
Distributed Parallel Inference on Large Factor Graphs

Joseph E. Gonzalez
Carnegie Mellon University

jegonzal@cs.cmu.edu

Yucheng Low
Carnegie Mellon University

ylow@cs.cmu.edu

Carlos Guestrin
Carnegie Mellon University

guestrin@cs.cmu.edu

David O’Hallaron
Intel Research

david.ohallaron@intel.com

Abstract

As computer clusters become more common and
the size of the problems encountered in the field
of AI grows, there is an increasing demand for
efficient parallel inference algorithms. We con-
sider the problem of parallel inference on large
factor graphs in the distributed memory setting
of computer clusters. We develop a new effi-
cient parallel inference algorithm, DBRSplash,
which incorporates over-segmented graph parti-
tioning, belief residual scheduling, and uniform
work Splash operations. We empirically evalu-
ate the DBRSplash algorithm on a 120 proces-
sor cluster and demonstrate linear to super-linear
performance gains on large factor graph models.

1 INTRODUCTION
A computer cluster is a large collection of processors con-
nected by a fast reliable communication network and con-
figured to achieve a common task. Here we define a proces-
sor as a single processing element with a unique instruction
counter1. Cluster computing confers both the obvious in-
crease in computational throughput and memory capacity
as well as the less obvious increase in memory bandwidth
and cache capacity. With the availability of affordable com-
modity hardware and high performance networking, the AI
community has increasing access to computer clusters. Un-
fortunately, many computationally intensive tasks in AI are
not directly able to efficiently utilize cluster resources.

Work by Newman et al. [2007] and Asuncion et al. [2008]
in parallel inference for latent topic models and by Paskin
et al. [2005] and Funiak et al. [2006] in distributed in-
ference for sensor networks adopt a message based asyn-
chronous computation model to address the important task
of distributed graphical model inference. However their
approaches are specialized to particular models or set-
tings. Alternatively, in Gonzalez et al. [2009] we explored

1We treat each core on a multi-core computer as a separate
processor.

the problem of general parallel inference in the multi-
core shared memory setting. However, the shared mem-
ory model does not efficiently scale to large clusters, and
the algorithm we proposed, ResidualSplash, makes
scheduling assumptions that fail on large irregular models.

Here, we extend the ResidualSplash algorithm to
large factor graphs in the distributed memory cluster setting
and address several critical challenges to distributed paral-
lel inference. We adopt the message passing computational
model for cluster parallelism. In this model, the state of the
algorithm is spread over p processors which only exchange
information by passing “messages.” This differs from the
shared memory setting of Gonzalez et al. [2009], where ev-
ery processor has direct access to all available memory.

While the message passing model requires efficient work
partitioning, and distributed reasoning, it also introduces
several key advantages over the multi-core shared memory
setting. Because processors are no longer tightly coupled,
it is easier to construct substantially larger clusters. Be-
cause each processor has its own memory and dedicated
bus, clusters provide increased memory capacity, memory
bandwidth, and cache efficiency, permitting super-linear
performance gains. Increased access to memory and mem-
ory bandwidth is critical to the performance of AI algo-
rithms which often operate on large data-sets and quickly
saturate the system bus.

In this paper, we outline the key challenges to efficient
large scale distributed inference and address these chal-
lenges through the DBRSplash algorithm. The key con-
tributions of this paper are:

• A formalization of state partitioning as a weighted
graph cut and an empirical analysis of an approximate
cutting procedure which exploits over-partitioning to
improve work-balance.

• A belief residual scheduling and a work balanced
Splash for improved scheduling on irregular graphs.

• DBRSplash, a distributed inference algorithm which
retains the ResidualSplash parallel optimality.

• An empirical evaluation of DBRSplash on a 120
node cluster demonstrating linear to super-linear per-
formance scaling for large factor graphs.

2 BELIEF PROPAGATION

Many important probabilistic models may be represented
by factorized distributions of the form:

P (x1, . . . , xn) ∝
∏
α∈C

ψα(xα), (2.1)

where the set of factors F = {ψα : α ∈ C} correspond to
un-normalized positive functions, ψα : xα → R+ over
subsets C = {α : Xα ⊆ X} of the random variables. Here,
we focus on discrete random variables Xi ∈ {1, . . . , Ai}
taking on some finite set of Ai possible values.

Distributions of the form Eq. (2.1) are naturally represented
as a Factor Graph G = ({X ,F} , E), where the vertices
V = X ∪ F are the variables and factors, and the edges
E = {{ψj , Xi} : Xi ∈ Xj} connect factors with the vari-
ables in their domain. Factor graphs provide a conve-
nient representation of the dependencies between variables
which we will later exploit to partition the distribution over
processors. To simplify notation, we use ψi, Xj ∈ V to re-
fer to vertices when we wish to distinguish between factors
and variables, and i, j ∈ V otherwise. We define Γi as the
neighbors of i in the factor graph.

Estimating marginal distributions is essential to learning
and inference in factor graphs. While computing exact
marginals is NP-hard in general, there are many popular ap-
proximate inference algorithms. Belief Propagation (BP),
or the Sum-Product algorithm, is a commonly used ap-
proximate inference algorithm originally proposed by Pearl
[1988]. In BP, “messages” (parameters), are iteratively
computed along edges in the factor graph until convergence
and then used to estimate marginals. The message sent
from variable Xi to factor ψj along the edge {Xi, ψj} is
given in Eq. (2.2) and the message sent from factor ψj to
vertex Xi along the edge {ψj , Xi} is given in Eq. (2.3),

m
Xi→ψj

(xi) ∝
∏

k∈Γi\j

m
k→i

(xi) (2.2)

m
ψj→Xi

(xi) ∝
∑
xj\xi

ψj(xj)
∏

k∈Γj\i

m
k→j

(xk) (2.3)

where
∑

xj\xi is a sum over all assignments to xj with xi
restricted, and

∏
k∈Γj\i is a product over all neighbors of

the vertex ψj excluding variable Xi.

In synchronous BP, all vertices simultaneously compute
their outbound messages at every iteration using the mes-
sages from the previous iteration. In asynchronous BP,
messages are updated sequentially using the most recent
messages. Typically, message are sent until the maximum
change in messages is bounded by a small constant β ≥ 0:

max
(i,j)∈E

∣∣∣∣∣∣∣∣ mi→j(new) − m
i→j

(old)

∣∣∣∣∣∣∣∣
1

≤ β. (2.4)

5 31 8

2 76

4 9

11

10

Figure 1: The Splash operation is being applied to the
black vertex (1). The darker edges represent the BFS
tree. The factors and variables are updated in the order
(11, 10, . . . , 2, 1, 2, . . . , 10, 11). The dotted factor (5th in the
BFS) ordering is currently being updated resulting in new mes-
sage represented by arrows.

The estimates of the marginal distributions are then,

P (Xi = xi) ≈ bXi(xi) ∝
∏
j∈Γi

m
j→i

(xi) (2.5)

P (Xi = xi) ≈ bXi
(xi) ∝ ψi(xi)

∏
j∈Γi

m
j→i

(xj).

While BP is guaranteed to converge to the exact marginals
in acyclic graphs, there are few guarantees for convergence
or correctness in general graphs. Nonetheless, BP on cyclic
graphs is used extensively with great success as an approxi-
mate inference algorithm [McEliece et al., 1998, Sun et al.,
2003, Yedidia et al., 2003, Yanover and Weiss, 2002].

The “message” passing formulation and embarrassingly
parallel synchronous update schedule suggests that BP is
an embarrassingly parallel algorithm. However, in Gon-
zalez et al. [2009] we showed that efficient parallel infer-
ence in the shared memory setting is limited by the sequen-
tial dependencies among messages. Furthermore, the natu-
ral synchronous parallel scheduling can be asymptotically
slower than the optimal parallel asynchronous schedul-
ing. We provided a general asynchronous parallel algo-
rithm, ResidualSplash, for the shared memory setting
and demonstrated its optimality in the sequentially limiting
case of chain graphical models.

2.1 THE RESIDUAL SPLASH ALGORITHM
Here, we briefly review the key points of the
ResidualSplash algorithm which we extend in
later sections. The Splash procedure, shown in Fig. 1,
generalizes the optimal forward-backward sequential
update ordering used in acyclic graphical models. When
applied to a vertex v in the factor graph, the Splash
procedure first constructs a fixed volume breadth first
search (BFS) ordering rooted at v. Then, starting at the
leaves, vertices are sequentially updated until the root is
reached and then the process is reversed. When a vertex
is updated, all outbound messages from a vertex are
recomputed using the current inbound messages. In an
acyclic subgraph, the Splash procedure is equivalent to
running forward-backward BP.

The ResidualSplash algorithm applies a variation
of the residual scheduling heuristic proposed by Elidan

et al. [2006] to determine the Splash ordering, prune the
Splash BFS, and assess convergence. In particular the
ResidualSplash algorithm assigns residual,

rj = max
i∈Γj

∣∣∣∣∣∣∣∣ mi→jnew − m
i→j

old
∣∣∣∣∣∣∣∣

1

(2.6)

to each vertex. The value rj can be loosely interpreted as
a measure of the value of updating vertex j. If rj = 0
then updating a vertex will waste processor cycles as out-
going messages will not change. The ResidualSplash
algorithm repeatedly runs the Splash procedure on the ver-
tex with highest residual. When constructing the BFS,
the Splash procedure stops searching along a branch if it
reaches a vertex with residual less than the termination
threshold β. Finally, ResidualSplash terminates when
the highest residual is less than β.

3 DISTRIBUTING STATE
In this section, we address the challenges associated with
distributing the state of the ResidualSplash algorithm
over p processors. In the shared memory setting, each pro-
cessor has efficient direct access to all data structures and
memory, permitting a single shared scheduling queue and
message set. Consequently, the time and resources required
to access the scheduling queue and update messages are
symmetric for all processors. Conversely, in the distributed
memory setting, access times are not symmetric. Instead,
each processor can only directly access its local memory
and must pass messages to communicate with other pro-
cessors.

3.1 FACTOR GRAPH AND MESSAGES
We begin by partitioning the factor graph and messages. To
maximize throughput and hide network latency, we must
minimize communication and ensure that the data needed
for message computations is locally available. We define a
partitioning of the factor graph over p processors as a set
B = {B1, ..., Bp} of disjoint sets of vertices Bk ⊆ V such
that ∪pk=1Bk = V . Given a partitioning B we assign all the
factor data associated with ψi ∈ Bk to the kth processor.
Finally, we store each message on the processor containing
the destination vertex.

Each vertex update is therefore a local procedure. For in-
stance, if vertex i is updated, the processor owning vertex
i can read factors and all incoming messages without com-
munication. To maintain the locality invariant, after the
new outgoing message is computed, it is transmitted to the
processor owning the message.

By imposing the above locality constraints, we define the
storage, computation, and communication responsibilities
of each processor under a particular partitioning. There-
fore, we can frame the minimum communication load bal-
ancing objective in terms of a graph partitioning, which is
a classical problem in high performance computing. We

formally define the graph partitioning problem as:

min
B

∑
B∈B

∑
(i∈B,j /∈B)∈E

wij (3.1)

subj. to: ∀B ∈ B
∑
i∈B

wi ≤
γ

p

∑
v∈v

wv (3.2)

where wij is the communication cost of the edge between
vertex i and vertex j, wi is the total computation associated
with the vertex i, and γ ≥ 1 is the balance coefficient. The
objective in Eq. (3.1) minimizes communication while for
small γ, the constraint in Eq. (3.2) ensures work balance.

To define the communication and computation costs we in-
troduce Ui the total number of updates to vertex i. We
define the communication cost as wij = (Ui + Uj) ×
(min(|Ai|, |Aj |) + Ccomm) the total number of times a
message is sent across the edge (i, j) times the size of the
message plus the fixed header cost Ccomm. We define the
work associated with each variable as Ui × |Γi| × |Ai|, the
number of updates, times the number of neighbors, times
the size of that variable. Similarly, we define the work as-
sociated with each factor as Ui × |Γi| ×

∏
j∈Γi
|Aj |, the

number of updates. times the number of neighbors. times
the size of the factor. While the exponential dependence on
degree may suggest factors are more costly, their degree is
usually small compared to variables.

Unfortunately, obtaining an optimal partitioning or near op-
timal partitioning is NP -Hard in general and the best ap-
proximation algorithms are generally slow. Fortunately, the
there are several very fast heuristic approaches which typi-
cally produce reasonable partitions in timeO (|E|) linear in
the number of edges. Here we use the collection of multi-
level graph partitioning algorithms in the METIS [Karypis
and Kumar, 1998] graph partitioning library. These al-
gorithms, iteratively coarsen the underlying graph, apply
high quality partitioning techniques to the small coarsened
graph, and then iteratively refine the coarsened graph to ob-
tain a high quality partitioning of the original graph. While
there are no theoretical guarantees, these algorithms have
been shown to perform well in practice and are commonly
used in the parallel computing setting.

3.1.1 Update Counts Ui

Unfortunately, due to dynamic scheduling, the update
counts Ui for each vertex depend on the evidence, graph
structure, and progress towards convergence, and are not
known before running ResidualSplash. In practice we
find that the ResidualSplash algorithm updates ver-
tices in a highly non-uniform manner; a key property of the
dynamic scheduling, which enables more frequent updates
of slower converging messages.

To illustrate the difficulty involved in estimating the update
counts for each vertex, we introduce the synthetic denois-
ing task. The input, shown in Fig. 2(a), is a grayscale image

(a) Denoise Image

~
~

~~
(b) Factor Graph (c) Uninformed Part. (d) Update Counts (e) Informed Part.

2 4 6
0

0.5

1

1.5

2

2.5

x 10
4

Ln(Update Count)

F
re

qu
en

cy

(f) Update Distribution (g) Update Prediction

2 4 6 8 10

2

2.5

3

Partition Factor

W
or

k
B

al
an

ce
 γ

(h) Denoise Work Balance

2 4 6 8 10

1.5

2

2.5

3

Partition Factor

R
el

. C
om

. C
os

t

(i) Denoise Rel. Com. Cost

Figure 2: This figure illustrates the denoising problem, nonuniform update pattern of the ResidualSplash algorithm, the difference
between uninformed and informed partitioning, and the impact of over-partitioning on uninformed partitions. (a) The synthetic noisy
image. (b) Factor graph model for estimating for the denoising task. (c) Uniformed Ui = 1 balanced partitioning. (d) The update
frequencies of each variable plotted in log intensity scale with brighter regions being more frequently updated. (e) The informed
partitioning using the true update frequencies after running ResidualSplash. (f) The distribution of vertex update counts for an entire
execution. (g) Update counts from first the half of execution plotted against update counts from the second half of the execution. (h,i)
The effect of over-partitioning on the work balance and communication cost. For all points 30 trials with different random assignments
are used and 95% confidence intervals are plotted. (h) The ratio of the size of the partition containing the most work, relative to the ideal
size (smaller is better). (i) The communication cost relative to the informed partitioning.

with independent Gaussian noise N
(
0, σ2

)
added to each

pixel. The factor graph (Fig. 2(b)) corresponds to the pair-
wise grid Markov Random Field constructed by introduc-
ing a latent random variable for each pixel and connecting
neighboring variables by factors that encode a similarity
preference. The synthetic image was constructed to have
a nonuniform update pattern (Fig. 2(d)) by making the top
half more irregular than the bottom half. The distribution of
vertex update frequencies (Fig. 2(f)) for the denoising task
is nonuniform with a few vertices being updated orders of
magnitude more frequently than the rest. The update pat-
terns is temporally inconsistent frustrating attempts to esti-
mate future update counts using past behavior. (Fig. 2(g)).

3.1.2 Uninformed Partitioning

Surprisingly, in practice we find that an uninformed cut ob-
tained by setting the number of updates to a constant (i.e.,
Ui = 1) achieves partitions with comparable communica-
tion cost and work balance as those obtained when using
the true update counts. In Table 1 we construct uninformed
p = 120 partitions B̂ with Ûi = 1 on several graphs and
report the communication cost and balance

Rel. Com. Cost =

∑
B∈B̂

∑
(u∈B,v/∈B)∈E wuv∑

B∈B∗
∑

(u∈B,v/∈B)∈E wuv

Rel. Work Balance =
p∑

v∈V wv
max
B∈B̂

∑
v∈B

wv

relative to the ideal cut B∗ obtained using the true update
counts Ui. We find that uninformed cuts have lower com-
munication costs at the expense of increased imbalance.
This discrepancy arises from the need to satisfy the bal-
ance requirement with respect to the true Ui at the expense
of a higher communication cost.

Graph Rel. Com. Cost Rel. Work Balance
denoise 0.980 3.44
uw-systems 0.877 1.837
uw-languages 1.114 2.213
cora-1 1.039 1.801

Table 1: Comparison of communication cut cost and balance
relative to the informed cut with known update frequencies and
the uniformed cut with Ui = 1.

3.1.3 Over-Partitioning

Because uninformed partitions tend to have reduced com-
munication cost and greater work imbalance relative to in-
formed partitions, we propose over-partitioning to improve
the overall work balance with a small increase in commu-
nication cost. When partitioning the graph with an unin-
formed cut a frequently updated subgraph may be placed
within a single partition. To lessen the chance of such
an event, we can over-partition the graph into k × p bal-
anced partitions and then randomly redistribute the parti-
tions to the original p processors. By partitioning the graph

more finely and randomly assigning regions to different
processor, we more evenly distribute nonuniform update
patterns improving the overall work balance. However,
over-partitioning also increases the number of edges cross-
ing the cut and therefore the communication cost. By over-
partitioning in the denoise task we are able to improve the
work balance (shown in Fig. 2(h)) at a small expense to the
communication cost (shown in Fig. 2(i)).

Choosing the optimal over-partitioning factor k is chal-
lenging and depends heavily on hardware, graph structure,
and even factors. In situations where inference may be
run repeatedly, standard search techniques may be used.
We found that in practice when work balance is an issue
small factors, e.g., k = 5 are typically sufficient. When
using a recursive bisection partitioning algorithm where
the true work split at each step is an unknown random
variable, we can provide a theoretical bound on the ideal
size of k. If at each split the work is divided into two
parts of proportion X and 1 − X where E [X] = 1

2 and
Var [X] = σ2 (σ ≤ 1

2]), Sanders [1994] shows that we
can obtain work balance with high probability if we select

k at least Ω
(
p(log(1

σ+1/2))−1)
.

3.2 DISTRIBUTING THE PRIORITY QUEUE

The ResidualSplash algorithm relies on a shared
global priority queue. However, in the cluster computing
setting, a centralized ordering is inefficient. Instead, in our
approach, each processor constructs a local priority queue
and iteratively applies the Splash operation to the top ele-
ment in its local queue. On each round, the globally highest
residual vertex will be at the top of one of the local queues.
Unfortunately, the remaining p− 1 highest vertices are not
guaranteed to be at the top of the remaining queues and so
we do not recover the original shared memory scheduling.
However, any processor with vertices that have not yet con-
verged, must eventually update those vertices and therefore
can always make progress by updating the vertex at the top
of its local queue. In Sec. 5.1 we show that the collection
of local queues is sufficient to retain the original optimality
properties of the ResidualSplash algorithm.

3.3 DISTRIBUTED TERMINATION

In the distributed setting where there is no synchronized
common state, it is difficult to identify the globally largest
element and stop the algorithm when it falls below the ter-
mination bound. This is the well studied distributed ter-
mination problem [Matocha and Camp, Mattern, 1987].
We implement a variation of of the algorithm described in
Misra [1983] by defining a token ring over all the nodes, in
which a marker is passed in one direction around the ring.
The marker is advanced once the node owning the marker
converges, halting execution. A node may resume execu-
tion if it receives a message that causes its maximum resid-
ual to exceed the termination threshold. Global termination

is achieved when the token completes two cycles in which
all nodes remain converged and the number of messages
received equals the number of messages sent.

4 IMPROVED SCHEDULING
The fixed volume Splash operation and message based
residual scheduling used in the ResidualSplash algo-
rithm present several key challenges when scaling the al-
gorithm to large factor graphs. In particular, both assume
all vertices require the same amount of work to update.
However, complex factors and variables that are involved
in many factors often take much longer to update. Mean-
while, the message residual scheduling assumes that a sig-
nificant change in one inbound message implies a signif-
icant change in the belief and outbound messages. Con-
versely, using message residuals as the convergence condi-
tion assumes that a small change in all inbound messages
will induce only a small change in the belief and outbound
messages. When the factor graph is large with high degree
vertices this can result in an imbalanced convergence and
an affinity for updating high degree vertices with little im-
provement in accuracy.

4.1 BALANCED SPLASH
When scheduling Splash operations the residual heuristic
assigns a “value” to each vertex update which ignores the
cost of computing the Splash. When the graph structure
is regular, the size of each Splash and resulting costs are
likely to be similar, enabling the residual scheduling to fo-
cus on minimizing the residual. However, when the cost
of computing a Splash is vastly different, as is the case in
large irregular graphs, the residual heuristic will fail to ac-
count for the cost. Consequently, the residual heuristic will
skip relatively high residual vertices with low cost in favor
of the highest residual vertex with much greater cost.

Furthermore, high degree, costly vertices are likely to be
included in many BFS traversals and therefore updated
disproportionately more often than other less heavily con-
nected vertices. This problem is further frustrated in the
cluster setting, by high degree vertices which are connected
to vertices on many other processors, increasing network
traffic substantially. We can resolve the imbalance in work
by limiting the Splash size by the amount of work Wmax
(as defined in Sec. 3.1) rather than the number of vertices.
Consequently, the scheduling heuristic can safely ignore
the cost of each Splash.

4.2 NONUNIFORM CONVERGENCE
Using message residuals as the termination criterion leads
to nonuniform convergence in beliefs. Small ε change
to individual messages can combine at high degree ver-
tices resulting in large changes in beliefs and asymmet-
ric convergence. We demonstrate this behavior by con-
sidering a variable Xi with d = |Γi| incoming messages
{m1, . . . ,md}. Suppose all the incoming messages are

changed to {m′1, . . . ,m′d} such that the resulting residual
is less than β (i.e., ∀k |m′k−mk|1 ≤ β). Using the conver-
gence criterion in Eq. (2.4) the messages have converged.
However, the effective change in belief depends linearly on
the degree, and therefore can be far from convergence.

Assume {m1, . . . ,md} are binary uniform messages. Then
the belief at that variable is also uniform (i.e., bi = [1

2 ,
1
2]).

If we then perturb the messages m′k(0) = 1
2 − ε and

m′k(1) = 1
2 + ε by some small ε ≤ β/2 the new belief

is:

b′i(0) =

(
1
2 − ε

)d(
1
2 + ε

)d +
(

1
2 − ε

)d .
The L1 belief residual due to the compounded ε change in
each message is then:

|b′i(0)− bi(0)|1 =
1
2
−

(
1
2 − ε

)d(
1
2 + ε

)d +
(

1
2 − ε

)d .
A 2nd order Taylor expansion around ε = 0 obtains:

|b′i(0)− bi(0)|1 ≈ dε+O(ε3).

Therefore, the change in belief varies linearly in the degree
of the vertex enabling small εmessage residuals to translate
into large dε belief residuals.

4.3 BELIEF RESIDUALS
The aim of BP is to estimate the marginal for each variable.
However, ResidualSplash defines the scheduling and
convergence using the change in messages rather than be-
liefs. In Sec. 4.2, we showed that small message changes
do not imply small belief changes. Here we define a belief
residual which addresses the problems associated with the
message-centric approach.

A natural definition of the belief residuals analogous to the
message residuals defined in Eq. (2.6) is

rj =
∣∣∣∣bnew

i − bold
i

∣∣∣∣
1

(4.1)

where bold
i is the belief at vertex i the last time vertex i

was updated. Unfortunately, Eq. (4.1) has a surprising flaw
that admits premature convergence on acyclic graphs with
β = 0 under a specially constructed scheduling. We will
demonstrate this failure scenario and present a natural so-
lution which is also computationally desirable.

Without loss of generality we consider a chain MRF of
5 vertices with the binary factors ψXi,Xi+1(xi, xi+1) =
I[xi = xi+1] and unary factors:

ψX1 =
[

1
9 , 9
]

ψX2 =
[

9
10 ,

1
10

]
ψX3 =

[
1
2 ,

1
2

]
ψX4 =

[
1
10 ,

9
10

]
ψX5 =

[
9, 1

9

]
We begin by initalizing all vertex residuals to infinity, and
all messages to uniform distributions. Then we perform the
following update sequence marked in black:

X1 X3 X5

X1 X2 X4 X5

X2 X4X3

X1 X3 X5

X2 X4X3

a)

b)

c)

d)

e)

X2 X4

X4X2

X1

X1

X3

X5

X5

After stage (b), X3 will have uniform belief and zero resid-
ual and m

2→3
= ψX2 and m

4→3
= ψX4 . After stage (d),

m
2→3

and m
4→3

will have swapped values. Therefore X3 will
continue to have uniform belief and zero residual. At this
point X2 and X4 also have zero residual since they were
just updated. Stage (e) clears the residuals on X1 and X5.
The residuals on X2 and X4 remain zero since messages
m

1→2
and m

5→4
haven’t changed since state (c). By Eq. (4.1)

with β = 0 we have converged prematurely since no se-
quence of messages connects X1 and X5. The use of the
naive belief residual in Eq. (4.1) will therefore converge to
an erroneous solution.

An alternative formulation of the belief residual which does
not suffer from premature convergence is given by:

r
(t)
j ← r

(t−1)
j +

∣∣∣∣∣∣b(t)i − b(t−1)
i

∣∣∣∣∣∣
1

(4.2)

b
(t)
i (xi) ∝

b
(t−1)
i (xi) m

i→j
(t)(xi)

m
i→j

(t−1)(xi)
. (4.3)

b
(t−1)
i is the belief after incorporating the last message and
b
(t)
i is the belief after incorporating the new message. As

each new message arrives, the belief can be efficiently re-
computed using Eq. (4.3). Because Eq. (4.2) accumulates
the change in belief with each new message, it will not lead
to premature termination. Intuitively, it measures the cu-
mulative effect of all message updates on the belief. Addi-
tionally, since Eq. (4.2) satisfies the triangle inequality, it is
an upper bound on the total change in belief. This residual
definition also has the advantage of not requiring previous
versions of messages or beliefs to be stored.

5 THE DBRSPLASH ALGORITHM

We now present our Distributed Belief Residual Splash al-
gorithm (DBRSplash shown in Alg. 1) which combines
the ideas presented in earlier sections. The execution can
be divided into two phases, setup and inference.

In the setup phase, in Line 1 we over-segment the in-
put factor graph into kp pieces using the METIS algo-
rithms. Note that this could be accomplished in parallel
using ParMETIS, however our implementation uses the se-
quential version for simplicity. Then in Line 2 we randomly
assign k pieces to each of the p processors. In parallel each
processor collects its factors and variables (Line 3). On

Algorithm 1: The DBRSplash Algorithm

Btemp ← OverSegment(G, p, k);1

B ← RandomAssign(Btemp, p);2

forall Processors b ∈ B do in parallel
Collect(Fb,Xb);3

Initialize (Q);4

while TokenRing(Q, β) do5
v ← Pop(Q) ;
FixedWorkSplash(v, Wmax, β);6

RecvExternalMsgs();7

foreach u ∈ Local changed vertices do8

Promote(Q, ||∆bv||1);9

SendExternalMsgs();10

Push(Q, v, 0);

Line 4 the priorities of each variable and factor are set to
infinity to ensure that every vertex is updated at least once.

On Line 5 we evaluate the top residual with respect to the
β convergence criterion and check for termination in the
token ring. On Line 6, a splash of total work Wmax is ap-
plied to v. The fixed work Splash uses β to prune subtrees
that have sufficiently low belief residual. After completing
the Splash all external messages from other processors are
incorporated (Line 7). Any beliefs that changed during the
Splash or after receiving external messages are promoted in
the priority queue on Line 9. On Line 10, the external mes-
sages are transmitted across the network. Empirically, we
find that accumulating external messages and transmitting
only once every 10 loops reduces network overhead sub-
stantially and does not adversely affect convergence. The
process repeats until termination at which point all beliefs
are sent to the originating processor.

5.1 PRESERVING SPLASH CHAIN OPTIMALITY

In Gonzalez et al. [2009] we introduced the τε notation as
a theoretical measure for the effective distance τε at which
vertices are assumed to be almost independent. More for-
mally, for all vertices τε is the minimum radius for which
running belief propagation on the subgraph centered at
that vertex yields beliefs at most ε away from beliefs ob-
tained using the entire graph. By increasing the value of
ε, we decrease the sequential dependency structure, and
increase the opportunity for parallelism. We showed that
the ResidualSplash algorithm, when applied to chain
graphs under the τε approximate inference setting, achieves
the Ω (|V | /p+ τε) optimal lower bound. We now show
that DBRSplash retains the optimality in the distributed
setting.

Theorem 5.1 (Splash Chain Optimality). Given a chain
graph with n = |V | vertices and p ≤ n processes,
the distributed DBRSplash algorithm with no over-
segmentation, using a graph partitioning algorithm which

returns connected partitions, and with work Splash size at
least 2

∑
v∈V wv/p will obtain a τε-approximation in ex-

pected running time O
(
|V |
p + τε

)
.

Proof of Theorem 5.1. The proof is essentially identical to
the method used in Gonzalez et al. [2009]. We assume
that the chain graph is optimally sliced into p connected
pieces of |V | /p vertices each. Since every vertex has at
most 2 neighbors, the partion has at most 2 |V | /p work. A
Splash anywhere within each partition will therefore cover
the entire partition, performing the complete “forward-
backward” scheduling.

Because we send and receive all external messages after
every splash, after d τε

|V |/pe iterations, every vertex will have
received messages from vertices a distance of at least τε
away. The runtime will therefore be:

2 |V |
p
×
⌈

τε
|V | /p

⌉
≤ 2 |V |

p
+ 2τε

Since each processor only send 2 external messages per it-
eration (one from each end of the partition), communica-
tion therefore only adds a constant to the total runtime.

6 EXPERIMENTS
We implemented an MPI based version of DBRSplash
in C++ using MPICH2. The splash size, over-partitioning
factor, and scheduling method (i.e., message based and be-
lief based) were parametrized for comparison. We invoked
the weighted kmetis partitioning routine from the METIS
software library for graph partitioning. All partitions were
computed in under 10 seconds. To ensure numerical stabil-
ity and convergence, log-space message calculations and
0.6 damping were used. The convergence bound was set to
β = 10−5. Cluster experiments were compiled using GCC
4.2.4 and tested on a cluster of 15 64Bit Linux Blades with
dual Quad-Core Intel Xeon 2.33GHZ (E5345) processors
connected with Gigabit Ethernet.

We assessed the performance of DBRSplash on Markov
Logic Networks (MLNs) [Domingos et al., 2008], a prob-
abilistic extension to first-order logic obtained by attach-
ing weights to logical clauses. We used Alchemy to com-
pile several MLNs into factor graphs. We constructed
MLNs from the UW-CSE relational data-set [Domingos,
2009] and present results for the smallest uw-languages
MLN with 1078 variables and 26598 factors and the largest
uw-systems MLN with 7951 variables and 406389 factors.
These MLNs have varied degree distributions as seen in
Fig. 3. The large uw-systems model illustrates the scaling
potential while uw-languages illustrates the limitations of
our algorithm on small models.

6.1 PARALLEL PERFORMANCE
The running time and speedup of DBRSplash were as-
sessed on the uw-systems and uw-languages MLNs using

(a) uw-languages

50 100 150
0

5

10

Degree

Lo
g(

V
er

te
x

C
ou

nt
)

(b) uw-systems

Figure 3: The irregular degree distributions for the (a) uw-
languages and (b) uw-systems MLNs.

various over-partitioning factors. In Fig. 4(a) and Fig. 4(b),
DBRSplash achieves linear to super-linear running times
and speedups up to 120 processors on the larger uw-systems
MLN. The super-linear speedup may be attributed to in-
creasing cache efficiency and memory bandwidth. In-
creasing the over-partitioning factor initially improves per-
formance but performance gains are gradually attenuated
by increased communication costs as more processors are
used. Meanwhile, the much smaller uw-languages MLN
only demonstrates linear to super-linear performance gains
up to 20 processors (Fig. 5(a) and Fig. 5(b)). With a total
running time under 10 seconds, there is insufficient work
to efficiently use more than 20 processors.

6.2 OVER-PARTITIONING

To directly assess the impact of over-partitioning on work
balance and network traffic we used the denoising task (in-
troduced in Sec. 3.1.1) on a 500×500 image with 5 colors.
Using 60 processors we tested several over-partition fac-
tors and plotted both instantaneous CPU usage (Fig. 6(a))
and the cumulative network traffic (Fig. 6(b)). Without
over-partitioning, the computation is unbalanced resulting
in a gradual decrease in the number of active processors.
Increasing the over-partitioning factor decreases the run-
ning time and ensures that all processor remain active up
to convergence. However, as suggested, over-partitioning
increases network activity.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Seconds

A

ct
iv

e
C

P
U

S

oversegment 1x

oversegment 5x

oversegment 10x

(a) CPU activity plot

0 5 10 15 20
2

4

6

8

10x 10
5

Overpartition Factor

to
ta

l #
 m

es
sa

ge
s

se
nt

total network activity

(b) Network activity plot

Figure 6: (a) Number of processors active for a 500x500 de-
noising image with 5 different colors, using a maximum of 60
processors. (b) Total number of network messages sent. Over-
partitioning reduces running time, improves processor utilization,
but increases network usage.

We conduct a similar analysis on both MLNs. The cpu us-

age Fig. 4(d) for the uw-systems MLN is consistent with
results from the denoising task. Surprisingly, the network
activity Fig. 4(e) for the uw-systems MLN after an ini-
tial increase shows a minor decrease with increased over-
partitioning which we attribute to variability in partitioning
and reduced running time. The cpu usage (Fig. 5(d)) for
the smaller uw-languages MLN shows an increase in bal-
ance with increasing partitioning factor, but performance
decreases going from over-partitioning factor of 5 to 10.
This is due to the increased network activity (Fig. 5(e))
dominating the already short computation time.

6.3 ACCURACY ASSESSMENT

To assess the accuracy of DBRSplash belief estimates
we compare with belief estimates obtained through Gibbs
sampling. We generated chains of 125 thousand samples,
dropped the first 25 thousand samples (burn-in), and then
used remaining samples to estimate the true beliefs. We
compared belief estimates by computing the L1 difference
averaged over all variables in the model. We found that re-
peated chains starting at different random states converged
to beliefs that differed by less than 0.05 in average L1 per
variable.

In Fig. 4(c), we plot the accuracy of DBRSplash with 60
processors on uw-systems as function of the vertex updates.
In Fig. 5(c), we do the same for uw-languages but using
a single processor since the running time is too short. In
both cases DBRSplash quickly achieves high accuracy.
In Fig. 4(f), we plot the accuracy of DBRSplash on uw-
systems as a function of the number of processors for a
fixed running time of one minute. We see that using 20
processors substantially improves the running time but the
return quickly diminishes. In Fig. 5(f) we do the same for
uw-languages, but for a running time of one second since it
converges rapidly. In this case, going beyond 20 processors
decreases the accuracy, due to increased running time.

6.4 IMPROVED SCHEDULING

It is difficult to directly compare the convergence time of
belief based scheduling and message based scheduling be-
cause they do not share the same convergence criterion. To
provide a common basis for comparison, we assess the ac-
curacy of the beliefs as discussed in Sec. 6.3 (Fig. 4(c),
Fig. 5(c), Fig. 4(f) and Fig. 5(f)). These plots compare
the accuracy of DBRSplash using Belief Residuals and
Message Residuals. For uw-systems, the belief residuals
achieve more rapid convergence to an accurate solution.
The uw-languages MLN presents nearly identical accuracy
convergence using both scheduling methods.

Additionally, we have found that for several MLNs, mes-
sage based scheduling failed to converge while belief based
scheduling converges consistently. One such MLN, cora-1,
is characterized by extremely high degree variables (e.g.,
59 variables with degree greater than 100 and 3 variables

0 20 40 60 80 100 120
10

2

10
3

10
4

10
5

Processors

R
un

tim
e

(s
)

Linear Speedup

Overpartition 1x
Overpartition 5x

Overpartition 10x

(a) Runtime

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Processors

S
pe

ed
up

 F
ac

to
r

Linear Speedup

Overpartition 1x

Overpartition 5x

Overpartition 10x

(b) Speedup

0 50 100
0.02

0.03

0.04

0.05

0.06

Runtime

A
ve

ra
ge

 L
1

E
rr

or Message Residuals

Belief Residuals

(c) Accuracy

0 50 100 150 200 250
0

10

20

30

40

50

60

Seconds

A

ct
iv

e
C

P
U

S overpartition 10x

overpartition 5x

overpartition 1x

(d) CPU Activity 60 Proc

0 5 10 15 20
4

5

6

7

8x 10
7

Overpartition Factor

to
ta

l #
 m

es
sa

ge
s

se
nt

total network activity

(e) Network Activity 60 Proc

0 50 100
0

0.02

0.04

0.06

0.08

0.1

Number of CPUs

A
ve

ra
ge

 L
1

E
rr

or Message Residuals

Belief Residuals

(f) Fixed Time

Figure 4: An analysis of DBRSplash on the uw-systems MLN. The uw-systems MLN is fairly large and therefore amenable to large
scale cluster parallelization.

0 20 40 60 80 100 120
10

0

10
1

10
2

10
3

Processors

R
un

tim
e

(s
)

Overpartition 1x

Overpartition 5x

Overpartition 10x

Linear Speedup

(a) Runtime

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Processors

S
pe

ed
up

 F
ac

to
r

Overpartition 5x

Linear Speedup

Overpartition 10x

Overpartition 1x

(b) Speedup

0 2 4 6
x 10

5

0

0.02

0.04

0.06

0.08

0.1

Vertex Updates

A
ve

ra
ge

 L
1

E
rr

or

Message Residuals

Belief Residuals

(c) Accuracy

0 2 4 6 8
0

10

20

30

40

50

60

Seconds

A

ct
iv

e
C

P
U

S

overpartition 5x
overpartition 10x

overpartition 1x

(d) CPU Activity 60 Proc

0 5 10 15
1.5

2

2.5

3

3.5

4

4.5x 10
6

Overpartition Factor

to
ta

l #
 m

es
sa

ge
s

se
nt

total network activity

(e) Network Activity 60 Proc

0 50 100
0

0.02

0.04

0.06

0.08

0.1

Number of CPUs

A
ve

ra
ge

 L
1

E
rr

or

Message Residuals

Belief Residuals

(f) Fixed Time

Figure 5: An analysis of DBRSplash on the uw-languages MLN. The uw-languages MLN is too small for large scale cluster par-
allelization and therefore demonstrates the failure behaviour of DBRSplash when the graph size is small compared to the number of
processors.

0 1 2 3
x 10

5

0

1

2

3

4

5

6

7x 10
6

#vertex updates

#e
dg

e
up

da
te

s

Belief

Message Work

Message (ResidualSplash)

Belief Work (DBRSplash)

Figure 7: Cumulative edge update counts as a function of time
measured in vertex updates for the cora-1 MLN.

with degree greater than 1000). To understand the behavior
of our algorithm on cora-1, we plot the cumulative num-
ber of edge updates against the number of vertex updates
in Fig. 6.4. We factor out the effect of different parts of
DBRSplash. We observe that while the work balanced
Splash (Sec. 4.1) slightly decreases the cumulative edge up-
dates, the belief scheduling has a more substantially effect.

7 CONCLUSIONS

We investigated the challenges involved in efficient dis-
tributed Belief Propagation on large factor graphs. We
identified two primary challenges: efficient state partition-
ing and scheduling in complex irregular graphs.

To address the problem of state partitioning, we reduced
the allocation of factors and messages and computation to
graph cuts with edge and vertex weights. While estimating
the weights exactly requires knowing the update schedul-
ing, we showed that uninformed cuts perform reasonably
well in practice. Because uniformed cuts tend to have lower
communication costs and greater imbalance than informed
cuts, we proposed over-partitioning to improve balance at
the expense of increased communication costs. We found
that over-partitioning can reduce the overall running time
as long as the communication costs do not dominate.

To support the distributed memory setting and to im-
prove performance on complex irregular graphs we pro-
posed a new scheduling that addresses the limitations in
ResidualSplash scheduling while retaining the paral-
lel optimality property. Using a distributed collection of
queues we decouple the scheduling across processors. By
using fixed work sized Splash operations we ensure that
high degree vertices are not updated disproportionately of-
ten. By switching from message based scheduling to belief
based scheduling, we ensure more uniform convergence
in the belief estimates. Experimentally, these changes re-
sulted in improved performance, enabling rapid, accurate
convergence on graphs which otherwise were intractable
using previous belief propagation based techniques.

We tested our new algorithm, DBRSplash, on a cluster
of 120 processors and found linear to super-linear perfor-
mance gains on large factor graphs. For small factor graphs

which run in minutes on a single processor, we obtained
linear speedups only when using up to 20 processors. In
conclusion we proposed an efficient parallel distributed al-
gorithm, DBRSplash, which performs optimally on large
factor graphs and demonstrates the potential capability of
efficient parallel algorithms for the future of AI.

Acknowledgements

This work is supported by ONR Young Investigator Pro-
gram grant N00014-08-1-0752, the ARO under MURI
W911NF0810242, DARPA IPTO FA8750-09-1-0141, the
NSF under grants NeTS-NOSS and CNS-0625518 and
Joseph Gonzalez is supported by the AT&T Labs Fellow-
ship. We thank Intel Research for cluster time.

References
D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed

inference for latent dirichlet allocation. In NIPS, 2007.
A. Asuncion, P. Smyth, and M. Welling. Asynchronous dis-

tributed learning of topic models. In NIPS, 2008.
M. Paskin, C. Guestrin, and J. McFadden. A robust architecture

for distributed inference in sensor networks. In IPSN, 2005.
S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar. Distributed

inference in dynamical systems. In NIPS, 2006.
J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for opti-

mally parallelizing belief propagation. In AISTATS, 2009.
J. Pearl. Probabilistic reasoning in intelligent systems: networks

of plausible inference. 1988.
R.J. McEliece, D.J.C. MacKay, and J.F. Cheng. Turbo decoding

as an instance of Pearl’s belief propagation algorithm. J-SAC,
1998.

J. Sun, N.N. Zheng, and H.Y. Shum. Stereo matching using belief
propagation. ITPAM, 2003.

J.S. Yedidia, W.T. Freeman, and Y. Weiss. Understanding belief
propagation and its generalizations. In Exploring artificial in-
telligence in the new millennium, 2003.

C. Yanover and Y. Weiss. Approximate inference and protein
folding. In NIPS, 2002.

G. Elidan, I. Mcgraw, and D. Koller. Residual belief propagation:
Informed scheduling for asynchronous message passing. In
UAI, 2006.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme
for irregular graphs. J. Parallel Distrib. Comput., 48(1), 1998.

P. Sanders. Randomized static load balancing for tree-shaped
computations. In Workshop on Parallel Processing, 1994.

J. Matocha and T. Camp. A taxonomy of distributed termination
detection algorithms. SYSTSOFT.

F. Mattern. Algorithms for distributed termination detection. Dis-
tributed Computing, 1987.

J. Misra. Detecting termination of distributed computations using
markers. In SIGOPS, 1983.

P. Domingos, S. Kok, D. Lowd, H. F. Poon, M. Richardson,
P. Singla, M. Sumner, and J. Wang. Markov logic: A unify-
ing language for structural and statistical pattern recognition.
In SSPR, 2008.

P. Domingos. Uw-cse mlns, 2009. URL
alchemy.cs.washington.edu/mlns/uw-cse.

