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Abstract

This paper develops an inconsistency mea-
sure on conditional probabilistic knowledge
bases. The measure is based on fundamen-
tal principles for inconsistency measures and
thus provides a solid theoretical framework
for the treatment of inconsistencies in proba-
bilistic expert systems. We illustrate its use-
fulness and immediate application on several
examples and present some formal results.
Building on this measure we use the Shap-
ley value—a well-known solution for coali-
tion games—to define a sophisticated indi-
cator that is not only able to measure in-
consistencies but to reveal the causes of in-
consistencies in the knowledge base. Alto-
gether these tools guide the knowledge en-
gineer in his aim to restore consistency and
therefore enable him to build a consistent and
usable knowledge base that can be employed
in probabilistic expert systems.

1 Introduction

Inconsistencies arise easily when experts share their
knowledge in order to build a common knowledge base.
Although these inconsistencies often affect only a lit-
tle portion of the knowledge base or emerge from only
little differences in the experts knowledge, they cause
severe damage. Especially in knowledge bases that
use classical logic as a means for knowledge repre-
sentation, inconsistencies render the whole knowledge
base useless, due to the well-known principle ex falso
quodlibet. Therefore reasoning under inconsistency is
an important field in AI and there are many propos-
als to deal with inconsistency in classical logic, e. g.
(Rescher and Manor, 1970; Konieczny et al., 2005), or
in other logical frameworks, e. g. paraconsistent log-
ics (Bziau et al., 2007), default logics (Reiter, 1980),

defeasible logics (Billington, 2008), and argumentation
theory (Bench-Capon and Dunne, 2007). Furthermore
there are several approaches to analyze and measure
inconsistency in qualitative frameworks, e. g. (Lozin-
skii, 1994; Benferhat et al., 1997; Knight, 2001; Hunter
and Konieczny, 2004), and some in quantitative frame-
works (mainly possibilistic frameworks), e. g. (Dubois
et al., 1992).

Here, we aim at analyzing inconsistencies in a proba-
bilistic framework and in particular measuring incon-
sistency in conditional probabilistic knowledge bases
(Nute and Cross, 2002; Kern-Isberner, 2001; Benfer-
hat et al., 1999; Rödder and Meyer, 1996). In these,
knowledge is captured using conditionals (A |B) that
describe rules of the form “If B then A” and are inter-
preted using conditional probabilities. In contrast to
probabilistic networks like Bayesian Networks (Pearl,
1998) conditional probabilistic knowledge bases do not
demand the complete specification of every conditional
probability of every probabilistic dependence and thus
do not define a unique probability distribution as the
underlying model. Nonetheless, using maximum en-
tropy methods (Grove et al., 1994) one can determine a
single probability distribution that describes the spec-
ified knowledge in an unbiased way. However, due to
the unstructured approach of conditional probabilistic
knowledge bases inconsistencies easily occur whereas
Bayesian Networks forbid cyclic dependencies and so
inconsistencies cannot arise by definition.

There is very little work on the treatment of in-
consistencies in a conditional probabilistic framework
(Rödder and Xu, 2001; Finthammer et al., 2007). The
method described in (Finthammer et al., 2007) con-
sists of a set of heuristics that are used to restore con-
sistency in a knowledge base. Although this method is
not based on a theoretical elaboration it works well in
real-world examples and has been applied successfully
to improve fraud detection in management. Other re-
lated work (Hansen and Jaumard, 1996; Andersen and
Pretolani, 2001) investigates inconsistencies in classi-



cal theories enriched with probabilistic semantics but
without treatment of conditional probabilities as we
do here. Furthermore the authors of (Hansen and
Jaumard, 1996; Andersen and Pretolani, 2001) are
mainly interested in efficient algorithms for determin-
ing whether a knowledge base is inconsistent and not
to what degree.

The main contribution of this paper consists of the de-
velopment of an inconsistency measure on conditional
probabilistic knowledge bases that is based on funda-
mental principles that are desired from inconsistency
measures in general. Furthermore we apply the ap-
proach taken in (Hunter and Konieczny, 2006) on our
framework and use the Shapley value (Shapley, 1953)
to define a more sophisticated inconsistency measure
based on the basic inconsistency measure developed
before. Using this Shapley inconsistency measure we
are able to determine not only the degree of inconsis-
tency but also the contributors to it, i. e. the condi-
tionals that are responsible for the inconsistency.

This paper is organized as follows. In Section 2 we
start with some necessary preliminaries and a descrip-
tion of the basic framework. Afterwards in Section 3
we discuss the basic problem of determining consis-
tency in the basic framework. In Section 4 we go on by
stating some desirable properties of an inconsistency
measure on probabilistic knowledge bases in general
and propose a measure that fulfills these properties.
In order to be able to determine the causes of incon-
sistency we continue in Section 5 by introducing a more
sophisticated measure based on the Shapley value and
the basic inconsistency measure introduced before. In
Section 6 we conclude.

2 Preliminaries

We are working with a propositional framework of
random variables. Let V = {V1, . . . , Vn} be a
set of propositional variables with finite domains
Dom(V1), . . . ,Dom(Vn). The set V is assumed to be
given for all upcoming definitions. An expression of
the form Vi = vi is called a literal if vi is in the domain
of Vi, i. e. vi ∈ Dom(Vi). The language LV is generated
using the connectives ¬, ∧, and ∨ on the literals in V
in the usual way. We abbreviate conjunctions A∧B by
AB and negation ¬A by overlining A. If V is a binary
variable, i. e., it is Dom(V ) = {true, false}, we abbrevi-
ate V = true by just V and V = false by V . We write
> for tautological formulas, e. g. A ∨ A = >. A com-
plete conjunction or interpretation is a conjunction of
literals where every Vi ∈ V appears exactly once. If ω
is a complete conjunction, then ω |= (Vi = vi) if and
only of Vi = vi appears in ω. For an arbitrary formula
B the expression ω |= B evaluates in the usual way.

Let Ω be the set of all complete conjunctions of V,
i. e., the set of all interpretations of the propositional
language induced by V.

Probabilistic knowledge bases are build using prob-
abilistic constraints, that impose certain restrictions
on the conditional probabilities of the models of the
knowledge base. A probabilistic constraint r is an
expression of the form (A |B)[d] with formulas A,B
and d ∈ [0, 1]. If B = > we write (A)[d] instead
of (A | >)[d]. A set of probabilistic constraints R =
{r1, . . . , rm} is called a knowledge base. Let R de-
note the set of all knowledge bases. The models of
a knowledge base R are the probability distributions
PR : Ω→ [0, 1] that fulfill all restrictions on the condi-
tional probabilities imposed by the probabilistic con-
straints in R. More specific, a probability distribution
PR : Ω → [0, 1] is a model for a knowledge base R,
written PR |= R, if and only if PR |= r for every r ∈ R.
That is

PR |= (A |B)[d] :⇔ PR(A |B) = d

⇔ PR(AB) = d · P (B)

with
PR(A) =

∑
ω∈Ω,ω|=A

PR(ω) .

Observe, that we used the notation PR(AB) = d·P (B)
to express that the conditional probability of PR(A |B)
is d in order to avoid a case differentiation for PR(B) =
0. For the rest of this paper, we assume that all prob-
abilistic constraints are self-consistent, i. e., for every
singleton set {r} with r being a probabilistic constraint
we assume that {r} has a model. For example, we for-
bid constraints of the form (A |A)[d] with d > 0 and
the like.

A knowledge base R made of probabilistic constraints
describes incomplete knowledge. Usually, one is in-
terested in performing inductive representation tech-
niques and thus in computing a single probability dis-
tribution that describes R best and thus gives a com-
plete description of the problem area at hand. This
can be done using methods based on maximum en-
tropy, which feature several nice properties (Paris,
1994; Grove et al., 1994; Kern-Isberner, 2001; Rödder
and Meyer, 1996). Although these methods are not the
topic of the present paper, consistency is a necessary
requirement for their application.

3 Determining Consistency

It must not always be the case, that a probabil-
ity distribution PR with PR |= R for a knowl-
edge base R exists, e. g., for the knowledge base
R = {(A |B)[0.5], (B | >)[0.5], (A | >)[0.1]} with liter-
als A,B there is no distribution PR with PR |= R.



Hence, we are interested in determining for a specific
knowledge base R, whether R is consistent (if there is
at least on distribution PR with PR |= R) or inconsis-
tent (if there is no such PR).

In the following, we reduce this problem to a con-
straint satisfaction problem similar to the approaches
in (Hansen and Jaumard, 1996; Andersen and Pre-
tolani, 2001), which consider purely propositional
knowledge bases without conditional constraints. Let
R be a knowledge base. For a probability distribution
PR : Ω → [0, 1] to be a model of R, every probabilis-
tic constraint (A |B)[d] ∈ R imposes PR(A |B) = d
to hold. Let Mod(A) = {ω ∈ Ω |ω |= A} be the set
of all models of the formula A. For every complete
conjunction ω ∈ Ω we introduce a variable αω that de-
termines the unknown value of PR(ω). Then (A |B)[d]
translates to∑

ω∈Mod(AB)

αω = d ·
∑

ω∈Mod(B)

αω . (1)

In order to ensure that PR is indeed a probability
distribution we need the following normalization con-
straints ∑

ω∈Ω

αω = 1 (2)

∀ω ∈ Ω : αω ≥ 0 . (3)

Taken together for all probabilistic constraints r ∈ R
the corresponding equation (1) and the equations (2)
and (3), this yields a constraint satisfaction problem
CSR on the variables {αω |ω ∈ Ω}.
Proposition 1. Let R be a knowledge base. R is con-
sistent if and only if CSR has a solution.

The proof of Proposition 1 is straightforward as every
assignment of values to the variables αω, that is le-
gal with respect to the constraint satisfaction problem
CSR, directly corresponds to a probability distribution
PR with PR(ω) = αω. Hence, if there is an assignment
for all αω the corresponding probability distribution
PR is a model for all probabilistic constraints r ∈ R
and therefore a model for R.

4 Measuring Inconsistency

The simple piece of information that a knowledge base
R is inconsistent is not always sufficient for knowledge
engineering and analyzing. In order to fix the knowl-
edge base more detailed information on the inconsis-
tency is necessary. There is much work on analyz-
ing inconsistency in qualitative frameworks, see e. g.
(Knight, 2001; Wong and Besnard, 2001; Hunter and

Konieczny, 2006), but there is very less work on ana-
lyzing inconsistency in quantitative frameworks, espe-
cially in probabilistic frameworks as the one discussed
here (Finthammer et al., 2007). While (Finthammer
et al., 2007) is mainly concerned with resolving incon-
sistencies using heuristics, here we take a more formal
approach in the analysis of inconsistency by formaliz-
ing and developing an inconsistency measure on prob-
abilistic knowledge bases.

We go on by stating some desirable properties of an in-
consistency measure on knowledge bases. Afterwards
we propose a simple inconsistency measure that is
based on the constraint satisfaction problem CSR and
also fulfills the desirable properties.

4.1 Desirable Properties

Let Inc be a function Inc : R → [0,∞] that maps a
knowledge base R ∈ R onto a positive real. We de-
sire several properties of Inc in order of Inc describ-
ing an inconsistency measure. Some of the following
properties are adapted from (Hunter and Konieczny,
2006) and rewritten to fit a probabilistic framework.
Intuitively we want Inc to be a function on knowledge
bases that is monotonically increasing with the incon-
sistency in the knowledge base. If the knowledge base
is consistent, Inc shall be minimal. For the upcoming
definitions let R be an arbitrary knowledge base and
r, r′ be probabilistic constraints.

(Consistency) If R is consistent, then Inc(R) = 0.

(Inconsistency) If R is inconsistent, then Inc(R) >
0.

The above properties ensure that Inc is indeed an in-
consistency measure and not an information measure
(Cover, 2001) as it should not distinguish between dif-
ferent consistent knowledge bases but measure incon-
sistent ones.

(Monotonicity) It is Inc(R) ≤ Inc(R ∪ {r}).

(Super-Additivity) If R∩R′ = ∅, it is Inc(R∪R′) ≥
Inc(R) + Inc(R′).

The measure of inconsistency can only increase when
new pieces of information are added to the knowl-
edge base. Thus inconsistencies cannot be resolved
with new information. (Super-Additivity) is the
stronger property, as it can be easily seen that (Super-
Additivity) implies (Monotonicity).

(Weak Independence) If no literal in r is men-
tioned in R, then it is Inc(R) = Inc(R ∪ {r}).



As we assume that all probabilistic constraints are self-
consistent, the addition of a constraint not involving
any parts of the language mentioned yet shall not lead
to an increase in the inconsistency.

We say that r is a free constraint iff for every set R′ ⊆
R such that R′ is inconsistent and minimal with this
property, it is r /∈ R′. Then we can strengthen the
above property as follows.

(Independence) If r is a free constraint in R ∪ {r},
then it is Inc(R) = Inc(R ∪ {r}).

This property ensures that not only constraints that do
not use literals previously mentioned cannot increase
inconsistency, but also constraints that do not take
part in any inconsistency of the knowledge base do so.
It is easy to see that satisfaction of the second property
implies satisfaction of the first property.

Proposition 2. If Inc satisfies (Independence), then
Inc satisfies (Weak Independence).

The previous two properties describe cases where the
inconsistency of a knowledge base should remain con-
stant despite the addition of new information. Con-
versely, the next property describes a case when the
inconsistency should increase.

(Penalty) If r is not a free constraint in R∪{r}, then
it is Inc(R) < Inc(R ∪ {r}).

Similar to the motivation for (Independence) we state
that if a probabilistic constraint r contributes to a min-
imal inconsistent subset of the knowledge base, then
the inconsistency must be strictly greater than in the
knowledge base without r.

So far we have not taken into account that we are work-
ing in a probabilistic framework. It is hard to grasp in
what way the probabilities of the conditionals influence
the inconsistency of the whole knowledge base. Con-
sider a knowledge base R and a probabilistic constraint
(A |B)[d] ∈ R. How should the inconsistency measure
Inc behave when increasing (or decreasing) the value
d? There is no definite answer to this question as, on
the one hand, the inconsistency may vanish because
the constraint may become consistent with the rest of
the knowledge base, or, on the other hand, the incon-
sistency may rise because the constraint may remove
itself from a “consistent state”. But one demand can
be made: The change in the measure of inconsistency
should be continuous in d. If one does only slightly
change a given knowledge base, the resulting incon-
sistency measure should have only changed slightly as
well. We formalize this intuition as follows.

Definition 1 (Characteristic function). Let R =
{(A1 |B1)[d1], . . . , (An |Bn)[dn]} be a knowledge base.
The function ΛR : [0, 1]n → R with

ΛR(x1, . . . , xn) = {(A1 |B1)[x1], . . . , (An |Bn)[xn]}

is called the characteristic function of R.

Definition 2 (Characteristic Inconsistency function).
Let R be a knowledge base with |R| = n. The function
θInc,R : [0, 1]n → [0,∞] with θInc,R = Inc ◦ ΛR is called
the characteristic inconsistency function of Inc and R.

The above definitions allow us to state our last prop-
erty in a concise way as follows.

(Continuity) The characteristic inconsistency func-
tion θInc,R is continuous in all arguments.

4.2 An Inconsistency Measure

In this subsection we develop an inconsistency mea-
sure on probabilistic knowledge bases that fulfills the
basic properties described above. For this reason, we
extend the consistency test from the previous section
by including variables that measure the deviation of
the values of the probabilistic constraints from consis-
tent ones in a minimal way. But first, consider the
following remark.

Remark 1. For every set R′ = {(A1 |B1), . . . ,
(An |Bn)} of qualitative conditionals (neglecting the
probabilistic values) there are reals d1, . . . , dn ∈ [0, 1],
such that R = {(A1 |B1)[d1], . . . , (An |Bn)[dn]} is con-
sistent.

This is easy to see, because one can consider any prob-
ability distribution P and assign di := P (Ai |Bi).
As we only consider self-consistent constraints, every
value is computable. Bearing this observation in mind,
let R = {(A1 |B1)[d1], . . . , (An |Bn)[dn]} be a knowl-
edge base. For every i = 1, . . . , n we introduce vari-
ables ηi, τi ∈ [0, 1] that measure the positive and nega-
tive minimal deviations of the value of the probabilistic
constraint (Ai |Bi)[di]. In the following, we define an
optimization problem, that minimizes the deviation of
R to a consistent knowledge base. To this end, we
have to modify the probabilistic constraints in R in a
minimal way, such that the knowledge base R′ with
the modified constraints is consistent, i. e., there is a
probability distribution PR′ that is a model for R′.
As before let αω denote the probability of a complete
conjunction ω ∈ Ω. For every constraint (Ai |Bi)[di],
i = 1, . . . , n we write∑

ω∈Mod(AiBi)

αω = (di + ηi − τi) ·
∑

ω∈Mod(Bi)

αω (4)



to comprehend for the fact that the modified prob-
abilistic constraint (Ai |Bi)[di + ηi − τi] imposes
PR′(Ai |Bi) = di + ηi − τi

1. To ensure well-formed
constraints we also have to consider the following nor-
malization constraints

0 ≤ d1 + η1 − τ1 ≤ 1, . . . , 0 ≤ dn + ηn − τn ≤ 1 (5)

and as before ∑
ω∈Ω

αω = 1 (6)

∀ω ∈ Ω : αω ≥ 0 . (7)

We denote with OPTR the set of constraints (4), (5),
(6), and (7) for a knowledge base R. In order to de-
termine the minimal necessary deviation of R from a
consistent knowledge base, we formulate an optimiza-
tion problem by minimizing the function

f(η1, . . . , ηn, τ1, . . . , τn) = η1 + . . .+ ηn + τ1 + . . .+ τn

given OPTR. Let Inc∗(R) denote the solution for f in
this optimization problem and let η∗1 , . . . , η

∗
n, τ
∗
1 , . . . , τ

∗
n

be the parameters for a minimal value. Considering
again Remark 1, there is always a solution for the op-
timization problem defined above.

Proposition 3. For every knowledge base R, the value
Inc∗(R) is well-defined.

As not all constraints in this optimization problem are
strictly convex, the values of η∗1 , . . . , η

∗
n, τ
∗
1 , . . . , τ

∗
n do

not have to be unique in general (Boyd and Vanden-
berghe, 2004). But some straightforward observations
can be made on the value of Inc∗.

Proposition 4. If η∗i > 0 then τ∗i = 0 and if τ∗i > 0
then η∗i = 0.

Proposition 5. Let R = {(A1 |B1)[d1], . . . ,
(An |Bn)[dn]} be a knowledge base, then it is

0 ≤ Inc∗(R) ≤
∑

1≤i≤n

max(di, 1− di) ≤ n .

For any specific knowledge base R Proposition 5 states
that the value of Inc∗(R) is bounded above by the num-
ber of conditionals in R. By exploiting this observation
one can define a normalized inconsistency measure by

Inc∗0(R) =def

{
0 if R = ∅
Inc∗(R)
|R | otherwise

1We explicitly distinguish between positive (ηi) and
negative (τi) deviations to avoid determining absolute val-
ues when summing the deviations (see below).

with values between zero and one for any knowledge
base R. However, we will go on by investigating the
properties of the unnormalized inconsistency measure
Inc∗, which naturally apply to the normalized incon-
sistency measure Inc∗0 as well.
Example 1. Consider the knowledge base R1 =
{r1, r2, r3, r4} with r1 = (A |B)[0.8], r2 = (A |B)[0.6],
r3 = (B)[0.5], and r4 = (A)[0.2]. Here, it is Inc∗(R1) =
0.5 with η∗1 = τ∗1 = η∗2 = τ∗2 = η∗3 = τ∗3 = τ∗4 = 0 and
η∗4 = 0.5. Therefore, the fourth constraint (A)[0.2] has
to be adjusted to (A)[0.7] in order to restore consis-
tency (this is just one possible adjustment).
Example 2. Consider the knowledge base R2 =
{r1, r2, r3} with r1 = (A |B)[1], r2 = (B)[1], and
r3 = (A)[0]. Here, it is Inc∗(R2) = 1 with η∗1 = η∗2 =
τ∗2 = η∗3 = τ∗3 = 0 and τ∗1 = 1.

As the next example shows, it must not always be a
single probabilistic constraint, that has to be modified
in order to restore consistency.
Example 3. Consider the knowledge base R3 =
{r1, r2, r3, r4, r5} with r1 = (A |C)[0.7], r2 =
(B |C)[0.8], r3 = (A)[0.2], r4 = (B)[0.3], and r5 =
(C)[0.5]. Here, it is Inc∗(R2) = 0.25 with η∗1 = τ∗1 =
η∗2 = τ∗2 = τ∗3 = τ∗4 = 0 and η∗3 = 0.15 and η∗4 = 0.1.

We show now that Inc∗ is indeed an appropriate in-
consistency measure for probabilistic knowledge bases
as it satisfies the desired properties described in the
previous section.
Proposition 6. The function Inc∗ satisfies (Con-
sistency), (Inconsistency), (Monotonicity), (Super-
Additivity), (Weak Independence), (Independence),
(Penalty), and (Continuity).

As mentioned before Proposition 6 also applies to the
normalized inconsistency measure Inc∗0. This is espe-
cially true for the property (Continuity) as for R = ∅
the function θInc∗0 ,R trivializes to the constant (and
therefore continuous) function θInc∗0 ,R = 0.

5 Determining the Causes of
Inconsistency

In Example 2 it has been shown, that the first con-
straint (A |B)[1] had to be modified in order to restore
consistency of the knowledge base R2. This might
tempt to make the assumption that this constraint is
alone responsible for the inconsistency in R2. But if
one looks at R2 in more depth, one can see that the sit-
uation is symmetrical in all three constraints. The op-
timization problem has more than one solution, as for
example η∗2 = 1 also solves the inconsistency (with all
other values being zero) with the same inconsistency
measure of one. In fact, most inconsistent knowledge



bases feature this behavior, as for the optimization
problem it is best to alter as less values of the prob-
abilistic constraints as possible. Usually, one is not
only interested in determining a simple value of incon-
sistency, but to determine the causes of the inconsis-
tency and ultimately to restore consistency. In Exam-
ple 2 all three constraints are equally responsible for
producing the inconsistency in R2. In order to achieve
a more in-depth analysis of the inconsistency in proba-
bilistic knowledge bases in general, we apply the same
technique as in (Hunter and Konieczny, 2006), where
the Shapley value (Shapley, 1953) is used to determine
the causes of inconsistency in propositional knowledge
bases.

We go one by giving a short overview over coalition
game theory and the role of the Shapley value in it,
followed by the definition of the Shapley inconsistency
measure on probabilistic knowledge bases.

5.1 Coalition Game Theory

Coalition game theory is concerned with games, where
players can form coalitions in order to maximize their
own payoff of the game. Let P denote the power set.
Definition 3 (Coalition Game). A coalition game
(N, v) is composed of a set of players N ⊆ N and a
function v : P(N)→ R with v(∅) = 0 and v(S ∪ T ) ≥
v(S) + v(T ) for S, T ⊆ N with S ∩ T = ∅.

For every possible coalition C ⊆ N of players in the
game, the value v(C) determines the payoff this coali-
tion gets. As this payoff must be distributed on the
members of C, every player has to evaluate for his
own, which coalition to form in order to maximize his
own expected payoff. Not every player has to expect
the same payoff for himself, as players may be more or
less important for the forming of coalitions.
Example 4 (taken from (Hunter and Konieczny,
2006)). LetN = {1, 2, 3} and the function v : P(N)→
R be defined as

v({1}) = 1 v({2}) = 0 v({3}) = 1
v({1, 2}) = 10 v({2, 3}) = 11 v({1, 3}) = 4

v({1, 2, 3}) = 12

In this game, not every player should expect the same
payoff, as for instance it is more advantageous for
player 1 to form a coalition with player 2 rather than
with player 3 alone.

A solution to a coalition game (N, v) consists of an as-
signment Si(v) of payoffs to each player i ∈ N , that is
fair in the sense that every player gets as much payoff
as his contribution in the grand coalition N weighs.
Some formal desirable properties of a solution are as
follows.

(Efficiency)
∑

i∈N Si(v) = v(N)

(Symmetry) For all i, j ∈ N , if v(C ∪ {i}) = v(C ∪
{j}) for all C ⊆ N \ {i, j} then Si(v) = Sj(v)

(Dummy) If for i ∈ N it is v(C) = v(C ∪ {i}) for all
C ⊆ N then it is Si(v) = 0

(Additivity) Si(v + w) = Si(v) + Si(w)

A solution should comprehend for the fact, that the
value to be distributed among the players is the max-
imal value that can be achieved (Efficiency). If two
players are indistinguishable by their contributions to
the coalitions, they deserve the same payoff (Symme-
try); if a player does not contribute to any coalition
at all, his payoff should be zero (Dummy). (Additiv-
ity) describes the desired behavior of a solution if two
coalition games are combined.

It can be shown (Shapley, 1953), that the Shapley
value defined as follows is the only solution for a
coalition game that satisfies (Efficiency), (Symmetry),
(Dummy), and (Additivity).

Definition 4 (Shapley Value). Let (N, v) be a coali-
tion game. The Shapley Value Si(v) for a player i ∈ N
is defined as

Si(v) =
∑

C⊆N

(|C| − 1)!(|N | − |C|)!
|N |!

(v(C)− v(C \ {r})

Example 5 ((Hunter and Konieczny, 2006)). The
Shapley values for the players 1, 2, 3 from Example 4
are

S1(v) ≈ 2.83
S2(v) ≈ 5.83
S3(v) ≈ 3.3

5.2 Shapley Inconsistency Measure

We now define in accordance to (Hunter and
Konieczny, 2006) a Shapley function using an incon-
sistency measure Inc, thus being enabled to further
investigate the causes of inconsistency.

Definition 5 (Probabilistic Shapley Inconsistency
Measure). Let K be a knowledge base, r ∈ K a prob-
abilistic constraint, and Inc an inconsistency measure.
We define the probabilistic Shapley inconsisteny mea-
sure SK

Inc(r) of r in K as

SK
Inc(r) =

∑
C⊆K

(|C| − 1)!(n− |C|)!
n!

(Inc(C)−Inc(C\{r}))

Using the probabilistic Shapley inconsistency value we
can obtain more specific information about how the



inconsistency is distributed on the probabilistic con-
straints of a knowledge base. In the following we use
the inconsistency measure Inc∗ developed in the pre-
vious section for the application of the Shapley incon-
sistency measure.
Example 6. Consider again the knowledge base R1 =
{r1, r2, r3, r4} with r1 = (A |B)[0.8], r2 = (A |B)[0.6],
r3 = (B)[0.5], and r4 = (A)[0.2] from Example 1
with Inc∗(R1) = 0.5. There it is SR1

Inc∗(r1) ≈ 0.15,
SR1

Inc∗(r2) ≈ 0.117, SR1
Inc∗(r3) ≈ 0.05, and SR1

Inc∗(r4) ≈
0.183. The distribution of the Shapley values indicates
that the constraint r4 = (A)[0.2] is mostly responsible
for the inconsistency in R1 and r3 = (B)[0.5] is less
responsible. This can be justified as both rules r1 and
r2 describe an influence of B on A and – assuming
that the knowledge base describes causal rather that
diagnostic information – thus state that B is more en-
trenched or more basic than A. Thus, rule r4 that
gives a probability of A not conditioned on anything
else, is most dangerous for consistency.
Example 7. Consider again the knowledge base R2 =
{r1, r2, r3} with r1 = (A |B)[1], r2 = (B)[1], and
r3 = (A)[0] from Example 2 with Inc∗(R2) = 1.
There it is SR2

Inc∗(r1) ≈ 0.33, SR2
Inc∗(r2) ≈ 0.33, and

SR2
Inc∗(r3) ≈ 0.33. Here it is clear, that all three prob-

abilistic constraints are equally responsible for the in-
consistency in R2. This reflects the intuition described
above.
Example 8. Consider again the knowledge base
R3 = {r1, r2, r3, r4, r5} with r1 = (A |C)[0.7], r2 =
(B |C)[0.8], r3 = (A)[0.2], r4 = (B)[0.3], and r5 =
(C)[0.5] from Example 3 with Inc∗(R3) = 0.25. There
it is SR3

Inc∗(r1) ≈ 0.062, SR3
Inc∗(r2) ≈ 0.045, SR3

Inc∗(r3) ≈
0.062, SR3

Inc∗(r4) ≈ 0.045, and SR3
Inc∗(r5) ≈ 0.036.

The probabilistic Shapley inconsistency measure sat-
isfies the same properties as the Shapley value due to
its direct application on an inconsistency measure.
Proposition 7. If Inc is an inconsistency measure
that satisfies (Consistency) and (Super-Additivity),
then the probabilistic Shapley inconsistency measure
SInc satisfies

(Efficiency)
∑

r∈R S
R
Inc(r) = Inc(R)

(Symmetry) For all r, r′ ∈ R, if Inc(R′ ∪ {r}) =
Inc(R′∪{r′}) for all R′ ⊆ R\{r, r′} then SR

Inc(r) =
SInc(r′)

(Dummy) If for r ∈ R it is Inc(R′) = Inc(R′ ∪ {r})
for all R′ ⊆ R then it is SR

Inc(r) = 0

The property (Additivity) was neglected as it does
not make sense for our application, cf. (Hunter and
Konieczny, 2006). From Proposition 7 it follows di-
rectly

Corollary 1. The probabilistic Shapley inconsistency
measure SInc∗ satisfies (Efficiency), (Symmetry), and
(Dummy).

Using the inconsistency measure Inc∗ and the Shap-
ley inconsistency measure SR

Inc∗ the knowledge engineer
can support his efforts to restore consistency in a prob-
abilistic knowledge base R. The solutions of the opti-
mization problem OPTR describe the minimal adjust-
ments to be made in order to restore consistency. By
considering the Shapley inconsistency measures SR

Inc∗

for the constraints in R one can select the most ap-
propriate solution and modify the knowledge base ac-
cordingly. We will formalize this approach of restoring
consistency using inconsistency measures in an upcom-
ing paper.

6 Summary and Discussion

We developed an inconsistency measure on conditional
probabilistic knowledge bases and showed that this
measure satisfies several desirable properties. We went
on by using this measure and the well-known Shapley
value to define a more sophisticated measure that gives
the knowledge engineer the means to restore consis-
tency of a knowledge base by identifying the causes for
the inconsistency. Due to its heritage from the Shap-
ley value the Shapley inconsistency measure satisfies
several nice properties.

The examples in this paper were computed by a proto-
typical implementation of the function Inc∗ and SR

Inc∗

in Java which uses the free optimization software
OpenOpt2 to solve the optimization problems of type
OPTR.

The inconsistency measure described here and incon-
sistency measures in general are useful when dealing
with data from heterogenous sources as in informa-
tion fusion or belief revision (Bloch and Hunter, 2001;
Alchourrón et al., 1985; Kern-Isberner and Rödder,
2003). They can point at discrepancies in the data rep-
resentation and give hints on possible fixes within the
model. Many expert systems in highly-crucial appli-
cation areas like medical diagnosis or fraud detection
demand to draw consistent conclusions but need to use
distorted and ambiguous information at the same time.
Actually, we are currently investigating the possibili-
ties of applying information engineering techniques as
the described inconsistency measure and information
fusion in the field of fraud detection in the annual au-
dit relating to commercial law. For future work we
also plan to extend and apply the work reported here
on relational probabilistic knowledge bases.

2http://openopt.org/
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