
Monolingual Probabilistic Programming Using Generalized Coroutines

Oleg Kiselyov
FNMOC

Monterey, CA 93943

Chung-chieh Shan
Rutgers University

Piscataway, NJ 08854

Abstract

Probabilistic programming languages and mod-
eling toolkits are two modular ways to build
and reuse stochastic models and inference proce-
dures. Combining strengths of both, we express
models and inference as generalized coroutines
in the same general-purpose language. We use
existing facilities of the language, such as rich
libraries, optimizing compilers, and types, to de-
velop concise, declarative, and realistic models
with competitive performance on exact and ap-
proximate inference. In particular, a wide range
of models can be expressed using memoization.
Because deterministic parts of models run at full
speed, custom inference procedures are trivial to
incorporate, and inference procedures can rea-
son about themselves without interpretive over-
head. Within this framework, we introduce a
new, general algorithm for importance sampling
with look-ahead.

1 Introduction

Declarative programming is the division of what to do and
how to do it into two modules that can be built and reused
separately. In the case of probabilistic inference, the what
is the definition of a stochastic model, and the how is the
implementation of an inference algorithm. Dividing the
two formally makes it easier to understand and maintain
the meaning of the model and the working of the algorithm,
especially in complex domains where it is impractical to
customize an algorithm to a model by hand coding.

Ever since Bayes nets were first used to represent distribu-
tions, declarative programming for probabilistic inference
has been studied and practiced extensively (Koller et al.
1997; Getoor and Taskar 2007; Murphy 2007b; Goodman
et al. 2008; inter alia). One approach is to encapsulate in-
ference algorithms in a modeling toolkit, a library of dis-
tributions with operations such as conditionalization, then

express models as client programs that invoke the toolkit
through its API. Another approach is to express models in a
probabilistic language, a programming language with con-
structs such as random choice, then encapsulate inference
algorithms in interpreters or compilers for the language.

These two approaches are dual, in that a toolkit operation
is run by a model whereas a language implementation runs
a model. They also have complementary strengths.

On one hand, the development and use of a modeling
toolkit takes advantage of an existing general-purpose lan-
guage and its facilities such as types, a debugger, and I/O.
In particular, if part of a model calls for a custom inference
procedure, then the code for the model, written in the same
language, can just perform the inference by sidestepping or
extending the toolkit. Similarly, if a model needs to refer
to an external database, then an existing connection library
can be used. On the other hand, the syntax of a proba-
bilistic language can express distributions more succinctly
and naturally, as sampling procedures or by generalizing
logic programs or relational databases. Also, models in a
standalone language may be compiled to more efficient in-
ference code (Fischer and Schumann 2003; Daumé 2007).

This paper presents a new technique for declarative prob-
abilistic inference that combines these strengths. Using a
generalization of coroutines, we express models as sam-
pling procedures in the same general-purpose language in
which we implement inference algorithms. Deterministic
parts of models are expressed simply as code that makes no
random choice, so they run at the full speed of the general-
purpose language. Our inference procedures are thus self-
interpreters, so they can reason about their own accuracy.

1.1 A simple example model

We begin to illustrate our monolingual approach using a
tiny model (based on Figure 14.11 of Russell and Norvig
2003). To the left in Figure 1 is an influence diagram, in
which each node represents a boolean variable. To the right
is a corresponding model, expressed as a program in the
general-purpose language OCaml (Leroy et al. 2008), for

cloudy

rain sprinkler

wet_roof wet_grass

let flip = fun p -> dist [(p, true); (1.-.p, false)]

let grass_model = fun () ->
let cloudy = flip 0.5 in
let rain = flip (if cloudy then 0.8 else 0.2) in
let sprinkler = flip (if cloudy then 0.1 else 0.5) in
let wet_roof = flip 0.7 && rain in
let wet_grass = flip 0.9 && rain || flip 0.9 && sprinkler in
if wet_grass then rain else fail ()

Figure 1: An influence diagram and a corresponding stochastic model expressed in a general-purpose language.

let grass_model = fun () ->
let cloudy = memo (fun () -> flip 0.5) in
let rain = memo (fun () -> flip (if cloudy () then 0.8 else 0.2)) in
let sprinkler = memo (fun () -> flip (if cloudy () then 0.1 else 0.5)) in
let wet_roof = memo (fun () -> flip 0.7 && rain ()) in
let wet_grass = memo (fun () -> flip 0.9 && rain () || flip 0.9 && sprinkler ()) in
if wet_grass () then rain () else fail ()

Figure 2: Using memoization to improve the performance of the stochastic model in Figure 1.

computing Pr(rain | wet_grass = true). This program
uses the function dist, which maps a list of probability-
value pairs to a randomly chosen value, and the function
fail, which takes a dummy argument and never returns
because it observes an impossible event. Both functions
are ordinary OCaml values defined by our framework, not
special syntax in a standalone probabilistic language.

For convenience, the code in Figure 1 defines a flip
function to flip a coin given its probability p of coming
up true. The code then defines grass_model, which
takes a dummy argument and either returns a random
boolean (namely rain) or fails (if wet_grass is false).
These functions are again ordinary OCaml values, of types
float -> bool and unit -> bool respectively. The types
float, bool, and unit and their values 0.5, true, and ()
are built-in to OCaml, so a typo such as misspelling true
is caught by OCaml’s type checker at compile time.

Given that dist is akin to invoking a random-number gen-
erator, and that fail is akin to throwing an exception, we
can of course perform naïve rejection sampling by apply-
ing a higher-order function to the argument grass_model.
What is less obvious is that more efficient algorithms for
exact and approximate inference can also be implemented
as higher-order functions that take a model as argument and
do not access its source code. The key to these implemen-
tations is for dist to suspend the execution of the model
so that the inference procedure can resume it repeatedly,
whether or not from the same point of suspension.

Our model code can use side effects such as mutable state.
Thus, we can use memoization to express nonparametric
models such as Dirichlet processes (Goodman et al. 2008).
For this purpose, we provide a higher-order function memo
(of type (’a->’b)->(’a->’b)), which takes a function

as argument and returns a memoized version of it. By ap-
plying memo mindlessly to thunks (that is, functions taking
only a dummy argument) or using a simple preprocessor,
we can also express lazy evaluation to speed up inference.
For example, the code in Figure 2 eliminates the moot vari-
able wet_roof in Figure 1 (here ’a is unit and ’b is
bool): because OCaml (like most languages) waits until a
function is called to evaluate its body, the choice flip 0.7
in the definition of wet_roof is never made, as desired.

1.2 The rest of this paper

In §2, we introduce a larger example to show the increased
expressivity achieved by placing stochastic models, deter-
ministic computations, and inference procedures all in the
same general-purpose language. We analyze performance
using the language’s I/O facility, then improve performance
by invoking inference recursively from within the model.

In §3, we detail the generalized coroutine facility that trans-
fers control between the model and the inference proce-
dure, which lets us reify a model into a tree of choices. This
reification enables bucket elimination and, in §4, a new al-
gorithm for importance sampling. We describe our com-
petitive inference performance on realistic models (Jaeger
et al. 2007; Pfeffer 2007b). We discuss related work in §5.
Our code is at http://okmij.org/ftp/kakuritu/.

2 Expressivity

We use Jaeger et al.’s (2007) hidden Markov model (HMM)
benchmark to further illustrate how the expressivity of a
general-purpose language helps us write clear, fast code.

The HMM is a one-dimensional random walk with 8 states:

0 1 2 3 4 5 6 7

0.7 0.70.4 0.4 0.4 0.4 0.4 0.4

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

The initial state is chosen uniformly at random. There are
2 observation symbols, L and R. The typical query is to
determine the distribution of states after, say, 10 time steps,
given some earlier observations.

2.1 Types for knowledge representation

The model is specified by the number of states and the tran-
sition and observation probabilities. We represent states as
integers and define a data type obs of observations L and R.

type state = int let nstates = 8
type obs = L | R

If the states and observations get more complex, they
should be represented using a structure such as a tuple or
object that better matches the problem. Our random vari-
ables can be of any type, whether user-defined like obs or
built-in like bool, int, tuples, dictionaries, and even func-
tions. We can express distributions over values of all these
types without encoding them as bit-strings or numbers.

The transitions are sparse, so we store their probabilities
compactly in an array transition_prob of out-edge lists.
For example, the array element transition_prob.(2)
is the list [(0.4,2); (0.3,1); (0.3,3)]. We initial-
ize the array by giving a general formula that follows the
problem description, without repeating boilerplate literals
like 0.4. As for observations, we tabulate in another array
l_obs_prob the probability of observing L in each state.

let l_obs_prob = [| 1.0; 0.85714; ...; 0.0 |]

Two simple stochastic functions then express the transition
and observation at each time step:

let evolve : state -> state = fun st ->
dist (transition_prob.(st))

let observe : state -> obs = fun st ->
let p = l_obs_prob.(st) in
dist [(p, L); (1.-.p, R)]

Given a current state, the function evolve chooses the next
state, and the function observe chooses the observation.
The type annotations above (: state -> ...) clarify the
purpose of each function, but they are optional and can be
inferred by OCaml. Type errors, such as confusing the state
0 and the observation L, are caught before inference begins.

2.2 Higher-order functions for inference

We represent observed evidence as a function that takes a
state and time as arguments and may fail. The function

run below runs the model for n steps and returns the final
state st, asserting observed evidence along the way. It
recursively calls itself to run the first n-1 steps, then calls
evolve to choose the state transition at step n.

let rec run = fun n evidence ->
let st = if n = 1 then uniform nstates

else evolve (run (n-1) evidence) in
evidence st n; st

(The function uniform used above is defined in terms of
dist to sample from a discrete uniform distribution.) We
can pose the conditional query Pr(State10 | Obs5 = L) as
a thunk query1 that, when invoked, calls run with an
evidence function that fails iff L is not observed at time 5:

let query1 = fun () ->
run 10 (fun st n ->
if n = 5 && observe st <> L then fail ())

To conduct exact inference by enumeration, we invoke a
function exact_reify whose implementation is described
in §3. Applying exact_reify to query1 computes a table
that maps states to (unnormalized) probability weights.

Our code expressing the HMM and the query is easy to
write and clearly matches the problem description. It is also
flexible. For example, because we represent evidence as a
function, it is trivial to change the condition from Obs5 = L
to Obsn = L for all n between 5 and 10. It is also trivial to
extend the model from 8 states to 64: just change nstates
(and l_obs_prob if it is not defined by a general formula).
There is no literal matrix to enlarge or state encoding to
adjust. In contrast, the same change made models an order
of magnitude bigger in the systems studied by Jaeger et al.

2.3 I/O and self-interpretation for performance

Another way that expressing models in a general-purpose
language makes declarative inference more practical is that
performance can be profiled and improved using familiar
tools of the language. For example, using OCaml’s library
function Sys.time, we soon discover that exact inference
on run takes time exponential in n using exact_reify.
Indeed, exact_reify makes an exponential number of re-
cursive calls to run, as any programmer can easily learn
using the OCaml profiler or by adding one line to run to
increment a counter on every call. The Sys.time function
and the call counter coexist indistinguishably with other
functions and integers in the model proper.

The reason for the exponential time can be revealed using
the OCaml debugger: exact_reify enumerates all pos-
sibilities and sums up their probabilities but does not coa-
lesce repeated intermediate results in buckets. The Markov
property lets us speed up inference, by expressing bucket

elimination (Dechter 1999) in terms of exact_reify: we
just surround run (n-1) evidence in the definition of
run by dist (exact_reify (fun () -> ...)). Here
exact_reify computes a bucket, then dist makes a ran-
dom choice based on the bucket. On this revised run, exact
inference using exact_reify takes time linear in n. This
improvement is easily confirmed by measuring timings.

This expression of bucket elimination hinges on writing
our model code and inference code in the same language:
the inference procedure exact_reify needs to work on
the revised model run, which in turn calls exact_reify.
The recursion depth is unbounded—it is linear in n. More-
over, to improve performance at all, the new, inner calls to
exact_reify need to run as fast as the original, outermost
call. Indeed they do, being deterministic parts of the model.
In short, our inference procedures are self-interpreters that
can apply to themselves without interpretive overhead.

To express bucket elimination in general, we can replace
any stochastic function f by the one below, without access-
ing the source code of dist, exact_reify, or memo.

let bucket = memo (fun x ->
exact_reify (fun () -> f x)) in

fun x -> dist (bucket x)

This expression should be evaluated—and memo called—
before invoking inference, so that all inference shares the
same bucket. This exact inference strategy handles Jaeger
et al.’s benchmarks (2007) in at most a few seconds each.

2.4 Reasoning about inference procedures themselves

The ability for models to invoke a variety of inference pro-
cedures is unique to our monolingual approach. It is useful
not just for performance but also for reasoning about in-
ference itself, such as inference by and about other agents
who use approximate inference procedures of their own.

To illustrate this expressivity, we start with a trivial model:
Choose a coin that is either fair or completely biased for
true, with equal probability. Let p be the probability that
flipping the coin yields true. What is the probability that
p is at least 0.3? It is 1, of course, because 0.5 ≥ 0.3 and
1≥ 0.3. In the model code below, the predicate at_least
0.3 true compares 0.3 against the probability of true in
the probability tables computed by exact_reify coin.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in
at_least 0.3 true (exact_reify coin)

Because a random choice made by an inference algorithm
is expressed with dist just like any other random choice,
any inference procedure, such as the importance-sampling

algorithm in §4, can reason about itself or any other infer-
ence procedure. For example, suppose we choose a coin
as before, then estimate p by flipping the coin twice and
dividing the count of true by 2. What is the overall prob-
ability that our estimate is at least 0.3? It is 7/8, because
for us to estimate below 0.3 is to choose a fair coin then get
false from it twice. We can compute this answer in our
system by changing exact_reify above to a call to sam-
pling twice. This change meaningfully affects what prob-
ability tables are tested by at_least 0.3 true. As with
Goodman et al.’s nested query (2008), the outer and inner
models may each invoke fail to express observations at
different levels. However, nested query only lets models
nest models, not inference, and returns samples, not tables.

This meta-reasoning capability is compatible with memo-
ization. For example, the random variable biased above is
defined at the outer level of reasoning but used at the inner
level (within coin), yet we can memoize biased as usual:

let biased = memo (fun () -> flip 0.5) in
let coin = fun () -> flip 0.5 || biased () in
at_least 0.3 true (exact_reify coin)

3 Reifying a model into a search tree

As illustrated above, we express models, including any
observed evidence, as sampling procedures that may fail.
Even without inspecting the source code of models so ex-
pressed, rejection sampling is easy: just define dist to
make a random choice and fail to throw an exception. In
this section, we explain how to implement dist and fail
differently to support more efficient inference. The bot-
tom line is that we can convert a model to a search tree
of random choices. Traversing this tree differently gives
rise to exact enumeration (and bucket elimination, as shown
in §2.3) and importance sampling (as explained in §4).

To support more than rejection sampling, dist should ac-
count for multiple possible outcomes of a random choice,
not just commit to one of them. For example, calling flip
should not actually flip a coin but rather explore both out-
comes. One way to achieve such nondeterminism is to split
the computation into two threads, one for each outcome,
and merge their results when they finish. This splitting is
exactly what the POSIX system call fork does, namely to
clone the current process to form a new child process. Each
call to fork returns twice: in the parent process, it returns
the child process ID; in the child process, it returns 0.

Because dist represents probabilistic choice, we have to
track the probability mass of the thread, in a thread-local
variable prob. For example, evaluating flip 0.9 should
in turn invoke fork, then in one thread multiply prob by
0.9 and return true, and in the other thread multiply prob
by 0.1 and return false. In OCaml syntax, this implemen-
tation of dist looks as follows.

let dist = fun [(p1,v1); (p2,v2)] ->
if fork () then prob := prob *. p1; v1

else prob := prob *. p2; v2

As for fail, it can be implemented as abort in POSIX,
which terminates the thread and never returns any value.

An inference procedure such as exact_reify receives a
model as just a thunk. To run the given model, the infer-
ence procedure invokes the thunk in a new thread in which
prob is initialized to 1. Deterministic parts of the model
run at the full speed of the general-purpose language, be-
cause they invoke neither dist nor fail. By the time
the model finishes, it may finish in any number of threads.
For exact enumeration, exact_reify can simply accumu-
late in a probability table the final outcome and probability
mass reported by each thread as it finishes.

This implementation strategy works in any language that
supports POSIX processes or user-level threads. Most lan-
guages qualify, including C, Perl, and Scheme. However,
it is inadequate for two reasons, which we address below.
Our final implementation requires no OS support for pro-
cesses and threads; we mention fork only for exposition.

3.1 Exploring random choices lazily

As the model keeps making random choices, the threads
may proliferate so much that running them all in parallel
becomes impractical or causes thrashing. Besides, we may
only want to run some possible threads. We need tighter
control over which possible outcomes to explore: dist
should suspend the current thread before calling fork, and
resume only when the inference procedure says to.

More specifically, the suspended thread should provide the
inference procedure with a list of possible outcomes and
their probabilities, so that the inference procedure can pick
which outcomes to explore. Each time the inference proce-
dure requests to explore an outcome, the suspended thread
should fork off a thread in which dist proceeds to return
that outcome to the model after updating prob. In short,
dist should turn the current thread into a server to the in-
ference procedure for exploring possible outcomes.

With the implementation of dist so revised, an inference
procedure receives a model as an open possibility in the fol-
lowing sense. An open possibility is a request that can be
made to a suspended server thread and yields a response.
A response is a list of probability-possibility pairs. A pos-
sibility is either closed, in which case it is just the final out-
come value produced by a finished thread, or open. (This
recursive definition can be formalized in OCaml as follows.

type ’a vc = V of ’a | C of (unit -> ’a pV)
and ’a pV = (float * ’a vc) list

We represent a request as a thunk that returns a response.

The type ’a above is that of final outcomes. The type ’a vc
is that of possibilities (the variant V for closed and the vari-
ant C for open), and the type ’a pV is that of responses.)

Making dist suspend the computation thus enables an in-
ference procedure to step through a stochastic model from
choice to choice. Still, the fact that OCaml programs are
compiled and cannot inspect their own source code or trace
their own execution ensures that the deterministic parts of
the model run at full speed. That is, we implement dist so
as to convert, or reify, a model to a lazily computed tree of
choices. Leaves of the tree are closed possibilities, whereas
uncomputed branch of the tree are open possibilities. To re-
quest an open possibility is to compute the branch.

This tree is a search tree because an inference procedure
should search it for leaves with high probability and avoid
leaves that fail. The model, computing the branches, and
the inference procedure, managing the exploration, trans-
fer control to each other like coroutines. For example,
exact_reify performs depth-first search and accumulates
leaves in a probability table as it finds them. This strategy
suffices for all the examples so far, but other strategies such
as iterative deepening can be used. In §4, we introduce a
stochastic search strategy that amounts to importance sam-
pling. It is also possible to represent independent choices
compactly using AND nodes in the search tree (McAllester
et al. 2008); the use of self-interpretation to express bucket
elimination in §2.3 can be viewed as such a representation.

3.2 Generalizing coroutines to lightweight threads

POSIX processes and fork are rather heavyweight facili-
ties to use for probabilistic programming, and not all op-
erating systems provide them. In comparison, user-level
threads can be much more efficient; for example, Erlang
programs routinely create millions of simultaneous threads.
User-level threads also ease storage management (unused
threads can be garbage-collected) and obviate marshalling
final outcomes from the model to the inference procedure.

Following Filinski (1994), our OCaml implementation uses
a library (Kiselyov 2006) of delimited control operators
(Felleisen et al. 1987; Danvy and Filinski 1990), which
generalize coroutines and user-level threads. (Analogues
of the library are available for Haskell, Scheme, and some
SML implementations.) The library offers two operations
on the execution stack:

• Reset pushes a delimiter onto the stack, as if installing
an exception handler.
• Shift pops frames off the stack until it encounters a

delimiter, as if throwing an exception, but it captures
the frames and creates a function that can be called
to push them back onto the stack. The frames consti-
tute a delimited continuation, which is like a Common
Lisp restart but can be reinstated multiple times.

Reset plays the role of creating a new thread. Our imple-
mentation of reification invokes reset to delimit each model
from the rest of the program. The delimiter stays on the
stack while the model runs using younger frames. If the
model finishes with a final outcome, then the delimiter is
removed like an unused exception handler, and the outcome
is returned to the rest of the program as a closed possibility.

Shift plays the role of suspending a thread and turning it
into a server. Our implementation of dist invokes shift to
transfer control from the model to the rest of the program,
whose stack frames are beyond the delimiter. The delimited
continuation captured by shift can be used by the rest of the
program to resume the model’s execution. Our implemen-
tation of fail also invokes shift, but discards the captured
continuation, so it is exactly like throwing an exception.

Besides dist and fail, we also provide a higher-order
function memo for memoization, used in §1.1 and §2.3. The
implementation of memo is straightforward, except each
thread (that is, each open possibility) must maintain its own
table of memoized results. For example, the repeated calls
to the thunk rain in Figure 2, like the repeated references
to the variable rain in Figure 1, should always return the
same result in each thread, but that result may be true in
one thread and false in another. Thus, memo must not mu-
tate the global heap, but rather use or emulate storage local
to each thread in which memo is called (Haynes 1987).

4 Importance sampling with look-ahead

Given a model reified as a search tree, rejection sampling
is just traversing the tree from the root to a leaf, using the
probabilities specified at each branch to make a random
choice. If this traversal is so lucky as to avoid failure, then
the leaf it reaches can be reported—that is, accumulated in
a histogram—as a final outcome with weight 1.

In many realistic models, the observed evidence is very
improbable, so rejection sampling takes too long to yield
enough samples. Importance sampling (Fung and Chang
1990; Shachter and Peot 1990) is a well-known improve-
ment. To perform importance sampling on probabilistic
programs written in IBAL, Pfeffer (2007b) developed sev-
eral sophisticated techniques, which amount to call-by-
need evaluation and pushing evidence towards choices.

Pfeffer’s techniques require analyzing the source code of
the model. Our inference procedures do not have that lux-
ury, because OCaml programs cannot inspect their own
source code. Still, we can adapt the idea to operate on a
reified search tree: at each branch, we look ahead briefly
into each child to sniff out any shallow failures, so as to
choose a random child using tighter upper bounds on each
child’s probability mass. This adaptation has the perfor-
mance advantage that models can be compiled by OCaml
for speed and their deterministic parts run at full speed.

Given a model (as an open possibility, as described in §3.1),
our importance-sampling algorithm proceeds as follows.

1. Initialize the weight pc to 1.
2. Request the given model to get R, a response, that is,

a list of probability-possibility pairs.
3. Loop until R is empty:

If R consists of a single element (p,P) where P is an
open possibility, then set pc to pc · p, request P to get
a new response R, and continue with the loop.
Otherwise, initialize L to the empty list of probability-
response pairs, then for every element (p,P) of R:
(a) If P is a closed possibility, then report the final

outcome P with the weight pc · p.
(b) Otherwise, request the open possibility P and call

the response R′. If R′ consists of a single element
(p′,v) where v is a closed possibility, then report
the final outcome v with the weight pc · p · p′.
Otherwise, let pt be the total probability in the
list R′, and add the pair (p · pt ,R′) to the list L.

Let pt be the total probability in the list L. Quit if pt is
zero. Otherwise: Randomly choose an element (p,R′)
from L with probability proportional to p. Set pc to
pc · pt . Set R to the result of normalizing R′. Continue.

This algorithm may report multiple fractional outcomes on
each run, because it treats shallow successes like shallow
failures and only stops when R is empty. It subsumes like-
lihood weighting for Bayes nets, because a choice observed
right away to be equal to some value is set to that value.

4.1 Data structures with stochastic components

For the look-ahead in our importance-sampling algorithm
to help, each random choice needs to be observed soon after
it is made, and unobserved random choices should not be
made at all. Therefore, our models should be coded using
lazy evaluation, or Pfeffer’s delayed evaluation (2007b).
As demonstrated in §1.1, lazy evaluation can be expressed
in terms of memoization. Moreover, a composite data
structure such as a tuple or list should subject each of its
components separately to lazy evaluation, so that, for in-
stance, two lists of independent coin flips can be appended
without actually determining any of the flips. To this end,
we eschew OCaml’s built-in list type and define our own
type of lazy lists, whose components are memoized thunks:

type ’a llist = unit -> ’a lcons
and ’a lcons = LNil
| LCons of (unit -> ’a) * ’a llist

We can append two lazy lists yet not compute any element:

let rec lappend y z = memo (fun () ->
match y () with LNil -> z ()
| LCons (h,t) -> LCons (h, lappend t z))

Motif pair 1 2 3 4 5 6 7

Source length 10 9 6 16 18 10 6
Destination length 6 9 6 13 18 10 5

IBAL accuracy .93 1 .28 .80 .98 1 .63
90 sec accuracy .98 1 .29 .87 .94 1 .77
30 sec accuracy .92 .99 .25 .46 .72 .95 .61

Table 1: The lengths of the 14 motives in the music model
and the estimated accuracies of Pfeffer’s and our samplers.

0

5

10

15

20

25

30

35

40

-19 -18 -17 -16 -15 -14 -13

F
re

qu
en

cy
 in

 1
00

 tr
ia

ls

ln Pr(D = 1 | S = 1)

IBAL
90 seconds
30 seconds

Figure 3: A typical histogram of log-likelihoods produced
by Pfeffer’s and our samplers on the music model.

4.2 Inference performance on realistic models

To gauge the efficacy of this approximate inference strategy
on problems of realistic complexity, we reimplemented the
classical-music model that Pfeffer (2007b) built to test his
importance sampler. The model is of motivic development
in early Beethoven piano sonatas. A motif is a list of notes.
To develop a motif is to randomly and recursively divide
it into a binary tree, then randomly and recursively delete
or transpose each subtree. The leaves of the resulting tree
form a new motif (using lappend above). The randomness
and recursion make the number of possible developments
exponential in the length of the source motif.

We ran our importance sampler as well as Pfeffer’s IBAL
sampler on 49 inference problems, each to compute the
likelihood that a given source motif S ∈ {1, . . . ,7} devel-
ops into a given destination motif D ∈ {1, . . . ,7}. The goal
is to infer the maximum-likelihood S from D. The ground
truth is that S = i iff D = i, but the two motives are different
lists of notes—Table 1 shows their lengths. Exact inference
is already infeasible for length 5, and the likelihoods are on
the order of 10−7, so rejection sampling is hopeless.

For each problem, we ran 100 trials in which Pfeffer’s sam-
pler had 30 seconds per trial (following his original test-
ing), 100 trials in which our sampler had 30 seconds per
trial, and another 100 trials in which our sampler had 90

seconds per trial. Using these trials, we estimated the prob-
abilities that the samplers choose the correct S for each D.
Table 1 shows these accuracy estimates, which suggest that
our sampler is competitive with Pfeffer’s.

Focusing on a typical inference problem, Figure 3 shows
a histogram of lnPr(D = 1 | S = 1) sampled. This plot ex-
cludes one IBAL trial and five 30-second trials that returned
likelihood 0. On this problem, IBAL’s likelihood estimates
had mean exp(−14.7) and standard deviation exp(−15.3);
our 90-second sampler’s had mean exp(−13.8) and stan-
dard deviation exp(−14.5); and our 30-second sampler’s
had mean exp(−13.7) and standard deviation exp(−14.0).

Besides the music model, we reimplemented Milch et al.’s
model of radar blips for aircraft tracking (2007). In this
model, a 10× 10 radar screen monitors a region in the air
with an unknown number of planes that move and turn ran-
domly. At each time step, each plane causes a blip on the
screen with a certain probability. Due to limited resolution,
several planes may result in a single blip. Blips may also
be caused by noise. The problem is to estimate the number
of planes from blips and their absence in consecutive radar
screenshots. A further step is to identify the planes.

To keep inference tractable, we subjected each location co-
ordinate of a plane or blip separately to lazy evaluation, and
we used nested inference (as explained in §2.3) to turn our
importance sampler into a particle filter. Our model takes
many of its parameters from David Poole’s AILog 2 code.

When we set the noise probability low, the exact solution
could be computed and matched our sampling results. With
more noise, our sampling results stayed reasonable. For
example, we let there be up to 7 planes (a geometric dis-
tribution with ratio .15), detected with probability .9, and
up to 4 noise blips (geometric with ratio .02). Having seen
the blips (3,5),(3,7),(3,9) at time 0, our sampler found
any number of planes possible between 1 and 6, but 3 was
most likely, with conditional probability .835. After further
observing the blips (4,5),(4,7),(4,9) at time 1 and (5,5),
(5,7),(5,9) at time 2, there remained only the possibilities
of 3 planes (with conditional probability .987) and 4.

5 Related work

Our work is distinguished and motivated by the newfound
expressivity and performance afforded by writing models
and inference procedures in the same language, especially
for deterministic code. All of our code is written in OCaml.
In contrast, previous modeling toolkits and probabilistic
languages are not implemented in languages they handle.
That is, they are not self-interpreters. For example:

• The Bayes Net Toolbox (Murphy 2007a) is a MAT-
LAB library, but its models are not expressed in MAT-
LAB using rand, so it cannot reason about itself.

• IBAL (Pfeffer 2007a) is implemented in OCaml, but it
cannot reason about OCaml code as is, such as itself.

• Church (Goodman et al. 2008) and Probabilistic
Scheme (Radul 2007) are both based on Scheme and
implemented using Scheme with mutable state, but
they cannot reason about their own implementations,
such as about their own inference accuracy.

• Infer.NET (Minka et al. 2009) is implemented on top
of C# and compiles models represented in a language
that resembles C#, but it cannot reason about C# code
as is, such as itself.

• AutoBayes (Fischer and Schumann 2003) and HBC
(Daumé 2007) are compilers of specialized languages
for statistical models, not of the languages that they
target (such as C) or are implemented in (Prolog and
Haskell), so they cannot reason about themselves.

Self-interpretation is in principle trivial to achieve, say by
writing an interpreter of OCaml in IBAL, but it would be
impractically slower than running OCaml code directly, by
a factor exponential in the number of interpretation levels.
In contrast, our approach incurs no interpretive overhead.

We build on functional rather than logic programming,
because we find a functional language more natural for
expressing procedural knowledge such as inference algo-
rithms. This choice sets our monolingual approach apart
from PRISM (Sato 2008), BLOG (Milch et al. 2007),
AILog (Poole and Mackworth 2009), and Markov logic
(Domingos and Richardson 2007).

To conclude, we have presented monolingual probabilistic
programming, which lets one write declarative stochastic
models, deterministic computations, and inference proce-
dures all in the same language. We use mature implemen-
tations such as OCaml (SML and Haskell are easily pos-
sible). Our approach can express a broad range of models
concisely and is amenable to efficient inference. The abil-
ity to reify a stochastic program into a lazy search tree lets
users write optimized inference procedures, such as impor-
tance sampling with look-ahead. The optimizations let us
handle realistic models with competitive performance.

Acknowledgments

We thank Olivier Danvy, Noah D. Goodman, Michael L.
Littman, Vikash K. Mansinghka, Avi Pfeffer, Daniel Roy,
Stuart Russell, and Matthew Stone for discussions.

References
Danvy, Olivier, and Andrzej Filinski. 1990. Abstracting control.

In Lisp and functional programming, 151–160.
Daumé, Hal, III. 2007. Hierarchical Bayes compiler. http://

www.cs.utah.edu/~hal/HBC/.
Dechter, Rina. 1999. Bucket elimination: A unifying framework

for probabilistic inference. In Learning in graphical models,
ed. Michael I. Jordan. MIT Press.

Domingos, Pedro, and Matthew Richardson. 2007. Markov logic:
A unifying framework for statistical relational learning. In
Getoor and Taskar (2007), 339–371.

Felleisen, Matthias, Daniel P. Friedman, Bruce F. Duba, and John
Merrill. 1987. Beyond continuations. Tech. Rep. 216, Com-
puter Science Dept., Indiana Univ.

Filinski, Andrzej. 1994. Representing monads. In Principles of
programming languages, 446–457.

Fischer, Bernd, and Johann Schumann. 2003. AutoBayes: A sys-
tem for generating data analysis programs from statistical mod-
els. Journal of Functional Programming 13(3):483–508.

Fung, Robert, and Kuo-Chu Chang. 1990. Weighing and integrat-
ing evidence for stochastic simulation in Bayesian networks.
In UAI 5 (1989), 209–220.

Getoor, Lise, and Ben Taskar, eds. 2007. Introduction to statisti-
cal relational learning. MIT Press.

Goodman, Noah D., Vikash K. Mansinghka, Daniel Roy, Keith
Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A lan-
guage for generative models. In UAI 24, 220–229.

Haynes, Christopher T. 1987. Logic continuations. Journal of
Logic Programming 4(2):157–176.

Jaeger, Manfred, Petr Lidman, and Juan L. Mateo. 2007. Com-
parative evaluation of probabilistic logic languages and sys-
tems. In Proceedings of mining and learning with graphs.
http://www.cs.aau.dk/~jaeger/plsystems/.

Kiselyov, Oleg. 2006. Native delimited continuations in (byte-
code) OCaml. http://okmij.org/ftp/Computation/
Continuations.html#caml-shift.

Koller, Daphne, David McAllester, and Avi Pfeffer. 1997. Ef-
fective Bayesian inference for stochastic programs. In AAAI,
740–747.

Leroy, Xavier, Damien Doligez, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. 2008. The Objective Caml system, re-
lease 3.11. INRIA.

McAllester, David, Michael Collins, and Fernando Pereira. 2008.
Case-factor diagrams for structured probabilistic modeling.
Journal of Computer and System Sciences 74(1):84–96.

Milch, Brian, Bhaskara Marthi, Stuart Russell, David Sontag,
Daniel L. Ong, and Andrey Kolobov. 2007. BLOG: Proba-
bilistic models with unknown objects. In Getoor and Taskar
(2007), 373–398.

Minka, Tom, John M. Winn, John P. Guiver, and Anitha Kan-
nan. 2009. Infer.NET 2.2. Microsoft Research. http://
research.microsoft.com/infernet.

Murphy, Kevin. 2007a. Bayes Net Toolbox for Matlab. http:
//www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html.

———. 2007b. Software for graphical models: A review. Inter-
national Society for Bayesian Analysis Bulletin 14(4):13–15.

Pfeffer, Avi. 2007a. The design and implementation of IBAL: A
general-purpose probabilistic language. In Getoor and Taskar
(2007), 399–432.

———. 2007b. A general importance sampling algorithm for
probabilistic programs. Tech. Rep. TR-12-07, Harvard Univ.

Poole, David, and Alan Mackworth. 2009. Artificial intelligence:
Foundations of computational agents. Cambridge Univ. Press.

Radul, Alexey. 2007. Report on the probabilistic language
Scheme. In DLS ’07: Proceedings of the 2007 symposium on
dynamic languages, 2–10. New York: ACM Press.

Russell, Stuart, and Peter Norvig. 2003. Artificial intelligence: A
modern approach. 2nd ed. Prentice-Hall.

Sato, Taisuke. 2008. A glimpse of symbolic-statistical modeling
by PRISM. Journal of Intelligent Information Systems 31(2):
161–176.

Shachter, Ross D., and Mark A. Peot. 1990. Simulation ap-
proaches to general probabilistic inference on belief networks.
In UAI 5 (1989), 221–234.

