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Abstract

Learning the parameters of a (potentially par-
tially observable) random field model is in-
tractable in general. Instead of focussing on a
single optimal parameter value we propose to
treat parameters as dynamical quantities. We in-
troduce an algorithm to generate complex dy-
namics for parameters and (both visible and hid-
den) state vectors. We show that under certain
conditions averages computed over trajectories
of the proposed dynamical system converge to
averages computed over the data. Our “herding
dynamics” does not require expensive operations
such as exponentiation and is fully deterministic.

1 Introduction

It is well known that maximizing the likelihood of a
Markov random field (MRF) model w.r.t. its parameters is
intractable for graph structures with high treewidth. The
reason is the need to compute the derivative of the nor-
malization constant which requires inference in the MRF
model. There exist a number of approximate learning tech-
niques that attempt to address this issue (e.g. [1, 3, 15, 8,
4]). In all of these approaches the final result is a single
point estimate of parameters that in some sense approxi-
mates the corresponding maximum likelihood estimate.

Bayesian inference in Markov random fields is even harder
than ML estimation. To draw even a single sample from the
posterior distribution one needs to compute an acceptance
ratio that requires the evaluation of the partition function
twice. Approximation schemes have been developed that
work reasonably well for fully observed MRFs [6, 11] but
they require severe approximations and it is unclear if they
generalize well to MRF models with hidden variables.

In a nutshell, the following factors make traditional learn-
ing approaches “awkward”: 1) At every iteration of learn-
ing the average sufficient statistics over the model need to

be computed (which is highly intractable). 2) Learning is
slow because it is a “double loop” algorithm with inference
as the inner loop and parameter learning as the outer loop.
Usually in both loops we are facing slow (linear) conver-
gence. 3) Both inner and outer loops can can be understood
as optimization problems on highly non-convex functions
(the exception being fully observed MRFs where the like-
lihood surface is actually convex as a function of the pa-
rameters). 4) Once the model is learned one often needs
to collect samples from it. Again, samplers can easily get
stuck in local modes from which they will not mix away,
leading to suboptimal final estimates of the quantities of
interest. The question addressed in this paper is whether
can we resolve all of these problems in one go by changing
the way we view “learning”.

In [10] we proposed a new perspective on “learning” fully
observed MRF models that draws inspiration from findings
in neuroscience, namely that synapses change their efficacy
on short time scales [5]. The basic idea of this algorithm
is to define a deterministic dynamics on the weights of a
MRF model that causes the associated energy function to
fluctuate in a controlled manner. In fact, at all times the lo-
cal minima of this energy surface represent examples that
“look like” the data that are used to drive this dynamics.
In that work, the input to the algorithm was the sufficient
statistics which was converted to a collection of pseudo-
samples that respected those statistics and that could be
used to estimate new quantities of interest. In this paper
we continue this development and study random field mod-
els with hidden variables. Here the focus slightly changes
because we will now be given the actual dataset (instead
of just the sufficient statistics) and aim to produce hidden
representations that generalize better than the original data
representation.

The ideas presented in this paper are related to recent devel-
opments in learning Markov random fields using insights
from stochastic approximation theory [13, 14]. The idea
is that the stochastic simulation from the model (needed to
compute the likelihood gradients) is never “reset”. Instead,
it continues where it left off before the last parameter up-



date (see e.g. [7, 8, 9] for more details).

Our method departs from these learning approaches in that
our goal is never to converge to a single parameter estimate.
Instead, in a spirit that is somewhat akin to sampling from
the posterior distribution using a Markov chain, we produce
a sequence of weights and a sequence of “pseudo-samples”.
The latter represent low energy configurations of the fluc-
tuating energy surface. Unlike sampling from the posterior
however, the algorithm we propose is tractable. In fact,
to execute herding one only needs very basic operations
such as addition, multiplication and maximization. Impor-
tantly, it doesn’t require exponentiation or random number
generation. This could make the proposed algorithm “neu-
rally plausible” and well suited for hardware implementa-
tion. Additional advantages include scale invariance under
rescaling of the weights and the absence of “fudge factors”
such as stepsize, momentum or weight decay.

2 Zero Temperature Limit of ML

Consider a collection of discrete random variables (x, z),
where x will be observed and z will remain hidden. Subsets
of variables will be denoted with xα, zα, where each subset
is associated with a feature gα(xα, zα). With each feature
we also associate a weight wα. Given these quantities we
can write the following Gibbs distribution,

pw(x, z) =
1

Z(w)
exp

(∑
α

wαgα(xα, zα)

)
(1)

The log-likelihood ` for a dataset {xn}, n = 1..N is de-
fined as,

` =
1
N

∑
n

log
∑
zn

exp(
∑
α

wαgα(xαn, zαn))− log Z(w).

(2)
We will denote the point estimate that maximizes this log-
likelihood with w∗.

Introducing a variational posterior distribution Qn(zn) we
rewrite ` as,

` =
1
N

∑
n

max
Qn

[∑
α

wαE[gα(xαn, zαn)]Qn +H(Qn)

]

− log Z(w) (3)

where H(P ) = −∑
y P (y) log P (y) is the entropy of P .

In a similar spirit, the second term can also be written vari-
ationally by introducing distributions R(z,x),

` =
1
N

∑
n

max
Qn

[∑
α

wαE[gα(xαn, zαn)]Qn +H(Qn)

]

−max
R

[∑
α

wαE[gα(xα, zα)]R +H(R)

]
(4)

We can define a joint function ˜̀({Qn}, R,w) by removing
the maximization operations in the expression above. It’s
relation (for any {Qm, R}) to `(w) is then given by

˜̀= `− 1
N

∑
n

KL[Qn(zn)||Pw(zn|xn)]

+ KL[R(x, z)||Pw(x, z)] (5)

We can interpret the variational expression of Eqn.4 as a
maximum entropy problem with hidden variables. In par-
ticular, we can reorder to find,

` = max
{Qn}

min
R

1
N

∑
n

H(Qn)−H(R)

+
∑
α

wα

(
1
N

∑
n

E[gα(xαn, zαn)]Qn − E[gα(xα, zα)]R

)

(6)

In this expression the weights wα act as Lagrange multipli-
ers enforcing the constraint: 1

N

∑
n E[gα(xαn, zαn)]Qn =

E[gα(xα, zα)]R. Note that in addition to satisfying these
constraints this optimization problem seeks to achieve high
entropy for the distributions {Qn} and R. However the en-
tropy for {Qn} and R have reversed signs in the objective
leading to a minimax problem.

We now introduce a temperature by replacing wα →
wα/T, ∀α. Taking the limit T → 0 of `T , T` we see that
the entropy terms vanish. For a given value of w and in
the absence of entropy, the optimal distributions {Qn} and
R are delta-peaks and their averages can thus be replaced
with maximizations, resulting in the objective,

`0(w) =
1
N

∑
n

max
zn

[∑
α

wαgα(xαn, zαn)

]

−max
s

∑
α

[wαgα(sα)] (7)

where we renamed sα = (xα, zα).

In the next section we will study this function more closely.

3 Tipi Functions

The results derived in this section are in close analogy to
the results obtained in [10] but also have important differ-
ences.

First we define {z∗n, s∗} to be the values that maximize
their respective terms in Eqn.7. One can then easily ob-
serve that `0 is locally linear in w and that its derivative
w.r.t. wα is given by,

∇wα`0 =

[
1
N

∑
n

gα(xαn, z∗αn)

]
− gα(s∗α) (8)

Note that
∑

α wα∇wα`0 = `0.

The following properties hold for `0.



P1. `0 is continuous piecewise linear (C0 but not C1). It
is clearly linear in w as long as the states {z∗n, s∗} that min-
imize their respective energies don’t change. However, for
different values of w we may have different “maximizing”
states {z∗n, s∗} implying that the derivative 8 changes dis-
continuously. Note however that `0 itself is continuous be-
cause it is the difference between two maximizations over
a set hyper-planes.

P2. `0 is a concave, non-positive function of w with a
maximum at `0(0) = 0. This is true because we maximize
over all variables in the second term, while in the first we
clamp data-points to x. Therefore, `0 5 0. If we further-
more assume that for any direction in weight space there
are always two data-cases with different energy, we will
have `0 < 0 outside the origin which means that the max-
imum at w = 0 is unique (see also section 7). Concavity
can be proven by using a convex combination of weights∑

j pjwj and pulling the summations outside the “max”
operations. Again, because the second term maximizes
over more variables than the first term, the total result will
be a decrease in `0 which proves concavity.

P3. `0 is scale free. This follows because `0(βw) =
β`0(w) as can be easily checked. This means that the func-
tion has exactly the same structure at any scale of w.

The above properties justify the name “Tipi” function1 (see
Figure 1).
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Figure 1: Two-dimensional Tipi-function for herding with fea-
tures f(x) = sin(x) and g(x) = cos(x), x = [−π, π +
1, .., 2.86] and a uniform distribution P (x) to compute f̄ and ḡ.
Small dots represent weights sampled during herding.

In the next section we will define a dynamical system,
which we call “herding”, as gradient ascent on a Tipi func-
tion with unit (or rather arbitrary) stepsize.

1A Tipi is a native Indian dwelling.

4 Herding

We first note that due to the zero temperature limit it has
become pointless to try to locate the maximum of `0 (it
is located at w∗ = 0 as argued under P2). This is in stark
contrast to the original ML problem where we were seeking
to maximize `1. Instead we propose to run a gradient as-
cent algorithm on `0 with a fixed stepsize (the actual value
of which will turn out not to matter). Keeping Figure 1
in mind, the gradient is locally constant (and not defined
on the boundaries between flat faces). Due to the fact that∑

α wα∇wα
`0 = `0 < 0 we see that the gradient has a

component pointing towards the origin. In taking a step
along the local gradient we may enter a new linear face and
`0 may decrease as a result. So, due to the finite stepsize
η one will never converge to w = 0. In the following we
will set η = 1 because, as we will prove in section 8, the
sequence of states st, t ≥ 0 does not depend it.

The herding equations are thus,

z∗nt = arg max
zn

∑
α

wα,t−1 gα(xαn, zαn) ∀ n (9)

s∗t = arg max
s

∑
α

wα,t−1 gα(sα) (10)

wαt = wα,t−1 +

[
1
N

N∑
n=1

gα(xαn, z∗αnt)

]
− gα(s∗αt)

(11)

These equations are similar to herding for the fully ob-
served case [10], but different in the sense that we need
to impute the unobserved variables zn for every data-case
separately through maximization. The weight update also
consist of a positive “driving term”, which is now a chang-
ing average over data-cases, and a negative term which is
identical to the corresponding term in the fully observed
case.

We like to emphasize that the dynamical system is entirely
deterministic. This has advantages in terms of computa-
tion, since random number generation can be expensive.
The equations thus produce pseudo-samples that look ran-
dom, but should not be interpreted as random samples.
Also, the weights generated during the execution of the al-
gorithm should not be interpreted as samples from some
Bayesian posterior distribution.

When executing the herding equations one can empiri-
cally observe that irrespective of the initial condition every
weight configuration will converge on a unique global at-
tractor set (or invariant set). This means that, in close anal-
ogy to Markov chains, the dynamical system will forget
its initial condition. Another empirical observation is that
the dynamical system mixes very rapidly over the attractor
set which gives it a key advantage over sampling using a
Markov chain. There are many questions that remain to be



studied in relation to this attractor set. Is it unique? Does it
have fractal dimension? Can one define an invariant mea-
sure? Is this measure unique and/or ergodic?

Interestingly, the tools to investigate these questions are to
be found in a field of mathematics not usually associated
with machine learning, namely that of complex dynamical
system and chaos theory. In fact, the herding equations are
similar to dynamical systems studied in the mathematical
literature known as “piecewise isometries” [2]. Some in-
teresting properties have been proven about these systems
such as the possibility of fractal attractor sets in weight
space (so called strange attractors), the fact that the orbits
usually have infinite period, the fact that all Lyapunov ex-
ponents are 0 and the fact that the number of realizable
sequences of length n, i.e. [st+1, ..., st+n], grows poly-
nomially with n. These type of models are known in the
physics literature as “critical”, or “edge of chaos” and have
some intriguing relations to the dynamics of firing neurons,
earthquakes, sand-piles and forest fires.

In the next section we prove an important property of
herding which will clarify in what sense the sequence of
weights represents a model of the data.

5 Ergodicity

Why do we think that the herding algorithm from the previ-
ous section produces anything useful? To partially answer
that question we will now turn our attention to the proper-
ties of the sequence of states st, t = 1..∞. We claim that
under some mild conditions, time averages over these states
converge to ensemble averages over the data as expressed
by the following proposition:

Proposition 1: If ∀α limτ→∞ 1
τ wατ = 0, then

lim
T→∞

1
T

T∑
t=1

gα(sαt) → lim
T→∞

1
T

T∑
t=1

ḡαt (12)

with ḡαt = 1
N

∑N
n=1 gα(xαn, z∗αnt).

Proof:
δwαt = ḡαt − gα(sαt) (13)

with δwαt , wαt − wα,t−1. Next, average left and right
hand sides over t,

1
τ

τ∑
t=1

δwαt =
1
τ

(wατ−wα0) =
1
T

T∑
t=1

ḡαt− 1
T

T∑
t=1

gα(sαt)

(14)
Using the premise that the weights grow slower than lin-
early we see that the left hand term vanishes in the limit
τ →∞ which proves the result.

The premise that the weights grow slower than linear does
not mean that we have to be able to solve the difficult opti-
mization problems of Eqn.9 and 10. Partial progress in the

form of a few iterations of coordinate-wise ascent is often
enough to keep the weights finite. In section 7 we define a
fully tractable version of herding for which the premise to
proposition 1 holds.

These consistency equations are in direct analogy to the
maximum likelihood (ML) equations of Eqn.1 for which
the following moment matching conditions hold at the ML
estimate w∗ and for all α,

1
N

N∑
n=1

E[gα(xαn, zαn)]pw(zn|xn) = E[gα(xα, zα)]pw(z,x)

(15)
These consistency conditions alone are not sufficient to
guarantee a good model. After all, the dynamics could sim-
ply ignore the hidden variables by keeping them constant
and still satisfy the matching conditions. In this case the
hidden and visible subspaces completely decouple defeat-
ing the purpose of using hidden variables in the first place.
Note that the same holds for the ML consistency condi-
tions. However, a ML solution also strives for high entropy
in the hidden states. We believe that the herding dynamics
similarly induces entropy in the distributions for z avoiding
the decoupling phenomenon described above.

6 Recurrence

The premise for proposition 1 is that the weights do not run
away linearly. Therefore, if we can show that the weights
are contained in a compact set around the origin, then the
premise certainly holds. In this section we will assume that
we can find the global maximum for both the {zn} vari-
ables as well as for the s variables. (We call this algorithm
“idealized herding” in the following.) This assumption is
unrealistic for many real problems but in the next section
we will show that we can relax this condition by formu-
lating a fully tractable version of herding for which the
premise will also hold. Many experiments were conducted
by using a local optimization algorithm initialized at the
state from the previous time step. In almost all cases, this
was sufficient to keep the weights small (but lacks the guar-
antees). The intuitive reason is that the energy for states
that are initially hard to reach with local search, will keep
on growing until the local algorithm will be able to reach it.
This same argument was used in [8] to motivate his learn-
ing algorithm based on stochastic approximation.

We will now show that the weights in idealized herding
stay contained inside a compact set. We recall property P2
from section 3,

∑
α wα∇wα`0 = `0 < 0. We first prove a

lemma stating that the norm of the gradient of `0 is bounded
from above.

Lemma 1: If |gα(sα)| < ∞, ∀s, α, then ∃ B such that
||∇`0||2 < B.

Proof: ∇wα`0(w) = 1
N

∑N
n=1 gα(z∗αn, xαn) − gα(s∗α)



with {z∗n, s∗} the maximizing states. Since all gα(sα) are
finite for any value of s, α the norm of the gradient must be
bounded as well.

We now prove that there will be some radius R such that
the herding algorithm will always decrease the norm ||w||2.

Proposition 2: ∃ radius R such that an idealized herding
update performed outside this radius, will always decrease
the norm ||w||2.

Proof: Write the herding update as w′α = wα + ∇wα`0.
Take the inner product with w′α leading to, ||w′||22 =
||w||22 + 2

∑
α wα∇wα

`0 + ||∇wα
`0||22, which leads to

δ||w||22 < 2`0 + B2. We now use the fact that 1) `0 < 0
outside the origin (P2), 2) B is constant (i.e. doesn’t scale
with w) and 3) the scaling property `0(βw) = β`0(w)
(P3) to argue that there is always some radius R for which
δ||w||2 < 0, ∀||w||2 > R (if not, increase β by a sufficient
amount).

Corollary: ∃ radius R′ such that a herding algorithm ini-
tialized inside a ball with radius R′ will never generate
weights w with norm ||w||2 > R′.
This follows because in the worst case we could still take
one step radially outward starting somewhere on the sur-
face of the ball at radius R. Since the gradient is bounded
in magnitude by B we have that R′ 5 R+ B.

7 A Tractable Version of Herding

The results of the previous section were only valid for the
case where we could find the global minimum of the en-
ergy function. This begs the question: “did we not replace
one intractable problem for another?” The claim we have
been making throughout this paper is that much simpler
(tractable) optimization schemes, such as local minimizers
are usually sufficient to contain the weights into a com-
pact region. We reemphasize that different optimizations
schemes will lead to different invariant attractor sets and
hence possibly different generalization behavior. This in
spite of the fact that the constraints on the training data are
recovered on average for all herding variants that do not
lead to run-away dynamics of the weights.

In this section we will propose a fully tractable herding
variant that is guaranteed to remain in a compact region
of weight space under very mild conditions.

Proposition 3: Call A any tractable optimization algo-
rithm to locate a local minimum in the energy function.
This algorithm will be used to compute both z∗n and s∗.
Call EA(xn,w) = −∑

α wαgα(xn, z∗n) the energy of
data-case n (note that this definition depends on the algo-
rithm A). Assume that for every direction in weight space
there are at least two data-vectors that have a different en-
ergy. Then the following tractable herding algorithm will

remain in a compact region of weight space: Apply the
usual herding updates with the difference that the optimiza-
tion for s is initialized at the state (xn∗ , z

∗
n∗) which repre-

sents the data-case with lowest energy EA(xn∗ , z
∗
n∗).

Proof: If for every direction in weight space there are
least two data-cases with a different energy, then the av-
erage over those energies will be higher than their mini-
mum. Since energies simply scale by changing the norm of
the weight vector the result thus holds for all weight vec-
tors. We now use that

∑
α wα∇wα`0(w) = `0(w), and

the fact that `0(w) precisely equals the energy gap, to ar-
gue that for every w the gradient has a negative inner prod-
uct with the weight vector itself. Call ŵ = w/||w|| the
normalized weight vector and `0(ŵ∗) the minimal energy
gap over all normalized weight vectors ŵ. By scaling the
weight-vector w = βŵ the minimal energy-gap will also
scale: `0(βŵ∗) = β`0(ŵ∗) and can thus be made arbi-
trarily negative. Now using the fact that the gradients are
bounded in norm and using the same arguments as in the
proof of proposition 2, the result follows.

Note that the premise for this algorithm is the same as that
for herding with full maximization. Since `0 has the form
of a Tipi function any projection for which all data-cases
have the same energy would lead to a flat (horizontal) face
in the Tipi function. On this face the gradients would van-
ish and any form of herding would simply stop there. One
could encounter this degenerate Tipi function when using
trivial (e.g. constant) features. To recover from such an
issue one should simply prune these features away.

The algorithm described in this section requires one to
query all data-vectors. This makes sense in the case of
herding with hidden variables because then our objective
is to produce superior hidden representations of the origi-
nal data and the algorithm requires access to all data-cases
anyway. Ironically, for the simpler fully observed problem
[10] this approach doesn’t apply because there we only as-
sumed having access to the sufficient statistics of the data
and not the full dataset itself.

8 Invariant Transformations

We have already argued that the only effect of changing the
stepsize η is to change the scale of the invariant attractor
set of the sequence wαt. More precisely, denote vαt, t >
0 the standard herding sequence with stepsize η = 1 and
wαt, t > 0 the sequence with an arbitrary stepsize η. We
then claim that if we initialize vα,t=0 = 1

η wα,t=0 and apply
the respective herding updates for wα and vα afterwards,
the relation vαt = 1

η wαt will remain true for all t > 0
and in particular, the states st will be the same for both
sequences (for proof see below).

More generally, we will call two attractor sets equivalent if
we can find weight initializations for their respective herd-



ing updates such that the state sequences are equal. Of
course, if such a transformation does exist but one initial-
izes both sequences with arbitrary different values, then the
state sequences will not be identical. However, if one ac-
cepts the conjecture that there is a unique invariant attractor
set, then this difference can be interpreted as a difference in
initialization which only affects the transient behavior (or
“burn-in” behavior) but not the (marginal) distribution p(s)
from which the states st will be sampled.

One can now ask the question: “what group of transfor-
mations on the herding equations will result in equivalent
attractor sets”. In the proposition below we define a set
of transformations that satisfies equivalence in the above
sense.

Proposition 4: The following parameterized family of
herding equations are equivalent2:

wαt = wα,t−1 + η

(
1
N

N∑
n=1

gα(xn, z∗n,t−1)− gα(s∗t−1)

)

(16)

z∗nt = arg max
zn

∑
α

[γ(wαt + aα)]gα(xn, zn) (17)

s∗t = arg max
s

∑
α

[γ(wαt + aα)]gα(s) (18)

Proof: Define the new variables vα = 1
η (wα + aα). In

terms of these the above updates become,

ηvαt − aα = (19)

ηvα,t−1 − aα + η

(
1
N

N∑
n=1

gα(xn, z∗nt)− gα(s∗t−1)

)

z∗nt = arg max
zn

∑
α

γηvαt gα(xn, zn) (20)

s∗t = arg max
s

∑
α

γηvαt gα(s) (21)

which, after canceling terms and removing unnecessary
factors inside maximizations become equivalent to the
standard herding equations with η′ = γ′ = 1, a′α = 0.

Note that we are not allowed to use α-dependent parame-
ters ηα or γα because we can no longer pull them out of
the maximizations in steps 20 and 21. This observation im-
plies that changing the relative stepsizes between the up-
dates has an effect on the invariant attractor set and thus
potentially on the generalization performance. On the other
hand, changing the overall stepsize, or the overall scale of
the energy (i.e. the temperature) or even adding a constant
(but α dependent) offset to the weights will not change the
generalization performance.

2Note that we slightly simplified notation by removing the
cluster indices from the states and omitting ∀α etc.

The above analysis has important implications for any at-
tempts to combine herding of “fast weights” with learn-
ing of “slow weights” [9]. Adding slow and fast weights
seems doomed in the context of herding because herding
will simply compensate by shifting the attractor set. In fact,
it suggests multiplying slow and fast weights because that
will translate into a different and perhaps better herding se-
quence3.

9 Learning Versus Herding

The herding algorithm discussed in the previous section
simply turns data into an unlimited number of pseudo-
samples (denoted with {si} above). It can thus be thought
of as a kind of filter. Can we use these samples to retain
information for the long term? The situation is reverse to
what we are used to in machine learning where we first
learn the weights and subsequently sample from this model
to make inferences.

First note that we need the data to drive herding with hidden
variables. A “model” is defined to be a herding algorithm
that operates without direct access to the data. Instead it
uses a collection of summary statistics. Data enters herding
in the positive term of Eqn.11, so to run herding without
data we need to estimate the rate with which to drive the
weights. This can be achieved through the following online
averaging process:

rαt =
t− 1

t
rα,t−1 +

1
t
ḡαt , t = 1, .. (22)

with ḡαt = 1
N

∑N
n=1

∑
α wαtgα(xαn, z∗αnt) and rα0 = 0.

Once the learning phase has finished, we can decouple the
data and run herding with the rate functions rα instead.
Note however that this is an approximation since the exact
positive term is an implicit function of the weights through
z∗n(w) which we now replace with a constant function. One
could imagine learning more flexible regression functions
rα(w) to approximate ḡα(w).

Examples of constant “rate filters”, which drive the weights
connecting visible units and hidden units are given in Fig-
ure 2 for the restricted Boltzman machine described in sec-
tion 10. These filters represent transformations, that turn
one digit into another. They visualize the correlations mod-
eled by the hidden units.

This new type of “learning with dynamic synapses” may
provide an exciting alternative view of learning in the brain.
Indeed, some results in the neuroscience literature point to
the fact that synaptic efficacies change on short timescales
[5]. The computational framework of herding is one possi-
ble working model of how to compute with these dynamic
synapses.

3In [9] the slow and fast weights are added, but the fast weights
are not exactly driven by herding.



Figure 2: TOP: “Rate-filters” for digit “5” (Eqn.22 between a
hidden variable and all observed variables in a restricted Boltzman
machine (see section 10). Note that these are not average weights
Wij (which would look like random noise). Rate-filters corre-
spond to the average correlations sisj between hidden and visible
states estimated from the pseudo-samples. BOTTOM LEFT: A
sequence of (visible) states recorded during herding for the digit
“4”. Note the smooth transitions between confabulated digits.
BOTTOM RIGHT: A similar herding sequence for the digit “4”
but now using learned “rate functions”. Decoupling the data from
herding clearly makes the fantasized digits more “noisy”.

10 Experiments

We studied herding on the architecture of a restricted
Boltzman machine [3]. We used features gα(zα, yα) =
{zi, yj , ziyj} and the {−1,+1} representation because we
found it worked significantly better than the {0, 1} repre-
sentation. To increase the entropy of the hidden units we
left out the growth update for the features {zi} implying
that p(zi = 1) ≈ 0.5. The intuition is the same as for bag-
ging: we want to create a high diversity of (almost indepen-
dent) ways to reconstruct the data because it will reduce
the variance when making predictions. We observed that
high entropy hidden representations automatically emerged
when using a large number of hidden units. In contrast, for
a small number of hidden units (say K < 30) there is a
tendency for the system to converge on low entropy repre-
sentations and the trick delivers some improvement.

We applied herding to the USPS Handwritten Digits
dataset4 which consists of 1100 examples of each digit 0
through 9 (totalling 11,000 examples). Each image has 256
pixels and each pixel has a value between [1..256] which
we turned into a binary representation through the mapping

4Downloaded from http://www.cs.toronto.edu/∼roweis/data.html
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Figure 3: Classification results on USPS digits. 700 digits per
class were used for training, 300 for validation and 100 for test-
ing. Shown are average results over 4 different splits and their
standard errors. From left to right: MLR (multinomial logis-
tic regression), 1NN (1-nearest neighbor), H1-H5 (herding using
local optimization with 50,100,250,500 and 1000 hidden units
respectively), SH1-SH5 (safe, tractable herding from section 7
with 50,100,250,500 and 1000 hidden units respectively), CD1-
CD3 (contrastive divergence with 50,100,250 hidden units respec-
tively) and PCD (persistent CD with 500 hidden units).

X ′
i = 2Θ(Xi/256−0.2)−1 with Θ(x > 0) = 1 and 0 oth-

erwise. Each digit class was randomly split into 700 train,
300 validation and 100 test examples. As benchmarks we
used 1NN using Manhattan distance and multinomial lo-
gistic regression, both in pixel space.

We used two versions of herding, one where the maximiza-
tion over s was initialized at the value from the previous
time step (H) and one where we initialize at the data-case
with the lowest energy (SH – the algorithm from section
7). In both cases we ran herding for 2000 iterations for
each class individually. During the second 1000 iterations
we computed the energies for the training data in that class,
as well as for all validation and test data across all classes.
At each iteration we then used the training energies to stan-
dardize the validation and test energies by computing their
Z-scores: E′

i = (Ei − µtrn)/σtrn where µtrn and σtrn repre-
sent the mean and standard deviation of the energies of the
training data at that iteration. The standardized energies
for test and validation data were subsequently averaged
over herding iterations (using online averaging). Once we
have collected these average standardized energies across
all digit classes we fit a multinomial logistic regression
classifier to the validation data, using the 10 class-specific
energies as features.

We also compared these results against models learned
with contrastive divergence [3] (CD) and persistent CD [8]



(PCD). For both CD and PCD we first applied (P)CD learn-
ing for 1000 iterations in batch mode, using a stepsize of
η = 1E − 3. A momentum parameter of 0.9 and 1-step
reconstructions were used for CD. No momentum and a
single sample in the negative phase was used for PCD. In
the second 1000 iterations we continued learning but also
collected standardized validation and test energies as be-
fore which we subsequently used for classification. We
have also experimented with chains of length 10 and found
that it didn’t improved the results but became prohibitively
inefficient. To improve efficiency we experimented with
learning in mini-batches but this degraded the results sig-
nificantly, presumably because the number of training ex-
amples used to standardize the energy scores became less
reliable.

The results reported in Figure 3 show the classification re-
sults averaged across 4 runs with different splits and for
different values of hidden units. Without trying to claim
superior performance we merely want to make the case that
herding can be leveraged to achieve state-of-the-art perfor-
mance (note that USPS error rates are higher than MNIST
error rates). We also see that the tractable version of herd-
ing did not perform as well as the herding using local opti-
mization, which in turn performed equally well as learning
a model using CD. Persistent CD did not give very good
results presumably because we did not use optimal settings
for step-size, weight-decay etc. It is finally interesting to
observe that there does not seem to be any sign of over-
fitting for herding. For the model with 1000 hidden units,
the total number of real parameters involved is around 1.5
million which represents more capacity than the 1.5 million
binary pixel values in the data.

11 Discussion

Herding reminds us of a form of unsupervised bagging or
boosting where many weak models are combined into one
powerful predictor (see also [12]). It does not rely on ex-
pensive operations such as random number generation and
exponentiation and is therefore ideally suited for hardware
implementation. Finally, there may be exciting connections
to the concept of dynamical weights in neuroscience.

Herding effectively considers weights as a kind of nuisance
parameters. It can be seen as a procedure to “marginal-
ize out” these weights resulting in a non-parametric encod-
ing of the model, namely as a collection of samples. Deep
learning is a suitable playing field for herding since for this
task one cares more about the representations of the hid-
den layers than about the weights. Stacking RBMs seems
straightforward in theory but many hurdles may have to
be overcome before “deep herding” will become practical.
Another obvious direction for future research is herding in
the context of conditional random fields.
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