
Bayesian Multitask Learning with Latent Hierarchies

Hal Daumé III
School of Computing
University of Utah

Salt Lake City, UT 84112

Abstract

We learn multiple hypotheses for related
tasks under a latent hierarchical relationship
between tasks. We exploit the intuition that
for domain adaptation, we wish to share clas-
sifier structure, but for multitask learning, we
wish to share covariance structure. Our hi-
erarchical model is seen to subsume several
previously proposed multitask learning mod-
els and performs well on three distinct real-
world data sets.

1 INTRODUCTION

We consider two related, but distinct tasks: do-
main adaptation (DA) [4, 1, 7] and multitask learning
(MTL) [5, 2]. Both involve learning related hypothe-
ses on multiple data sets. In DA, we learn multiple
classifiers for solving the same problem over data from
different distributions. In MTL, we learn multiple clas-
sifiers for solving different problems over data from the
same distribution.1 Seen from a Bayesian perspective,
a natural solution is a hierarchical model, with hy-
potheses as leaves [6, 16, 15]. However, when there
are more than two hypotheses to be learned (i.e., more
than two domains or more than two tasks), an imme-
diate question is: are all hypotheses equally related?
If not, what is their relationship? We address these is-
sues by proposing two hierarchical models with latent
hierarchies, one for DA and one for MTL (the models
are nearly identical). We treat the hierarchy nonpara-
metrically, employing Kingman’s coalescent [12]. We
derive an EM algorithm that makes use of recently

1We note that this distinction is not always maintained
in the literature where, often, DA is solved but it is called
MTL. We believe this is valid (DA is a special case of
MTL), but for the purposes of this paper, it is important
to draw the distinction.

developed efficient inference algorithms for the coales-
cent [14]. On several DA and MTL problems, we show
the efficacy of our model.

Our models for DA and MTL share a common struc-
ture based on an unknown hierarchy. The key dif-
ference between the DA model and the MTL model
is in what information is shared across the hierarchy.
For simplicity, we consider the case of linear classi-
fiers (logistic regression and linear regression). This
can be extended to non-linear classifiers by moving to
Gaussian processes [16]. In domain adaption, a use-
ful model is to assume that there is a single classifier
that “does well” on all domains [1, 15]. In the context
of hierarchical Bayesian modeling, we interpret this as
saying that the weight vector associated with the lin-
ear classifier is generated according to the hierarchical
structure. On the other hand, in MTL, one does not
expect the same weight vector to do well for all prob-
lems. Instead, a common assumption is that features
co-vary in similar ways between tasks [13, 16]. In a
hierarchical Bayesian model, we interpret this as say-
ing that the covariance structure associated with the
linear classifiers is generated according to the hierar-
chical structure. In brief: for DA, we share weights;
for MTL, we share covariance.

2 BACKGROUND

2.1 RELATED WORK

Yu et al. [16] have presented a linear multitask
model for domain adaptation. In the linear multitask
model, a shared mean and covariance is generated by
a Normal-Inverse-Wishart prior, and then the weight
vector for each task is generated by a Gaussian con-
ditioned on this shared mean and variance. The key
idea in the linear multitask model [16] is to model fea-
ture covariance; this is also the intuition behind the
informative priors model [13], carried out in a more
Bayesian framework. (The linear multitask model is
almost identical to the conjoint analysis model [6]).

t1t2t3
−∞

t0 = 0

δ1δ2δ3

x1

x2

x3

x4

y{1,2}

y{3,4}

y{1,2,3,4}z

{{1, 2, 3, 4}} {{1, 2}, {3, 4}} {{1}, {2}, {3}, {4}}{{1}, {2}, {3, 4}}π(t) =

(a)

Figure 1: Variables describing the N -coalescent.

Xue et al. [15] present a Dirichlet process mixture
model formulation, where domains are clustered into
groups and share a single classifier across groups. This
helps to prevent “negative transfer” (the effect of
“unrelated” tasks negatively affecting performance on
other tasks). Xue et al.’s model is effectively a task-
clustering model, in which some tasks share common
structure (those in the same cluster), but are otherwise
independent from other tasks (those in other clusters).
This work was later improved on by Dunson, Xue and
Carin [9] in the formulation of the matrix stick break-
ing process: a more flexible approach to Bayesian mul-
titask learning that allows for more sharing.

This is also a large body of work on non-Bayesian ap-
proaches to multitask learning and domain adaptation.
Bickel et al. [2] offer an extension of the logistic regres-
sion model that simultaneously learns a good classifier
and a classifier to provide instance weights for out of
sample data. This approach is only applicable when
no labeled “target” data is available, but much unla-
beled target data is. Blitzer, McDonald and Pereira
[4] present another approach to this “unsupervised”
setting of domain adaptation that makes use of prior
knowledge of features that are expected to behave sim-
ilarly across domains. Both of these approaches are
developed only in the two-domain setting. Dredze and
Crammer [8] describe an online approach for dealing
with the many-domains problem, sharing information
across domains via confidence-weighted classifiers.

2.2 KINGMAN’S COALESCENT

Our model for DA and MTL makes use of a latent hier-
archical structure. Being Bayesian, we wish to attach
a prior distribution to this hierarchy. A convenient
choice of prior is Kingman’s coalescent [12]. Our de-
scription and notation is borrowed directly from [14].
Kingman’s coalescent originated in the study of pop-
ulation genetics for a set of haploid organisms (organ-
isms which have only a single parent). The coalescent
is a nonparametric model over a countable set of or-
ganisms. It is most easily understood in terms of its
finite dimensional marginal distributions over N in-
dividuals, in which case it is called an N -coalescent.

We then take the limit N → ∞. In our case, the N
individuals will correspond to N classifiers (tasks).

The N -coalescent considers a population of N organ-
isms at time t = 0 (see Figure 1 for an example with
N = 4). We follow the ancestry of these individu-
als backward in time, where each organism has ex-
actly one parent at time t < 0. The N -coalescent
is a continuous-time, partition-valued Markov process
which starts with N singleton clusters at time t = 0
and evolves backward, coalescing lineages until there is
only one left. We denote by ti the time at which the ith
coalescent event occurs (note ti ≤ 0), and δi = ti−ti−1

the time between events (note δi > 0). Under the N -
coalescent, each pair of lineages merges independently
with exponential rate 1; so δi ∼ Exp

((
N−i+1

2

))
. With

probability one, a random draw from the N -coalescent
is a binary tree with a single root at t = −∞ and N
individuals at time t = 0. We denote by π the tree
structure and by δ the collection of {δi}. Leaves are
denote by xn and internal nodes by yi, where i indexes
a coalescent event (see Figure 1). The marginal distri-
bution over tree topologies is uniform and independent
of t, δ; and the model is infinitely exchangeable. We
consider the limit as N →∞, called the coalescent.

Once the tree structure is obtained, one can define an
additional Markov process to evolve over the tree. One
common, and easy to understand, choice is a Brownian
diffusion process. In Brownian diffusion in D dimen-
sions, we assume an underlying diffusion covariance of
Λ ∈ RD×D positive semi-definite. The root is a D-
dimensional vector drawn z. Each yi ∈ RD is drawn
yi ∼ Nor(yp(i), δiΛ), where p(i) is the parent of i in
the tree. xis are drawn conditioned on their parent.

The coalescent is a very popular model in popula-
tion genetics (it corresponds to a limiting case of
the Wright-Fisher model), but has been plagued with
the lack of efficient inference algorithm. (Most infer-
ence occurs by Metropolis-Hastings sampling over tree
structures.) Recently, Teh et al. [14] proposed a col-
lection of efficient bottom-up agglomerative inference
algorithms for the coalescent. The one we make use is
called Greedy-Rate1 and proceeds in a greedy manner,
merging nodes that want to coalesce most quickly. In
the case of Greedy-Rate1, the exponential rate is fixed
as 1. Belief propagation is used to marginalize out in-
ternal nodes yi. If we associate with each node in the
tree a mean y and variance v message, we can com-
pute messages as Eq (1), where i is the current node
and li and ri are its children.

vi =
ˆ
(vli + (tli − ti)Λ)−1 + (vri + (tri − ti)Λ)−1˜−1

(1)

yi =
ˆ
yli(vli + (tli − ti)Λ)−1 + yri(vri + (tri − ti)Λ)−1˜−1

vi

Importantly, this model is applicable when the xis are
not known entirely, but are represented by Gaussians.
This can be done efficient since, given a hierarchical
structure, inference is simply message passing in a
Gaussian random field. (We will need this property
in order to perform expectation-maximization.)

3 LATENT HIERARCHY MODELS

In this section, we present a model for domain adapta-
tion (DA) and a model for multitask learning (MTL),
plus some minor variants. (The variants are evaluated
in Section 4.) As mentioned previously, the structure
of the two models is the same: they differ in what
information is shared.

To fix notation, suppose that we wish to learn K dif-
ferent hypotheses (K domains in DA or K tasks in
MTL). We suppose that we have training data for
each hypothesis, with Nk labeled examples examples
for hypothesis k. (Notational confusion warning: in
reference to the coalescent, the K hypotheses will be
the leaves of the coalescent tree, so this is more akin
to a K-coalescent.) The inputs are drawn from RD
and outputs from Y, where Y = R for regression tasks
or Y = {−1,+1} for classification tasks. We assume
a distribution D(k) over RD for each hypothesis (in
MTL, we assume identical distributions D(k) = D).
Our data thus has the form {{(x(k)

n , y
(k)
n) : n ∈ [Nk]} :

k ∈ [K]}, where [I] = {1, . . . , I}, x(k)
n is the nth input

for task k and y
(k)
n is the corresponding label. Each

x
(k)
n ∼ D(k) iid. We will be using linear or logistic re-

gression, parameterized by hypothesis-specific weight
vectors w(k) ∈ RD, where predictions are made on the
basis of w(k)>x(k)

n .

One important design choice in both our models is
whether we explicitly model the input x. In the cases
where we do not, our model is a conditional model of
the form p(y | x). In the cases where we do, our model
is a joint model that factorizes as p(y | x)p(x). In this
case, the same tree structure is used to model both
the conditional likelihood of y given x and the data
itself. In effect, this gives more data on which to learn
the tree structure, at the cost that it might not be
directly related to the prediction problem. We refer to
this choice in the future as “model the data.”

3.1 DOMAIN ADAPTATION

We propose the following model for domain adapta-
tion. The basic idea is to generate a tree structure ac-
cording to a K-coalescent and then propagate weight
vectors along this tree. The root of the tree corre-

sponds to the “global” weight vector and the leaves
correspond to the task-specific weight vectors. We as-
sume the weight vectors evolve according to Brownian
diffusion. Our generative story is:

1. Choose a global mean and covariance (µ(0),Λ) ∼
NorIW(0, σ2I, D + 1). 2

2. Choose a tree structure (π, δ) ∼ Coalescent over
K leaves.

3. For each non-root node i in π (top-down):

(a) Choose µ(i) ∼ Nor(µ(pπ(i)), δiΛ), where
pπ(i) is the parent of i in π.

4. For each domain k ∈ [K]:

(a) Denote by w(k) = µ(i) where i is the leaf in
π corresponding to domain k.

(b) For each example n ∈ [Nk]:

i. Choose input x(k)
n ∼ D(k).

ii. Choose output y(k)
n by:

Regression: Nor(w(k)>x(k)
n , ρ2)

Classification: Bin(1/(1 + e−w(k)>x(k)
n))

Here, ρ2 and σ2 are hyperparameters that we assume
are known (we use held-out data to set them).

We consider the following variants of this model: Is Λ
is assumed diagonal or full? Do we explicitly model
the data? We call these:

Diag Diagonal Λ, do not model the data.

Diag+X Diagonal Λ, do model the data.

Full Full Λ, do not model the data.

Full+X Full Λ, do model the data.

In the case where the input data is modeled explicitly
(i.e., Diag+X and Full+X), we assume a base param-
eter vector over X generated at the root (in step (1)),
propogated down the tree (in step (3)) and used to
generate the inputs x(k)

n (in step (4.b.i)). In the case
that the input is modeled, we always assume diagonal
covariance on the input. For continuous data, we use a
Gaussian mutation kernel, as in step 4.a. For discrete
data, we use a multinomial equilibrium distribution
qd and transition rate matrix Qd = Λd,d(qd>1K − I)
where 1K is a vector of K ones, while the transition
probability matrix for entry d in a time interval of
length δ is eQdt = e−δΛd,dI + (1− e−δΛd,d)qd>1K .

2We denote by NorIW(µ,Λ | m,Ψ, ν) the Normal-
Inverse-Wishart distribution with prior mean m, prior co-
variance Ψ and ν degrees of freedom.

3.2 MULTITASK LEARNING

In the multitask learning case, we no longer wish to
share the weight vectors, but rather wish to share their
covariance structure. This model is slightly more dif-
ficult to specify because Brownian motion no longer
makes sense over a covariance structure (for instance,
it will not maintain positive semi-definiteness). Our
solution to this problem is to decompose the covari-
ance structure into correlations and standard devia-
tions. We assume a constant, global correlation ma-
trix and only allow the standard deviations to evolve
over the tree. (The idea of decomposing the covari-
ance comes from [11], section 19.2.) We model the log
standard deviations using Brownian diffusion.

In particular, our model assumes that each node in the
tree is associated with a diagonal log standard devia-
tion matrix S(i) ∈ RD×D. The weight vector for task k
is then drawn Gaussian with zero mean and covariance
given by

(
exp S(i)

)
R
(

exp S(i)
)
, where R ∈ RD×D are

the shared correlations (with diagonal elements equal
to 1). Our prior on R is:

p(R) ∝ (det R)
1
2 (d+1)(d−1)−1

D∏
i=1

(detR(ii))−(d+1)/2

(2)
Here, R(ii) is the ith principle submatrix of R. This
is the marginal distribution of R when SRS has an
inverse-Wishart prior with identity prior covariance
and D+ 1 degrees of freedom, which leads to uniform
marginals for each pairwise correlation.

Given this setup, our multitask learning model has the
following generative story:

→ 1. Choose R by Eq (2) and deviation covariance Λ ∼
IW(σ2I, D + 1).

2. Choose a tree structure (π, δ) ∼ Coalescent over
K leaves.

3. For each non-root node i in π (top-down):

→ (a) Choose S(i) ∼ Nor(S(pπ(i)), δiΛ), where pπ(i)
is the parent of i in π.

4. For each task k ∈ [K]:

→ (a) Choose w(k) by (i is the leaf associated with
task k): Nor

(
0,
(

exp S(i)
)
R
(

exp S(i)
))

(b) For each example n ∈ [Nk]:
→ i. Choose input x(k)

n ∼ D.
ii. Choose output y(k)

n by:
Regression: Nor(w(k)>x(k)

n , ρ2)
Classification: Bin(1/(1 + e−w(k)>x(k)

n))

The steps that differ from the the domain adaptation
model are marked with an arrow (→).

3.3 INFERENCE

For both the DA and MTL models, we perform in-
ference using an expectation-maximization algorithm.
The latent variables in both algorithms are the vari-
ables associated with the leaves of the trees (in DA:
the weight vectors; in MTL: the log standard devia-
tions). The parameters are everything else: the tree
structure π and times δ, the Brownian covariance Λ
and all other prior parameters.

3.3.1 Domain adaptation

We begin with the domain adaptation model. For sim-
plicity, we consider the case where the input data is not
modeled. In the E-step, we compute expectations over
the leaves (classifiers). In the M-step, we optimize the
tree structure and the other hyperparameters.

E-step: The E-step can be performed exactly in the
case of regression (the expectations of the classifiers
are simply Gaussian). In the case of classification, we
approximate the expectations by Gaussians (via the
Laplace approximation). In particular, for each do-
main k, we compute:

w(k) = arg max
w

p(w)
Nk∏
n=1

p(y(k)
n | x(k)

n ,w) (3)

C(k) =
(
X(k)>A(k)X(k)

)−1

+ (δΛ)−1 (4)

In Eq (3), p(w) is the prior on w given by its parent
in the tree; the likelihood term is the data likelihood
(logistic for classification, or Gaussian for regression).
We solve the optimization problem by conjugate gra-
dient. w(k) is the mean of the Gaussian representing
the expectation of the kth weight vector. The covari-
ance of the estimate is C(k), with A(k) diagonal. For
regression, A(k) = I; for classification, A(k) has entries
A

(k)
nn = s

(k)
n (1−s(k)

n), where s(k)
n = 1/(1+e−w(k)>x(k)

n).

M-step: Here, we optimize (π, δ) by integrating out
µs associated with internal nodes (using belief propa-
gation). This can be done efficiently using the Greedy-
Rate1 algorithm [14]. Optimize Λ as the mode of an
Inverse-Wishart with D + K + 1 degrees of freedom
and mean Σ:

Σ = I +
X

i

Di
>
“
v(lπ(i)) + v(rπ(i)) + t(i)Λ

”−1

Di (5)

Di = µ(lπ(i)) − µ(rπ(i)) , t(i) = δ(lπ(i)) + δ(rπ(i)) (6)

Here, lπ(i) and rπ(i) are the left and right children
respectively of node i in π. v(i) is the variance of node i
(obtained by Eq (4) for leaves or via belief propagation
for internal nodes). The sum in Eq (5) ranges over all
non-leaf nodes in π.

We initialize EM by computing w(k) for each task ac-
cording to a maximum a posteriori estimate with zero
mean and σ2I variance. This initialization effectively
assumes no shared structure.

3.3.2 Multitask learning

Constructing an exact EM algorithm for the multi-
task learning model is significantly more complex. The
complexity arises from the convolution of the Normal
(over w) with the log-Normal (over S). This makes
the computation of exact expectations (over S) in-
tractable. We therefore use the popular “hard EM”
approximation, in which we estimate the expectation
of the latent variables (S) with a point mass centered
at their mode. (Experiments in the domain adapta-
tion model show that the hard EM approximation to
w does not affect results.)

The only additional complication is that of optimizing
R (the overall correlations) and each S(i) (the per-
node standard deviations). R can be handled exactly
as Λ in the domain adaptation case: see Eq (5), but
constrained to have ones along the diagonal. The case
for S(i) is slightly more involved. We first maximize w
as before, and then also maximize S. The log posterior
and its derivative have the forms below, where C is a
constant independent of S and W = diagw:

log p(S) = − tr S− 1
2

tr
[
(S−P)>Λ−1(S−P)

]
− 1

2
tr
[
W(e−SR−1e−S)W

]
+ C

∇S log p(S) = −I− (S−P)Λ−1 + W(e−SR−1e−S)W

Here P is the (diagonal) matrix at the parent of the
current node in the hierarchy. We optimize S by gradi-
ent descent with step size (0.1/iter) until convergence
of S to 10−6.

4 EXPERIMENTAL RESULTS

We conduct experiments on two domain adaptation
problems (sentiment analysis [3] and landmine detec-
tion [15]), and one multitask learning problem (based
on a construction of 20-newsgroups previoulsy used for
MTL [13]). The relevant dataset statistics for these
data sets are in Table 1. Note that for both sentiment
and 20-newsgroups, we project the data down to 50
dimensions using PCA. In all cases, we run EM for
20 iterations and choose the iteration for which the
likelihood of 10% held-out training data is maximized.

Table 2: Performance on all tasks by competing mod-
els.

Sentiment Land- 20
Model N=100 N=6400 mine NG
Indp 62.1% 75.8% 52.7% 69.3%
Pool 67.3% 74.5% 47.1% -
FEDA 63.6% 75.7% 51.6% 69.5%
YaXue 67.8% 72.3% 55.3% 72.5%
Bickel 68.0% 72.5% 55.5% 74.1%
Coal:

Full 72.2% 80.5% 56.2% 75.8%
Diag 71.9% 80.4% 55.8% 75.3%
Full+X 70.1% 75.9% 55.0% 74.7%
Diag+X 70.1% 75.8% 55.1% 74.6%
Data 70.1% 75.8% 54.9% 72.0%

For all experiments, we compare against the following
baselines and alternative approaches:

pool: pool all the data and learn a single model

indp: train separate models for each domain/task

feda: the “augment” approach of by Daumé III [7]

yaxue: the flexible matrix stick breaking process
method of Dunson, Xue and Carin [9]

bickel: the discriminative method of Bickel et al. [2]3

The results for all data sets and all methods are shown
in Table 2. Here, we also compare all five settings
of the Coalescent model (full covariance and diagonal
covariance, with and without the data, and then the
tree derived just by clustering the data). Here, we can
see that the more complex Coalescent-based models
tend to outperform the other approaches.

4.1 DOMAIN ADAPTATION:
SENTIMENT ANALYSIS

Our first experiment is on sentiment analysis data
gathered from Amazon [3]. The task is to predict
whether a review is positive or negative based on the
text of the review. There are eight domains in this
task: apparel (a), books (b), DVD (d), electronics (e),
kitchen (k), music (m), video (v) and other (o). If we
cluster these tasks on the basis of the data, we obtain
the tree shown in Figure 2.

In our first experiment, we treat every domain equally
and vary the amount of data used to learn a model. In

3The original method works only for two domains. We
extend it to multiple domains in two ways: first, we do
a one-versus-rest approach; second, we do a one-versus-
one approach. The results presented here are oracle in the
sense that they optimistically choose the better approach
for each data set and each domain.

Table 1: Data set statistics for two DA problems and one MTL problem. The number of training and test
examples are averages across the K tasks and are presented with percentage standard deviation.

Model Dataset # Tasks # Features # Train # Test

DA
Sentiment [3] 8 5964 9151±43% 2288±43%
Landmine detection [15] 29 9 409±17% 102±17%

MTL 20-newsgroups [13] 10 925 1127±8% 751±8%

app kitchen elec other musicbooks dvd video

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2: Coalescent tree obtained on sentiment data
just using the data points.

Figure 3, we show the results of the coalescent-based
model (with full covariance but without data: Full),
baselines, and comparison methods. As we can see, the
coalescent-based approach dominates, even with very
many data points (6400 per domain). In Table 2, we
see that moving from full to diagonal covariance does
not hurt significantly. Adding the data hurts perfor-
mance significantly, and brings the performance down
to the level of Data, the model that uses the data-based
tree. In comparison to previously published results on
this problem [3], our results are not quite as good.
However, prior results depend on a large amount of
prior knowledge in terms of “pivot features,” which
our model does not require, and also begin with a dif-
ferent feature representation.

In Figure 4, we show the trees after ten iterations of
EM. We can see a difference between these trees and
the tree built just on the data (cf., Figure 2). For
instance, the data tree thinks that “music” is more
like “appliances” than it is like “DVDs,” something
that does not happen in the EM tree.

In the next experiments, we select one task as the “tar-
get”. We use 6400 examples from all the “source”
tasks and vary the amount of labeled target data. We
perform an evaluation on four targets, the same as
those used previously [3]: books, DVD, electronics and
kitchen. These results are shown in Figure 5. Here,
we again see that the coalescent-based approach out-
performs the baselines. However, for many of these
per-target results, the feda baseline is the consistent-

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of examples per task

A
ve

ra
ge

 a
cc

ur
ac

y
(a

cr
os

s
ta

sk
s)

coal

pool

indp

feda

yaxue

bickel

Figure 3: Accuracies on sentiment analysis data as
number of data points per domain increases (coal =
Full).

best alternative. One somewhat surprising result is
that adding more and more target data does not ap-
pear to help significantly for this problem.

4.2 DOMAIN ADAPTATION: LANDMINE
DETECTION

The second domain adaptation task we attempt is
landmine detection [15]. To conserve space, we only
present overall results and results for one subtask: the
last one. To uncrowd the figure, we also limit the base-
line models to a subset of approaches; recall that the
full results are shown in Table 2. These are shown in
Figure 6. Note that the performance measure here is
AUC: there are very few positives in this data (around
5%). Here, we see that on the target-based evaluation,
the coalescent-based approach dominates. For small
amounts of data it performs equivalently to indp, but
the gap increases for more data.

4.3 MULTITASK LEARNING:
20-NEWSGROUPS

Our final evaluation is on data drawn from 20-
newsgroups. Here, we construct 10 binary classifica-
tion problems, each of which is its own task. We use

10
2

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78
A

cc
ur

ac
y

(f
or

 ta
rg

et
 ta

sk
)

10
2

0.68

0.7

0.72

0.74

0.76

0.78

10
2

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

Number of examples for target task (6400 for source tasks)

10
2

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

coal

pool

indp

feda

yaxue

bickel

Figure 5: Per-target sentiment results.

10
1

10
2

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

examples per task

Av
er

ag
e

ac
cu

ra
cy

 (a
cr

os
s

ta
sk

s)

Overall

10
1

10
2

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

examples for target

Ac
cu

ra
cy

 (f
or

 ta
rg

et
)

Baseball vs Politics

10
1

10
2

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

0.865

0.87

examples for target

Ac
cu

ra
cy

 (f
or

 ta
rg

et
)

IBM Handware vs Forsale

coal

indp

feda

Figure 7: Results on 20-newsgroups multitask learning problem.

d m b v e o a k

0.2

0.4

0.6

0.8

1

Figure 4: EM tree on the sentiment data.

an identical setup to previous work [13]. As before, we
present overall results and then results for two sub-
tasks. The subtasks we choose are “Baseball versus
Politics” and “IBM Hardware versus Forsale” – these
were chosen as an example of good and bad transfer
from previous studies [13]. Here, we have cut out the
pool baseline because it does not make sense in a pure
MTL setting. To uncrowd the figure, we also limit the
baseline models to a subset of approaches; recall that
the full results are shown in Table 2. The results are
in Figure 7. Here, we see that the coalescent-based
model overall outperforms the baselines, and further

10
1

10
2

0.35

0.4

0.45

0.5

0.55

0.6

Number of examples per task

A
ve

ra
ge

 A
U

C
 (

ac
ro

ss
 ta

sk
s)

10
1

10
2

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

Number of examples for target task (400 for source)

A
U

C
 (

fo
r

ta
rg

et
 ta

sk
=

29
)

coal

pool

indp

feda

Figure 6: Landmine detection results.

maintains an advantage for Baseball-versus-Politics,
for which we expect a reasonable amount of trans-
fer. One significant difference between these results
and the DA results is that on the per-target results,
in the DA case, our model continued to outperform.
However, in the MTL case, with enough labeled target
data, the independent classifiers quickly catch up. In
comparison to prior results on this problem [13], our
rate of improvement is roughtly comparable.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Level of feature swapping

A
ve

ra
ge

 a
cc

ur
ac

y
(a

cr
os

s
ta

sk
s)

 coal pool indp feda yaxue bickel

Figure 8: Adding bogus data to sentiment task.

4.4 RESULTS ON NOISY DOMAINS

One additional question that arises in work related to
a large number of domains (or tasks) is whether the
addition of unrelated domains can damage a model.
In this section, we explore the effect of the addition
of unrelated domains on our learning algorithms. We
simulate this on the sentiment data by adding a task
obtained by scrambling the features of one of the true
tasks, where we vary the percentage scrambled.

The results are shown in Figure 8. Here, we see that
there is a slighly trend toward degradation in perfor-
mance for the original tasks as the amount of noise
in the new task increases. This is true for all of the
learning algorithms; unfortunately, this includes our
own. One would hope that the model could learn to
not share information with this irrelevant task, but ap-
parently the prior toward short trees is too strong to
overcome the noiser. Addressing this remains open.

5 DISCUSSION

We have presented two models: one for domain adap-
tation (DA) and one for multitask learning (MTL).
Inference in our models is based on expectation max-
imization. We observe significant performance im-
provements on three very different data sets from our
models. The only distinction between the models is
what aspects are shared. We believe this is a reason-
able way to divide up the DA/MTL landscape.

Two interesting special cases fall out of our model.
First, if we set Λ = I and construct a tree where ev-
ery node branches directly from the root, our model is
precisely the linear multitask model proposed by Yu
et al. [16]. Second, we consider the fact that a special
case of the coalescent can describe the same distribu-
tion as a Dirichlet process [10]. Through this view, we
can see that Dirichlet-process based multitask model
of Xue et al. [15] is achieved as a special case.

There are several ideas in the literature for both DA
and MTL that are not reflected in our model. An easy
example is the idea that it should be difficult to build
a classifier for separating source from target data in a
DA context [1]. Similar ideas have been exploited in
discriminative models for domain adaptation [2]. How-
ever, these models are most successful when there is no
labeled target data: a case we have not considered. It
is an open question to address this in our framework.

Acknowledgments. We sincerely thank the many
anonymous reviewers for helpful commentary. This
was partially supported by NSF grant IIS-0712764.

References

[1] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira.
Analysis of representations for domain adaptation.
NIPS, 2006.

[2] S. Bickel, M. Bruckner, and T. Scheffer. Discrimina-
tive learning for differing training and test distribu-
tions. ICML, 2007.

[3] J. Blitzer, M. Dredze, and F. Pereira. Biographies,
bollywood, boom-boxes, and blenders: Domain adap-
tation for sentiment classification. ACL, 2007.

[4] J. Blitzer, R. McDonald, and F. Pereira. Domain
adaptation with structural correspondence learning.
EMNLP, 2006.

[5] R. Caruana. Multitask learning: A knowledge-based
source of inductive bias. Machine Learning, 28:41–75,
1997.

[6] O. Chapelle and Z. Harchaoui. A machine learning
approach to conjoint analysis. NIPS, 2005.

[7] H. Daumé III. Frustratingly easy domain adaptation.
ACL, 2007.

[8] M. Dredze and K. Crammer. Online methods for
multi-domain learning and adaptation. EMNLP,
2008.

[9] D. Dunson, Y. Xue, and L. Carin. The matrix stick-
breaking process: flexible Bayes meta analysis. JASA,
103(481):317–327, 2008.

[10] T.S. Ferguson. A Bayesian analysis of some nonpara-
metric problems. Annals of Statistics, 1(2):209–230,
March 1973.

[11] A. Gelman, J. Carlin, H. Stern, and D. Rubin.
Bayesian Data Analysis. Chapman & Hall/CRC, sec-
ond edition, 2004.

[12] J. F. C. Kingman. On the genealogy of large popula-
tions. Journal of Applied Probability, 19:27–43, 1982.
Essays in Statistical Science.

[13] R. Raina, A. Ng, and D. Koller. Constructing infor-
mation priors using transfer learning. ICML, 2006.

[14] Y.W. Teh, H. Daumé III, and D. Roy. Bayesian ag-
glomerative clustering with coalescents. NIPS, 2007.

[15] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram.
Multi-task learning for classification with Dirichlet
process priors. JMLR, 2007.

[16] K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaus-
sian processes from multiple tasks. ICML, 2005.

