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Abstract

By taking into account the nonlinear effect
of the cause, the inner noise effect, and the
measurement distortion effect in the observed
variables, the post-nonlinear (PNL) causal
model has demonstrated its excellent perfor-
mance in distinguishing the cause from ef-
fect. However, its identifiability has not been
properly addressed, and how to apply it in
the case of more than two variables is also a
problem. In this paper, we conduct a system-
atic investigation on its identifiability in the
two-variable case. We show that this model is
identifiable in most cases; by enumerating all
possible situations in which the model is not
identifiable, we provide sufficient conditions
for its identifiability. Simulations are given
to support the theoretical results. Moreover,
in the case of more than two variables, we
show that the whole causal structure can be
found by applying the PNL causal model to
each structure in the Markov equivalent class
and testing if the disturbance is independent
of the direct causes for each variable. In this
way the exhaustive search over all possible
causal structures is avoided.

1 INTRODUCTION

Traditionally, causal discovery algorithms, which may
be constraint-based or score-based, produce a Markov
equivalent class of the causal models, in which some
causal directions may be undetermined (Spirtes et al.,
2001; Pearl, 2000). On the other hand, a functional
causal model, which expresses each variable as a func-
tion of its direct causes and the independent distur-
bance (Pearl, 2000), if well specified, can explain the
data generating process and help find all causal re-
lations among the variables. For example, under the

condition that causal relations are linear and acyclic,
the non-Gaussianity of the disturbances could help
find the whole causal model uniquely (Shimizu et al.,
2006), by resorting to the independent component
analysis (ICA) technique (Hyvärinen et al., 2001).
However, if the assumed functional causal model is not
capable of approximating the true data generating pro-
cess, the results may be misleading. Therefore, if the
specific knowledge about the data generating mech-
anism is not available, to make it useful in practice,
the assumed causal model should be general enough,
such that it can reveal the data generating processes
approximately; at the same time, the model should
be identifiable, i.e., it is asymmetrical in causes and
effects and is capable of distinguishing between them.

Although the linearity assumption greatly simplifies
causal analysis, in some situations nonlinear effects
in the system are not negligible. In particular, the
recently proposed post-nonlinear (PNL) causal model
takes into account the nonlinear effect of the causes,
the noise effect, and sensor or measurement nonlin-
ear distortion in the observed variables (Zhang &
Hyvärinen, 2008). Mathematically, with the causal
structure represented by a directed acyclic graph
(DAG), it expresses each variable xi as

xi = fi,2(fi,1(pai) + ei), i = 1, ..., n, (1)

where pai contains the direct causes of xi, fi,1 denotes
the nonlinear effect of the causes, ei is the independent
disturbance, and fi,2 denotes invertible post-nonlinear
distortion in variable xi. It includes the so-called ad-
ditive noise model (Hoyer et al., 2009) as a special case
in which the nonlinear distortion fi,2 does not exist. It
is also related to the idea of causal reasoning based on
evaluating the complexity of conditional densities (Sun
et al., 2008), since it intrinsically admits a simple ex-
pression for the conditional density of the effect given
the causes. This model has been used to distinguish
between causes and effects for the “Cause-effect pairs”
task (Mooij et al., 2008) in the second causality chal-
lenge, and gave clearly the best results (the identified



causal directions are correct for all eight data sets).
Its good performance is partially due to the allowance
of the measurement distortion fi,2, which is frequently
encountered in practice.

Despite its success in solving some real-world prob-
lems, there are two unsolved problems related to the
PNL causal model, and they are addressed in this pa-
per. One is the identifiability, a crucial issue, of this
model. Although it was supported by empirical re-
sults and was touched in Zhang and Hyvärinen (2008),
it is far from complete. Here we give a systematical
investigation of its identifiability in the two-variable
case, under the assumption that the density of the dis-
turbance has an unbounded support. We show that
the model is generally identifiable, and give all the
non-identifiable cases, some of which are illustrated
by simulation studies. Our results also have some by-
products. Previously, Zhang and Hyvärinen (2008) in-
vestigated this issue, by relating this model to the PNL
mixing ICA problem (Achard & Jutten, 2005), under
the constraint that the nonlinear effect of the cause,
fi,1, is invertible. Our findings reveal that their results
are not precise, and further provide counterexamples
to the separability theorem of the PNL mixing ICA
problem reported in Achard and Jutten (2005), which
their results are based on. This finding may also be
of interest to the ICA community, since PNL mixing
ICA is an important and widely used nonlinear ICA
model. In addition, our results on the identifiability of
the PNL causal model also apply to the additive noise
model (Hoyer et al., 2009), since the latter model is a
special case of the former one.

The other problem is how to find the causal rela-
tions among more than two variables implied by this
model. One may search all possible causal structures
and test if they are consistent with the data in a brute-
force way, but it involves high computational load
and becomes impractical as the variable number in-
creases. We provide some fundamental results for this
issue. It is shown that causal discovery based on the
PNL causal model for more than two variables can be
achieved in two steps: after obtaining the equivalent
class, one can identify the undetermined causal rela-
tions by applying this model to the causal structures
in the equivalent class and testing if each disturbance
is independent of the parents associated with the same
variable. Consequently, the search space is greatly re-
duced, and statistical tests of mutual independence be-
tween more than two variables are avoided.

2 IDENTIFIABILITY

In this section we focus on the two-variable case. We
investigate the identifiability of the PNL causal model,
in particular, its direction, by a proof by contradiction.

We assume the causal model holds in both directions
x1 → x2 and x2 → x1, and show that this implies
some very strong conditions on the distributions and
functions involved in the model.

Assume that the data (x1, x2) are generated by the
post-nonlinear (PNL) causal model with the the causal
relation x1 → x2. This data generating process can be
described as

x2 = f2(f1(x1) + e2), (2)

where x1 and e2 are independent, function f1 is non-
constant, and f2 is invertible. If the other causal di-
rection, x2 → x1 is true, the data generating process
given by the PNL causal model is

x1 = g2(g1(x2) + e1), (3)

where x2 and e1 are independent, g1 is non-constant,
and g2 is invertible.

Notation. The following notations are used hereafter.
Suppose that both (2) and (3) hold. Random variables
t1 and z2 and functions h and h1 defined as follows:

t1 , g−1
2 (x1), z2 , f−1

2 (x2),

h , f1 ◦ g2, h1 , g1 ◦ f2.

That is, h(t1) = f1(g2(t1)) = f1(x1), and similarly,
h1 is a function of z2. Moreover, we let η1(t1) ,

log pt1(t1), and η2(e2) , log pe2
(e2).

1 The following
theorem gives the constraint that pt1 , pe2

, and h must
satisfy to make both (2) and (3) hold.

Theorem 1 Assume that (x1, x2) can be described by
both of the causal relations given in (2) and in (3).
Further suppose that involved densities and nonlinear
functions pt1 , pe2

, f1, f2, g1, and g2 are third-order
differentiable, and that pe2

is positive on (−∞,+∞).
We then have the following equation for every (x1, x2)
satisfying η′′

2h′ 6= 0:

η′′′

1 −
η′′
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=
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, (4)

and h1 depends on η1, η2, and h in the following way:

1

h′

1

=
η′′

1 + η′′

2h′2 − η′

2h
′′

η′′

2h′
. (5)

See Appendix for its proof. In the special case with f2

and g2 being the identity mapping, the above theorem
becomes Theorem 1 in Hoyer et al. (2009), which was

1For the sake of conciseness, sometimes we drop the
arguments of the functions in the presentation.



given for the additive noise model. In general, it is not
obvious if Theorem 1 holds for a practical problem.
Therefore, below we provide conditions which are easy
to verify, by investigating (4) in Theorem 1. To this
end, we first give some definitions and lemmas.

Definition 2 The density of the continuous variable
v, denoted by pv, is said to be log-mixed-linear-
and-exponential (log-mix-lin-exp) if it is of the form
log pv = c1e

c2v + c3v + c4, where c1, c2, c3, and c4

are constants. Clearly, to make pv a valid density, we
have c1 < 0 and c2c3 > 0. This type of distributions
includes the Type-1 Gumbel distribution as a special
case when c2 = c3.

Definition 3 The density pv is said to be a gener-
alized mixture of two exponentials if pv ∝ (c1e

c2v +
c3e

c4v)c5 , with constants ci, or equivalently, if log pv =
d1v + d2 log(d3 + d4e

d5v) + d6, with constant di.

Definition 4 The density pv is said to be one-sided
asymptotically exponential, if (log pv)′ → c, as v →
−∞ or as v → +∞, where c is a non-zero constant.
It is said to be two-sided asymptotically exponential
if (log pv)′ → c1, as v → −∞, and (log pv)′ → c2, as
v → +∞, where c1 and c2 are non-zero constants.

Clearly, log-mix-lin-exp densities are special cases of
the one-sided asymptotically exponential densities,
and two-sided asymptotically exponential densities in-
clude those generalized mixtures of two exponentials.
Now we give a lemma to characterize some properties
of a density function or its logarithm.

Lemma 5 Suppose the density pv is differentiable on
(−∞,+∞) and monotonic for sufficiently large v. We
have the following. (i) If pv is positive on (−∞,+∞),
then log pv → −∞ as |v| → +∞. (ii) If there
only exists one point, denoted by v = C, satisfying
(log pv)′ = 0, then on the support of pv, (log pv)′ > 0
for v < C, and (log pv)′ < 0 for v > C.

This lemma is obvious and proof is skipped. The fol-
lowing lemmas discuss some special and simple solu-
tions to (4) in Theorem 1.

Lemma 6 Under the assumptions made in Theo-
rem 1, if e2 is Gaussian, then h is linear and t1 is
also Gaussian.

Lemma 7 Under the assumptions made in Theo-
rem 1, if function h = f1 ◦ g2 is linear, one of the
following must be true:

i. t1 and e2 are both Gaussian, and h1 is also linear.

ii. The densities of t1 and e2 are log-mix-lin-exp,
h′

1(z2) is strictly monotonic, and h′

1(z2) → 0, as
z2 → +∞ or as z2 → −∞.

For proofs, see Appendix. We now give Theorem 8
to consider all the situations in which the PNL causal
model is not identifiable.

Theorem 8 Suppose that η′′

2h′ 6= 0 at every point or
that it is zero at only some discrete points. Under the
assumptions made in Theorem 1, we have that pe2

and
pt1 , as well as h, must satisfy one of the five conditions
listed in Table 1.2

The proof is rather long and complicated, so we just
give the basic idea and its outline; see Appendix.
When the nonlinear distortions f2 and g2 are con-
strained to be the identity mapping, this result also ap-
plies to the identifiability of the additive noise model.
We give the following remarks on the situations listed
in Table 1. Situation I in Table 1 is the linear Gaus-
sian case, which is well know to be not identifiable.
Situations II∼V are novel. As discussed in Zhang and
Hyvärinen (2008), if f1 is constrained to be invertible,
the PNL causal model (2) can be transformed to the
PNL mixing ICA model (Achard & Jutten, 2005), with
f1(x1) and e2 considered as sources. The identifiability
of the former model is then implied by the separability
of the latter one. Previously, under weak conditions,
it was shown that the PNL mixing ICA model is sepa-
rable if at most one of the sources is Gaussian (Achard
& Jutten, 2005). In Situations II∼V, pe2

is not Gaus-
sian, but the causal model is not identifiable, and con-
sequently the corresponding PNL mixing ICA model
is not separable. This means that the established sep-
arability results of the PNL mixing ICA problem have
some flaws and require further investigation.

Below we give some corollaries which follow from The-
orem 8. They can be easily exploited to examine if the
causal relation between two variables is unique. The
following assumptions are made in the corollaries.

A1. The data (x1, x2) are generated by the PNL causal
model (2), with f1 and f2 being third-order dif-
ferentiable.

A2. Densities pe2
and px1

are third-order differen-
tiable, pe2

is positive on (−∞,+∞), and η′′

2 =
(log pe2

)′′ is zero at most at some discrete points.

The following corollary immediately follows Theo-
rem 8, so its proof is skipped.

2Note that the identifiability of the PNL causal model
(2) depends directly on the distribution of t1 and e2, in-
stead of the distribution of the observed variables x1 and
x2.



Table 1: All situations in which the PNL causal model is not identifiable.

pe2 pt1 (t1 = g−1

2
(x1)) h = f1 ◦ g2 Remark

I Gaussian Gaussian linear h1 also linear
II log-mix-lin-exp log-mix-lin-exp linear h1 strictly monotonic, and h′

1 →

0, as z2 → +∞ or as z2 → −∞

III log-mix-lin-exp one-sided asymptoti-
cally exponential (but
not log-mix-lin-exp)

h strictly monotonic,
and h′

→ 0, as t1 →

+∞ or as t1 → −∞

—

IV log-mix-lin-exp generalized mixture of
two exponentials

Same as above —

V generalized mixture
of two exponentials

two-sided asymptoti-
cally exponential

Same as above —

Corollary 9 Suppose that assumptions A1 & A2
hold. If pe2

, the density of the disturbance, is not
Gaussian, nor log-mix-lin-exp, nor a generalized mix-
ture of two exponentials, then the PNL causal model
(2) is identifiable.

Corollary 10 considers the identifiability of the PNL
causal model with f1, the nonlinear effect of the cause,
being non-invertible.

Corollary 10 Suppose that assumptions A1 & A2
hold. If function f1 is not invertible, then the PNL
causal model (2) is identifiable.

For proof, see Appendix. This result is intuitively
appealing, and confirms the finding in Friedman and
Nachman (2000).

3 NONLINEAR ICA-BASED

IDENTIFICATION METHOD

If data (x1, x2) follow the PNL causal model with
causal direction x1 → x2, from (2), we can see that
the disturbance e2, which is independent from x1, can
be expressed in terms of x1 and x2:

e2 = f−1
2 (x2) − f1(x1).

This provides a way to verify if x1 → x2 holds accord-
ing to the PNL causal model, as given below.

Under the hypothesis x1 → x2, we can estimate the
disturbance e2 by finding functions l1 and l2 such that
ê2 = l2(x2) − l1(x1) is independent from x1. This is
then a constrained nonlinear ICA problem, and can be
achieved by minimizing I(x1, ê2), the mutual informa-
tion between x1 and ê2 (Zhang & Hyvärinen, 2008).
After some simplifications, one can see I(x1, ê2) =
−E log pê2

(ê2) − E log |l′2(x2)| + H(x1) − H(x1, x2).
As the last two terms do not depends on l1(x1) and
l2(x2), minimizing I(x1, ê2) is equivalent to maximiz-
ing E log pê2

(ê2) + E log |l′2(x2)|. Following Zhang
and Hyvärinen (2008), we use multi-layer perceptrons

(MLP’s) to represent l1 and l2. The involved param-
eters can then be learned by gradient-based methods.
Finally, if statistical independence tests, such as the
kernel-based test (Gretton et al., 2008), confirm that
ê2 is independent from x1, x1 → x2 is supported by the
PNL causal model, and the learned l1 and l2 provide
an estimate of f1 and f−1

2 , respectively.

To find the causal relation between x1 and x2 implied
by the PNL causal model, one needs to test both hy-
potheses x1 → x2 and x2 → x1, using the method just
described. If exactly one of them holds, the causal rela-
tion between x1 and x2 implied by the PNL model has
been successfully found. If neither of them holds, there
is no PNL causal relation between x1 and x2. If both
hold, the cause and effect could not be distinguished
by the PNL causal model; additional information, such
as the smoothness of the involved nonlinearities, may
help find the causal model with a lower complexity.

4 MORE THAN TWO VARIABLES

The PNL acyclic causal model (1) is applicable in the
case of more than two variables. When there are only
very few variables, one may use a brute-force search to
find the causal relations, like the estimation of the ad-
ditive noise model in Hoyer et al. (2009); for each pos-
sible acyclic causal structure, represented by a DAG,
we use the nonlinear ICA-based approach to estimate
the corresponding disturbances, and then verify if they
are mutually independent by performing independence
tests. The simplest causal model which gives indepen-
dent disturbances is preferred. Clearly this approach
may encounter two difficulties. One is that the test of
mutual independence is difficult to do when we have
many variables. The other is that the search space
of all possible DAG’s increases too rapidly with the
variable number. Consequently, this approach involves
high computational load, and does not scale well with
the number of variables.

A more practical approach to finding the causal re-
lations implied by the PNL causal model consists



of the following two steps. We first use conditional
independence-based methods to find the d-separation
equivalent class. Next, the PNL causal model is used
to identify the causal directions that cannot be de-
termined in the first step: for each causal structure
contained in the equivalent class, we estimate the dis-
turbances, and determine if this causal structure is
plausible, by examining if the disturbance in a vari-
able xi is independent from the parents of xi. Con-
sequently, one avoids the exhaustive search over all
possible causal structures and high-dimensional sta-
tistical tests of mutual independence. The validity of
this approach is supported by the following theorem.

Theorem 11 When fitting variables x1, ..., xn to the
PNL acyclic causal model (1) with the causal struc-
ture represented by the DAG G, the disturbances ei are
mutually independent if and only if the causal Markov
condition holds (i.e., each variable xi is independent
of its non-descendants conditional on its parents pai

in G), and the disturbance ei in xi is independent of
the parents of xi.

Proof is given in Appendix. An important issue in
this approach is how to perform conditional indepen-
dence tests for variables with nonlinear causal rela-
tions. Generally speaking, the results of nonpara-
metric conditional independence tests may be unreli-
able when the conditional set contains many variables,
due to the curse of dimensionality. Traditionally, in
the implementation of most conditional independence-
based causal discovery algorithms, such as PC (Spirtes
et al., 2001) and IC (Verma & Pearl, 1990), it is as-
sumed that the variables are either discrete or Gaus-
sian with linear causal relations. Although this as-
sumption greatly simplifies the difficulty in conditional
independent tests, it usually does not hold in our
case which involves nonlinear causal effects and non-
Gaussian variables. Alternatively, in our case, one may
simplify the conditional independence test procedure
by making use of the particular structure of the PNL
causal model. This is out of the scope of this paper
and left for future work.

5 SIMULATIONS

The PNL causal model has been applied for causal dis-
covery of two variables with real-world data in Zhang
and Hyvärinen (2008). It successfully identified the
causal directions for all eight data sets in the “Cause-
effect pairs” task (Mooij et al., 2008) included in
Causality Challenge #2, without any background
knowledge. This demonstrated the practical useful-
ness of this model and the identification method for
some real-world problems. Here we conduct simula-
tions to verify the non-identifiable conditions of this

model with two variables, given in Theorem 8. In par-
ticular, Situation I in Table 1 is well known to be not
identifiable, but the others are completely new and in-
teresting. Here we use illustrative examples to show
the non-identifiability in Situations II and V.

5.1 ON SITUATION II IN TABLE 1

In Situation II in Table 1, function h = f1 ◦ g2 is lin-
ear and the densities of t1 and e2 are log-mix-lin-exp
(given by (10) and (9) in Appendix, respectively), and
the PNL causal model is not identifiable. To illus-
trate that, one just needs to confirm that t1 and z2

are independent of e2 and e1, respectively; indepen-
dence between t1 and e2 means that the causal rela-
tion x1 → x2 holds, as described by (2); in addition, if
z2 and e1 given by (6) and (7) (see Appendix) are also
independent, one can see that x2 → x1 also holds, and
that the PNL model is not identifiable.

Given c1, c2, c3, and c5 in (10) and (9), one can find the
constants c4 and c7 such that pt1 = eη1 and pe2

= eη2

are valid densities. We then generate random numbers
as realizations of the independent variables t1 and e2,
by applying the inverse of their cumulative distribu-
tion functions (CDF’s) to independent and uniformly
distributed variables. According to (7), variable z2 in-
volved in the causal relation x2 → x1 is calculated as
z2 = e2 + h(t1). The other variable, e1, can be found
according to (6), if h1 is known. According to (11), we
have

h′

1 = ec1z2−c5+c2

/( 1

h′
+ h′ec1z2−c5+c2

)

.

This yields h1 = 1
h′c1

log | 1
h′

+h′ec1z2−c5+c2 |+c8, where
c8 is an arbitrary constant. Substituting h1 into (6),
we can find e1.

In our simulation study, we set h(t1) = −t1, c1 = 0.3,
c2 = −1, c3 = 1, c5 = −1 c8 = 0, and variables t1 and
e2 were made zero-mean. 2000 samples were drawn.
Fig. 1 (a) gives the scatter plot of t1 and e2, as well
as their marginal histograms. Finally, the scatter plot
of z2 and e1 is shown in Fig. 1 (b). To verify if z2

and e1 are independent, we conducted the kernel-based
statistical independence tests (Gretton et al., 2008).
The left part of Table 2 presents the independence
test results for the pairs (t1, e2) and (z2, e1). For both
pairs, The independence hypothesis is accepted at the
significance level α = 0.05. That is, in this situation,
the PNL causal model cannot distinguish the cause
from effect, if we do not have further knowledge about
the data generating process.

We further generated observed data (x1, x2) from vari-
ables t1 and e2, aiming to verify if the nonlinear ICA-
based identification method can detect both causal
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Figure 1: (a) Scatter plot of t1 = g−1
2 (x1) and e2 in

Simulation 1. (b) That of z2 = f−1
2 (x2) and e1.

Table 2: Result of kernel-based independence tests in
Simulation 1, at the significance level α = 0.05. The
independence hypothesis is accepted in all the four
cases. See main text for further explanations.

t1&e2 z2&e1 x1&ê2 x2&ê1

Threshold 0.5669 0.5665 0.4347 0.5778
Statistic 0.3497 0.1226 0.1430 0.1842

directions. Note that the identifiability of the PNL
causal model only depends the distributions of t1 and
e2 and function h(t1) = f1(g2(t1)). In situation II in
Table 1, f1, f2, and g2 can be arbitrary, given that
h = f1 ◦ g2 satisfies the condition.3 In this simula-

tion, we let g2(t1) = t1/2 + t
1/3
1 ; since h = f1 ◦ g2,

f1 was then constructed as f1 = h ◦ g−1
2 . we let

f2(h(t1)+ e2) = tanh((h(t1)+ e2)/8). Finally, (x1, x2)
were constructed from t1 and e2 by x1 = g2(t1) and
(2). We applied the nonlinear ICA-based method
given in Section 3, and obtained ê2 and ê1, which are
the estimate of the disturbance under the hypotheses
x1 → x2 and x2 → x1, respectively. The right part of
Table 2 reports the results of independence tests for
the pairs (x1, ê2) and (x2, ê2). Both pairs accept the
independence hypothesis, meaning that both the esti-
mated PNL causal model with x1 → x2 and that with
x2 → x1 can explain the data.

5.2 ON SITUATION V IN TABLE 1

We next verify Situation V in Table 1. In the proof of
Theorem 8, Solution 1 to the functional equation (12),
given by (14), with the constraints A3 = −A2 and
A4 6= 0, results in this situation. Generally speaking,
in this situation, the solutions of η1 and h cannot be
expressed in terms of elementary functions. We then
found numerical solutions of η′

1, h′, and η′

2 to the over-
determined system of ordinary differential equations

3Note that if f1 is not invertible, the causal model is
always identifiable; see Corollary 10.
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Figure 2: An example of Situation V in Table 1.
(a) The curves of η1(t1)

′, η2(e2)
′, h(t1)

′, and h1(z2)
′.

η1(t1)
′, η2(e2)

′, and h(t1)
′ were obtained by solving the

system of ODE’s in (14) numerically. h1(t1)
′ was given

by (5). (b) The curves of pt1 = eη1 , pe2
= eη2 , h(t1),

and h1(z2). See main text for detailed explanations.

(ODE’s) given in (14) using MATLAB. We let A1 =
2, A2 = 0.4, A4 = 1, c6 = −10, c7 = 1.6, and the
initial conditions are η′

1(t1 = 0) = 0, η′

2(e2 = 0) = 0,
h′(t1 = 0) = 3. The solutions of η′

1, h′, and η′

2 are
depicted in Fig. 2(a). One can see that h′ is clearly
close to zero for large t1, consistent with Situation V.
Furthermore, we set h(t1 = 0) = 0, and obtained the
solutions of h; also noting that the total integral of
pt1 = eη

1 and pe2
= eη2 is one, finally we obtained the

solutions of η1, h, and η2, as plotted in Fig. 2(b).

We used radial basis networks (RBF’s) to learn the
probability density functions (PDF’s) of t1 and e2 from
their numerical values, and then drew random samples
of t1 and e2 by applying the inverse of their CDF’s
to independent and uniformly distributed variables.
Fig. 3(a) gives the scatter plot of t1 and e2 used in
this simulation and their marginal histograms. After
that, we aimed to find variables z2 and e1, which are
involved in the causal relation x2 → x1, by making use
of the transformation given in (6) and (7). Apparently,
z2 = h(t1)+ e2. In order to find variable e1, one needs
to find h1(z2). We first calculated h1(z2)

′ according
to (5). It is also given in Fig. 2(a), and the solution
of h1 with the initial condition h1(0) = 0 is shown in
Fig. 2(b). Variable e1 is then found as e1 = t1+h1(z2).
The scatter plot of z2 and e1 is shown in Fig. 3(b).
Results of statistical independence tests, given in the
left part of Table 3, confirm statistical independence
between t1 and e2 and that between z2 and e1.

Analogously to Simulation I, we constructed observ-
able data (x1, x2) from t1, e2, and h given above. To do
that, we let g2(t1) = t1+t31 and f2(h(t1)+e2) = log(6+
h(t1) + e2), and f1 was constructed as f1 = h ◦ g−1

2 .
The nonlinear ICA-based method was then applied to
the data (x1, x2). As shown in the right part of Ta-
ble 3, under both hypotheses x1 → x2 and x2 → x1,
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Figure 3: (a) Scatter plot of t1 and e2, which are inde-
pendent variables with the densities given in Fig. 2(b).
(b) Scatter plot of z2 and e1, which were obtained by
making use of the transformation in (6) and (7).

Table 3: Result of independence tests in Simulation 2
at the significance level α = 0.05. The independence
hypothesis is accepted in all the four cases.

t1&e2 z2&e1 x1&ê2 x2&ê1

Threshold 0.5483 0.1561 0.5081 0.6912
Statistic 0.1641 0.0669 0.3011 0.4142

the assumed cause is independent from the estimate of
the disturbance. Consequently, both causal directions
can explain the data, and in this example the PNL
causal model is not identifiable.

6 CONCLUSION

We have investigated the identifiability of the post-
nonlinear (PNL) causal model in the two-variable case,
and a practical identification method based on nonlin-
ear function approximations and independence tests
was discussed. Our results show that this model is
generally identifiable, and consequently can be used
to distinguish the cause from effect. All the particu-
lar situations in which this model is not identifiable
were reported in Theorem 8, and some of them were
verified and illustrated by simulations. For the situ-
ation with more than two variables, we showed that
it is not necessary to apply the PNL causal model to
all of the given variables directly, which becomes in-
tractable as the variable number increase; instead, to
find the whole causal structure, one can apply this
causal model to the Markov equivalent class and test
if the estimated disturbance is independent from the
parents associated with the same variable.
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APPENDIX: SOME PROOFS

Proof of Theorem 1: We prove this theorem us-
ing the linear separability of the logarithm of the joint
density of independent variables, which states the fact
that for a set of independent random variables whose
joint density is twice differentiable, the Hessian of the
logarithm of their density is diagonal everywhere (Lin,
1998). Since g2 is invertible, the independence be-
tween x1 and e2 is equivalent to that between t1 and
e2. Similarly, the independence between x2 and e1 is
equivalent to that between z2 and e1. Combining the
two causal models (2) and (3), one can see that the
transformation from (z2, e1) to (t1, e2) is

t1 = h1(z2) + e1, (6)

e2 = z2 − h(t1). (7)

Denote by J the Jacobian matrix of this transforma-
tion. One can see that |J| = 1. Denote by p(z2,e1)

the joint density of (z2, e1). We then have pt1 · pe2
=

p(z2,e1)/|J| = p(z2,e1), so, log p(z2,e1) = η1(t1) + η2(e2).
One can find the (1,2)-th entry of the Hessian matrix

of log p(z2,e1) w.r.t. (z2, e1):
∂2 log p(z2,e1)

∂e1∂z2
= η′′

1
∂t1
∂z2

−

η′′

2h′ ∂e2

∂z2
− η′

2h
′′ ∂t1

∂z2
= η′′

1h′

1 − η′′

2h′ + η′′

2h′2h′

1 − η′

2h
′′h′

1.

The independence between z2 and e1 implies
∂2 log p(z2,e1)

∂e1∂z2
= 0 for every possible (z2, e1). That

is, η′′

1h′

1 − η′′

2h′ + η′′

2h′2h′

1 − η′

2h
′′h′

1 = 0. From this
equation one can see that h′

1 = 0 implies η′′

2h′ = 0.
Consequently, the points which satisfy η′′

2h′ 6= 0 also
make h′

1 6= 0. For such points, dividing both sides
of this equation by h′

1η
′′

2h′ finally leads to (5). Fur-
thermore, since h1 is a functions of z2 and does not

depend on e1, we have ∂
(

1
h′

1

)/

∂e1 = 0. According

to (5), we have ∂
(

η′′

1 +η′′

2 h′2
−η′

2h′′

η′′

2 h′

)

/∂e1 = 0, which

gives 2η′′2
2 h′2h′′ − η′

2η
′′

2h′h′′′ + η′′

2 η′′′

1 h′ − η′

2η
′′′

2 h′2h′′ +
η′

2η
′′

2h′′2 + η′′′

2 η′′

1h′2 − η′′

2 η′′

1h′′ = 0. For the points sat-
isfying η′′

2h′ 6= 0, we divide both sides of the above
equation by η′′

2h′. After some simplifications, (4) is
obtained. �

Proof of Lemma 6: Gaussianity of e2 implies that
η′′′

2 ≡ 0 and that η′′

2 is constant. (4) then reduces to

η′′′

1 −
η′′

1h′′

h′
+ 2η′′

2 · h′h′′ = η′

2 ·
(

h′′′ −
h′′2

h′

)

. (8)

Since the left-hand side does not depend on e2 and η′

2

is a function of e2, we have h′′′ − h′′2

h′
= 0, which gives

h′′′/h′− h′′2

h′2 = 0. That is, (h′′/h′)′ = 0, so h′′/h′ = c1.
If c1 = 0, h is linear, and h′′ = h′′′ = 0. (8) then yields
η′′′

1 = 0, meaning that t1 is Gaussian.

Otherwise, h′ = ±ec1t2+c2 . Moreover, the left-hand

side of (8) must also be zero, which means
η′′′

1

h′
−

η′′

1 h′′

h′2 +

2η′′

2h′′ = 0. By integration, it gives
∫

(

η′′′

1

h′
−

η′′

1 h′′

h′2 +

2η′′

2h′′

)

dt1 = η′′

1/h′ + 2η′′

2h′ = c3, so η′′

1 = −2η′′

2h′2 +

c3h
′ = −2η′′

2 e2c1t1+2c2 ±c3e
c1t1+c2 . Consequently η1 =

−η′′

2

2c2
1

e2c1t1+2c2± c3

c2
1
ec1t1+c2 +c4t1+c5. Noting that η′′

2 is

a negative constant, we can see that η1 → +∞ when
c1t1 → +∞. This contradicts Lemma 5. Thus, c1

must be zero, h is linear, and t1 is Gaussian. �

Proof of Lemma 7: Note that η′′

2 (as well as η′′

1 ) is
not constantly zero, as a density function of e2 could
not be proportional to ec1e2+c2 . When h is linear, h′

is constant and h′′ = h′′′ = 0, and (4) becomes

η′′′

1 = −
η′′′

2

η′′

2

· h′η′′

1 , i.e.,
η′′′

1

η′′

1

= −h′ ·
η′′′

2

η′′

2

Since
η′′′

1

η′′

1
and

η′′′

2

η′′

2
depends only on t1 and e2, respec-

tively, the equation above implies that both
η′′′

1

η′′

1
and

η′′′

2

η′′

2
are constants. Let

η′′′

2

η′′

2
= c1, we have

η′′′

1

η′′

1
= −h′c1.

If c1 = 0, clearly both e2 and t1 are Gaussian, and
proposition (i) holds.

Otherwise, we have log |η′′

2 | = c1e2 + c2. Consequently
η′′

2 = ±ec1e2+c2 and η2 = ± 1
c2
1
ec1e2+c2 + c3e2 + c4. If

η2 = 1
c2
1
ec1e2+c2 + c3e2 + c4, clearly η2 → +∞ when

sgn(c1) · e2 → +∞, which contradicts Lemma 5. One
can verify that when c1c3 > 0, the solution

η′′

2 = −ec1e2+c2 , or η2 = −
1

c2
1

ec1e2+c2 + c3e2 + c4 (9)

corresponds to valid densities. Analogously we have

η′′

1 = −e−h′c1t1+c5 , or η1 = −
1

h′2c2
1

e−h′c1t1+c5+c6t1+c7.

(10)
Thus the densities of t1 and e2 are both log-mix-lin-
exp.

Combining (5), (9) and (10), and recalling that h is
linear, we have

h′

1 =
η′′

2h′

η′′

1 + η′′

2h′2 − η′

2h
′′

=
1

η′′

1/(η′′

2h′) + h′

=
1

e−c1z2+c5−c2/h′ + h′
. (11)

One can see that h′

1 → 0, as sgn(c1) · z2 → +∞, and
as sgn(c1) · z2 → −∞, h′

1 → h′, which is a constant.
Therefore Lemma 7 is true. �

Outline of Proof of Theorem 8: Eq. (4) can be
re-written as a bilinear functional equation (Polyanin
& Zaitsev, 2004) of the form:

Φ1(t1)Ψ1(e2) + Φ2(t1)Ψ2(e2)

+ Φ3(t1)Ψ3(e2) + Φ4(t1)Ψ4(e2) = 0, (12)



where

Φ1(t1) = η′′′

1 −
η′′

1 h′′

h′
, Φ2(t1) = h′′′ − h′′2

h′
,

Φ3(t1) = h′h′′, Φ4(t1) = h′η′′

1 ,
Ψ1(e2) = −1, Ψ2(e2) = η′

2,

Ψ3(e2) =
η′

2η′′′

2

η′′

2
− 2η′′

2 , Ψ4(e2) = −
η′′′

2

η′′

2
.

(13)

Note that functionals Φi(t1) and Ψi(e2) depend only
on t1 and e2, respectively. We then find all possible
situations in which (12) holds.

Clearly Φ4(t1), Ψ1(e2), and Ψ2(e2) in (13) are not con-
stantly zero. We first consider some simple cases of
the solutions to (12), with Φ3(t1) ≡ 0, Ψ4(e2) ≡ 0, or
Φ2(t1) ≡ 0. These cases either have no valid solutions
for η1, η2, and h, or the solutions are covered by the
situations in Table 1.

When none of the functions mentioned above is con-
stantly zero, it can be shown that the functional
equation of the form (12) has three solutions, which
are (Polyanin & Zaitsev, 2004)

Solution 1:

Φ1 = A1Φ3 + A2Φ4, Φ2 = A3Φ3 + A4Φ4,
Ψ3 = −A1Ψ1 − A3Ψ2, Ψ4 = −A2Ψ1 − A4Ψ2,

(14)

Solution 2:

Φ1 = B1Φ3, Φ2 = B2Φ3, Φ4 = B3Φ3,
Ψ3 = −B1Ψ1 − B2Ψ2 − B3Ψ4,

(15)

Solution 3:

Ψ2 = C1Ψ1, Ψ3 = C2Ψ1, Ψ4 = C3Ψ1,
Φ1 = −C1Φ2 − C2Φ3 − C3Φ4,

(16)

where Ai, Bi, and Ci are arbitrary constants. Each
possible solution given above is an over-determined
system of ordinary differential equations (ODE’s). In
most cases, solutions of η1, η2, and h to the system,
which also satisfy the properties given in Lemma 5,
can be found in closed form. In the remaining cases,
we use the way of phase portrait (Braun, 1993) to an-
alyze the behavior of the solutions. We consider all
possible cases, and the solutions are always covered by
the five situations enumerated in Table 1. �

Proof of Corollary 10: First, consider the case
where f ′

1 6= 0 at every point or it is zero at only some
discrete points. As h = f1 ◦ g2 and g2 is invertible,
h′ = 0 holds at most at some discrete points. All the
situations in which the PNL causal model is not iden-
tifiable are given in in Table 1. One can see that in all
these situations, h = f1 ◦ g2 is invertible. When f1 is
not invertible, no matter what g2 is, it is impossible to
make h = f1 ◦g2 invertible, i.e., none of the conditions
in Table 1 holds. Consequently, in this case the causal
direction between x1 and x2 is uniquely identified.

Next, consider the case where f ′ ≡ 0 on the domain
D0 ∈ R. Let C be a point between D0 and the domain

Dn on which f ′ = 0 holds at most at some discrete
points. Without loss of generality, we assume that Dn

is on the right side of D0. As h = f1 ◦ g2, we have
h(t1 = C−)′ = 0. Suppose that both x1 → x2 and
x2 → x1 can explain the data. In all the situations
listed in Table 1, h′ 6= 0. Hence, h(t1 = C+)′ 6= 0. As
h(t1 = C+)′ 6= h(t1 = C−), h is not differentiable at
t1 = C, which causes a contradiction. So in this case
the causal direction between x1 and x2 given by the
PNL causal model is also unique. �

Proof of Theorem 11: The necessity part is obvious,
and below we prove the sufficiency part, which states
that disturbances e1, ..., en are mutually independent,
or equivalently, x1, ..., xn follow the PNL causal model
represented by G, if the causal Markov condition holds
and the disturbance ei in the variable xi is independent
of pai. Let zi , f−1

i,2 (xi). As the causal relations are
acyclic, we can arrange xi in an order such that no
later variable causes any earlier one. Without loss of
generality, we assume that (x1, x2, ..., xn) is one of such
orders. For any i = 1, ..., n, since xi = fi,2(zi), we have
p(xi|pai) = p(zi|pai)/|f

′

i,2(zi)|. Therefore,

H(ei) ≥ H(ei|pai) (17)

= H(zi|pai) = −E{log p(zi|pai)}

= −E{log p(xi|pai)} − E{log |f ′

i,2(zi)|}

= H(xi|pai) − E{log |f ′

i,2(zi)|}

≥ H(xi|x1, ...xi−1) − E{log |f ′

i,2(zi)|},(18)

where H(·) denotes the entropy, the equality in (17)
holds if and only if ei is independent from pai, and the
equality in (18) holds if and only if the causal Markov
condition holds, i.e., elements of {xk|xk 6∈ pai, 1 ≤
k ≤ i−1} are independent of xi given pai. Taking the
summation of (18) over i gives

∑

i

H(ei)

≥
∑

i

H(xi|x1, ..., xi−1) −
∑

i

E{log |f ′

i,2(zi)|}

= H(x1, ..., xn) −
∑

i

E{log |f ′

i,2(zi)|}. (19)

In addition, since ei does not depend on xj (j > i), the
Jacobian matrix of the transformation from (x1, ...xn)
to (e1, ...en) is lower-triangular, with the (i, i)th en-
try being 1/f ′

i,2(zi). Consequently, the absolute value
of the determinant of this Jacobian matrix is |J| =
[Πif

′

i,2(zi)]
−1. Recalling (19), when the causal Markov

condition holds and ei is independent of pai, the
mutual information of e1, ...en is then I(e1, ..., en) =
∑

i H(ei)−H(e1, ..., en) =
∑

i H(ei)− [H(x1, ..., xn)+
log |J|] =

∑

i H(ei)−H(x1, ..., xn)+
∑

i log |f ′

i,2(vi)| =
0. That is, e1, ..., en are mutually independent. �


