
Conditional Probability Tree Estimation Analysis and Algorithms

Alina Beygelzimer
IBM Research

beygel@us.ibm.com

John Langford
Yahoo! Research
jl@yahoo-inc.com

Yuri Lifshits
Yahoo! Research
yury@yury.name

Gregory Sorkin
IBM Research

sorkin@us.ibm.com

Alex Strehl
Yahoo! Research

astrehl@gmail.com

Abstract

We consider the problem of estimating the
conditional probability of a label in time
O(log n), where n is the number of possible
labels. We analyze a natural reduction of this
problem to a set of binary regression prob-
lems organized in a tree structure, proving a
regret bound that scales with the depth of
the tree. Motivated by this analysis, we pro-
pose the first online algorithm which prov-
ably constructs a logarithmic depth tree on
the set of labels to solve this problem. We
test the algorithm empirically, showing that
it works succesfully on a dataset with roughly
106 labels.

1 Introduction

The central question in this paper is how to effi-
ciently estimate the conditional probability of label
y ∈ {1, . . . , n} given an observation x ∈ X. Virtually
all approaches for solving this problem require Ω(n)
time. A commonly used one-against-all approach,
which tries to predict the probability of label i ver-
sus all other labels, for each i ∈ {1, . . . , n}, requires
Ω(n) time per training example. Another common
Ω(n) approach is to learn a scoring function f(y, x)
and convert it into a conditional probability estimate
according to f(y, x)/Z(x), where Z(x) =

∑
i f(i, x) is

a normalization factor.

The motivation for dealing with the computational dif-
ficulty is the usual one—we want the capability to
solve otherwise unsolvable problems. For example, one
of our experiments involves a probabilistic prediction
problem with roughly 106 labels and 107 examples,
where any Ω(n) solution is intractable.

1.1 Main Results

In Section 4, we provide the first online super-
vised learning algorithm that trains and predicts with
O(log n) computation per example. The algorithm
does not require knowledge of n in advance; it adapts
naturally as new labels are encountered.

The prediction algorithm uses a binary tree where re-
gressors are used at each node to predict the condi-
tional probability that the true label is to the left or
right. The probability of a leaf is estimated as the
product of the appropriate conditional probability es-
timates on the path from root to leaf. In our experi-
ments, we use linear regressors trained via stochastic
gradient descent.

The difficult part of this algorithm is constructing the
tree itself. When the number of labels is large, it be-
comes critical to construct easily solvable binary prob-
lems at the nodes. In Section 4.2, we introduce a tree-
construction rule with two desirable properties. First,
it always results in depth O(log n). It also encourages
natural problems by minimizing expected loss at the
nodes. The technique used in the algorithm is also
useful for other prediction problems such as multiclass
classification.

We test the algorithm empirically on two datasets (in
Section 4.3), and find that it both improves perfor-
mance over naive tree-building approaches and com-
petes in prediction performance with the common one-
against-all approach, which is exponentially slower.

Finally, we analyze a broader set of logarithmic time
probability estimation methods. In Section 3.1 we
prove that any tree based approach has squared loss
bounded by the tree depth squared times the average
squared loss of the node regressors used. In contrast,
the PECOC approach [4] has squared loss bounded by
just 4 times the average squared loss but uses Ω(n)
computation. This suggests a tradeoff between com-
putation and squared loss multiplier. Section 3.2 de-

scribes a k-parameterized construction achieving a ra-
tio of 4(logk n)2

(
k−1
k

)2
while using O(k logk n) com-

putation, where k = 2 gives the tree approach and
k = n gives PECOC.

1.2 Prior Work

There are many methods used to solve conditional
probability estimation problems, but very few of them
achieve a logarithmic dependence on n. The ones we
know are batch constructed regression trees, C4.5 [9],
ID3 [7], or Treenet [10], which are both too slow to
consider on datasets with the scale of interest, and
incapable of reasonably dealing with new labels ap-
pearing over time.

Mnih and Hinton [8] constructed a special purpose
tree-based algorithm for language modeling, which is
perhaps the most similar previous work. The algo-
rithm there is specialized to word prediction and is
substantially slower since it involves many iterations
through the training data. However, the general analy-
sis we provide in Section 3.1 applies to their algorithm.
We regard the empirical success of their algorithm as
further evidence that tree-based approaches merit in-
vestigation.

1.3 Outline

Section 3 states and analyses methods for logarith-
mic time probabilistic prediction given a tree struc-
ture. Section 4 gives an algorithm for building the
tree structure. The analysis in the first section is suf-
ficiently general so that it applies to the second.

2 Problem Setting

Given samples from a distribution P over X × Y ,
where X is an arbitrary observation space and Y =
{1, . . . , n}, the goal is to estimate the conditional prob-
ability P (y | x) of a label y ∈ Y for a new observation
x ∈ X.

For an estimator Q(y | x) of P (y | x), the squared loss
of Q with respect to P is defined as

`P (Q) = E(x,y)∼P (P (y | x)−Q(y | x))2. (1)

It is more common to define an observable squared
loss where P (y |x) in equation (1) is replaced by 1.
We consider regret with respect to the common defini-
tion, since it is well known that the difference between
observable squared loss and the minimum possible ob-
servable squared loss is equal to `P (Q). We therefore
use regret and squared loss interchangeably in this pa-
per.

It is well known that squared loss is a strictly proper
scoring rule [2], thus `P (Q) is uniquely minimized by
Q = P . Our analysis focuses on squared loss because
it is a bounded proper scoring rule. The boundedness
implies that convergence guarantees hold under weaker
assumptions than for unbounded proper scoring rules
such as log loss.

3 Probabilistic Prediction Given a
Tree

This section assumes that a tree structure is given,
and analyzes how to use it for probabilistic logarithmic
time prediction.

3.1 Conditional Probability Tree

Consider a fixed binary tree whose leaves are the n
labels. For a leaf node y ∈ Y , let T (y) be the set of
non-leaf nodes on the path from the root to y in the
tree.

Each non-leaf node i is associated with the regression
problem of predicting the probability, under P , that
the label y of a given observation x ∈ X is in the left
subtree of i, conditioned on i ∈ T (y). The following
procedure shows how to transform multiclass examples
into binary examples for each non-leaf node in the tree.
Here righti(y) is 0 when y is in the left subtree of node
i, and 1 otherwise.

Algorithm 1: Conditional Probability Tree Training
(training set S, regression algorithm R)

foreach internal node i do
Si ← ∅

foreach example (x, y) ∈ S do
foreach node i ∈ T (y) do

Add (x, righti(y)) to Si.

foreach internal node i do
train fi = R(Si)

Given a new observation x ∈ X and a label y ∈ Y , we
use the learned binary regressors fi to estimate P (y |
x). Letting Qi(1 | x) = fi(x) and Qi(0 | x) = 1−fi(x),
we define the estimate

Q(y | x) =
∏

i∈T (y)

Qi(righti(y) | x). (2)

3.1.1 Analysis of the Conditional Probability
Tree

Algorithm 1 implicitly defines a distribution Pi over
X ×{0, 1} induced at node i: A sample from Pi is ob-
tained by drawing (x, y) according to P until i ∈ T (y),

and outputting (x, righti(y)) (although we never ex-
plicitly perform this sampling). The following theo-
rem bounds the squared loss of Q given the average
squared loss of the binary regressors.

Theorem 1. For any distribution P , any set of node
estimators Qi, and any pair (x, y), with Q given by
equation (2),

(Q(y | x)− P (y | x))2

≤ d2 Ei (Qi(righti(y) | x)− Pi(righti(y) | x))2 ,

where d = |T (y)| and the expectation is over i chosen
uniformly at random from T (y).

Proof. We use Lemma 2. Using the notation of its
proof, observe that(

d∑
i=1

|qi − pi|

)2

= d2 (Ei |qi − pi|)2

≤ d2Ei

(
|qi − pi|2

)
using Jensen’s inequality.

Most of the theorem is proved with the following core
lemma. For a node i on the path from the root to
label y, define pi = Pi(righti(y) | x), the conditional
probability that the label is consistent with the next
step from i given that all previous steps are consistent.
Similarly define qi = Qi(righti(y) | x).

Lemma 2. For any distribution P , any set of node
estimators Qi, and any pair (x, y), with Q given by
equation (2),

|Q(y | x)− P (y | x)| ≤
∑
i∈T (y)

|qi − pi|
∏
j 6=i

max{pj , qj}

≤
∑
i∈T (y)

|qi − pi| .

The last inequality is the simplest—it says the differ-
ences in errors add. However, the quantity after the
first inequality can be much tighter.

Proof. We first note that

|Q(y | x)− P (y | x)| ≤
∏
i

max{pi, qi}−
∏
i

min{pi, qi}

since
∏
i max{pi, qi} ≥ max{Q(y | x), P (y | x)} and∏

i min{pi, qi} ≤ min{Q(y | x), P (y | x)}.

We use a geometric argument. With
∏
i min{pi, qi}

defining the volume of one “corner” of a cube with
sides max{pi, qi}, slabs |qi − pi|

∏
j 6=i max{pj , qj} fill

in the remaining volume (with overlap). Consequently,
we can bound the difference in volume as

∏
i

max{pi, qi} −
∏
i

min{pi, qi}

≤
∑
i

|qi − pi|
∏
j 6=i

max{pj , qj}

≤
∑
i

|qi − pi|,

since all pj and qj are bounded by 1.

As suggested by the proof, the lemma’s bound can be
asymptotically tight. If all pi are equal to some p and
all |qi − pi| are small, the left side is approximately
pd−1

∑
i |qi− pi| = dpdE|qi− pi|, a factor pd times the

right side.

3.2 Conditional PECOC

The conditional probability tree is as computationally
tractable as we could hope for, but is not as robust
as we could hope for. For example, the PECOC ap-
proach [4] yields a squared loss multiplier of 4 inde-
pendent of the number of labels. Is there an approach
more robust than the tree, but requiring less compu-
tation than PECOC?

We provide a construction which trades off between
the extremes of PECOC and the conditional probabil-
ity tree. The essential idea is to shift from a binary
tree to a k-way tree, where PECOC with k− 1 regres-
sors is used at each node in the tree to estimate the
probability of any child conditioned on reaching the
node. For simplicity, we assume that k is a power of
2, and n is a power of k.
Theorem 3. Pick a k-way tree on the set of n labels,
where k is a power of 2. For all distributions P and
all sets of learned regressors, with k− 1 regressors per
node of the tree, for all pairs (x, y),

(Q(y | x)− P (y | x))2 ≤ 4(logk n)2
(
k − 1
k

)2

ε2,

where ε2 is the average squared loss of the (k−1) logk n
questioned regressors.

Proof. The proof is by composition of two lemmas.

In each node of the tree, Lemma 4 bounds the power of
the adversary to disturb the probability estimate as a
function of the adversary’s regret. Similarly, Lemma 2
bounds the power of the adversary to induce an overall
misestimate as a function of the adversary’s power to
disturb the estimates within each node on the path.

The curve below illustrates how the construction
trades off computation for a better regret bound as
a function of k.

es
tim

at
io

n
in

ac
cu

ra
cy

 (
bo

un
d

m
ul

tip
lie

r)

computation (number of queried regressors)

2 (tree)

4

8

16
32

64 128

To complete the proof of Theorem 3 we describe
the PECOC construction in Section 3.2.1 and prove
Lemma 4 in Section 3.2.2.

3.2.1 The PECOC Construction

The PECOC construction is defined by a binary ma-
trix C with each column a label and each row defining
a regression problem. The regression problem corre-
sponding to row i is to predict the probability given x
that the correct label is in the subset

Yi = {y ∈ Y : C(i, y) = 1} . (3)

We use an explicit family of Hadamard codes given by
the recursive formula

C2 =
[
1 1
1 0

]
, C2t =

[
Ct Ct
Ct 1− Ct

]
.

We use a matrix C2t with 2t−1 ≤ n < 2t, noting that
its size 2t is less than 2n; if 2t > n we simply add
dummy labels. We henceforth assume without loss of
generality that n is a power of 2. We train PECOC
according to the following algorithm.

Algorithm 2: PECOC Training (training set S, re-
gression algorithm R)

for each row i of C do
Let Si = {(x,C(i, y)) : (x, y) ∈ S}
train ri = R(Si).

Given a new observation x ∈ X and a label y ∈ Y ,
PECOC uses the binary regressors ri learned in Algo-
rithm 2 to estimate P (y | x) using the formula

pecoc(y | x) = 2 Ei

[
C(i, y)ri(x)+

(1− C(i, y))(1− ri(x))
]
− 1, (4)

where the expectation is over i drawn uniformly from
the rows of C. The reason for this formula is clarified
by the proof of Lemma 4.

3.2.2 A Careful PECOC analysis

The following theorem gives the precise regret bound,
which follows from the analysis in [4] but is tighter for
small values of n than the bound stated there.

Lemma 4. (PECOC regret [4]) For all distributions P
and all sets of regressors ri (as defined in Algorithm 2),
for all x ∈ X and y ∈ Y ,

(pecoc(y | x)− P (y | x))2 ≤

4
(
n− 1
n

)2

Ei(ri − P (y ∈ Yi | x))2,

where Yi is the subset defined by row i per (3).

Proof. Since the code and the prediction algorithm
are symmetric with respect to set inclusion, we can
assume without loss of generality that y is in every
subset (complementing all subsets not containing y).
Thus every entry C(i, y) = 1, and by (4) the PECOC
output estimate of P (y | x) is

pecoc(y | x) =
2
n

n∑
i=1

ri(x)− 1.

Let r̄i(x) = P (y ∈ Yi | x) =
∑
υ∈Yi P (υ | x) denote the

perfect subset estimators, and write ri(x) = r̄i(x)+ εi.
By the nature of C, the label y under consideration
occurs in every subset, and every other label υ 6= y in
exactly half the subsets, so that

∑
ri(x) =

∑
i

(∑
υ∈Yi

P (υ | x) + εi

)
=
∑
υ

∑
i : Yi3υ

P (υ | x) +
∑
i

εi

=
∑
υ 6=y

n

2
P (υ | x) + nP (y | x) +

∑
εi

=
n

2
(1 + P (y | x)) +

∑
εi.

This gives pecoc(y | x) = P (y | x) + 2
n

∑
i εi, for

squared loss (pecoc(y | x) − P (y | x))2 = (2
n

∑
i εi)

2.
One of the subsets, say the first, is trivial (it includes
all labels), and for it we stipulate the true probability
r1 = 1, so ε1 = 0. Letting Eiεi denote the mean of the
other n− 1 errors εi, the squared loss is (2n−1

n Eiεi)2,
establishing the theorem.

4 Online Tree Construction

The analysis of Section 3.1.1 applies to any binary tree,
and motivates the creation of trees which have small
depth and small regret at the nodes. This leaves the
question, “Which tree should we use?” We give an
online tree construction algorithm with several use-
ful properties. In particular, the algorithm doesn’t
require any prior knowledge of the labels, and takes
O(log n) computation per example, when there are n
labels. The algorithm guarantees a tree with O(log n)
maximum depth using a decision rule that trades off
between depth and ease of prediction.

4.1 Online Tree Building Algorithm

Algorithm 3 builds and maintains a tree, whose leaves
are in one-to-one correspondence with the labels seen
so far. Each node i in the tree is associated with a
regressor fi : X → [0, 1]. Given a new sample (x, y) ∈
X × Y , we consider two cases.

If y already exists as a label of some leaf in the tree,
then there is an associated root-to-leaf path and we can
use the conditional probability tree algorithms of the
previous section to train and test on (x, y), with one
minor modification when training: we add a regressor
at the leaf and train it with the example (x, 0).

If y does not exist in the tree, then the algorithm still
traverses the tree to some leaf j, using a decision rule
that computes a direction (left or right) at each non-
leaf node encountered. Once leaf j is reached, it nec-
essarily corresponds to some label y′ 6= y. We convert
j to a non-leaf node with left child y′ and right child
y. The regressor at node j is duplicated for y′. A new
regressor is created for y and trained on the example
(x, 0).

We now describe the decision rule used to decide which
way to go (left or right) at each non-leaf node i en-
countered during the traversal. First, let Li denote
the number of children to the left of node i, and Ri
the number to the right. If fi(x) > 1/2, where fi(x)
is the current prediction associated with node i on x,
then the regressor favors the right subtree for this in-
put, and otherwise the left subtree. If the regressor
favors the side with the smaller number of elements,
then this direction is chosen. If the regressor favors
the side with more elements, then the algorithm faces
a dilemma. On one hand, sending the new label to the
right would result in a more highly balanced tree, but
on the other hand it would result in a training sam-
ple disagreeing with the current regressor’s prediction.
Our resolution is to define an objective function

obj(p, L,R, α) = (1− α)2(p− 1
2) + α log2

L
R

Algorithm 3: Online conditional probability tree
(CPT) Training (regression algorithm R, aggressive-
ness α)
create the root node r
foreach example (x, y) do

if y has been seen previously then
For each i ∈ T (y), train fi with (x, righti(y)).

else
Set i = r.
while i is not a leaf do

if obj(fi(x), Li, Ri, α) > 0 then c = 1
(right)
else c = 0 (left)
Train fi with example (x, c)
Set i to the child of i corresponding to c

Create children of leaf i:
left with a copy of i (including fi),
right with label y trained on (x, 0).

Train fi with (x, 1).

and send the label to the right of node i if

obj(fi(x), Li, Ri, α) > 0. (5)

Here α is a free parameter set for the run of the entire
algorithm. When α = 1, the rule indicates that we
should place new labels on the side with fewer current
labels, resulting in a perfectly balanced tree. When
α = 0, the direction chosen is always the one currently
favored by the regressor. A trade-off between these two
objectives is provided by values of α between these two
extremes.

Pseudo-code is provided in Algorithm 3.

4.2 Online Tree Building Analysis

In this section we analyze Algorithm 3. Throughout
the section, for any tree node under consideration, we
will use N for the total number of leaves under the
node, L the number on the left and R on the right,
with L + R = N . We note that rule (5) is symmetric
with respect to L and R. We also define

κ =
1

1 + 21−1/α
.

Claim (6) will establish that at most about a fraction
κ of the leaves can fall on either side of a node, with
κ = 1/2 for α = 1 and κ→ 1 as α→ 0.

Claim 5. If a node has L leaves in its left subtree, R
in the right, and N = L + R altogether, if R/N > κ
then a new leaf is added to the left subtree regardless of
the prediction value p at the node (and symmetrically
for L).

Proof. For any p ∈ [0, 1],

obj(p, L,R, α) ≤ (1− α)2(1− 1
2)− (1− α)

= (1− α) + α log2
L
R ,

which is < 0 (forcing a leaf to be added to the left) if
L/R < 2

α−1
α , or equivalently if R/N > κ.

Claim 6. Under any non-leaf node, L,R < κN +(1−
κ).

Proof. We prove this inductively for R; the result for
L follows symmetrically. A non-leaf node starts with
one left and one right child, and R = L = 1, N = 2
satisfies the claim. Given that R, L, and N satisfy the
claim, we now prove that when a leaf is added, so do
the next values R′ (either R or R+1), L′ (respectively
L+ 1 or L), and N ′ = N + 1. There are two cases. If
R < κN then

R′ ≤ R+ 1 < κN + 1 = κ(N ′ − 1) + 1 = κN ′ + 1− κ.

If R ≥ κN then the next addition is to L not R, and

R′ = R ≤ κN + 1− κ < κN ′ + 1− κ.

Theorem 7. For all regressors at the nodes of the tree,
for all learning problems on n labels, for all α ∈ (0, 1]
the depth of the tree is at most log n/log κ+ 2.

Proof. If the root node has n leaves below it, then by
the preceding claim a child (“depth 1”) of the root has
at most κn+ (1− κ) leaves, a grandchild has at most
κ2n + κ(1 − κ) + (1 − κ) leaves, and a depth-d child
has at most

κdn+ κd−1(1− κ) + · · ·+ k(1− κ) + (1− κ) ≤ κdn+ 1

leaves, using
∑∞
d=0 κ

d = 1/(1 − κ). With d =
−dlnn/ lnκe, a depth-d child has at most 2 leaves,
and thus further depth one, and we add one more to
account for the ceiling function.

Definition 8. A disagreement is the event when a
new label reaches a node, and the algorithm decides
to insert it in the subtree that is not preferred by the
regressor.

That is, a disagreement occurs when the regressor’s
prediction is at most 1/2 and the label is inserted to
the right, or when the prediction is greater than 1/2
and the label is inserted to the left.

Note that the number of disagreements incurred when
adding a new label (leaf) is at most the depth of that
leaf, and as the tree evolves the “same” leaf (per the
copying rule of the algorithm) may become deeper but

never shallower. Thus the total number of disagree-
ments incurred in building a tree is at most the sum
of the depths of all leaves of the final tree.

To get a grasp on this quantity, for simplicity we dis-
regard the additive 1 − κ in Claim 6 coming from
adding vertices discretely, one at a time. (The effect
is most dramatic when a node has just two children,
L = R = 1, and adding a leaf necessarily produces a
lopsided tree with L = 1 and R = 2 or vice-versa. For
large values of L + R = N the effect of discretization
is negligible.)

As usual, for a node in a tree let L be the number of
leaves in its left subtree, R in the right, N = L+R.

Theorem 9. Let T be an n-leaf binary tree in which
for each node, L,R ≤ κN . Then the total of the depths
of the leaves of T is at most d(n) = n log n/H(κ),
where H(κ) = −κ log κ− (1− κ) log(1− κ).

Proof. The proof is by induction on n, starting from
the base case n = 2 where the total of the depths
(or total depth for short) is 2. It is well known that
the entropy function H(κ) is maximized by H(1/2) =
log 2, so in the base case we do indeed have 2 ≤ d(n)
since d(n) ≥ 2 log 2/ log 2 = 2.

Proceeding inductively, the total depth for an N -leaf
tree with L- and R-leaf subtrees is the total depth of
L (at most d(L)), plus the total depth of R (at most
d(R)), plus N (since each leaf is 1 deeper in the full
tree). Since d(·) is a convex function, the worst case
comes from the most unequal split, and applying the
inductive hypothesis, the total depth for N is at most

N+d(κN) + d((1− κ)N)

≤ N +
κN log(κN)

H(κ)
+

(1− κ)N log((1− κ)N)
H(κ)

= N +
N

H(κ)
(κ log κ+ κ logN

+ (1− κ) log(1− κ) + (1− κ) logN)

= N +
N

H(κ)
(−H(κ) + logN)

= N logN/H(κ)
= d(N),

completing the proof that d(N) is an upper bound.

4.3 Experiments

We conducted experiments on two datasets. The pur-
pose of the first experiment is to show that the con-
ditional probability tree (CPT) competes in predic-
tion performance with existing exponentially slower
approaches. To do this, we derive a label probability
prediction problem from the publicly available Reuters

RCV1 dataset [6]. The second experiment is a full-
scale test of the system where an exponentially slower
approach is too intractable to seriously consider. We
use a proprietary dataset that consists of webpages and
associated advertisements, where the derived problem
is to predict the probability that an ad would be dis-
played on the webpage.

Each dataset was split into a training and test set.
Each training or test sample is of the form (x, y). The
algorithms train on the training set and produce a
probabilistic rule f(·, ·) that maps pairs of the form
(x, y) to numbers in the range [0, 1], where we inter-
pret f(x, y) as an approximation to P (y | x). The
algorithms are evaluated on the test set by computing
the empirical squared loss,

∑
(x,y)(1 − f(x, y))2. The

algorithms are allowed to continue learning as they are
tested, however the predictions f(x, y) used above are
computed before training on the sample (x, y). This
type of evaluation is called “progressive validation” [1]
and accurately measures the performance of an online
algorithm. In particular, it is an unbiased estimate
of the algorithm’s performance under the assumption
that the (x, y) pairs are identically and independently
distributed. In the motivating applications of our al-
gorithm, we expect new labels to appear throughout
the learning process, which requires learning to oc-
cur continually in an online fashion. Thus, turning
learning off and computing a “test loss” is less natu-
ral. Nevertheless, for the Reuters dataset, we verified
that the test loss and progressive validation are quite
similar. For the web advertising dataset, the two mea-
sures were drastically different (all methods performed
much worse under test loss), due to the large number
of labels that appear only in the test set.

The CPT algorithm was executed with three tree-
building construction methods: a random tree where
uniform random left/right decisions were made until
a leaf was encountered, a balanced tree according to
algorithm 3 with α = 1, and a general tree according
to algorithm 3 with α < 1. For the binary regression
problems (at the nodes), we used Vowpal Wabbit [5],
which is a simple linear regressor trained by stochas-
tic gradient descent. One essential enabling feature of
VW is a hashing trick (described in [11, 12]) which al-
lows us to represent 1.7M linear regressors on a sparse
feature space in a reasonable amount of RAM.

4.3.1 Reuters RCV1

The Reuters dataset consists of about 800K docu-
ments, each assigned to one or more categories. A
total of approximately 100 categories appear in the
data. We split the data into a training set of 780K
documents and a test set of 20K documents, opposite
to its original use. For each document doc, we formed

an example of the form (x, y), as follows. The vector x
uses a “bag of words” representation of doc, weighted
by the normalized TF-IDF scores, exactly as done in
the paper [6]. The label y is one of the categories
assigned to doc, chosen uniformly at random if more
than one category was assigned to doc.

We compared the CPT to the one-against-all algo-
rithm, a standard approach for reducing multi-class
regression to binary regression. The one-against-all
approach regresses on the probability of each category
c versus all other categories. Given a base training ex-
ample (x, y), the example used to train the regressor fc
for category c is (x, I[y = c]), where I[·] is the indicator
function. Predictions for a new test example (x, y) are
done according to fy(x). The learning algorithm used
for training the binary regressors in both approaches
was incremental gradient descent with squared loss.
For each algorithm, we ran several versions with dif-
ferent learning rates, chosen from a coarse grid, and
picked the setting that yielded the smallest training
error. For the CPT algorithm, we performed a similar
search over α.

The one-against-all approach used one pass over
the training data, while the CPT used two passes.
Note that even with an additional pass, the CPT
is much faster than one-against-all for training,
due to the fact that CPT requires training only
about log(number of categories) = log(103) regressors
(nodes in the tree) per example, whereas one-against-
all trains one regressor per category. On our machine,
the CPT took 108 seconds to train, while one-against-
all took 2300 seconds. We use Progressive Valida-
tion [1] to compute an average squared loss over the
test set with results appearing in the following table,
where the confidence intervals are computed by Ho-
effding’s inequality [3] with δ = 0.05.

One-against-all 0.55± .012
CPT with a random tree 0.56± .012
CPT with a balanced tree 0.56± .012

CPT with an online tree (α = 0.6) 0.56± .012

The values are indeed mostly identical, but CPT
achieved this performance with an order of magnitude
less computation.

Note that in this problem, there is not much advantage
in using our algorithm over using a random tree. Since
there aren’t many labels and there are many examples,
the structure of the tree is not very important. This
is confirmed by running the algorithm with various
different random trees and observing little variability
in squared loss.

4.3.2 Web Advertising

We used a proprietary dataset consisting of about 50M
pairs of webpages and associated advertisments that
were shown on the webpage. There are about 5.8M
unique webpages and 860K unique ads in the dataset.
The most frequent ad appeared in approximately 1.2%
of the cases. The events were split into a training set
of size 40M , and a test set of size 10M in time or-
der. Note that webpages and ads both appear multi-
ple times in the training and test sets. For each event,
where an event consisted of a single ad being shown on
a single webpage, we create a sample (x, y), where x is
a “bag of words” vector representation of the webpage,
and y is a unique ID associated with the advertise-
ment displayed. The learning problem is predictinge
P (y | x), or the probability that the logging policy
displays advertisement y given webpage x. Since n is
large, one-against-all would be extremely slow. The
running time for our algorithm on this dataset was
about 60 minutes. Multiplying by 860k/ log2(860k)
suggests a running time for one-aginst-all of about 5
years.

Besides the three versions of CPT described above,
we tested one other method we call the “table-based”
method. In the table-based method, we simply predict
P (y | x) by the empirical frequency with which ad y
was displayed on webpage x in the training set. The
progressive validation [1] results of the four algorithms
over the test set appear in the following table with
confidence intervals again computed using Hoeffding’s
bound for δ = 0.05.

Method Squared Loss Equivalent
Table 0.812± .00055 10.11

Random tree 0.7742± .00055 8.32
Balanced tree 0.7725± .00055 8.25

Online tree (α = 0.9) 0.7632± .00055 7.91
Best possible 0.665 5.42

Here, the “Equivalent” column is the number of la-
bels for which a uniform random process produces the
same loss. The “Best possible” line is an unachievable
bound on performance found by examining the empir-
ical frequency of ad-webpage pairs in the test set.

The magnitude of squared loss improvement is modest,
but substantial enough to be useful. Since many of the
webpages are seen many times, the conditional distri-
bution over ads can be approximated well by empiri-
cal frequencies. Thus, the table-based method forms
a strong baseline. A small but significant fraction
of the webpages were seen only a few times, and for
these webpages, it was necesssary to generalize (pre-
dict which ads would appear based on which ads ap-
peared on pages similar to the current one). On these
examples, the tree performed substantially better.

References

[1] A. Blum, A. Kalai, and J. Langford. Beating the
holdout: Bounds for k-fold and progressive cross-
validation, Proceedings of the 12th Annual Confer-
ence on Computational Learning Theory (COLT),
203–208, 1999.

[2] G. Brier. Verification of forecasts expressed in
terms of probability, Monthly Weather Review,
78(1): 1–3, 1950.

[3] W. Hoeffding. Probability inequalities for sums of
bounded random variables, Journal of the Ameri-
can Statistical Association, 58: 13–30, 1963.

[4] J. Langford and A. Beygelzimer. Sensitive Error
Correcting Output Codes, Proceedings of the 18th
Annual Conference on Learning Theory (COLT),
158–172, 2005.

[5] J. Langford, L. Li, and A. Strehl, Vowpal Wabbit
program, http://hunch.net/~vw.

[6] D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1:
A New Benchmark Collection for Text Categoriza-
tion Research, Journal of Machine Learning Re-
search, 5:361–397, 2004.

[7] T. M. Mitchell. Machine Learning, Mcgraw-Hill,
1997.

[8] A. Mnih and G. Hinton. A Scalable Hierarchical
Distributed Language Model, Advances in Neural
Information Processing Systems (NIPS) 21, 2008.

[9] J. R. Quinlan. C4.5: Programs for Machine Learn-
ing, Morgan Kaufman Publishers, 1993.

[10] Salford Systems Treenet Software,
http://www.salford-systems.com/treenet.php

[11] Q. Shi, J. Patterson, G. Dror, J. Langford, A.
Smola, A. Strehl, and V. Vishwanathan. Hash Ker-
nels, Proceedings of the 12th International Confer-
ence on Artificial Intelligence and Statistics (AIS-
TATS), 2009.

[12] K. Weinberger, A. Dasgupta, J. Atten-
berg, J. Langford, and A. Smola. Feature
Hashing for Large Scale Multitask Learning,
http://arxiv.org/abs/0902.2206.

