Attribute Metadata for Relational OLAP and Data Mining

T. H. Merrett
McGill University, Montreal, Canada

May 27, 2002

1

Abstract

To build the d-dimensional datacube, for on-line an-
alytical processing, in the relational algebra, the
database programming language must support a loop
of d steps. Each step of the loop involves a differ-
ent attribute of the data relation being cubed, so the
language must support attribute metadata. A set of
attribute names is a relation on the new data type,
attribute. It can be used in projection lists and in
other syntactical postions requiring sets of attributes.
It can also be used in nested relations, and the trans-
pose operator is a handy way to create such nested
metadata. Nested relations of attribute names en-
able us to build decision trees for classification data
mining. This paper uses OLAP and data mining to
illustrate the advantages for the relational algebra of
adding the metadata type attribute and the trans-
pose operator.

Keywords relational algebra, datacube, data min-
ing, association, classification, decision trees, nested
relations, metadata

1 Introduction

In introducing the term “on-line analytical process-
ing” (OLAP), Codd [2] wrote

..relational DBMS were never intended to
provide the very powerful functions for
data synthesis, analysis and consolidation
that is being defined as multi-dimensional
data analysis

and this is certainly true of SQL and current
commercial database systems [4]. We will show
that a database programming language which thor-
oughly integrates programming language and rela-
tional database concepts can be used to build any
specific datacube without arbitrary extensions or op-
erators.

! Copyright for non-electronic reproductions
©Springer-Verlag, 2002. Electronic and executable forms
of this work are copyleft ©T. H. Merrett, 2002

The classical relational algebra shows limitations,
as Codd says, when it tries to generalize this imple-
mentation to arbitrary datacubes, because it has no
facility to loop over the attributes of a relation. A
simple adaptation of the relational algebra to permit
this—it is hardly an extension—is to allow metadata
of type attribute among the legal attribute types
(such as integer, boolean, string, etc.).

Non-first-normal form, or nested relations [6], have
been discussed almost as long as Codd’s original
“flat” relations, with considerable emphasis on spe-
cial algebras and operators to convert between nested
and flat relations (e.g., [5, 3], etc.). If the classical re-
lational algebra is complemented by a “domain alge-
bra”, which is useful in many other ways [7], the only
new syntactic construct needed to express and work
with nested relations is a mechanism which forms a
collection of attributes; the rest is provided by sub-
suming the relational algebra into the domain alge-
bra.

To build a decision tree, say for classification data
mining, we need to choose an attribute using infor-
mation theory, examine the values for this attribute,
and then, for each value, repeat the cycle with other
attributes. This requires that we have information
about attributes and their values, both available at
the same level, and both accessible to the domain and
relational algebras. We introduce an operator to cre-
ate a nested relation which forms the “transpose” of
the attribute-value pairs in each tuple. This trans-
pose has two attributes, one of which is, of course, of
type attribute.

In this paper, we review the domain algebra,
mainly via the application of constructing specific
datacubes. In section 3, we introduce attribute
metadata, and go on to apply it to building general
datacubes and to start building decision trees. We
then review nested relation operations as an exten-
sion of the domain algebra, and apply them to as-
sociation data mining. Section 5 describes the new
transpose operator of the domain algebra, and uses
it to construct decision trees for classification data
mining.

2 The Domain Algebra

The domain algebra has been around for a couple of
decades, but not widely used, which has had unfortu-
nately expensive consequences in terms of program-
ming effort and confusion. It is thus appropriate to
review it briefly here, saving illustrative examples for
section 2.2, which uses it to build a datacube.

The algebra (which should have been named “at-
tribute algebra”) constructs new attributes from ex-
isting attributes in two ways. Scalar operations work
“horizontally” (in terms of the usual table represen-
tation of relations) along the tuples. Aggregation op-
erators work “vertically” along attributes.

All the normal calculations we might expect to be
able to do on scalar data have corresponding scalar
operators in the domain algebra: arithmetic, logical
operations, string operations, the usual mathemati-
cal functions, and conditional expressions. Here are
some examples, where the variables (N, P, Windy,
etc.) are attributes. Each of these examples will be
used later in the paper.

N+ P

suml/sum2

(N + P) x1g(N + P) — Nlg(N) — Plg(P)

if Windy="ANY" then 0 else N
A domain algebra statement is distinguished from a
relational algebra statement syntactically, and it is
helpful to give that syntax here. The attribute result-
ing from the first expression, above, can be named np
using

let np be N + P;

Special uses of the scalar domain algebra are re-

naming
let N be totN;

and creating constant attributes
let seq be 0;

or
let Windy be "ANY";

We will omit the let .. be in the remaining exam-
ples of this subsection, showing only domain algebra
expressions.

The aggregation operations of the domain algebra
are of two kinds, reduction, and functional mapping,
and these each break into two subcategories. We con-
sider only reduction here, and its subcategories, sim-
ple reduction and equivalence reduction. These gen-
eralize the five aggregation functions of SQL, which
are written

red + of A // sum values of attribute A
red + of 1 // count
red min of A // find least value of attribute A

red max of A // find greatest value of attribute A

and the average is a scalar division of two aggrega-
tions
(red + of A)/red + of 1
The same statistics can be calculated for groups
of tuples that form equivalence classes determined by
having the same value for a specified attribute or set

of attributes, say G, H.

equiv + of A by G, H

equiv + of 1 by G, H

equiv min of A by G, H

equiv max of A by G, H
An average we shall make use of in building a decision
tree is

(equiv + of npinp by Outlook, Humidity)/

equiv + of np by Outlook, Humidity
The advantage of this notation is that it can be

used to express any aggregate or statistic we can de-
fine, such as a standard deviation, without limiting
the programmer to a pre-defined set of functions. Not
only 4+, min and max can be used, but any associa-
tive and commutative operator, such as multiplica-
tion or, as we shall see later, the natural and outer
joins of the relational algebra.

2.1

Apart from the improved flexibility over SQL, the
foregoing domain algebra seems pretty trivial. It in-
volves, however, a significant subtlety, which is re-
sponsible for the considerable intellectual simplifica-
tion it permits in tackling complex problems. This
is that every domain algebra operation is completely
independent of relations; no relation is referred to in
any expression of the domain algebra. The attributes
produced by the domain algebra are wirtual. So, of
course, to populate them with data, they must be
actualized in the context of some relation or other.
This can be done by the relational algebra, with no
syntactic extensions.

It may be helpful to think of a domain algebra
atatement as the definition of a parameterless func-
tion, whose name is the identifier following let and
whose body is the expression following be. No exe-
cution results when the language interpreter encoun-
ters the domain algebra statement; execution is post-
poned until the newly defined attribute is used some-
where in the relational algebra.

The advantage of the independence of the domain
algebra from relations is that we can think separately
about the two aspects of any problem which involves
both relational operations and calculations on the
attributes. It also enables us to implement the do-
main algebra in any syntax which already contains
relational operations, such as SQL, without syntactic
modifications.

However, anticipating the need in nested relations
for relational operators, such as natural join, to ap-
pear explicitly in red and equiv expressions of the
domain algebra, we are going to have to alter the
formulation of SQL. We discuss this now, because
the relational algebra is, as we said, the context in
which virtual attributes are actualized. We need a
syntax which makes explicit the unary and binary
operators of the relational algebra, and which clearly
distinguishes expressions from statements. We call
this “programming notation”, to distinguish it from

Actualization: Relational Algebra

SQL which, as a query language, was never intended
for programming.

The most straightforward means of actualizing a
virtual attribute created by the domain algebra is
through projection. Here is an example, using first
SQL then programming notation.

Suppose we have a relation

Training(Outlook, Humidity, Windy, N)
and the domain algebra

let totN be equiv + of N

by Outlook, Humidity;

Then the sum can be actualized, together with the
other relevant attributes, using

select Outlook, Humidity, totN

from Training

The programming notation for the projection is

almost the same
[Outlook, Humidity, totN] in
Training;
and there is no apparent motivation for the change.
But let us go on to the next step we will have to take
in the next section, namely to rename totN back to
N.
let totN be equiv + of N
by Outlook, Humidity;
let N be totN;
We need two projections, one after the other, because
if we try to actualize the virtual IV in a relation which
already has an actual N there would be ambiguity in
the result. In SQL, we would have to write this
select Outlook, Humidity, Windy, N
from
select Outlook, Humidity, totN
from Training;
while programming notation is tidier
[Outlook, Humidity, Windy, N] in
[Outlook, Humidity, totN] in Training;
So far, the notational differences are not a big deal.
Let us go on to selection, which SQL writes
select <attribute list>
from <relation>
where <tuple conditional expression>
and programming notation writes
[<attribute list>]
where <tuple conditional expression>
in <relational expression>
This rearrangement of the SQL order puts the
<relational expression> last so that compound ex-
pressions are more easily further articulated.

We proceed to binary operators, the joins, which
programming notation writes as infix expressions of
explicit operators. This also allows compound ex-
pressions to be built up, and several types of join to
be defined. We use three in this paper, extensions to
relations of the set operations of intersection, union,
and difference.

Programming notation is

<relational expression> <join operator>
<relational expression>
or, if the join attributes must be named explicitly

because their names are not common to the two
operands,
<relational expression>
[<attribute list> <join operator>
<attribute list>]
<relational expression>

The natural join generalizes set intersection, and
we write the operator as natjoin. The similar gen-
eralization of set union gives the outer join, which
we call union. Finally, set difference becomes diff,
the difference join. Since in the paper we mainly use
these latter two as ordinary set operators, we do not
explain the extensions, which require null values in
the case of union.

We can discuss the difference in notation
in terms of a mnatural join between a rela-
tion ShoppingBaskets(zact, item) and a relation
ShoppingBaskets' (zact, item’). (This pairs up
all items that share the same transaction in an
association-mining implementation.) SQL uses an ex-
pression which closely resembles its unary operators,

select *

from ShoppingBaskets, ShoppingBaskets'

where

ShoppingBaskets.xact=
ShoppingBaskets' .zact
While this makes explicit that equality across rela-
tions between the attributes of the names, zact and
zact, is tested, it does not make explicit the higher-
level idea that a natural join is being described. The
programming notation,
ShoppingBaskets natjoin ShoppingBaskets’

uses the natjoin operator so that we can explicitly
ascribe all the known properties of the natural join
to this expression.

The apparent greater generality of SQL joins is
only apparent: programming notation can always use
a selection operator to change the join condition from
equality to something else. On the other hand, useful
operations such as outer and difference joins cannot
be expressed using only the above SQL.

We will also use a fourth join, comp, the natural
composition, which is a natural join followed by pro-
jecting only the non-join attributes. For example,

ShoppingBaskets comp ShoppingBaskets’
would be translated into the above SQL, modified
only in the first line, which becomes
select item, item’

Comp deserves a special name, rather than being
implemented just as a join followed by a projection,
because it is frequently used to join a relation with it-
self on different attributes from the two sides, so that
cumbersome attribute renaming would be required by
the join-project implementation.

Comp actually belongs to a separate family of re-
lational joins from the three others. This family ex-
tends the set-comparison operators (subset, superset,
set equality) to relations, and includes the division
operator, which we do not use in this paper. Comp
corresponds to the test for non-empty intersection of

two sets.

Comp and the other joins in this family exclude
the join attributes from the result, and raise the pos-
sibility (when they are used as set comparisons) that
the result may have no attributes. We now assert
that a nullary relation serves as a Boolean, with the
empty state interpreted as false and the non-empty
state as true. We can therefore also use the nullary
projection,

[] in <relational expression>
which is true if the value of the relational expression
contains any tuples, and can be pronounced “some-
thing in <relational expression>".

So far, we have looked at expressions only of the
relational algebra. They may be combined into com-
pound expressions of arbitrary complexity (although
it is not usually practical to write more than a join or
two, and a couple of selection-projections in a single
expression). We must say how relational expressions
can be written into statements of the programming
language. There are two kinds of statement.

The assignment statement creates a new relation,
or overwrites an old one, from the value of a relational
expression, just as assignment statements in any im-
perative programming language do. The syntax is

<identifier><— <relational expression> ;

The domain algebra and all the relational algebra
operators described so far, except for the assignment
operator, are functional, in the technical sense that
the same operands always give the same results, and
there are no side-effects. Functional programming
is very elegant and avoids most of the opportunities
a programmer has for error in non-functional lan-
guages. Database programmming, however, can be
purely functional only by copying entirely every rela-
tion one wishes to “change”, and this is prohibitively
expensive. So we need non-functional update opera-
tions, which have the side-effect of changing a relation
in place.

SQL offers three separate commands for this, one
for each of insert, change, and delete operations, with
the insert command unfortunately differing from the
other two by unfortunately working with only one
tuple. It is cleaner to make them all relational and to
avoid the ambiguity of the word, “update” by using it
only to refer to relations, not tuples. It is also cleaner
to isolate the update operations from the conditions
determining which parts of the relation are affected.
The selection-projection and joins already discussed
are ample to provide this control.

Here are the three cases of the update statement.

update R add S;

update R delete S;

update R using S change <statements>;
S is always a relation, and the using S clause (which
is optional) in the change command uses the natural
join of S with R to select the parts of R that will
change. The <statements> in this case are usually
assignment statements changing values of attributes.
They may contain domain algebra expressions on the

right hand side. S in the change case may also be
preceeded by a join operator, if simple natjoin is
not enough for the task. Of course, S may be any
relational expression in all three cases.

We have introduced four binary operators of the re-
lational algebra. We have reviewed the programming
notation we will use in the paper for these operators
and for the unary selection-projection combination,
and we have justified the programming notation as a
replacement for the SQL query language for flexibility
and generality.

One more unary operator is useful. Because the re-
lational algebra is high-level, and abstracts over loop-
ing, it has no concept of an individual tuple. This
is good because it requires the programmer to avoid
tuple-by-tuple thinking, which can result in exceed-
ingly poor utilization of secondary storage, as well as
diminishing the level of abstraction. (SQL uses the
“cursor” concept to violate this abstraction.) How-
ever, the notion of a singleton relation, i.e., contain-
ing only one tuple, is sometimes useful semantics, and
we have an operator which guarantees its result to be
either singleton or empty. Pick followed by a re-
lational expression returns a relation consisting of a
single tuple of the operand, selected nondeterministi-
cally (and not removed from the operand). (Pick is
also the mechanism for introducing nondeterminism
into the language.)

We need only now return to the actualization of
virtual attributes, which we have illustrated in the
context of projection. Anywhere in the relational al-
gebra that an actual attribute can occur, so can a
virtual attribute. It can be actualized in a join as
well as in a projection; it can be tested in a selec-
tion or in a join. Furthermore, anonymous domain
algebra expressions can often replace the name of an
actual attribute, with the exception being any usage
that would place an anonymous attribute in the re-
sult relation. (Even this exception is partially lifted
when we come to nested relations in section 4.)

2.2 Multidimensional Databases

To illustrate the domain algebra and its interaction
with the relational algebra, we will build a datacube
in three dimensions. We do not have room in this pa-
per for sophisticated algorithms which compute only
partial datacubes based on space and speed tradeoffs,
so we content ourselves with simply constructing the
whole datacube.

We choose data which we use later in the paper to
build a decision tree, from the classic paper [9].

Training

(Outlook Temperature Humidity Windy Class)
sunny hot high f N
sunny hot high t N

overcast hot high f P
rain mild high £ P
rain cool normal f P
rain cool normal t N

overcast cool normal t P

sunny mild high £ N
sunny cool normal f P
rain mild normal f P
sunny mild normal t P

overcast mild high t P

overcast hot normal f P
rain mild high t N

(The first column is a tuple identifier for later refer-
ence, and is not part of the data.) The first four at-
tributes are the data supplied for classification, and
Class indicates whether the tuple is a positive or a
negative instance of the classification sought.

We first take advantage of the fact that Tempera-
ture will turn out to have no effect on the final deci-
sion tree, and use a relational algebra projection to
eliminate it. Since we will be building a datacube
with counts of the numbers of N and the numbers
of P entries, we create these counts with the domain
algebra, and we use the projection to actualize the
counts. The result is a new form of Training, which
we shall use from now on.

let N be equiv + of

if Class="N" then 1 else 0

by Outlook, Humidity, Windy;
let P be equiv + of

if Class="P" then 1 else 0

by Outlook, Humidity, Windy;
Training <—

[Outlook, Humidity, Windy, N, P]

in Training;

Training (Outlook Humidity Windy N P)
1,8 sunny high f 2 0
2 sunny high t 1 0
9 sunny normal f 0 1
11 sunny normal t 0 1
3 overcast high f 0 1
12 overcast high t 0 1
13 overcast normal f 0 1
7 overcast normal t 0 1
4 rain high f 0 1
14 rain high t 1 0
5,10 rain normal f 0 2
6 rain normal t 1 0

(Since tuple order does not matter in relations, but
can help the reader, we have rearranged the tuples for
clarity.) We see that two tuples have in two cases con-
tributed to a negative or a positive count, and that,
since both are negative or both are positive, Temper-
ature has no effect on the final classification. This
means that the problem is reduced to three dimen-
sions and so is easy to visualize. (The number of

dimensions makes no difference to the calculations.)
We also see that Training contains a Cartesian prod-
uct of the values for Qutlook, Humidity, and Windy,
and so is not sparse: in such a case, the full datacube
may be constructed with minimum relative overhead
of space.

Now we build the datacube. This requires three
steps. The first sums the counts in the Windy di-
rection. The second sums the counts, including the
sums for Windy from the first step, in the Outlook
direction. The third step sums all counts, including
previous sums, in the Humidity direction. (The or-
der in which these directions is chosen is irrelevant;
any one of 3!=6 loops will give the same result. In d
dimensions, there will be d steps, and d! ways of or-
dering them.) Figure 1 may be helpful in visualizing
the process and the result.

The implementation involves equivalence reduc-
tion and renaming in the domain algebra, and projec-
tion and update in the relational algebra. The first
step is

let N be totN;
let P be totP;
let Windy be "ANY";
let totN be equiv + of N by
Outlook, Humidity;
let totP be equiv + of P by
Outlook, Humidity;
update Training add
[Outlook, Humidity, Windy, N, P] in
[Outlook, Humidity, totN, totP] in
Training;
Note that summing over Windy means grouping by
the complementary attributes, Outlook and Humid-
ity, and that the projection that actualizes these sums
also retains Qutlook and Humidity.

The tuples that are added to Training by this first

step are

Training (Outlook Humidity Windy N P
1,2,8 sunny high ANY 3 0
9,11 sunny normal ANY 0 2
3,12 overcast high ANY 0 2
7,13 overcast normal ANY 0 2
4,14 rain high ANY 1 1

5,6,10 rain normal ANY 1 2

These form the front face (Outlook, Humidity) of
figure 1.

The second and third steps are identical to the first,
but with the attribute names replaced as follows.

Step Sum Attribute Group Attributes

1 Windy Outlook, Humidity
2 Outlook Humidity, Windy
3 Humidity Outlook, Windy

The second step adds the six tuples corresponding
to the (Humidity, Windy) face of figure 1; and the
third step generates the twelve tuples of the (Outlook,
Windy) face.

Humidity

l's o R
¢ Jli/Q,Z’: ,,,,,,
200101 11022
k0,71} 707,1} 0:2<
1001 10 32104235, 9/%
010110 (3070211
V0,72} 707,72} 1,2
Windy

Figure 1: The DataCube for the Weather Classification

3 Attribute Metadata

None of the foregoing discussion is new with this pa-
per, although it may come as a surprise to some read-
ers that the classical relational algebra, minimally ex-
tended, and augmented by an independent domain
algebra, can get so far with analytical programming
and multidimensional database applications. (It can
also be used for topological analysis, logic program-
ming, spatial data and G.I.S., temporal data, transi-
tive closure, inference engines, and inheritance and
instantiation, among other topics well beyond the
scope of this paper.) In this section, we propose a
new construct.

We saw in section 2.2 that a loop of d steps was
needed to build a d-dimensional datacube, and that
what changed from step to step was the set of at-
tributes involved. To write that code generally as
a loop, and for any number of attributes, we allow
a type attribute for attributes, and we introduce,
temporarily (it will be replaced later by the more
general transpose operator), an operator, Attrib-
sOf, which creates a relation of all the attributes of
the operand. Finally, let us introduce syntax that
permits relational expressions, whose result is a re-
lation on a single attribute of type attribute, to be
used anywhere an unordered set of attributes was for-
merly allowed, i.e., in projection lists and after the by
clause of an equivalence reduction.

As for any metadata, we need two special opera-
tors, eval and quote. Eval applies to any metadata
variable (which must be a singleton, unary relation
on an attribute of type attribute) and replaces the
variable by its value. We will see an example below.
Quote applies to any attribute name, and converts it
to attribute metadata. Section 3.2 illustrates this.

3.1 The General DataCube

Here is the example of section 2.2 implemented as a
single loop, using these ideas. Note that we can now
use any operator of the relational algebra on sets of
attributes.
0 let N be totN;
0 let P be totP;
n domain attr attribute;
n relation AllAttribs(attr) <—
AttribsOf Training;
// Outlook, Humidity, Windy, N, P
n relation ClassAttribs(attr) <—
{(V), (P)};
n relation TotAttribs(attr) <—
{(totN), (totP)} ;
n PropAttribs <—
AllAttribs diff ClassAttribs;
n LoopAttribs <— PropAttribs;
n while [] in LoopAttribs
n { Attrib <— pick LoopAttribs;
n// Pick the next of Outlook, Humidity, Windy

=

n update LoopAttribs delete Attrib;
n// and don’t use it again
o let eval Attrib be "ANY";
0 let totN be equiv + of N
by (PropAttribs diff Attrib);
0 let totP be equiv + of P
by (PropAttribs diff Attrib);
0 update Training add [AllAttribs] in

[PropAttribs diff Attrib
union TotAttribs]
in Training;
n o}

In the above program, the lines prefixed “0” are
the old code from section 2.2, adapted for the general
loop. The lines prefixed “n” are new code needed to
initialize and use the set of attributes that control the
loop. Inspection of the differences from section 2.2,
and the discussions in sections 2 and 2.1, will make

the meaning clear.

3.2 The Decision Tree

With attribute metadata, we can take the first step
in building a decision tree, both for the specific three-
dimensional example of weather classification, and in
general. This involves building a datacube in which
the aggregates are information values. We will be
looking for minimum information values to choose an
attribute as a node of the decision tree (because in-
formation is a measure of surprise, and, once we have
the decision tree it should be able to predict exactly
(no surprise) the class of any test tuple). This means
that we must connect an attribute to the minimum
information value, and that means we need attribute
metadata.

The information datacube is built in 2d — 1 steps
in d dimensions (instead of the d steps needed for
the ordinary datacube we just built). Figure 2 shows
why two extra steps are needed in the three dimen-
sional case: the small cube schematically shows the
aggregates generated by the first three steps, and the
aggregates remaining to be generated by steps 4 and
5. The generalization to any number of dimensions
is easy.

The numbers on the big cube are the information
values computed by the code below. If we think of
the cube as made up of 4 x 3 x 3 = 36 blocks, the sub-
sequent minimization must find the smallest number
on any block with more than one number, and iden-
tify the attribute that is normal to this face. (For
example, the minimum of 0.892, 0.788, and 0.694, on
the corner block, is the latter, and the face it is on
is normal to the Outlook attribute. This will make
Outlook the root of the decision tree.)

As for the first datacube, we will approach the im-
plementation in two stages of generalization. In the
first stage, we show how to write each step of the loop
explicitly for the specific three-dimensional example.
In the second stage, we use attribute metadata to
write the whole loop generally. Here are five lines of
preliminary domain algebra, followed by step 1 ex-
plicitly.

let N be totN;

let P be totP;

let np be N + P;

let npinp be npxlg(np) —N x lg(
P x 1g(P);

let inf be totinf;

//1. Outlook, Humidity

let totN be equiv + of N
by Outlook, Humidity;

let totP be equiv + of P
by Outlook, Humidity;

let totinf be (equiv + of npinp
by Outlook, Humidity)/
equiv + of np
by Outlook, Humidity;

let accum be quote Windy;

N) —

let Windy be "ANY";
update Training add
[Outlook, Humidity, Windy,
N, P, inf, accum] in
[Outlook, Humidity,
totN, totP, totinf] in
Training;

Steps 2 and 3 look very like this, apart from the
same permutation of attributes that we saw for the
datacube. These three steps generate 24 of the 33 ag-
gregates shown in figure 2. Step 4 returns to Outlook—
Humidity to complete the six aggregates indicated in
figure 2, and step 5 revisits Humidity—Windy to find
the remaining three. Here is step 4.

//4. Outlook, Humidity
let totN be equiv + of
if Windy="ANY" then 0 else N
by Outlook, Humidity;
let totP be equiv + of
if Windy="ANY" then 0 else P
by Outlook, Humidity;
let totinf be (equiv + of
if Windy="ANY" then 0 else npinp
by Outlook, Humidity)/
equiv + of
if Windy="ANY" then 0 else np
by Outlook, Humidity;
let accum be quote Windy;
let Windy be "ANY";
update Training add
[Outlook, Humidity, Windy,
N, P, inf, accum] in
[Outlook, Humidity,
totN, totP, totinf] in
Training;
Note that we avoid accumulating over the already
computed aggregates corresponding to "ANY" values.
Apart from this, the code is identical to step 1.

The generalization, using metadata, to relations
on any set of attributes, is easily achieved along the
same lines as above, and we mention only that

let accum be quote Windy;
and its variants can be simply replaced by

let accum be Attrib;
The only significant change is that the sequence of
attributes that were randomly picked in the first
d steps must be repeated in the same order in the
final d — 1 steps. This requires storing them, to-
gether with sequence numbers, in a temporary rela-
tion Loop2Attribs, and rearranging the control state-
ments of the loop so Loop2Attribs can be initialized.
These changes illustrate new idioms but no new lan-
guage ideas, so we omit the code.

The next, and last, task in building the decision
tree is to find the mimimum information values in
the right groupings and then to search through the
datacube we have just generated to select the tuples
that make up the decision tree. For this, we need
the transpose operator, which in turn needs nested
relations.

HumidityT

sunny overcast rainy ANY

2
0 0 0 0500 |A ﬂ«
N 4
0 0 0 0918 0341Y
0 0 0951 ,0.788 033L h
e o|?
0.951 0 0 0.892 [0 n
0
th
28€ 0 ? look
0 0 0 | 0965 [0 _ Quitloo
0
4 f
P
0 0 0 0.394 [O t
Y
AN

/\Nindy

Figure 2: The DataCube for the Weather Decision Tree

4 Nested Relations

With the domain algebra and a cleaned-up relational
algebra, we get nested relations for free (syntacti-
cally, that is: the implementation is more difficult,
although everything we are about to say can be built
with non-nested relations). The linguistic step is to
subsume the relational algebra into the domain alge-
bra.

Nested relations are relations whose attribute val-
ues may themselves be relations. Thus, to work with
them, we need a formalism to create new relation-
valued attributes from existing ones. The domain
algebra, with relational operations incorporated into
it, is the required formalism.

Although nested relations add nothing whatsoever
to the functionality of the “flat” relational and do-
main algebras, which is what we have discussed so
far, they do at times simplify our thinking, and so
have a rightful place in secondary storage program-
ming. They also repair an aesthetic inegality of the
data types in the programming language: numbers,
strings, and other scalar data types have hitherto had
privileges that relations have not, namely the ability
to be included as values in relational tuples. Nesting
gives relations these privileges, too.

To review the ideas, consider the relation Shop-
pingBaskets(zact, item) which was mentioned in sec-
tion 2.1 and which we will be using for association
mining in section 4.1. Here is the domain algebra,
with a new, relation-making operator, to convert the
item attributes to a nested relation.

let zactset be relation(zact);
If this were actualized, each of the original tuples

would have a singleton zactset(zact) relation, which is
not very interesting. Let us use the relational union
operator, now legal to be used in the domain algebra,
to combine all items for each transaction.
let zacts be equiv union of zactset
by item.
Actualizing this latter by the projection
SBsets <— [item, zacts] in
ShoppingBaskets ;
gives one tuple for each item, containing the
item, dtem, and the set of associated transactions,
zacts(zact).

We see from this the importance of being able to
name the relational operators.

Similarly, relational operators can be used in scalar
expressions of the domain algebra, to combine nested
relations horizontally within each tuple.

To complement the relation construct in the do-
main algebra, which groups a set of attributes into
a nested relation, we need a mechanism to flatten a
nested relation by removing a level of nesting. Just
as the nesting mechanism, relation, creates singleton
nested relations, the inverse must start with a single-
ton nested relation, or else the resulting values will
not fit into the tuple. Besides the nondeterministic
pick, a projection onto the attribute resulting from a
reduction aggregation is a good means of producing
singleton results. This is a good way to unnest, be-
cause we can make such a result anonymous. Then,
only the name of the nested relation is known, not
the name of the attribute in it, and we can make the
convention that, in such a case, the level of the at-
tribute is raised one notch to become an attribute

in the containing relation. Thus, no new syntax is
needed for unnesting.

Here is an example, continuing the above, in which
we count the number of items in each zact set, and
raise the count to be an attribute of the containing
relation that results.

let count be [red + of 1] in zacts;
Since count is a virtual attribute created by a projec-
tion, it would normally be a nested relation, with the
attributes named in the projection list. However, the
projection list contains a domain algebra expression,
not a name, and so count has no attribute. Because
the domain algebra expression is a reduction aggre-
gate, it has only one value, and so count can now be a
flattened attribute containing only this value (in the
parent tuple). Actualization could take the form

SBsetsAgg <— [item, zacts, count]

in SBsets;

Here is a very small collection of sample data for
each of the above relations. In the three nested rela-
tions, a line separates each tuple, so we can see the
singletons and how they merge into a single tuple.

ShoppingBasket

(item zact) (item x(a ;;(s:te)t)
. milk 2
bni“lelakd f bread 1
bread 5 bread 2
bread 3 bread 3
SBsets SBsetsAgg
(item zacts) (item zacts count)
(zact) (zact)
milk 2 = milk 2 1
bread 1 bread 1 3
2 2
3 3

The research literature on nested relations has fo-
cussed on algebras at the relational level, and got
rather stuck on the unpleasant property of the nest
and unnest operators at this level that they are not
inverses of each other. But the interesting aspect of
nesting is the useful manipulations. Since these, and
unnesting, are entirely subsumed in the domain al-
gebra with no new syntax or operators required, we
think we have a useful formalism without awkward
problems.

The following section illustrates the value of nest-
ing and shows the above constructs, before we return
in section 5.1 to the weather classification problem.

4.1 Association Data Mining

Association data mining [8, 1] attempts to find rules
of the form “if one set of items occurs in a given situ-
ation, then a second set of items also occurs”, for spe-
cific sets of items. The usual motivation offered is to
help retail stores to discover associations among sets

of products in customers’ shopping baskets. Shop-
pingBaskets gives an example which appeared early
in the literature.

ShoppingBaskets SingletonRules’ cover/
(zact item) (item’ item) confden
8 beans beans rice 1/2
9 beans beer bread 1/2
2 beer beer butter 1/2
5 beer beer milk 1/2
1 bread bread beer 1/5
2 bread bread butter 4/5
3 bread bread coffee 3/5
4 bread bread milk 2/5
7 bread butter beer 1/5
1 butter | butter bread 4/5
2 butter | butter coffee 3/5
3 butter | butter milk 2/5
4 butter | coffee bread 3/3
6 butter | coffee butter 3/3
1 coffee | coffee milk 1/3
3 coffee milk beer 1/2
4 coffee milk bread 2/2
2 milk milk butter 2/2
4 milk milk coffee 1/2
9 rice rice beans 1/2
10 rice

The second relation, SingletonRules’, lists all pos-
sible associations of singleton antecedent sets (item')
and singleton consequent sets (item). The virtual at-
tributes, cover and confden, are counts of the number
of transactions associated, respectively, with item and
item’, and with item’. These two quantities are sub-
ject to user-specified criteria for selecting rules: conf-
den, which is the “cover” of the antecedents, must
exceed some absolute number, say 3 in this case (or
a fraction of the total number of transactions, say
0.3); cover is the cover of the rule, i.e., of the in-
tersection of the set of transactions associated with
the antecedent and the set of transactions associated
with the consequent; the ratio cover/confden, called
the “confidence” of the rule, must exceed a magni-
tude specified by the user, say 0.8.

Here is the domain and relational algebra to gen-
erate singleton rules under these two criteria.

let cover be equiv + of 1 by item;
let confden be equiv + of 1 by item;
let item' be item;
SingletonRules <— [item', item] where
item' # item and cover/confden > 0.8
in ShoppingBaskets natjoin
[zact, item', confden)
where confden > 3 in ShoppingBaskets;
SingletonRules', shown above, would be produced by
the last line with both criteria set to 0; SingletonRules
can be thought of as the selection on SingletonRules’
that gives the rules
if {bread} then {butter}
if {butter} then {bread}

if {coffee} then {bread}
if {coffee} then {butter}

(Note that, although the code defining cover and
confden is identical, different values result because
actualization is done in different contexts.)

So far we have not used nested relations. Nor have
we produced more than singleton rules. The interest-
ing problem is to deal with all possible sets of items.
We do this in two stages. First, we find all possible
item sets and their associated transaction sets and
covers. Then we use a nested adaptation of the above
code to discover the rules. The code we show for this
procedure is not optimally efficient; publication space
precludes greater sophistication.

Finding all the item sets over the cover thresh-
hold, and their associated transaction sets, starts
with nesting operations like the one we considered
in section 4.

let items be relation(item);
let zactset be relation(zact);
let zacts be equiv union of zactset;
let cover be [red + of 1] in zacts;
SBsets <— [items, zacts] where
cover > mincover in ShoppingBaskets ;

This gives singleton sets of items, and the associ-
ated transaction sets. To extend the result to all sets
of items, we use a form of transitive closure. This
needs six statements of the domain algebra, which
we show as the first six statements in the next para-
graph, and a recursive view which we do not have
room here to explain. The result is the relation SB-
setsClos(items, zacts), with three tuples from SB-
sets, such as ({bread}, {1,2,3,4,7}), and four new
tuples, such as ({bread, butter, coffee}, {1, 3,
4}).

The second part of the calculation adapts the Sin-
gletonRules code to nested relations.

let items’ be items;
let zacts' be zacts;
let items' be items union items’;
let zacts" be zacts natjoin zacts';
let items be items"’;
let zacts be zacts”;
let confden be [red + of 1] in zacts;
let cover be [red + of 1] in zacts";
GeneralRules <— [items’, items]
where (not(items comp items')
and [] in zacts”
and cover/confden > 0.8
in (SBsetsClos natjoin
[zacts', items’, confden]
where confden > 3 in SBsetsClos);
What this code does is

1. prepare to rename the nested relations items and

zacts, and to rename the results back again,

2. define unions of items sets (nested relations) and

intersections of zacts sets,

3. count the numbers of transactions for the an-

tecedent set of items and for the whole rule (in-
tersecting zacts sets for each item), and

4. join SBsetsClos with itself, as above for singleton
rules, selecting on the two criteria.
The result is seven rules, including the four single-
ton rules we found earlier, and
if {coffee} then {bread, butter}
if {bread, coffee} then {butter}
if {butter, coffee} then {bread}
This calculation is trivially extended to deal with
multiple-attribute properties instead of the unary
nested relation, items(item).

5 The Transpose Operator

Now that we have described relational nesting, and
given it a good workout by implementing associative
data mining, we can return to attribute metadata
and classification mining. The transpose operator
creates a nested relation which includes an attribute
of type attribute. It effectively converts each tuple
of an ordinary relation into a set of attribute-value
pairs, which we can use to write code which examines
both attributes and values, as needed to build the
decision tree.

The result of transpose is a binary nested rela-
tion, with one attribute of type attribute and the
other capable of holding any type of data, which we
call type universal. Consider the statements

domain attr attribute;

domain val universal;

let zpose be [attr, val] transpose A, B,C';
and the relation

R(A B) zpose
(attr wal)
||a|| 1 true A "a"
B 1
C true
"b" 1 false A "b"
B 1
C

false

We see the (virtual) result of transpose on all the
attributes of R.

We can now show how to find all attributes of a
relation (the temporary AttribsOf operator in sec-
tion 3.1).

AllAttribs <— [red union of
[attr] transpose
Outlook, Humidity, Windy, N, P]
in Training;

Transpose can be used to transpose not only all
the attributes of a relation, but also any subset of
them.

5.1

With nested relations and the transpose operator,
we can now take the final step in building the decision
tree for the weather classification problem, and in
general. Our goal is to construct the decision tree
represented as a set of rules, as in the relation DT.

Classification Data Mining

10

DT

(Outlook Humidity ~ Windy pivot notANY NP)
(accum) (attr) (attr)
ANY ANY ANY Outlook N
P
sunny ANY ANY Outlook Outlook N
Humidity P
overcast ANY ANY Outlook Outlook P
Humidity
rainy ANY ANY Outlook Outlook N
Windy P
sunny high ANY Outlook Outlook N
Humidity Humidity
Windy
sunny normal ANY Outlook Outlook P
Humidity Humidity
Windy
rainy ANY f Outlook Outlook P
Humidity Windy
Windy
rainy ANY t Outlook Outlook N
Humidity Windy
Windy

The new attributes, pivot, notANY, and NP, are de-
fined
let pivot be pick equiv union of
relation(accum) by Outlook, Humidity,
Windy;
domain attr attribute;
domain val universal ;
let notANY be [attr] where val#"ANY"
in [attr, val] transpose Outlook, Humidity,
Windy;
let NP be [attr] where val#0 in
[attr, val] transpose N, P;

The relation DT can be used as a set of rules by
selecting singleton NP values (either N or P), as in
if Outlook = {"overcast"} then P
or
if Outlook = {"sunny"} and
Humidity = {"high"} then N
etc. Or it can be construed as a tree whose root is
the tuple where notANY is empty, first-level nodes
where |notANY] = 1, and so on. Searching this tree
closely follows the method for extracting it from the
original Training set, which we now give.
We first find the minimum information, and the
attribute responsible for it, for each block in figure 2.
let ct be [red + of 1] in notANY;
Min <—
[Outlook, Humidity, Windy, ct, notANY,
NP, pivot]
in [Outlook, Humidity, Windy, accum]
where inf = equiv min of inf
by Outlook, Humidity, Windy in Training
We can then write a loop of d steps to find each of
the d levels of the decision tree. Here we give the first
and the second steps; the second becomes the general
step just by changing the value for ct in the selection.
// Step 0.
DTO <—
[Outlook, Humidity, Windy, notANY,
NP, pivot]

11

where ¢t = 0 in Min;
// Step 1.
let pivot’ be pivot;
let pivot"” be pivot union pivot’;
let pivot be pivot’’;
let ctNP be [red + of 1] in NP;
DT1 <—
[Outlook, Humidity, Windy, notANY,
NP, pivot]
in [Outlook, Humidity, Windy,
notANY, NP, pivot”)
in ((where ¢t = 1 in Min)
[notANY natjoin pivot']
[pivot'|where c¢tNP > 1 in DT0)
When c¢tNP = 1, we have a leaf node, or a final rule,
as indicated above, and so that branch of the tree-
building may stop. The whole loop must stop when
all branches have ended in leaves.

Note that the natural join in this code joins two re-
lations on equality of join attributes which are them-
selves relations.

DT is just the union of all the DTi’s generated by
the loop.

Postscript Two other classifications, One-rule and
Bayesian, use much simpler calculations than the de-
cision tree, and can be built as simple variants of the
above, using only the top-level aggregates.

6 Conclusion

We have implemented two forms of data mining, clas-
sification by decision tree, and association, using only
the relational and domain algebras. However, it is not
the purpose of this paper to contribute to data min-
ing, which is why we have presented only simple and
inefficient algorithms.

The purpose of the paper has been to demonstrate
that the relational algebra, with suitable notation,
together with the domain algebra (and relational re-
cursion and looping), suffice to do sophisticated pro-
gramming. We have used nested relations, which
come effectively for free with the domain algebra. We
have introduced in this paper metadata of type at-
tribute, and simple related operators and syntax,
to write the general loops needed for datacube and
decision tree construction. We expect these new con-
structs to be generally useful in relational database
programming.

The attribute metadata type has recently been im-
plemented. Every other technique used in this pa-
per (domain algebra, nested relations, etc.) is imple-
mented and running in one or more research systems.

7 Acknowledgements

We are indebted to the Natural Science and Engi-
neering Research Council of Canada for support un-
der grant OGP0004365. This work was motivated by

work on spatial OLAP and data mining, supported
by the Networks of Centres of Excellence program
through the GEOIDE Project, GEODEM. Andrey
Rozenberg has built attribute metadata and its oper-
ators into the reliz implementation of the language.

This paper is published in the Lecture Notes
in Computer Science series by Springer-Verlag
(http://www.springer.de/comp/Incs/index.html),
who hold the copyright on non-electronic reproduc-
tion.

References

[1] R. Agarwal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In P. Buneman and S. Jajodia, edi-
tors, Proceedings of the 1993 ACM International
Conference on Management of Data, May 26-28,
1993, pages 207-16, Washington, D.C., May 1993.
ACM Press.

[2] E.F. Codd, S.B. Codd, and C.T. Salley. Pro-
viding OLAP to user-analysts: An IT man-
date. Technical report, E. F. Codd & Asso-
ciates, Hyperion Solutions, Sunnyvale, CA, 1993.

[9] J. R. Quinlan. Induction of decision trees. Ma-
chine Learning, 1(1):81-106, 1986.

http://www.arborsoft.com/essbase/wht_ppr/coddps.zip,
http://www.arborsoft.com/essbase/wht_ppr/coddTOC.html.

[3] P. Fischer and S. Thomas. Operators for non-
first-normal-form relations. In Proc. 7th COMP-
SAC, pages 464-75, Chicago, November 1983.

[4] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichert, M. Venkatarao, F. Pellow, and H. Pi-
rahesh. Data cube: A relational aggregation op-
erator generalizing group-by, cross-tab, and sub-
totals. Data Mining and Knowledge Discovery,
1:29-53, 1997.

[5] G. Jaeschke and H.-J. Schek. Remarks on the al-
gebra of non first normal form relations. In Proc.
ACM Symposium on Principles of Database Sys-
tems, pages 124-38, March 1982.

[6] A. Makinouchi. A consideration on normal form
of not-necessarily normalized relations in the re-
lational model. In A. G. Merten, editor, Proc. 3rd
Internat. Conf. on Very Large Data Bases, pages
447-53, October 1977. examples of nest, recursive
nest; discusses normalization, dep.

[7] T.H. Merrett. Experience with the domain alge-
bra. In C. Beeri, U. Dayal, and J. W. Schmidt,
editors, Proc. 3rd Internat. Conf. on Data and
Knowledge Bases: Improving Usability and Re-
sponsiveness, pages 335—-46, San Mateo, Califor-
nia, July 1988. Morgan Kaufmann Publishers Inc.

[8] G. Piatetsky-Shapiro.
presen-
tation of strong rules. In G. Piatetsky-Shapiro,
editor, Knowledge Discovery in Databases, pages
229-48. AAAT/MIT Press, 1991.

Discovery, analysis, and

12

