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Abstract

We outline a representation for discrete mul-
tivariate distributions in terms of interven-
tional potential functions that are globally
normalized. This representation can be
used to model the effects of interventions,
and the independence properties encoded in
this model can be represented as a directed
graph that allows cycles. In addition to dis-
cussing inference and sampling with this rep-
resentation, we give an exponential family
parametrization that allows parameter esti-
mation to be stated as a convex optimiza-
tion problem; we also give a convex relax-
ation of the task of simultaneous parame-
ter and structure learning using group `1-
regularization. The model is evaluated on
simulated data and intracellular flow cytom-
etry data.

1 Introduction

Graphical models provide a convenient framework for
representing independence properties of multivariate
distributions (Lauritzen, 1996). There has been sub-
stantial recent interest in using graphical models to
model data with interventions, that is, data where
some of the variables are set experimentally. Directed
acyclic graphical (DAG) models represent a joint dis-
tribution over variables as a product of conditional
probability functions, and are a convenient frame-
work for modeling interventional data using Pearl’s
do-calculus (Pearl, 2000). However, the assumption of
acyclicity is often inappropriate; many models of bio-
logical networks contain feedback cycles (for example,
see Sachs et al. (2005)). In contrast, undirected graph-
ical models represent a joint distribution over variables
as a globally normalized product of (unnormalized)
clique potential functions, allowing cycles in the undi-

rected graph. However, the symmetry present in undi-
rected models means that there is no natural notion
of an intervention: For undirected models, there is no
difference between observing a variable (‘seeing’) and
setting it by intervention (‘doing’).

Motivated by the problem of using cyclic models for
interventional data, in this paper we examine a class of
directed cyclic graphical models that represent a dis-
crete joint distribution as a globally normalized prod-
uct of (unnormalized) interventional potential func-
tions, leading to a convenient framework for building
cyclic models of interventional data. In §2, we review
several highlights of the substantial literature on di-
rected cyclic graphical models and the closely related
topic of representing distributions in terms of condi-
tional functions. Subsequently, we discuss represent-
ing a joint distribution over discrete variables with in-
terventional potential functions (§3), the Markov in-
dependence properties resulting from a graphical in-
terpretation of these potentials (§4), modeling the ef-
fects of interventions under this representation (§5),
interpreting the model and interventions in the model
in terms of a data generating process involving feed-
back (§6), inference and sampling in the model (§7),
parameter estimation with an exponential family rep-
resentation (§8), and a convex relaxation of structure
learning (§9). Our experimental results (§10) indicate
that this model offers an improvement in performance
over both directed and undirected models on both sim-
ulated data and the data analyzed in (Sachs et al.,
2005).

2 Related Work

Our work is closely related to a variety of previous
methods that express joint distributions in terms of
conditional distributions. For example, the classic
work on pseudo-likelihood for parameter estimation
(Besag, 1975) considers optimizing the set of condi-
tional distributions as a surrogate to optimizing the



joint distribution. Heckerman et al. (2000) have ad-
vocated the advantages of dependency networks, di-
rected cyclic models expressed in terms of conditional
probability distributions (where ‘pseudo-Gibbs’ sam-
pling is used to answer probabilistic queries). They
argue that the set of conditional distributions may be
simpler to specify than a joint distribution, and can be
computationally cheaper to fit. Closely related to de-
pendency networks is the work of Hofmann and Tresp
(1997), as well as work on conditionally specified dis-
tributions (Arnold et al., 2001; Heckerman et al., 2004)
(and the references contained in these works). How-
ever, to our knowledge previous work on these models
has not considered using globally normalized ‘condi-
tional’ potential functions and trying to optimize the
joint distribution defined by their product, nor has it
considered modeling the effects of interventions.

Our work is also closely related to work on path
diagrams and structural equation models (SEMs)
(Wright, 1921), models of functional dependence that
have long been used in genetics, econometrics, and the
social sciences (see Pearl (2000)). Spirtes (1995) dis-
cusses various aspects of ‘non-recursive’ SEMs, which
can be used to represent directed cyclic feedback pro-
cesses (as opposed to ‘recursive’ SEMs that can be
represented as a DAG). Spirtes (1995) shows that d-
separation is a valid criterion for determining inde-
pendencies from the graph structure in linear SEMs.
Pearl and Dechter (1996) prove an analogous result
that d-separation is valid for feedback systems involv-
ing discrete variables. Modeling the effects of interven-
tions in SEMs is discussed in (Strotz and Wold, 1960).
Richardson (1996a,b) examines the problem of decid-
ing Markov equivalence of directed cyclic graphical
models, and proposes a method to find the structure of
directed cyclic graphs. Lacerda et al. (2008) recently
proposed a new method of learning cyclic SEMs for
certain types of (non-interventional) continuous data.
The representation described in this paper is distinct
from this prior work on directed cyclic models in that
the Markov properties are given by moralization of the
directed cyclic graph (§4), rather than d-separation.
Further, we use potential functions to define a joint
distribution over the variables, while SEMs use deter-
ministic functions to define the value of a child given
its parents (and error term).

A third thread of research related to this work is
prior work on combinations of directed and undi-
rected models. Modeling the effects of interventions
in chain graphs is thoroughly discussed in Lauritzen
and Richardson (2002). Chain graphs are associated
with yet another set of Markov properties and, unlike
non-recursive SEMs and our representation, require
the restriction that the graph contains no partially di-

rected cycles. Also closely related are directed factor
graphs (Frey, 2003), but no interventional semantics
have been defined for these models.

3 Interventional Potential
Representation

We represent the joint distribution over a set of dis-
crete variables xi (for i ∈ {1, . . . , n}) as a globally
normalized product of non-negative interventional po-
tential functions

p(x1, . . . , xn) =
1
Z

n∏
i=1

φ(xi|xπ(i)),

where π(i) is the set of ‘parents’ of node i, and the
function φ(xi|xπ(i)) assigns a non-negative potential
to each joint configuration of xi and its parents xπ(i).
The normalizing constant

Z =
∑
~x

∏
i

φ(xi|xπ(i)),

enforces that the sum over all possible configurations
of ~x is unity. In contrast, undirected graphical models
represent the joint distribution as a globally normal-
ized product of non-negative potential functions de-
fined on a set of C cliques,

p(x1, . . . , xn) =
1
Z

C∏
c=1

φ(xc).

While in undirected graphical models we visualize the
structure in the model as an undirected graph with
edges between variables in the same cliques, in the in-
terventional potential representation we can visualize
the structure of the model as a directed graphG, where
G contains a directed edge going into each node from
each of its parents. The global normalization allows
the graph G defining these parent-child relationships
to be an arbitrary directed graph between the nodes.

We obtain DAG models in the special case where
the graph G is acyclic and for each node i the
potentials satisfy the local normalization constraint
∀xπ(i)

∑
xi
φ(xi|xπ(i)) = 1. With these restrictions, the

interventional potentials represent conditional proba-
bilities, and it can be shown that Z is constrained to
be 11. However, unlike DAG models, in our new rep-
resentation the potentials do not need to satisfy any

1Because the global normalization makes the distri-
bution invariant to re-scaling of the potentials, the dis-
tribution will also be equivalent to a DAG model un-
der the weaker condition that the graph is acyclic and
for each node i there exists a constant ci such that
∀xπ(i)

∑
xi
φ(xi|xπ(i)) = ci. The conditional probability

functions in the corresponding DAG model are obtained
by dividing each potential by the appropriate ci.



Figure 1: The Markov blanket for node (T) includes
its parents (P), children (C), and co-parents (Co). The
node labeled C/P is both a child and a parent of T,
and together they form a directed 2-cycle.

local normalization conditions, p(xi|xπ(i)) will not gen-
erally be proportional to φ(xi|xπ(i)), and G is allowed
to have directed cycles.

4 Markov Independence Properties

We define a node’s Markov blanket to be its parents,
children, and co-parents (other parents of the node’s
children). If the potential functions are strictly posi-
tive, then each node in the graph is independent of all
other nodes given its Markov blanket:

p(xi|x−i) =
p(xi, x−i)∑
x′i
p(x′i, x−i)

=

1
Z
φ(xi|xπ(i))

∏
j 6=i,i/∈π(j)

φ(xj |xπ(j))
∏

j 6=i,i∈π(j)

φ(xj |xπ(j))

∑
x′i

1
Z
φ(x′i|xπ(i))

∏
j 6=i,i/∈π(j)

φ(xj |xπ(j))
∏

j 6=i,i∈π(j)

φ(xj |x′i, xπ(j)\i)

=

φ(xi|xπ(i))
∏

j 6=i,i∈π(j)

φ(xj |xπ(j))∑
x′i

φ(x′i|xπ(i))
∏

j 6=i,i∈π(j)

φ(xj |x′i, xπ(j)\i)
= p(xi|xMB(i)).

Above we have used x−i to denote all nodes except
node i, and xMB(i) to denote the nodes in the Markov
blanket of node i. Figure 1 illustrates an example of a
node’s Markov blanket.

In addition to this local Markov property, we can also
use graphical operations to answer arbitrary queries
about (conditional) independencies in the distribution.
To do this, we first form an undirected graph by (i)
placing an undirected edge between all co-parents that

are not directly connected, (ii) replacing all directed 2-
cycles with a single undirected edge, and (iii) replacing
all remaining directed edges with undirected edges. To
test whether a set of nodes P is independent of another
set Q conditioned on a set R (denoted P ⊥ Q|R), it is
sufficient to test whether a path exists between a node
in P and a node in Q that does not pass through any
nodes in R. If no such path exists, then the factoriza-
tion of the joint distribution implies P ⊥ Q|R. This
procedure is closely related to the separation criterion
for determining independencies in undirected graphi-
cal models (see Koller and Friedman (2009)), and it
follows from a similar argument that this test for in-
dependence is sound2.

5 Effects of Interventions

Up to this point, the directed cyclic model can be
viewed as a re-parameterization of an undirected
model. In this section we consider interventional data,
which is naturally modeled using the interventional po-
tential representation, but is not naturally modeled by
the (symmetric) clique potentials used in undirected
graphical models.

In DAG models, we can incorporate an observation
that a variable xi takes on a specific value using the
rules of conditional probability (eg. p(x2:n|x1) =
p(x1:n)/p(x1)). To model the effect of an intervention,
where a variable xi is explicitly forced to take on a spe-
cific value, we first remove the conditional mass func-
tion p(xi|xπ(i)) from the joint probability, and then use
the rules of conditional probability on the resulting
modified distribution (Pearl, 2000). Viewed graphi-
cally, removing the term from the joint distribution
deletes the edges going into the target of intervention,
but preserves edges going out of the target.

By working with the interventional potential represen-
tation, we can define the effect of setting a variable
by intervention analogously to DAG models. Specifi-
cally, setting a node xi by intervention corresponds to
removing the potential function φ(xi|xπ(i)) from the
joint distribution. The corresponding graphical oper-
ation is similar to DAG models, in that edges going
into targets of interventions are removed while edges
leaving targets are left intact3. In the case of directed

2For a specific set of interventional potential functions,
there may be additional independence properties that are
not encoded in the graph structure (for example, if we
have deterministic dependencies or if we enforce the lo-
cal normalization conditions needed for equivalence with
DAG models). However, these are a result of the exact po-
tentials used and will disappear under minor perturbations
of their values.

3The effect of interventions for SEMs is also analogous,
in that an intervention replaces the structural equation for



Figure 2: Effects of interventions for a single directed
edge (top) and a directed 2-cycle (bottom). On the left
side we show the unmodified graph structure. On the
right side, we show the effect on the graph structure of
intervening on the shaded node. For a single edge, the
intervention leaves the graph unchanged if the parent
is the target, and severs the edge if the child is the
target. For the directed 2-cycle, we are left with a
single edge leaving the target.

2-cycles, the effect of an intervention is thus to change
the directed 2-cycle into a directed edge away from the
target of intervention. Figure 2 illustrates the effects
of interventions in the case of a single edge, and in the
case of a directed 2-cycle. The independence prop-
erties of the interventional distribution can be deter-
mined graphically in the same way as the observational
(non-interventional) distribution, by working with the
modified graph. Note that intervention can not only
affect the independence properties between parent and
child nodes, but also between co-parents of the node
set by intervention. Figure 3 gives an example.

These interventional semantics distinguish the inter-
ventional potential representation of an undirected
model from the clique potential representation. Intu-
itively, we can think of the directions in the graph as
representing undirected influences that are robust to
intervention on the parent but not the child. That is, a
directed edge from node i to j represents an undirected
statistical dependency that remains after intervention
on node i, but would not exist after intervention on
node j.

6 A Data Generating Process

Following §6 of Lauritzen and Richardson (2002), we
can consider a Markov chain Monte Carlo method for
simulating from a distribution represented with inter-

the target of intervention with a simple assignment oper-
ator (Strotz and Wold, 1960). Graphically, this modifies
the path diagram so that edges going into the target of in-
tervention are removed but outgoing edges are preserved.

Figure 3: Independence properties in a simple graph
before and after intervention on node T. From left to
right we have (a) the original graph, (b) the undirected
graph representing independence properties in the ob-
servational distribution, (c) the modified graph after
intervention on T, and (d) the undirected graph repre-
senting independence properties in the interventional
distribution.

ventional potentials. In particular, consider the ran-
dom Gibbs sampler where, beginning from some ini-
tial ~x0, at each iteration we choose a node i at random
and sample xi according to p(xi|xMB(i)). If we stop
this algorithm after a sufficiently large number of it-
erations that the Markov chain was able to converge
to its stationary (equilibrium) distribution, then the
final value of ~x represents a sample from the distribu-
tion. This data generating process involves feedback
in the sense that the value of each node is affected by
all nodes connected (directly or indirectly) to it in the
graph. However, this process is different than previous
cyclic feedback models in that the instantaneous value
of a variable is determined by its entire Markov blan-
ket (as in undirected models), rather than its parents
alone (as in directed models).

The data generating process under conditioning (by
observation) sets the appropriate values of ~x0 to their
observed values, and does not consider selecting ob-
served nodes in the random update. The data gen-
erating process under intervention similarly excludes
updating of nodes set by intervention. However, in-
terventions can also affect the updating of nodes not
set by intervention, since (i) a child set by intervention
may be removed from the Markov blanket, and/or (ii)
co-parents of a child set by intervention may be re-
moved from the Markov blanket. From this perspec-
tive, we can give an interpretation to interventions in
the model; an intervention on a node i will remove or
modify (in the case of a directed 2-cycle) the instanta-
neous statistical dependencies between node i and its
parents (and between co-parents of node i) in the equi-
librium distribution. Of course, even if instantaneous
statistical dependencies are removed between a parent
and child in the equilibrium distribution, the child set
by intervention may still be able to indirectly affect its



parent in the equilibrium distribution if other paths
exist between the child and parent in the graph.

7 Inference and Sampling

When the total number of possible states is small, in-
ference in the model can be carried out in a straightfor-
ward way. Computing node marginals involves sum-
ming the potentials for particular configurations and
dividing by the normalizing constant

p(xi = c) =
1
Z

∑
~x

Ic(xi)
∏
j

φ(xj |xπ(j)),

where Ic(xi) is the indicator function, taking a value
of 1 when xi takes the state c and 0 otherwise.

Computing marginals over the configurations of sev-
eral nodes is performed similarly, while inference with
observations can be computed using the rules of con-
ditional probability. We model interventions by re-
moving the appropriate interventional potential func-
tion(s) and computing a modified normalizing con-
stant Z ′; the rules of conditional probability are then
used on the modified distribution. For example, if we
intervene on node k, we can compute the marginal of
a node i (for i 6= k) using

p(xi = c|do(xk)) =
1
Z ′

∑
x−k

Ic(xi)
∏
j 6=k

φ(xj |xπ(j)),

where the modified normalizing constant is

Z ′ =
∑
x−k

∏
j 6=k

φ(xj |xπ(j)).

We can generate samples from the model using an
inverse cumulative distribution function method; we
generating a uniform deviate U in [0, 1], then compute
each term in the sum

∑
~x

1
Z

∏
i φ(xi|xπ(i)) and stop at

the configuration where this sum first equals or sur-
passes U .

For larger graphs, these computations are intractable
due to the need to compute the normalizing constant
(and other sums over the set of possible configura-
tions). Fortunately, the local Markov property will
often make it trivial to implement Gibbs sampling (or
block-Gibbs sampling) methods for the model (Geman
and Geman, 1984)4. It is also possible to take advan-

4Note that in general the entire Markov blanket is
needed to form the conditional distribution of a node
i. In particular, the ‘pseudo-Gibbs’ sampler where we
loop through the nodes in some order and sample xi ∝
φ(xi|xπ(i)) will not necessarily yield the appropriate sta-
tionary distribution unless certain symmetry conditions
are satisfied (see Heckerman et al. (2000); Lauritzen and
Richardson (2002)).

tage of dynamic programming methods for exact infer-
ence (when the graph structure permits), and more so-
phisticated variational and stochastic inference meth-
ods (for example, see Koller and Friedman (2009)).
However, a discussion of these methods is outside the
scope of this paper.

8 Exponential Family Parameter
Estimation

For a fixed graph structure, the maximum likelihood
estimate of the parameters given a data matrixX (con-
taining m rows where each row is a sample of the n
variables) can be written as the minimization of the
negative log-likelihood function in terms of the param-
eters θ of the interventional potentials.

− log p(X|θ) =−
m∑
d=1

n∑
i=1

log(φ(Xd,i|Xd,π(i), θ))

+m logZ(θ).

If some elements of X are set by intervention, then the
appropriate subset of the potentials and the modified
normalizing constant must be used for these rows.

An appealing parameterization of the graphical model
is with interventional potential functions of the form

φ(xi|xπ(i), θ) = exp(bi,xi +
∑

e∈{<i,j>:j∈π(i)}

wxi,xj ,e),

where each node i has a scalar bias bi,s for each dis-
crete state s, and each edge e has a weight ws1,s2,e for
each state combination s1 and s2 (so θ is the union of
all bi,s and ws1,s2,e values). The gradient of the neg-
ative log-likelihood with potentials in this form can
be expressed in terms of the training frequencies and
marginal probabilities as

−∇bi,s log p(X|θ) = −
m∑
d=1

Is(Xd,i)

+m p(xi = s|θ),

−∇ws1,s2,e log p(X|θ) = −
m∑
d=1

Is1(Xd,i)Is2(Xd,j)

+m p(xi = s1, xj = s2|θ).

Under this parameterization the joint distribution is
in an exponential family form, implying that the neg-
ative log-likelihood is a convex function in b and w.
However, the exponential family representation will
have too many parameters to be identified from obser-
vational data. For example, with observational data
we cannot uniquely determine the parameters in a di-
rected 2-cycle. Even with interventional data the pa-
rameters remain unidentifiable because, for example,



re-scaling an individual potential function does not
change the likelihood.

To make the parameters identifiable in our exper-
iments, we perform MAP estimation with a small
`2-regularizer added to the negative log-likelihood,
transforming parameter estimation into a strictly con-
vex optimization problem (this regularization also ad-
dresses the problem that the unique infimum of the
negative log-likelihood may only be obtained with an
infinite value of some parameters, such as when we
have deterministic dependencies). Specifically, we con-
sider the penalized log-likelihood

min
θ
− log p(X|θ) + λ2||θ||22,

where λ2 controls the scale of the regularization
strength.

The dominant cost of parameter estimation is the cal-
culation of the node and edge marginals in the gradi-
ent. For parameter estimation in models where infer-
ence is not tractable, the interventional potential rep-
resentation suggests implementing a pseudo-likelihood
approximation (Besag, 1975). Alternately, an approx-
imate inference method could be used to compute ap-
proximate marginals.

9 Convex Relaxation of Structure
Learning

In many applications we may not know the appropriate
graph structure. One way to write the problem of
simultaneously estimating the parameters and graph
structure is with a cardinality penalty on the number
of edges E(G) for a graph structure G, leading to the
optimization problem

min
θ,G
− log p(X|θ) + λE(G),

where λ controls the strength of the penalty on the
number of edges. We can relax the discontinuous car-
dinality penalty (and avoid searching over graph struc-
tures) by replacing the second term with a group `1-
regularizer (Yuan and Lin, 2006) on appropriate ele-
ments of w (each group is the elements w.,.,e associated
with edge e), giving the problem

min
θ
− log p(X|θ) + λ

∑
e

||w.,.,e||2, (1)

where θ = {b.,., w.,.,.}. Solving this continuous opti-
mization problem for sufficiently large λ yields a sparse
structure, since setting all values w.,.,.e to zero for a
particular edge e is equivalent to removing the edge
from the graph. This type of approach to simultaneous
parameter and structure learning has previously been

explored for undirected graphs (see Lee et al., 2006;
Schmidt et al., 2008), but can not be used directly for
DAG models (unless we restrict ourselves to a fixed
node ordering) because of the acyclicity constraint.

Similar to Schmidt et al. (2008), we can convert the
continuous and unconstrained but non-differentiable
problem (1) into a differentiable problem with second-
order cone constraints

min
θ
− log p(X|θ) + λ

∑
e

αe,

s.t. αe ≥ ||w.,.,e||2.

Since the edge parameters form disjoint sets, projec-
tion onto these constraints is a trivial computation
(Boyd and Vandenberghe, 2004, Exercise 8.3(c)), and
the optimization problem can be efficiently solved us-
ing a limited-memory projected quasi-Newton method
(Schmidt et al., 2009)

10 Experiments

We compared the performance of several different
graphical model representations on two data sets. The
particular models we compared were:

• DAG: A directed acyclic graphical model trained
with group `1-regularization on the edges. We
used the projected quasi-Newton method of
Schmidt et al. (2009) to optimize the criteria
for a given ordering, and used the dynamic pro-
gramming algorithm of Silander and Myllymaki
(2006) to minimize the regularized negative log-
likelihood over all possible node orderings. The
interventions are modeled as described in §5.

• UG-observe: An undirected graphical model
trained with group `1-regularization on the edges
that treats the data as if it was purely ob-
servational. Specifically, it seeks to maximize
p(x1, . . . , xn) over the training examples (subject
to the regularization) and ignores that some of the
nodes were set by intervention.

• UG-condition: An undirected graphical model
trained with group `1-regularization on the edges
that conditions on nodes set by intervention.
Specifically, it seeks to maximize p(x1, . . . , xn)
over the training examples (subject to the regu-
larization) on observational samples, and seeks to
maximize p(x−k|xk) over the training examples
(subject to the regularization) on interventional
samples where node k was set by intervention.

• DCG: The proposed directed cyclic graphical
model trained with group `1-regularization, mod-
eling the interventions as described in §5.
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Figure 4: Results on data generated from 4 different DCG models.

To make the comparisons fair, we used a linear expo-
nential family representation for all models. Specifi-
cally, the DAG model uses conditional probabilities of
the form

p(xi|xπ(i), θ) =
1
Zi

exp(bi,xi +
∑
j∈π(i)

wxi,xj ,e),

(where Zi normalizes locally), while the UG models
use a distribution of the form

p(x1, . . . , xn|θ) =
1
Z

exp(
n∑
i=1

bi,xi+
∑

e:{<i,j>∈E}

wxi,xj ,e),

and the DCG model uses the interventional potential
functions described in §8.

To ensure identifiability of all model parameters
and increase numerical stability, we applied `2-
regularization to the parameters of all models. We
set the scale λ2 of the `2-regularization parameter to
10−4, but our experiments were not particularly sen-
sitive to this choice. The groups used in all methods
were simply the set of parameters associated with an
individual edge.

10.1 Directed Cyclic Data

We first compared the performance in terms of test-set
negative log-likelihood on data generated from an in-
terventional potential model. We generated the graph
structure by including each possible directed edge with
probability 0.5, and sampled the node and edge param-
eters from a standard normal distribution, N (0, 1).
We generated 1000 samples from a 10-node binary
model, where in 1/11 of the samples we generated a
purely observational sample, and in 10/11 of the sam-
ples we randomly choose one of the ten nodes and set
it by intervention. We repeated this 10 times to gen-
erate 10 different graph structures and parameteriza-
tions, and for each of these we trained on the first
500 samples and tested on the remaining 500. In Fig-
ure 4, we plot the test set negative log-likelihood (of
nodes not set by intervention) against the strength of
the group `1-regularization parameter for the first 4
of these trials (the others yielded qualitatively similar
results).

We first contrast the performance of the DAG model
(which models the effects of intervention but can not
model cycles) with the UG-condition method (which
does not model the effects of intervention but can
model cycles). In our experiments, neither of these
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Figure 5: Mean results (plus/minus two standard devi-
ations) on the expression data from Sachs et al. (2005)
over 10 training/test splits.

methods dominated the other; in most distributions
the optimal DAG had a small advantage over UG-
condition for suitably chosen values of the regulariza-
tion parameter, while in other experiments the UG-
condition model offered a small advantage. In con-
trast, the DCG model (which models the effects of in-
terventions and also allows cycles) outperformed both
the DAG and the UG methods over all 10 experiments.
Finally, in terms of the two UG models, conditioning
on the interventions during training strictly dominated
treating the data as observational, and in all cases the
UG-observe model was the worst among the 4 meth-
ods.

10.2 Cell Signaling Network

We next applied the methods to the data studied
in Sachs et al. (2005). In this study, intracellular
multivariate flow cytometry was used to simultane-
ously measure the expression levels of 11 phophory-
lated proteins and phospholipid components in indi-
vidual primary human immune system cells under 9
different stimulatory/inhibitory conditions. The data
produced in this work is particularly amenable to sta-
tistical analysis of the underlying system, because in-
tracelleular mulitvariate flow cytomery allows simul-
taneous measurement of multiple proteins states in
individual cells, yielding hundreds of data points for
each interventional scenario. In Sachs et al. (2005),
a multiple restart simulated annealing method was
used to search the space of DAGs, and the final graph
structure was produced by averaging over a set of the
most high-scoring networks. Although this method
correctly identified many edges that are well estab-
lished in the literature, the method also missed three
well-established connections. The authors hypothe-
sized that the acyclicity constraint may be the reason

that the edges were missed, since they could have in-
troduced directed cycles (Sachs et al., 2005). In princi-
ple, these edges could be discovered using DAG models
of time-series data. However, current technology does
not allow collection of this type of data (Sachs et al.,
2005), motivating the need to examine cyclic models
of interventional data.

In our experiments, we used the targets of interven-
tion and 3-state discretization strategy (into ‘under-
expressed’, ‘baseline’, and ‘over-expressed’) of Sachs
et al. (2005). We trained on 2700 randomly chosen
samples and tested on the remaining 2700, and re-
peated this on 10 other random splits to assess the
variability of the results. Figure 5 plots the mean test
set likelihood (and two standard deviations) across the
10 trials for the different methods. On this real data
set, we see similar trends to the synthetic data sets. In
particular, the UG-observe model is again the worst,
the UG-condition and DAG models have similar per-
formance, while the DCG model again dominates both
DAG and UG methods.

Despite its improvement in predictive performance,
the learned DCG graph structures are less inter-
pretable than previous models. In particular, the
graphs contain a large number of edges even for small
values of the regularization parameter (this may be
due to the use of the linear parameterization). The
graphs also include many directed cycles, and for
larger values of λ incorporate colliders whose parents
do not share an edge. It is interesting that the (pair-
wise) potentials learned for 2-cycles in the DCG model
were often very asymmetric.

11 Discussion

While we have assumed that the interventions are ‘per-
fect’, in many cases it might be more appropriate to
use DCG models with ‘imperfect’, ‘soft’, or ‘uncer-
tain’ interventions (see Eaton and Murphy (2007)).
We have also assumed that each edge is affected asym-
metrically by intervention, while we could also consider
undirected edges that are affected symmetrically. For
example, we could consider ‘stable’ undirected edges
that represent fundamentally associative relationships
that remain after intervention on either target. Alter-
nately, we could consider ‘unstable’ undirected edges
that are removed after intervention on either target
(this would be appropriate in the case of a hidden com-
mon cause).

To summarize, the main contribution of this work is a
model for interventional data that allows cycles. It
is therefore advantageous over undirected graphical
models since it offers the possibility to distinguish be-
tween ‘seeing’ and ‘doing’. However, unlike DAG mod-



els that offer the same possibility, it allows cycles in
the model and thus may be more well-suited for data
sets like those generated from biological systems which
often have natural cyclic behaviour.
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