the dimension at scale r (call it d(r)) to be average of
all these values (over x).

How can we ascertain that our estimate d(r) is indica-
tive of the underlying covariance dimension at resolu-
tion r? If the balls B(x, r) are so small as to contain
very few data points, then the estimate d(r) is not re-
liable. Thus we also keep track of n(r), the average
number of data points within the balls B(x, r) (av-
eraged over x). Roughly, we can expect d(r) to be a
reliable estimate if n(r) is an order of magnitude larger
than d(r).

Figure 2 plots d(r) against r for several data sets.
The numerical annotations on each curve represent
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Figure 2: Local Covariance Dimension Estimates for Various Datasets. The bold line shows the dimension
estimate d(r), with dashed lines giving standard deviations over the different balls for each radius. The numeric
annotations are average numbers of datapoints falling in balls of the specified radius. Left: Noisy swissroll
(ambient dimension 3). Middle: Rotating teapot dataset (ambient dimension 1500). Right: Sensors on a robotic
arm (ambient dimension 12).

the values n(r). Loosely speaking, the larger the ratio
n(r)/d(r), the higher our confidence in the estimate.

The leftmost figure shows dimensionality estimates for
a noisy version of the ever-popular “swiss roll”. In
small neighborhoods, it is noise that dominates, and
thus the data appear full-dimensional. In larger neigh-
borhoods, the two-dimensional structure emerges: no-
tice that the neighborhoods have very large numbers
of points, so that we can feel very confident about the
estimate of the local covariances. In even larger neigh-
borhoods, we capture a significant chunk of the swiss
roll and again revert to three dimensions.

The middle figure is for a data set consisting of images
of a rotating teapot, each 30× 50 pixels in size. Thus
the ambient dimension is 1500, although the points
lie close to a one-dimensional manifold (a circle de-
scribing the rotation). There is clear low-dimensional
structure at a small scale, although in the figure, these
d(r) values seem to be 3 or 4 rather than 1.

The figure on the right is for a data set of noisy mea-
surements from 12 sensors placed on a robotic arm
with two joints. Thus the ambient dimension is 12,
but there are only two underlying degrees of freedom.

3 SPATIAL PARTITION TREES

Spatial partition trees conform to a simple template:

Procedure PartitionTree(dataset A ⊂ X)
if |A| ≤ MinSize then

return leaf
else

(Aleft, Aright)← SplitAccordingToSomeRule(A)
LeftTree← PartitionTree(Aleft)
RightTree← PartitionTree(Aright)

return (LeftTree, RightTree)

Different types of trees are distinguished by their split-
ting criteria. Here are some common varieties:

• Dyadic tree: Pick a coordinate direction and
splits the data at the midpoint along that direc-
tion. One generally cycles through all the coordi-
nates as one moves down the tree.

• k-D tree: Pick a coordinate direction and splits
the data at the median along that direction. One
often chooses the coordinate with largest spread.

• Random Projection (RP) tree: Split the
data at the median along a random direction cho-
sen from the surface of the unit sphere.

• Principal Direction (PD or PCA) tree:
Split at the median along the principal eigenvec-
tor of the covariance matrix.

• Two Means (2M) tree: Pick the direction
spanned by the centroids of the 2-means solution,
and split the data as per the cluster assignment.

3.1 NOTIONS OF DIAMETER

The generalization behavior of a spatial partition-
ing has traditionally been analyzed in terms of the
physical diameter of the individual cells (see, for in-
stance, [DGL96, SN06]). But this kind of diameter is
hard to analyze for general convex cells. Instead we
consider more flexible notions that measure the diam-
eter of data within the cell. It has recently been shown
that such measures are sufficient for giving generaliza-
tion bounds (see [Kpo09] for the case of regression).

For any cell A, we will use two types of data diam-
eter: the maximum distance between data points in
A, denoted ∆(A), and the average interpoint distance
among data in A, denoted ∆a(A) (Figure 3).
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Figure 3: Various Notions of Diameter

4 THEORETICAL GUARANTEES

Let X = {X1, . . . ,Xn} be a data set drawn from X ,
and let µ be the empirical distribution that assigns
equal weight to each of these points. Consider a par-
tition of X into a collection of cells A ∈ A. For each
such cell A, we can look at its maximum (data) diam-
eter as well as its average (data) diameter; these are,
respectively,

∆(A)
.
= max

x,x′∈A∩X

‖x− x′‖

∆a(A)
.
=

1

(nµ(A))




∑

x,x′∈A∩X

‖x− x′‖2



1/2

(for the latter it turns out to be a big convenience to
use squared Euclidean distance.) We can also average
these quantities all over cells A ∈ A:

∆(A)
.
=

(∑
A∈A

µ(A)∆2 (A)∑
A∈A

µ(A)

)1/2

∆a(A)
.
=

(∑
A∈A

µ(A)∆2
a (A)∑

A∈A
µ(A)

)1/2

4.1 IRREGULAR SPLITTING RULES

This section considers the RPTree, PDtree, and
2Mtree splitting rules. The nonrectangular partitions
created by these trees turn out to be adaptive to the
local dimension of the data: the decrease in average di-
ameter resulting from a given split depends just on the
eigenspectrum of the data in the local neighborhood,
irrespective of the ambient dimension.

For the analysis, we consider a slight variant of these
trees, in which an alternative type of split is used
whenever the data in the cell has outliers (here, points
that are much farther away from the mean than the
typical distance-from-mean).

Procedure split(region A ⊂ X)
if ∆2 (A) ≥ c ·∆2

a (A) then
//SPLIT BY DISTANCE: remove outliers.

Aleft ← {x ∈ A, ‖x−mean(A)‖ ≤
median{‖z −mean(A)‖ : z ∈ X ∩A}};

else
//SPLIT BY PROJECTION: no outliers.

Choose a unit direction v ∈ R
D and a threshold

t ∈ R. Aleft ← {x ∈ A, x · v ≤ t};
Aright ← A \Aleft;

The distance split is common to all three rules, and
serves to remove outliers. It is guaranteed to reduce
maximum data diameter by a constant fraction:

Proposition 1 (Lemma 12 of [DF08]). Suppose
∆2 (A) > c · ∆2

a (A), so that A is split by distance
under any instantiation of procedure split. Let A =
{A1, A2} be the resulting split. We have

∆2 (A) ≤
(

1

2
+

2

c

)
∆2 (A) .

We consider the three instantiations of procedure
split in the following three sections, and we bound
the decrease in diameter after a single split in terms of
the local spectrum of the data.

4.1.1 RPtree

For RPtree, the direction v is picked randomly, and
the threshold t is the median of the projected data.

The diameter decrease after a split depends just on
the parameter d of the local covariance dimension, for
ǫ sufficiently small.

Proposition 2 (Theorem 4 of [DF08]). There exist
constants 0 < c1, c2 < 1 with the following property.
Suppose ∆2 (A) ≤ c ·∆2

a (A), so that A is split by pro-
jection into A = {A1, A2} using the RPtree split. If
A ∩X has covariance dimension (d, c1), then

E
[
∆2

a (A)
]

< (1− c2/d)∆2
a (A) ,

where the expectation is over the choice of direction.

4.1.2 PDtree

For PDtree, the direction v is chosen to be the prin-
cipal eigenvector of the covariance matrix of the data,
and the threshold t is the median of the projected data.

The diameter decrease after a split depends on the lo-
cal spectrum of the data. Let A be the current cell
being split, and suppose the covariance matrix of the
data in A has eigenvalues λ1 ≥ · · · ≥ λD. If the co-



variance dimension of A is (d, ǫ), define

k
.
=

1

λ1

d∑

i=1

λi, (1)

By definition, k ≤ d.

The diameter decrease after the split depends on k2,
the worst case being when the data distribution in
the cell has heavy tails (example omitted for want of
space). In the absence of heavy tails (condition (2)),
we obtain a faster diameter decrease rate that depends
just on k. This condition holds for any logconcave dis-
tribution (such as a Gaussian or uniform distribution),
for instance. The decrease rate of k could be much bet-
ter than d in situations where the first eigenvalue is
dominant; and thus in such situations PD trees could
do a lot better than RP trees.

Proposition 3. There exist constants 0 < c1, c2 < 1
with the following property. Suppose ∆2 (A) ≤ c ·
∆2

a (A), so that A is split by projection into A =
{A1, A2} using the PDtree split. If A ∩X has covari-
ance dimension (d, c1), then

∆2
a (A) < (1− c2/k2)∆2

a (A) ,

where k is as defined in (1).

If in addition the empirical distribution on A∩X sat-
isfies (for any s ∈ R and some c0 ≥ 1)

EA[(X · v − s)2] ≤ c0 (EA[X · v − s])
2

(2)

we obtain a faster decrease where

∆2
a (A) < (1− c2/k)∆2

a (A) .

Proof. The argument is based on the following fact
which holds for any bi-partiton A = {A1, A2} of A
(see lemma 15 of [DF08]):

∆2
a (A)−∆2

a (A)

= 2µ(A1) · µ(A2) ‖mean(A1)−mean(A2)‖2 .(3)

We start with the first part of the statement with no
assumption on the data distribution. Let x̃ ∈ R be
the projection of x ∈ A ∩ X to the principal direc-
tion. WLOG assume that the median on the principal
direction is 0. Notice that

‖mean(A1)−mean(A2)‖ ≥ E [x̃ |x̃ > 0]− E [x̃ |x̃ ≤ 0]

≥ max {E [x̃ |x̃ > 0] ,−E [x̃ |x̃ ≤ 0]}

where the expectation is over x chosen uniformly at
random from A ∩X. The claim is therefore shown by

bounding the r.h.s below by O(∆a(A)/k and applying
equation (3).

We have E
[
x̃2
]
≥ λ1, so either E

[
x̃2|x̃ > 0

]
or

E
[
x̃2|x̃ ≤ 0

]
is greater than λ1. Assume WLOG that

it is the former. Let m̃ = max{x̃ > 0}. We have that

λ1 ≤ E
[
x̃2|x̃ > 0

]
≤ E [x̃ |x̃ > 0] m̃,

and since m̃2 ≤ c∆2
a (A), we get

E [x̃ |x̃ > 0] ≥ λ1

∆a(A)
√

c
.

Now, by the assumption on covariance dimension,

λ1 =

∑d
i=1 λi

k
≥ (1− c1)

∑D
i=1 λi

k
= (1− c1)

∆2
a (A)

2k
.

We therefore have (for appropriate choice of c1) that
E [x̃ |x̃ > 0] ≥ ∆a(A)/4k

√
c, which concludes the ar-

gument for the first part.

For the second part, assumption (2) yields

E [x̃ |x̃ > 0]− E [x̃ |x̃ ≤ 0] = 2E |x̃| ≥ 2

√
E |x̃|2

c0

≥ 2

√
λ1

c0
= 2

√
∆2

a (A)

4c0k
.

We finish up by appealing to equation (3).

4.1.3 2Mtree

For 2Mtree, the direction v = mean(A1) − mean(A2)
where A = {A1, A2} is the bisection of A that min-
imizes the 2-means cost. The threshold t is the half
point between the two means.

The 2-means cost can be written as
∑

i∈[2]

∑

x∈Ai∩X

‖x−mean(Ai)‖2 =
n

2
∆2

a (A) .

Thus, the 2Mtree (assuming an exact solver) mini-
mizes ∆2

a (A). In other words, it decreases diameter
at least as fast as RPtree and PDtree. Note however
that, since these are greedy procedures, the decrease
in diameter over multiple levels may not be superior
to the decrease attained with the other procedures.

Proposition 4. Suppose ∆2 (A) ≤ c ·∆2
a (A), so that

A is split by projection into A = {A1, A2} using the
2Mtree split. There exists constants 0 < c1, c2 < 1 with
the following property. Assume A ∩X has covariance
dimension (d, c1). We then have

∆2
a (A) < (1− c2/d′)∆2

a (A) ,

where d′ ≤ min{d, k2} for general distributions, and d′

is at most k for distributions satisfying (2).



4.1.4 Diameter Decrease Over Multiple
Levels

The diameter decrease parameters d, k2, k, d′ in propo-
sitions 2, 3, 4 above are a function of the covariance
dimension of the data in the cell A being split. The
covariance dimensions of the cells may vary over the
course of the splits implying that the decrease rates
may vary. However, we can bound the overall diam-
eter decrease rate over multiple levels of the tree in
terms of the worst case rate attained over levels.

Proposition 5 (Diameter decrease over multiple lev-
els). Suppose a partition tree is built by calling split

recursively (under any instantiation). Assume further-
more that every node A ⊂ X of the tree satisfies the
following: let A = {A1, A2} represent the child nodes
of A, we have for some constants 0 < c1, c2 < 1 and
κ ≤ D that

(i) If A is split by distance, ∆2 (A) < c1∆
2 (A).

(ii) If A is split by projection, E
[
∆2

a (A)
]

< (1 −
c2/κ)∆2

a (A).

Then, there exists a constant C such that the following
holds: let Al be the partition of X defined by the nodes
at level l, we have

E
[
∆2

a (Al)
]
≤ E

[
∆2 (Al)

]
≤ 1

2⌊l/Cκ⌋
∆2 (X )

.

In all the above, the expectation is over the randomness
in the algorithm for X fixed.

Proof. Fix X. Consider the r.v. X drawn uniformly
from X. Let the r.v.s Ai = Ai(X), i = 0 · · · l denote
the cell to which X belongs at level i in the tree. Define
I(Ai)

.
= 11

{
∆2 (Ai) ≤ c∆2

a (Ai)
}
.

Let Al be the partition of X defined by the nodes at
level l, we’ll first show that E

[
∆2 (Al)

]
≤ 1

2∆2 (X )
for l = Cκ for some constant C. We point out that
E
[
∆2 (Al)

]
= E

[
∆2 (Al)

]
where the last expectation

is over the randomness in the algorithm and the choice
of X.

To bound E
[
∆2 (Al)

]
, note that one of the following

events must hold:

(a) ∃ 0 ≤ i1 < · · · < im < l, m ≥ l
2 , I

(
Aij

)
= 0

(b) ∃ 0 ≤ i1 < · · · < im < l, m ≥ l
2 , I

(
Aij

)
= 1

Let’s first condition on event (a). We have

E
[
∆2 (Al)

]
≤ E

[
∆2 (Aim+1)

]

= E
[
E
[
∆2 (Aim+1) |Aim

]]
,

and since by the assumption, E
[
∆2 (Aim+1) |Aim

]
≤

c1∆
2 (Aim

) we get that E
[
∆2 (Al)

]
≤ c1E

[
∆2 (Aim

)
]
.

Applying the same argument recursively on ij , j =
m, (m− 1), . . . , 1, we obtain

E
[
∆2 (Al)

]
≤ cm

1 · E
[
∆2 (Ai1)

]
≤ c

l/2
1 ∆2 (X ) .

Now condition on event (b). Using the fact that
E
[
∆2

a (Ai)
]

is non-increasing in i (see [DF08]), we can
apply a similar recursive argument as above to obtain
that E

[
∆2

a (Aim
)
]
≤ (1− c2/κ)

m−1
E
[
∆2

a (Ai1)
]
. It

follows that

E
[
∆2 (Al)

]
≤ E

[
∆2 (Am)

]
≤ cE

[
∆2

a (Am)
]

≤ c
(
1− c2

κ

)l/2−1

∆2 (X ) .

Thus, in either case we have

E
[
∆2 (Al)

]
≤ max

{
c
l/2
1 , c (1− c2/κ)

l/2−1
}
·∆2 (X )

and we can verify that there exists C such that the
r.h.s above is at most 1

2∆2 (X ) for l ≤ Cκ. Thus, we
can repeat the argument over every Cκ levels to obtain
the statement of the proposition.

So if every split decreases average diameter at a rate
controlled by κ as defined above, then it takes at most
O(κ log(1/ε)) levels to decrease average diameter down
to an ε fraction of the original diameter of the data.
Combined with propositions 2, 3, 4, we see that the
three rules considered will decrease diameter at a fast
rate whenever the covariance dimensions in local re-
gions are small.

4.2 AXIS PARALLEL SPLITTING RULES

It was shown in [DF08] that axis-parallel splitting rules
do not always adapt to data that is intrinsically low-
dimensional. They exhibit a data set in R

D that has
low Assouad dimension O(log D), and where k-d trees
(and also, it can be shown, dyadic trees) require D
levels to halve the data diameter.

The adaptivity of axis-parallel rules to covariance
dimension is unclear. But they are guaranteed
to decrease diameter at a rate depending on D.
The following result states that it takes at most
O(D(log D) log(1/ε)) levels to decrease average diam-
eter to an ε fraction of the original data diameter.

Proposition 6. Suppose a partition tree is built using
either k-d tree or dyadic tree by cycling through the
coordinates. Let Al be the partition of X defined by
the nodes at level l. Then we have

∆2
a (Al) ≤ ∆2 (Al) ≤

D

2⌊l/D⌋
∆2 (X ).
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Figure 4: Local Covariance Dimension Estimate of the
1-d Manifold

5 EXPERIMENTS

To highlight the adaptivity of the trees considered, we
first run experiments on a synthetic dataset where we
can control the intrinsic and the ambient dimensions.
We vary the ambient dimension while keeping the in-
trinsic dimension small, and monitor the rate at which
the diameter decreases. Next, we compare the perfor-
mance of these trees on common learning tasks using
real-world datasets.

We implement the trees as follows: dyadic trees – fix
a permutation and cycle through the coordinates, k-D
trees – determine the spread over each coordinate by
computing the coordinate vise diameter and picking
the coordinate with maximum diameter, RP trees –
pick the direction that results in the largest diameter
decrease from a bag of 20 random directions, PD trees
– pick the principal direction in accordance to the data
falling in each node of the tree, 2M trees – solve 2-
means via the Lloyd’s method and pick the direction
spanned by the centroids of the 2-means solution.

5.1 SYNTHETIC DATASET: SMOOTH 1-D
MANIFOLD

The synthetic dataset used is a continuous, 1 di-
mensional manifold obtained via the sinusoidal
basis as follows. We sample 20, 000 points uni-
formly at random from the interval [0, 2π], and for
each point t, we apply the smooth map M : t 7→√

2
D

(
sin(t), cos(t), sin(2t), cos(2t) . . . , sin(Dt

2 ), cos(Dt
2 )
)
.

Figure 4 shows the local covariance dimension estimate
for this 1-d manifold (embedded in ambient space of
dimension D = 10, 30, 50 and 80).

What behavior should we expect from adaptive trees?
Taking a cue from proposition 5, we expect the diam-
eter to decrease initially at a rate controlled by the
ambient space, since the covariance dimension is high

in large regions (cf. figure 4). When we get to smaller
regions, the diameter should decrease down the tree
by a factor which is controlled solely by the local co-
variance dimension.

We therefore plot the log of the diameter as a func-
tion of the tree depth, for each value of D, and mon-
itor the slope of this function (see figure 5). The
slope, which corresponds to the diameter decrease rate,
should eventually coincide in small regions for all val-
ues of D, provided the partition tree is adaptive to the
intrinsic dimensionality of the data.

In figure 5, notice that slopes for k-D, RP, PD and
2M trees start to converge after about depth 7. This
indicates that the ambient dimension has negligible
effect on the behavior of these trees. Dyadic trees,
however, don’t perform as well.

5.2 REALWORLD DATASETS

We now compare the performance of different spa-
tial trees for typical learning tasks on some real-
world datasets. To exhibit a wide range of applica-
bility, we choose the ‘digit 1’ cluster from the MNIST
OCR dataset of handwritten digits, ‘love’ cluster from
Australian Sign Language time-series dataset from
UCI Machine Learning Repository [Kad02], and ‘aw’
phoneme from MFCC TIMIT dataset. We also use
the rotating teapot and the robotic arm datasets to
evaluate regression performance (cf. section 2.2).

Experiments are set as follows. For each dataset, we
first estimate local covariance dimensions (as discussed
in section 2.2). We then perform three types of exper-
iments: vector quantization, nearest neighbor search
and regression. For each experiment, we do a 10-fold
cross validation. For each fold, we use the training
data to build the partition tree, and compute the quan-
tization error, the closest neighbor and the regression
error over the induced partition at each level.

Overall, we see that 2M trees and PD trees perform
consistently better in the three types of experiments.

Vector Quantization: Figure 6 middle row shows
the relative quantization errors for the trees. The PD
and 2M trees produce better quantization results than
other trees, followed by RP trees.

Near Neighbor Search: Figure 6 bottom row
shows the result of a near neighbor search. The plot
shows the order of nearest neighbor found normalized
by the dataset size (percentile order). The annotated
numbers show the ratio of the distance between the
query point and the discovered neighbor to the dis-
tance between the query point and its true nearest
neighbor. This helps in gauging the quality of the
found neighbor in terms of distances.
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Figure 5: Adaptivity Plots for Various Spatial Trees on the Synthetic Dataset. Note that the slope of the plotted
curve shows the decrease rate. Parallel lines highlight that the diameter decrease rates eventually become
independent of the ambient dimension adapting to the low dimensional intrinsic structure of the manifold.

As before, 2M and PD trees consistently yield better
near neighbors to the query point. We should remark
that the apparent good results of dyadic trees on the
ASL dataset (middle row, middle column) should be
taken in context with the number of datapoints falling
in a particular node. For dyadic, trees it is common
to have unbalanced splits resulting in high number of
datapoints falling in an individual cell. This signifi-
cantly increases the chance of finding a close neighbor
but also increases its computational cost.

Regression: For regression on the teapot dataset,
we predict the value of the rotation angle which ranges
between 0 and 180 degrees. Recall that this dataset
lies on a 1 dimensional manifold in R

1500. From known
regression results, we expect the most adaptive trees
to yield lower regression errors. Here, these are the
2M tree and PD tree, followed by RP tree.

The robotic arm dataset is a noisy two dimensional
manifold in R

12. From our covariance dimension es-
timation (see figure 2 right), the data resides close
to a 4 dimensional linear space. Not surprisingly all
trees perform comparably well, except on arm 2, where
dyadic tree does significantly worse.
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Figure 6: Top: Local covariance dimension estimates for real-world datasets, with confidence bands (dashed lines)
and average number of points falling in balls of specified radius (numerical annotations). Middle: Average vector
quantization error induced by different spatial trees on the datasets. Bottom: Results for near neighbor query.
Annotated numbers show the average ratio of the distance between the query point and the found neighbor to
the distance between the query point and the true nearest neighbor.
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Figure 7: Relative Performance of Spatial Trees on a Regression Task. ℓ2 error is being computed. Left: Teapot
dataset, predicting the rotation angle. Middle, Right: Robotic arm dataset, predicting the angular positions of
arm one and arm two.


