A Tutorial on Database Technology

for Geospatial Applications
DRAEFT Confidential

T. H. Merrett* Y. Bédard! D. J. Coleman! J. Han}
B. Moulin¥ B. Nickerson!l C. V. Tao**

May 27, 2002

Abstract

We show how to use a general-purpose programming language for databases on
secondary storage, with no specifically spatial constructs, to implement algorithms from
computational geometry, data warehousing, data mining, and Internet collaboration,
for geographical information systems.

Index Terms relational, multidimensional, object-oriented; edge-intersection, overlay,
point-in-polygon, Voronoi; data cube; data mining: association, classification, generalization;
collaboration, concurrency, events.

Contents
1 Introduction 3
2 Primitive Operations for Data on Secondary Storage 5

*School of Computer Science, McGill University, 3480 University, Montréal, Canada H3A 2A7. E-mail:
tim@cs.mcgill.ca

tDept. des sciences géomatiques, Université Laval, Courriel: Yvan.Bedard@scg.ulaval.ca
iDept. of Geodesy & Geomatics Engineering, University of New Brunswick, E-mail: dcoleman@unb.ca
$Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, E-mail: hanj@cs.uiuc.edu
Dept. d’informatique, Université Laval, Courriel: bernard.moulin@ift.laval.ca
IDept. Computer Science, University of New Brunswick, E-mail: bgn@unb.ca
**Dept. of Earth and Atmospheric Science, York University, E-mail: tao@yorku.ca
LCopyright (©2002 Timothy Howard Merrett et al.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation in a prominent place. Copyright for
components of this work owned by others than the authors must be honoured. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or fee. Request permission to republish from: T. H. Merrett,
School of Computer Science, McGill University, fax 514 398 3883.

3 Overview of Spatial Data Processing

3.1 Offerings from Commercial GIS
3.2 Beyond Commercial Systems
3.3 Computational Geometry L Lo L
3.4 Spatial Mathematics
3.5 Spatial Predicateso
3.5.1 Metric geometry: Intervalso L.
3.5.2 Projective geometry: Order L.
3.5.3 Topology: Intersections
3.5.4 A hierarchy of approximations oL
3.5.5 Queries and Spatial SQL oL
3.5.6 Spatial Data Mining and Causality
3.5.7 Hierarchies of General Predicates
3.6 Computer-Aided Design oL
3.7 Advanced Geospatiotemporal Applications

Spatial Data Structures for Secondary Storage

4.1 Enumerated Sequences versus Element-Pairs

4.2 The Quad-Edge Representation

4.3 The Splice Operator
4.3.1 Splice on Secondary Storage L.

The Domain Algebra and Nested Relations

5.1 The Scalar, or “Horizontal”, Operations

5.2 The Aggregation, or “Vertical”, Operations
5.2.1 Reduction and Equivalence Reduction
5.2.2 Functional Mapping and Partial Functional Mapping

5.3 Some More Relational Algebrao
5.3.1 Joins
5.3.2 Updates o e

5.4 Relations as Domains: Nested Relations

5.5 Relational Programming L0000

Spatial Algorithms for Secondary Storage

6.1 Polygon Overlay
6.1.1 Intersecting Edges oL
6.1.2 Generate Vertices, Edges, and Splices
6.1.3 Update the Data Structure

6.2 Map Overlay e

6.3 Delaunay and Voronoi Diagrams,
6.3.1 Point-in-Triangle oL Lo
6.3.2 Delaunay Edges and Swapping oL L.
6.3.3 Voronoi Diagram 0oL

6.4 Polygon Skeleton by Divide-and-Conquer
6.4.1 Preamble to the Merge: the Basic Calculations.
6.4.2 The Merge e
6.4.3 A Whole Polygon
6.4.4 Grass Fire Skeletons oo
6.4.5 Example: Label Placement

6.5 Implementing Spatial Predicate Approximations

6.5.1 2dAllen e 87

6.5.2 2dString 88

6.5.3 9lnter in Two Dimensions 90

7 Spatial On-Line Analytical Processing 91
7.1 DataCubes e 91
7.2 Spatial Data Cubes 97

8 Spatial Data Mining 98
8.1 Classification e 100
8.2 Association L. 107
8.3 Generalization 114
8.4 Predicate Mining, Illustrated for Spatial Data 117
8.4.1 Generalization and Predicate Simplification 117

8.4.2 Association and Predicate Implication 120

8.4.3 Classification and Predicate Approximation 121

9 Spatial Collaboration on the Internet 127
9.1 Concurrency and Events o000 128
9.1.1 ConcCurrency v .ot i e e e e 129

9.1.2 Distributed Processing oo L 132

9.1.3 Events e 133

9.2 Update Editorso 134
9.3 Example: Distributed Workflow in Collaborative Mapmaking 135
9.3.1 Online Inspection 135

9.3.2 Map Registration oL oL oL 136

10 Programming Language Techniques 139
10.1 Procedural Abstraction 140
10.2 Data Abstraction 141
10.3 Classes and Instantiation 142
10.4 Example: A Map ADT 144
10.5 Example: Distributed Geospatial Objects 145

11 Conclusions 146
12 Acknowledgements 146
A Equivalence of Sets and Sequences for Cycles in Graphs 150
B Terminology 151
B.1 Terminology: Geometry and Topology 151
B.2 Glossary e 153

1 Introduction

Geospatial data typically comes in very large quantities. For example, the 13,000 maps in the
1:50,000 series from Energy, Mines and Resources, Canada need gigabytes (10° bytes, or a
thousand megabytes) in raw form. The NASA Earth Observing System generates petabytes

(10" bytes, or a million gigabytes) per year. These quantites are too big for RAM, the main
memory, of most computers, and so the data requires secondary storage.

This tutorial describes geospatial data applications—geographical information systems,
spatial data warehousing and mining, collaboration over the Internet with geospatial data—
on the basis of a unified programming language for secondary storage. It attempts to end
the gap that has grown between processing purely spatial data and processing the associated
non-spatial data. This gap has become the norm in mapping and geospatial data analysis.

Since programming languages for primary memory (FORTRAN, Lisp, Algol, Pascal,
C, Java, etc.) make no special provisions for spatial data (and yet are used for spatial
programming), it is anomalous that languages for secondary storage do. This tutorial shows
that such special provisions are not necessary if the language is well conceived. Once such
special provisions are not needed, integration of spatial with non-spatial processing becomes
straightforward.

Spatial data structures are needed, and the language must support them. We adapt a
significant spatial data structure, the quad-edge representation, to secondary storage, and
show how to program with it. Our language, however, does not depend on adopting this one
particular data structure.

Secondary storage languages have mostly been database languages, and these have mostly
been intended for querying and transaction processing (updating). These are limitations in
the technology of databases, and yet databases have significant ideas and methods to offer.
For this reason, this tutorial is based on database technology, and seeks to build on its
strengths while reducing its limitations.

Just as spatiotemporal data should require no special provisions in the programing lan-
guage, so should there be no language distinction between transactions, on one hand, and
analysis, on the other. We discuss data warehousing and data mining, and, of course, spatial
versions of each.

Elsewhere [7, 18] we have discussed tools and available software in the global context. In
the present tutorial, we focus on the underlying structures, which can be built into new tools
and systems. We will discuss and illustrate the basic operators of programming languages
for geospatial applications, so that the reader can think directly about significant problems,
rather than look at packages for the reader to buy. This tutorial treats G.I.S as an intellectual
challenge, rather than as a systems problem.

Because this is a tutorial, our treatment is intuitive, by examples rather than theorems
or formal algorithms. The examples are simple, even “toy” examples: it is the the role of the
language to be able to scale them up. The tutorial makes clear that such scaling is implicit
in the approach and, thus, how to do it.

The examples are directed towards conceptual ease rather than machine efficiency: we
intend to show how to apply secondary storage programming constructs rather than to teach
practitioners what they already know about geospatial algorithms, data warehousing, data
mining, or collaborative work.

The paper is a tutorial in that it attempts to be conceptually self-contained, which is
why formal material is kept to a minimum.

The next section discusses the nature of secondary storage and characterizes the level of
abstraction needed for effective programming on secondary storage.

Section 3 reviews spatial data processing, starting with the capabilities of commercial
and some potential geographic information systems. It looks, more deeply, at the recent
discipline of computational geometry, and at some not yet assimilated results from mathe-
matical geometry. We look at other aspects of spatial data, notably computer-aided design
in both engineering and architecture. There is a considerable discussion of spatial predicates

and the hierarchies that can be used to approximate them.

Section 4 introduces the quad-edge data structure, which we will use for spatial data
throughout the tutorial. We point out that this data structure suits the needed level of
abstraction for secondary storage while other spatial data structures do not, and we motivate
it by starting with less sophisticated data structures.

In section 5, we turn to the domain algebra. This complements the relational algebra and
is central to all of the work that follows in the tutorial. Although SQL can also be augmented
by a complementary domain algebra, it has limitations, and we introduce a cleaner syntax
for the basic operations of the relational algebra, select, project, and three joins. We show
how subsuming the relational algebra into the domain algebra gives relational nesting for
free, and that nested relations simplify our thinking about some problems, without adding
(or needing to add) new functionality to the programming formalism.

With data structure and programming formalism behind us, we can tackle representative
spatial problems. We treat polygon and map overlays and Voronoi diagram construction
thoroughly (for a tutorial level of discussion, that is). The problems of finding the intersection
of sets of edges and of finding which points are in which triangles are solved as steps in these
discussions.

Section 7 applies the programming constructs of section 5 to on-line analytical processing,
and discusses spatial variants of this technique.

Classification data mining can be seen as an application of OLAP, and section 8 shows
how to build this as well as association and generalization mining engines in the secondary
storage programming language. There is an extended discussion of geospatial mining of all
three types.

The Internet is essential for sharing spatial data such as large maps, and we next look
at techniques for cooperative work on maps represented by the quad-edge data structure
in our language. This involves treatment of concurrency both by process synchronization
and by event programming. The notion of editors as operators in the relational algebra is
elaborated as a basis for the user interfaces. As an example, we discuss distributed workflow
in collaborative mapmaking.

Finally, in section 10, we look at the place of object-orientation in secondary-storage
programming. This is a suite of programming language techniques, which fits readily into
the high-level relational approach. The ideas of both procedural abstraction and data ab-
straction, from programming languages, are covered on the way. Two examples are given: a
map abstract data type, and geospatial distributed objects.

There are two appendices, a technical one (A) on the equivalence of two competing data
representations for spatial and other data, and one on terminology (B), since the tutorial
covers fields in which terminology varies widely and at times contradictorily.

The tutorial springs from the collaboration of the authors in a Canada-wide research
project on geospatial decision-making under the aegis of the Networks of Centres of Excel-
lence program. This has brought a wide range of interests and technical abilities fruitfully
together into a single group in a rather unusual way, with the result that the approach of
this tutorial is different and innovative.

2 Primitive Operations for Data on Secondary Storage

Secondary storage, whether disk storage as is usually the case, or more elaborate technologies,
differs fundamentally from primary memory, or RAM. This difference is essentially that
finding data on secondary storage takes much more time than transferring it, once found,
to be processed. This is basically because the seek operations are mechanical (e.g., disk

rotation and read head movement) while the transfer operations are electronic. The ratio
of the seek time to the time required to transfer one byte is, on modern disks, close to one
million, and is getting bigger as technology advances. (Fifteen years ago, it was about ten
thousand.) RAM, by contrast, has an “access-transfer” ratio of about one.

This difference between secondary storage and RAM means that all computer operations
involving secondary storage must be treated quite differently from the conventions that have
been developed for computing when the data can be held entirely in RAM. (In many cases,
sufficient data for a computation can be transferred from secondary storage to RAM, and
then processing can proceed by conventional means. There are enough occasions when this
is not so, especially with geospatial data, that we must learn how to handle them.)

The basic consequence of the different memory architecture governing secondary storage,
the large access-transfer ratio, is that data on secondary storage must be transferred in large
“blocks” or “pages”. For instance, suppose we are randomly (from the point of view of the
storage system) fetching items of data from all over a disk with an access-transfer ratio of
a million. Then most of our time will be spent seeking, as opposed to transferring (and
presumably processing), unless the blocks are a million bytes or more. Of course, there are
many practical reasons why blocks cannot be a megabyte each, but the argument still holds
that they should be as large as practical.

This usually means that more than one item of interest is stored in a block. We call such
an item a “record”, which may be a single number, or, more usually, a collection of related
data including numbers, strings, images, etc. If a block size is 8 kilobytes, say, it can hold a
fraction of an image, or 100 80-byte conventional IBM card-image records, or 500 eight-byte
coordinate pairs, or 2000 4-byte numbers. Where the records are smaller than the block,
it is more efficient to process all the records an application will need from the block than
to refetch the block for each record. For the coordinate pairs example, the difference is one
seek followed by an 8K transfer versus 500 seeks followed by 500 8K transfers, a factor of
500. (And if the data were not blocked, the cost would always be 500 seeks followed by 500
16-byte transfers, which is hardly better than the latter, since each seek is equivalent to a
1-megabyte transfer, by the access-transfer ratio of one million.)

Thus, efficient processing on secondary storage must make use of as many records from
each block as possible once the block is fetched. This tells us how the data must be organized
into the blocks, and what kind of primitive operations we should use on secondary storage.

Data must be “clustered” into the blocks, so that only related records are placed in any
block. What is meant by “related” depends entirely on the application and the algorithms
involved. Our choice of the basic operations from which algorithms for secondary storage
can be programmed must reflect this need for clustering. This means that the primitive
operations should not be free to refer to individual records, but only to sets of records. In
other words, just as the block abstracts over sets of records, the operations will abstract over
looping.

Research into databases has produced a variety of operators for secondary storage. The
relational algebra offers the level of abstraction we need in the most accessible way, with the
bonus that the relation is itself an abstraction over not only blocks but files. The operators
we shall need are projection and selection (both unary operators, involving single relations),
and joins (binary operators which combine two relations). The unary operations process
each record of the operand, and the binary operations process each record of both operands,
without involving the programmer in any of the looping needed over internal data.

A relation is a set of records, all defined on the same fields, or attributes. If the fields are
simple, such as numbers or strings, the records and the relation are “flat”. Fields may also
have values in each record which are in turn relations, in which case the relation is “nested”.

We start with flat relations. Here is a representation of a set of polygons as a flat relation.
Each polygon, identified by id, is a sequence of coordinate pairs. We show two triangles.

polygons(id seq xcoord ycoord)

F1 1 3.0 2.0
F1 2 1.0 2.0
F1 3 2.0 1.0
F2 1 3.0 2.0
F2 2 2.0 3.0
F2 3 1.0 2.0

An example of the project operator is to find the set of coordinate pairs representing all
(four) vertices of these triangles.

vertices(zcoord ycoord)
3.0 2.0
1.0 2.0
2.0 1.0
2.0 3.0

An example of the select operator is to find all data associated with the vertex (3.0,
2.0).

vertez12(id seq xzcoord ycoord)
F1 1 3.0 2.0
F2 1 3.0 2.0

These operators would be written in SQL as, respectively,

select zcoord, ycoord
from polygons

Projection in SQL
and

select *
from polygons
where zcoord=3.0 and ycoord=2.0

Selection in SQL

in which select actually means project, and * means project on all fields. Note that selection
followed by projection can easily be written in a single phrase. A syntax for assignments
permits the resulting relations to be named.

SQL was designed as a query language, not for general programming. We will intro-
duce the missing semantics in section 5. Meanwhile, we show an alternative syntax, which
recognizes that projection and selection, as well as relation names by themselves, are ex-
pressions. These are usefully combined together and with other expressions to construct
programs with capabilities beyond simple querying. For select and project, the new syntax
merely rearranges the clauses from the SQL, and uses different keywords so as not to be
confused with SQL.

[zcoord, ycoord) in polygons
Projection in Programming Notation
where zcoord=3.0 and ycoord=2.0 in polygons

Selection in Programming Notation

Again, selection followed by projection can easily be written in a single phrase. We will show
a compound expression after discussing natural join.

To illustrate join, which is a binary operator, we need two relations as arguments. Sup-
pose we have them as follows.

polygonl(seql zcoord ycoord)
1 3.0 2.0
2 1.0 2.0
3 2.0 1.0

polygon2(seq?2 zcoord ycoord)
1 3.0 2.0
2 2.0 3.0
3 1.0 2.0

(Evidently, each of these can be obtained from polygons by a selection followed by a projec-
tion. Renaming the seq fields is required: section 5.)

Then the natural join of these two on the coordinate pairs will tell us which pairs are
common to the two polygons.

sharepairs(seql xcoord ycoord seq?)
1 3.0 2.0 1
2 1.0 2.0 3

In SQL, this is written

select *
from polygonli, polygon2
where polygonl.zcoord=polygon2.xcoord and polygonl.ycoord=polygon2.ycoord

which closely resembles the SQL syntax for unary operations. In the expression oriented
programming syntax, we write

polygonl join polygon2

This reveals that the join operator selects on equality of the common fields. It is more
specialized than the SQL syntax, which allows any logical combination of any conditions,
but the syntax makes explicit that a specific high-level operator is involved, as well as being
simpler. When we need further binary operators, we can define them explicitly, too: the
useful ones turn out not to be expressible with the above SQL.

We can use a compound expression in the new notation to derive sharepairs directly
from polygons, anticipating from section 5 only field renaming. We also show a syntax for
assignment.

sharepairs <— ([seql, zcoord, ycoord) where id=F1 in polygons) join
([seq?, zcoord, ycoord) where id=F2 in polygons);

Changing the above by removing the two selections (but keeping the projections) gives
us a join of polygons with itself.

overlap <— ([id1, seql, zcoord, ycoord] in polygons) join
([id2, seq?, zcoord, ycoord] in polygons);

overlap(idl seql xzcoord ycoord id2 seq?)

F1 1 3.0 2.0 F1 1
F1 1 3.0 2.0 F2 1
F2 1 3.0 2.0 F1 1
F2 1 3.0 2.0 F2 1
F1 2 1.0 2.0 F1 3
F1 2 1.0 2.0 F2 2
F2 3 1.0 2.0 F1 3
F2 3 1.0 2.0 F2 2
F1 3 2.0 1.0 F1 3
F2 2 2.0 3.0 F2 2

The result shows an important property of the natural join, that all possible combinations
that match on the join (common) fields are in the result. This is a little more explicit in the
SQL expression of the same result, but SQL does not always make clear when a natural join
is being performed. Once this is recognized as a property of join, it is obvious in the more
abstract notation that a complete combination of relevant records will result.

Of course, SQL can also express these, by nesting selects, and the choice of notation is
a matter of taste, up to a point. We will proceed from here, as far as possible, in such a way
that any notation for the operators can be used.

In this section, we have introduced three operators at the right level of abstraction for
data on secondary storage. The unary operators, project and select, can be combined into
a single expression called a T-selector, either in SQL syntax, or in a modified syntax which
allows a more tidy presentation of compound expressions, for secondary storage programming.
The binary operator, natural join, is hidden in SQL syntax but explicit in the programming
notation. These three operators treat data at the right level of abstraction for secondary
storage by ignoring individual records and treating whole files instead. In particular, the
implementation is thus permitted to optimize the clustering of records into blocks so that
these may be fetched as few times as possible.

There are two circumstances in which the discussion of this section, and of the whole
tutorial, may be disregarded. The first is when each item of data is at least as large as any
practical block, and so is economical to fetch by itself any time it is needed. This would be
the case, for instance, with most images whose internal structure does not interest us. For
maps, however, internal structure is precisely what is of interest and what is to be processed
by a geospatial system such as a G.L.S.

The second circumstance arises when the result of processing is to retrieve from sec-
ondary storage only a very small amount of data, which can fit entirely in RAM, without
needing multiple fetches. This happens in many simple queries, or retrievals of small objects.
Then clustering is not needed, and naive methods may be used. Maps are large, coherent
organizations of data which frequently must be processed in chunks too big for RAM, and
clustering applies, as do the levels of abstraction discussed in this tutorial.

Even in these circumstances, when the processing can be done in RAM in the ordinary
way, the higher-level abstractions needed for secondary storage can be useful. Because they
abstract away from loops and from considering individual records, they also hide many issues
of sequencing of operations. These can now be left to the implementation. In particular, the
implementation might choose to use parallel processes to execute our higher-level operators.
By not requiring the programmer to specify unnecessary sequencing of operations, parallel
execution is not hindered by first having to remove this sequencing (the undertaking called
“parallelization” in lower-level languages). Parallel processing is beyond the scope of this
tutorial, but it is significant in a number of the topics we address [2, 24].

It does require considerable mental effort and acclimatization for an experienced pro-
grammer to break the ingrained habit of coding needless sequencing, however. The reader
should be alert to the consequent demand for new ways of thinking.

Postscript. We have made a number of points, above, concerning secondary storage and
the relational abstraction and operators, which suit it. It is worth stressing four things we
have not said. First, we have not mentioned pointers. Pointers are anathema for secondary
storage, at least if they point to data items (e.g., records) that are much smaller than blocks,
and if the application is interested in retrieving more than a very few such data items. This
is because such pointers invite the programmer to treat secondary storage as if it were RAM,
and to write applications that refer repeatedly to the same block instead of permitting the
implementation to fetch that block only a minimum number of times. It is a challenge of
programming for secondary storage to write algorithms that do not use pointers, but that
work at a higher level of abstraction.

The second thing we have not said is that records in a relation somehow represent “ob-
jects”. In the triangles example, it is fitting to consider the triangles themselves as “objects”,
and we see that each triangle occupies three records in the relation. This is a prelude to
so-called “complex objects”, which are often cited as being beyond the capability of the
relational formalism. This perceived limitation of relations is an artefact of deciding that an
object must correspond to a single tuple (the relational term for a record). So we do not con-
sider “objects” at all, but only secondary storage data structures which can be interpreted
any way the user wishes.

The third issue is that, although relations are abstractions of files, we do not say anywhere
that a file is how a relation must be implemented. A relation might occupy several files, or
one file might be shared by several relations. Although the rows of the tables we have used
to show relations are abstractions of records, we do not need to store a row as a record.
Even if a relation is stored as a file and each row implemented as a record, we do not say
anything about the structure of the file or the representation of the data. The file could be
sequential or tree-structured or multidimensional. The data could be stored directly or with
shorthands and compression. So we avoid implementation discussions altogether but remain
at the higher level of abstraction.

In particular, we have not said that selects must be implemented by scanning a whole
file, or that joins must be implemented by cumbersome operations involving whole files.
Pointers are acceptable implementation devices, and pointer dereferencing is sometimes the
appropriate implementation of a join.

Fourth, we have not done any complexity analysis. For relations of n rows, the asymptotic
complexities of select, project and join are, respectively, O(n), O(nlogn), and O(n?), but
these are not the most important considerations. For data too large for RAM, the constants
in the algorithmic analyses are of crucial importance. Moreover, we do not often want
complexities higher than O(nlogn), and then only with a large base for the logarithm.
Fortunately, sorting, which is often central to the algorithms (e.g., to eliminate duplicates in

10

projection), can be done on secondary storage with large merge factors, and so the analysis
gives large-base logarithms. Fortunately also we seldom do joins that require the n? worst
case. And selects can almost always be done in sublinear time (logarithmic or constant
expected) because of special needs.

Much of the cost of running programs containing the relational operators of this section
can be controlled either by the programmer or by the implementor. As we say above, this
tutorial is at a level of abstraction which does not consider implementation. So we will
occasionally say what the programmer can do for faster programs.

3 Overview of Spatial Data Processing

This tutorial is intended for readers from geospatial disciplines who want to know how to
use databases in their fields. We start by reviewing geographical information systems, not
to teach the reader heir trade, but to extract those aspects that can be helped by database
and secondary storage technology.

In order to demonstrate that purely database constructs, not augmented for spatial data
in any way, can successfully execute all spatial operations, we start with the spatial ma-
nipulations in GIS. It is not a perversion to wish to show this. The central difficulty with
modern GIS is the problem of moving from spatial manipulation to analysis, aggregation,
and integration with non-spatial fields. Since database constructs already do these things,
as we shall also show, it is appropriate to integrate by having the database language do
everything. So the second aspect of GIS we consider here is the analytical.

Before we look at these two aspects of GIS, we mention what we leave out, as beyond the
scope of this tutorial. We do not discuss the graphical operations of drawing or editing nodes,
arcs, polygons, or application-oriented geospatial features. This also leaves out constraint-
based editing operations, such as snapping nodes to surfaces. We do not consider display
management, such as zoom, pan, clip, or the presentation of layers. We ignore issues of data
input to and output from the system. With these omissions, our database system provides
the underlying engine for spatial and non-spatial data processing, but the graphical front
end is missing. A hybrid of database for the processing and GIS for user interface can be
built [48], and, for the time being, this might be the way to achieve full integration.

For the meanings we use for terms such as “arc”, “node”, etc., please see Appendix B.1.
Terminology varies within the spatial communities, so we spell out our own usage.

3.1 Offerings from Commercial GIS

Five categories of spatial operation seem to characterize basic GIS: closeness, buffering,
overlaps, containment, and operations on point-sets.

A closeness operator might compare two arcs or two polygons and return only those sides
that are closest to each other.

A buffering operator is also concerned with distance, but puts a buffer of a certain width
around a feature. This may be needed, for example, to designate a protected zone around
a well, stream, or lake, or inside a parcel of land to limit construction near the neighbours.
(Such an internally-directed buffer is called a setback. In robotics, buffers may be used to
reshape the geometry of the environment so the robot, moving through it, may be considered
a point).

An owverlaps operator compares two features and returns sides from those features: if the
features are arc or polygon, the sides are those that touch; if one feature is a point and

11

the other an arc or polygon, the overlaps operator might return the sides of the latter that
intercept perpendiculars from the point.

One operand of a containment operator is a polygon, and it returns those parts of the
other that are strictly inside the polygon: an arc if the operand is an arc, or a set of points
if it is a set of points.

Point-set operators perform set operations on the points that make up two features: arcs
and polygons can have unions, intersections, set differences (sometimes called “erase”, be-
cause points belonging to the second are erased from the first), and reconfigurations of one
of the operands according to the other. Polygons are tricky in point-set operations, because
the result may easily be more than one polygon. Hence, the operation on A and B that
would trivially return A, if A and B were two sets, is not trivial if A and B are polygons.
This is the reconfiguration mentioned last, above. We call it a “left join”, although “iden-
tity” has misleadingly been used in G.I.S. We can correspondingly call union, intersection,
and difference “union join”, “intersection join”, and “difference join” of polygons (or arcs),
respectively, to emphasize the geometrical structure of the result point-set.

Figure 1 illustrates point-set operations on two “M”-shaped polygons. Up to fourteen
polygons result, with the following structure. (Note that each component may be returned
as a separate polygon, in which case the components listed below are the polygons returned;
or else the result can be a minimum number of polygons. In the example, for the latter case,
the difference join would then return five polygons, the intersection join four polygons, the
union join one polygon with a hole, and the others one polygon each.)

Point-set operator Resulting components
union join 1..14

intersection join 1, 2, 3, 4
difference join 5,6,7,8,9
left join 1..9

right join 1..4,10.. 14

3.2 Beyond Commercial Systems

The above discussion is drawn from the commercial G.I.S.s ARC/INFO [33], ArcView [34],
and Maplnfo [35]. Since our objective is to allow programmers to go well beyond the ca-
pabilities of such systems, we may not stop here. We should look at operations that might
be desired for geospatial information and even at geometrical operations that are possible
but may not yet have been used for geospatial purposes. For the former, we can take a
framework from Chrisman’s book [13], with pointers to the G.I.S. literature [39], and for
the latter we look at results from computational geometry. All these must be adapted to
programming for secondary storage, which we do in later sections.

The five families of operations considered above are purely spatial. Maps, however, are
not pure geometry but spatial representations for essentially nonspatial data: roads have
classifications, counties have populations, fields have crops. These non-spatial properties are
called “attributes” in the geospatial literature, but this term has a more general meaning in
databases. There are rich possibilities for confusion here as we merge the two fields, so we
avoid “attribute” altogether in this tutorial. We translate the geospatial use explicitly as
“non-spatial properties”, or just as “values” for short, and the database use as “fields” (and
depend on context to distinguish this from the agricultural term or other uses).

The first thing we can do with values (non-spatial properties) is operate on them without
reference to their spatial associations. We call these operations scalar operations, and an

12

Figure 1: Polygons resulting from point-set operations on two polygons

example might be the combination of windspeed with temperature to produce a windchill
factor.

We can also aggregate values, and this usually involves spatial relationships. An example
is the average rainfall in a county, aggregated from measurements at instrumented points
throughout the area.

Finally, we can combine values from two or more different spatial distributions. For
example, to find hemlock forests on acidic soil, we might combine a forestry map with a
soils map and select the combination from the result. This is called an overlay operation,
and requires the point-set intersection of polygons together with a scalar combination of
non-spatial properties. (It also requires registration of the two maps and unifying their
projections so that the features coincide correctly. If the two are already registered and
parts of the same map, they are called layers.)

A second elaboration on the G.I.S. operations in section 3.1 is a more general treatment
of distance. We can seek (nearest) neighbours, we can analyse localities in various ways
(usually by aggregation), and we can use Voronoi diagrams (or their dual, Delaunay triangu-
lations) to characterize neighbourhoods. Distance may be used to permit “fuzzy tolerance”
of boundaries when high-resolution maps are being registered.

Third, our initial discussion makes no mention of surfaces, of their various represen-
tations (point-heights, digital elevation matrices (DEM), contours, or triangulated irregular
networks (TIN)), or of operations to transform among these representations. Surfaces, which
are strictly two-dimensional in most geospatial abstractions, have components in the third
dimension, such as heights and gradients, and have corresponding topologies of peaks, ridges,
river courses, and watersheds. This third dimension need not be only height, but may also

13

be a measure such as population density, or even a multi-component quantity such as air or
water currents (which have both a magnitude and a direction at every point). More gener-
ally, surfaces can be strictly three-dimensional, as in overhanging cliffs, and have non-simple
topologies, as in mountains with tunnels.

A fourth set of capabilities not addressed before have to do with extracting highly non-
local information, such as the shortest route between two points, the drainage flow on a
surface, or the “viewshed” of places from which a proposed blot on the landscape can be
seen.

Finally, we have not distinguished raster from vector representations of maps. Indeed, by
discussing polygons and arcs, we have inclined towards the latter. From a geometric point
of view, raster representations are a special case of vector, consisting of polygons which are
all rectangles (or squares), and which subdivide the map space into a regular grid. Some
kinds of processing are simplified with raster representations because of this specialization
and regularity. When we come to register two raster grids of different scales or orientations,
we are faced with their full polygonal nature. A “choropleth” map (Greek: xwpwo, place,
wAnbpwy, a measure, which is either linear or areal) is the hybrid of the two: it consists
of polygons which are already defined for some purpose, with associated values which may
be the same in neighbouring polygons. With rectangular polygons in a grid, this is exactly
what a raster representation is.

Some processing which has been mainly limited to raster representations can be available
for vector implementations given the above perspective. Raster neighbourhoods and nearest-
neighbours extend readily to general polygon neighbourhoods. Filters, used to aggregate
values in a raster neighbourhood, can likewise be extended to choropleth polygons.

3.3 Computational Geometry

Many of the above operations have been investigated generally by the computational ge-
ometry community, who have been able to specify what constitutes the optimal algorithm
(and associated data structure) for many of these problems, and who have in many cases
produced these optimal algorithms.

Here is a representative sample of such problems, together with the running time and
storage space requirements established for the best algorithms. In keeping with the cultural
home of computational geometry in computer science, these costs are given as “complexities”,
using order notation, in which, say, O(nlogn) means that for some big enough size, n, of
the problem being solved, the cost never exceeds some constant times nlogn. For practical
applications, especially on secondary storage, the constant itself is very important, and the
order notation of complexity theory is excessively abstract. So these results can only be
guidelines to geospatial implementations. In the table, n is the size of the input, usually
number of edges or number of vertices (they are the same for planar polygons), k is the size
of the result, and d is the number of dimensions (2 by default): we are not more specific here.
The sources for this table are [20, 47], and a review by Godfried Toussaint of this section.
(“Best worst-X” means “worst-case X for the best known algorithm”.)

14

Problem Best worst-time Best worst-space

Lines meet O(k + nlogn) O(n)
Point-set O((k + n)logn) O(n)
Triangulate polygon O(nlogn) O(n)
Voronoi diagram O(nlogn) O(n)
Delaunay triangulation O(nlogn) O(n)
Gabriel graph O(nlogn) O(n)
Relative neighbour graph O(nlogn) O(n)
Minimal spanning tree O(nlogn) O(n)
Convex hull O(nlogn) O(n)
Point-in-polygon O(n) O(n)
All nearest neighbour (any d) O(nlogn) O(n)
Orthogonal range query O(k +1log’n) O(n(logn/loglogn) 1)
Polygon skeleton O(nlogn) O(n)
Visibility in polygon O(n) O(n)

The lines-meet problem finds intersections of each line pair in a set of edges, or between
the edges of two sets. Naively, it would be quadratic in cost, O(n?), as a result of checking
each edge for intersection with every other edge (n is the number of edges), but “plane-
sweep” ordering reduces it to a sorting problem. The point-set problems of section 3.1 can
use lines-meet as a basis for polygon intersection, union or difference.

The next seven problems are all related. The Voronoi diagram of a set of vertices creates
a polygon around each vertex inside which all points are closer to it than to any other.
The Delaunay triangulation is the topological dual, in the sense that the Voronoi polygons
become vertices (in fact, the original vertices), and the vertices of the Voronoi polygons
(generated) become faces. These are, mostly, triangles, and the triangles have the property
that their internal angles are larger than for any other set of triangles connecting the original
vertices. The Gabriel graph, relative neighbour graph, minimal spanning tree, and convex
hull are all subgraphs of the Delaunay triangulation. The edges of the Gabriel graph connect
only those vertex pairs on opposite ends of a diameter of a circle which excludes all other
vertices. The relative neighbour graph is a subgraph of the Gabriel graph, eliminating edges
between vertex pairs if some other vertex is in the intersection of the two circles with radius
equal to their separation. The minimal spanning tree removes more edges so that the graph
is a tree connecting all vertices, and no other such tree has a smaller sum of edge lengths.
It is a central construct for clustering algorithms: to form £ clusters, just remove the £ — 1
longest edges from the minimal spanning tree. The convex hull is the polygon that is the
subgraph of the Delaunay triangulation with all interior vertices disconnected: clearly it is
a convex polygon. Finally, an arbitrary polygon can be subdivided into triangles, also with
O(nlogn) cost; some special polygons of a class (which includes most contour maps) can be
triangulated in almost linear time.

The point-in-polygon problem determines if an arbitrary point is inside a given polygon.
It extends to determine which of a set of polygons, or of the polygonal faces of a subdivision,
the point is in, and is part of the containment problems considered in section 3.1. (It can be
done faster if the polygons have been preprocessed into a suitable data structure.)

The all-nearest-neighbour and orthogonal range query problems are shown for any num-
ber of dimensions, not just two, because they are important aspects of multidimensional
analysis, which we consider in section 7. The results from computational geometry show
that dimensionality is not a curse in these cases, at least for algorithms in primary memory.
The all-nearest-neighbour problem is to find the vertex nearest to every vertex in a set. To
find the nearest neighbour of one vertex is faster, but at the expense of O(nlogn) prepro-

15

cessing time to construct a suitable data structure. The orthogonal range query, as well
as of interest in computational geometry, is central to much database querying. It involves
specifying a range of values along each axis of a multidimensional space, and searching for
vertices, or database records, in the conjunction of these ranges.

The polygon skeleton problem is to find the medial axis of a polygon. The medial axis
plays the role in a polygon that the Voronoi diagram plays in a set of vertices: it separates
the interior of the polygon into regions, each of whose points are closer to a given element
of the boundary than to any other.

The visibility polygon of P from a point within a polygon, P, is the subset of points in
P that are visible from that point. This is related to the viewshed problem, above, and to
hidden-line problems in graphics.

All of these problems are of less than quadratic complexity, and so are likely not in-
tractable for large amounts of data requiring secondary storage. With a file of a billion
records, say, making a billion passes should be considered an intractable problem, and this
is what quadratic complexity would mean. In most computer science, including computa-
tional geometry, intractibility starts when the complexity exceeds polynomial, but secondary
storage is much more exigent.

3.4 Spatial Mathematics

Computational geometry is a very recent discipline. Geometry, on the other hand, was the
first branch of mathematics to be formalized (although only about half the age of the earliest
mathematical thinking) [37]. Mathematics has been concerned about space for almost five
millennia. Many insights of these centuries have been absorbed into the computational
disciplines we have discussed, but much is missing, especially since the advent of calculus
and the introduction of field theories in physics. We mention one intriguing and useful result
out of all this, Stokes’ theorem.

Stokes (1854) (actually, Kelvin, four years earlier) relates the integral, over an area, of
some differentiable functions, P(z,y), @Q(z,y), to another integral, around the closed contour
bounding the area, involving these functions. A simple version is

//A (2—3—%—5) dxdy:?{(de—f-Qdy)

With polygons, the contour integral becomes a sum of simple expressions of the coordinates
of the vertices, depending on the functions P and (). For example, if P =0 and @) = z, the
contour integral is the sum around the vertices

E% (T1y2 — T2y1)

where (z1,y;) is one endpoint of an edge and (z2,ys) is the other. By convention, the sum
is taken in a counterclockwise direction around the contour: this convention stems from the
prior convention that positive angles are counterclockwise.

The areal integral that this sum computes is just the area. This gives us a computational
algorithm for the area of an arbitrary polygon, and was the basis for the Victorian planimeter,
a device with a wheel that can be run around the border of a feature on a map, and, given
suitable scale factors, directly tells us the area.

Areas are not all that Stokes’ theorem can derive. Other choices of P and @) yield the z-
and y-coordinates of the centroid of a polygon, or can give the average slope of the polygon,

16

if each of its vertices also has a height above sea-level. All of these calculations are actually
used as applications of Stokes’ theorem later in this tutorial, in section 6.2.

The nineteenth century produced similar theorems relating volume integrals to integrals
over the surface bounding the volume in three dimensions, and, with general relativity theory,
the twentieth century’s triumph of geometry, in four.

3.5 Spatial Predicates

Although it is the purpose of this tutorial to show how to build spatial database facilities
which go beyond queries, querying databases and GISs has been a major activity, historically
and at present. Queries involve predicates. They have either the form “<predicate>?", to
which the answer is true or false, or the form “for which items is <predicate> true?”.

Predicates are immensely varied, and facilities for expressing and evaluating them must
be very general. They can be simple, as “x = 27”7, or elaborate, as “find departments
that sell at least two thirds of the items supplied to the departments on the same floor”.
To appreciate how varied even the subset of spatial predicates is, reflect that almost any
practical relationship which we use language to describe involves a spatial, or a spatio-
temporal predicate. (Start with “Look, Jane, look! See Dick run!” Jane looking at Dick
involves direction, distance, and the absence of opaque obstacles. Dick running involves a
succession of positions in a certain velocity range, a gait, which is a particular succession
of body positions, and so on. Try writing a program to determine if Dick is running and if
Jane is looking at him!)

Processing spatial predicates often requires extensive computation. For example, to de-
termine which regions in a map overlap (e.g., the regions where soil type is acid, and the
regions where cedars grow), or to determine the amount of one region that overlaps another,
requires executing line-intersection and point-in-polygon algorithms for an entire map. If
we are doing data mining, whose objective is to discover predicates that characterize large
amounts of data, we will not be able to afford all the processing. Even a user posing a single
query, involving a single predicate, may have to wait too long to get a precise answer when
a rough answer might do. So for spatial predicates in particular we need approximations to
speed up processing, at the expense of accuracy. It is often better to get a rough answer,
then refine it at need with more precise predicates.

We will look in this section at hierarchies of spatial predicates, based on some of the
literature on geospatial and image predicates. The role of a hierarchy is to provide succes-
sive approximations. We start by inspecting the different levels of abstraction offered by
different geometries, because these form a hierarchy and because abstraction is a form of
approximation.

Euclid’s geometry is metric. So are the two non-flat variants, for positively curved space
(spheres, etc.) and for negatively curved space (rotated hyperbolas, parabolas, etc.). These
geometries depend on notions of distance and direction, and contain results on equality
of sides of triangles, how to bisect angles, and so on. The corresponding trigonometries
are also metric, giving specialized results for right-angled triangles. These geometries and
trigonometries are the basis for most spatial data, notably in their analytical, or coordinate,
forms.

In the Renaissance, when painters took note of perspective, Alberti wondered what was
common between two different perspectives of the same scene. This was the start of projective
geometry, an abstraction from metric geometry, because the quantitative notions of distance
and direction play no role. Intersections of lines and surfaces are still meaningful, and so, in
most cases, is a notion of order, as in the relative positions of points in a line.

17

The final abstraction, topology, gets rid of order and keeps only intersections. So, in a
sense, topology is the most abstract representation of space, and the basis for the roughest
approximation for predicates about the space. (We will see in section 4 that it is important
to store topological information explicitly in addition to the full metric representation of
space, but this is only because numerical imprecision destroys our knowledge of topological
relationships, which perfect precision would not.)

A caveat to this metric-projective-topological hierarchy is that it does not cope as well
as it might with extended spatial structure, that is to say, shape. So another important
approximation technique is to simplify shapes. In the Cartesian coordinate system of analytic
Euclidean geometry, the minimum bounding rectangle (MBR) is such a simplification: this
is given by 2d coordinates, where for each of d dimensions, the first coordinate is the smallest
in that dimension and the second is the largest. (Note that this definition applies to any
coordinate system in any number of dimensions: the MBR is a rectangle only in the two-
dimensional Cartesian case.)

(The skeleton (see section 6.4) of a polygon is also a simplification, although, in fact,
equivalent: the skeleton can be derived from the polygon, and the polygon in turn derived
from the skeleton plus radius data at each skeletal vertex.)

An alternative way of thinking is slightly different. We can group abstractions (approx-
imations) according to which spatial transformations leave them invariant, that is, do not
affect them. For example, an approximation which abstracts over distance is scale-invariant:
it will not be affected by a change in scale (or units) of the coordinate axes. An approxi-
mation which abstracts over direction will not be affected by rotations or reflections. Some
approximations are dimension-invariant. The MBR approximation is, in a sense, shape-
invariant. Metric geometries are invariant under none of these transformations, and are the
least approximate. Topology is invariant under all, and is the most approximate. Since there
are at least four transformations, listed above, we can see that a hierarchy of approximations
need not be a simple ordering of approximations, or even a tree.

In the next three subsections, we discuss three approximations from the literature, in
historical order. This order happens also to be the historical order in which the applicable
geometries were discovered. In section 3.5.4, we discover the links among these approxima-
tions and integrate them into a hierarchy. The general idea of treating spatial predicates in
this way is from Marchand et al. [40].

3.5.1 Metric geometry: Intervals

In an investigation of possible relationships among temporal intervals, James Allen [3] iden-
tified thirteen pairwise relationships, and went on to combine them transitively to give 97
triples (and 72 other transitive combinations of varying ambiguity). In terms of our geo-
metric abstractions, Allen’s work is basically projective, but it can easily be refined to be
metric. We explain the pairwise relationships using a different representation from Allen’s,
one which can extend his ideas to metric geometry.

Temporal data is, of course, one-dimensional, but Allen’s work can easily be extended to
MBRs in any number of dimensions by taking the Cartesian product of the one-dimensional
relationships. We start with Allen’s one-dimensional intervals (first column of figure 2). We
see that they describe the possible alignments of the interiors and the boundaries of two
intervals, from disjointness to contiguity through four degrees of overlap to coincidence, and
back again with the roles of the two intervals exchanged. This enables us to label them with
seven numbers plus complements of the first six numbers (second column of figure 2).

The third column of figure 2 is a more basic representation of the Allen relationships, in-
dicating whether each of four distances is negative, zero, or positive. These are the distances

18

Allen Label Pattern 1dString Ointer Venn
1 12121212 i Be

Ll 2 Ss'se es ee b, glro
001°7 --1
111 101
001 --1
L—+— 2 ++0+=771<2 o11 -o00 0110
111 101
111 101
S 3 ++-+=741<12<2 101 o0-0 0111
111 101
111 101
L 4 ++-0=731<12 o11 -o00 0101
001 --1
111 101
bt 5 ++--=721<12<1 001 --0 =4
oo1r --1
100 1--
H— 6 0+-+=4712<2 110 o00- 0011
111 101
100 1--
— 7,7 0+-0=46 12 o0 =-o0- 0001
o001 --1
— 60 0+--=4512<1 =4 =4 =4
100 1--
T 5 —-+-+=202<12<2 100 O0-- =6
111 101
—4 4 -+-0=192<12 =6 =6 =6
——! 3 -+--=182<12<1 =3 =3 =3
—+— 20 -0--=8 2<1 =2 =2 =2
L1 1 ----=0 2<1 =1 =1 =1

]

Figure 2: One-dimensional minimum bounding rectangles

19

between the endpoints of the two intervals.

e ss stands for the distance from the start point of interval 1 to the start point of interval
2 (the first digit refers to the first interval, the second digit to the second interval; s
means “start”, and we see next that e means “end”);

e se stands for the distance from the start point of interval 1 to the end point of interval
2;

e es stands for the distance from the end point of interval 1 to the start point of interval
2; and

e ce stands for the distance from the end point of interval 1 to the end point of interval
2.

The integer assigned to each of these patterns of four distances (after the = sign in the third
column of figure 2) is the value of the pattern treated as a ternary number, with - being
0, 0 being 1, and + being 2. No other of the conceivable 81 values is possible, due to the
constraints that interval starts are before interval ends and that interval lengths are positive.
Note that forming complements of intervals becomes, in this representation, the operation
of inverting the signs and swapping se with es.

This representation shows clearly how to extend the thirteen Allen relationships into an
infinite number of fully metric relationships: just replace + and - by the appropriate positive
and negative distances. Thus the Allen relationships in one dimension are an approximation
to metric relationships which replace an infinite number of possibilities by just thirteen. The
approximation is easily calculated from the distances by determining their sign, or if zero.
The resulting pattern can be reduced to the ternary value, and then to the numeric label, if
this is desired.

(The remaining columns of figure 2 will be discussed in section 3.5.3.)

In two dimensions, there are 13 possible interval relationships for the x coordinate and
13 for the y coordinate, giving 169 combined relationships. The entities that relate to each
other in these ways are evidently minimum bounding rectangles, with the z-intervals giving
the smallest and largest z-coordinate of the region being considered, and the y-intervals
similarly bracketing the y-coordinates.

We can see from the table below that approximate directions can be derived from the
two-dimensional Allen relationships. If east has higher z-coordinates than west, and north
has higher y-coordinates than south, then we can say that for z-coordinates with Allen labels
1, 2, 3, 4 interval 2 is east of interval 1, for z-coordinates with Allen labels 1>, 2’, 37,
4’ interval 2 is west of interval 1, and for the rest the intervals do not essentially differ in the
east-west direction. The same goes for y-coordinates, with south replacing west and north
replacing east. Combining these considerations, we get the following nine compass directions
from the 169 Allen relationships in two dimensions.

y |z 1234|5676°5|4 32 1°
1234 NE N NW
5676”5’ E W
122> 3 47 SE S SW

169 2-D Allen relationships = 9 compass directions (MBR. 2 dir MBR. 1)

In three dimensions, there are 2197 Allen relationships between pairs of MBRs. These
can in turn be reduced to 27 directions, if we wish. Note that one of these dimensions could

20

be temporal and the other two spatial. For a full spatio-temporal accounting (Euclidean,
not Einsteinian, though), we could use the 28561 four-dimensional Allen relationships.

We will call the Allen relationships between MBRs in any number of dimensions kdAllen
relationships. The refinement to metric relationships (where all + and - signs are replaced
by numbers) we call kdAllen(metric) relationships, if we need to make the distinction.

3.5.2 Projective geometry: Order

Another work not directly related to geospatial data is the paper by Chang, Shi, and Yan [11]
on image indexing for searching and matching pictures. This is an example of a projective
approximation: the idea is to represent images by a form of projection on their z and y axes.
For example, a picture consisting of the items a, b, ¢, and d in the following arrangement

d
bc
aa

has the z-“projection” ad<ab<c and the y-“projection” aa<bc<d. This is because, as we
scan from left to right (x) we encounter items a and d together, then a and b, then c,
and similarly for scanning from bottom to top (y). Thus, the two-dimensional picture is
represented by two strings, and picture searching can be implemented by string searching.
They call the representation “2-D Strings”.

Note that an item can be extended, as a is, above: its tag is simply repeated in the
strings. Chang et al. develop this representation to guarantee invertibility (the picture can
be reconstructed from the strings), and go on to show how two pictures can be matched (for
instance, if one of the two is a query, and the other is a picture from a database being tested
for match). We do not need these elaborations for this tutorial.

Two useful concepts in this representation are rank and distance. The rank of a symbol in
a string is the number of < signs which occur before it in the string, and the distance between
two different symbols is the absolute difference between their ranks. Because symbols of
extended items must repeat in the strings, it is useful to distinguish between min_rank and
maz_rank on one hand, and between min_dist and maxz_dist on the other. Finally, for two
dimensions, we distinguish between z and y applications of these notions, leading to eight
detailed concepts: z_min_rank, r_max_rank, x_min_dist, x_max_dist, y_min_rank, y_maz_rank,
y-man_dist, and y_maz_dist.

We can use these to derive the ideas of compass direction, and of distance in the
non_metric sense of nearest_neighbours or k_nearest_neighbours. For example (assuming
no holes in the regions),

~—

pWqg == x max_rank(p) < x_min rank(q)&
y_min rank(p) = y_min rank(q)&
y_max rank(p) = y_max_rank(q)

pSW¢q == x_maxrank(p) < x_min rank(q)&
y-max_rank(p) < y_min_rank(q)

N’ e e’

p=q == X_min_dist(p, C]) = x_max_dist(p, Q) =
y_min_dist(p, ¢) = y_max_dist(p, ¢) = 0
pnng == x.mindist(p,q) < 1 &y mindist(p,q) < 1&p #gq

Note that 2_D Strings can represent multiple items, not just pairs of items. It is this that
allows it to support the idea of k-nearest-neighbours. Pairwise relationships, such as kdAllen,

21

cannot. (Although, as we mentioned, Allen investigated ternary relationships as a result of
transitivity, this does not help, because we would need an arbitrary number of items.)

Since there is one string per dimension, this approximation generalizes to any number
of dimensions, and we call it the kdString approximation. In one dimension, we can relate
it to the Allen relationships for intervals (MBRs): The thirteen Allen relationships generate
eleven 1dStrings, because the kdString method does not recognize whether the size of the
gap in cases 1 and 1’ is zero (cases 2 and 2’, respectively) or not. These eleven 1dStrings
are given in the fourth column of figure 2.

Note that kdStrings are not limited to MBRs, although they are limited to approximating
shapes as a rectilinear grid of pixels. Thus the hierarchical relationship between kdStrings
and kdAllen is that kdAllen is almost a special case of kdStrings, in the MBR approximation,
but not quite, because kdStrings fail to distinguish separateness from contiguity. This reflects
the scale-invariance of kdStrings, hence their projective nature. For higher dimensional
MBRs, there are 121 2dStrings, 1331 3dStrings, 14641 4dStrings, and so on.

Our 2dString examples of compass directions do not always agree with our 2dAllen defi-
nitions, and are disputable: it would be useful to explore alternatives.

3.5.3 Topology: Intersections

Further abstractions of these spatial relationships were made for geospatial data by Egenhofer
and his colleagues (e.g., [23]) and by Clementini and Di Felice and co-workers (e.g., [14]).
This work is almost purely topological, abstracting over distance and direction, but not
over dimension. We will consider a subset of Egenhofer’s approach which is independent of
dimension, and the corresponding subset of Clementini and Di Felice’s work, which extends
this by explicitly giving the dimension of the relationship between items.

The approaches consider each geo-spatial item to have an interior, ¢, a boundary, b, and
an exterior, e, and they consider the binary relationships between pairs of items determined
by which of these components intersects which other. This results in a 3 X 3 matrix of, in
Egenhofer’s case, booleans, and of, in Clementini and Di Felice’s case, non-negative integers
giving the dimensionality of any intersection and one other value indicating the absence of
intersection. Clearly, Egenhofer’s is a special case of the other, derived by mapping any
dimension to true and the absence symbol to false. We call both methods 9Inter, for
nine-intersection, and, if needed, we distinguish the latter as 9Inter(dim).

The fifth column of figure 2 shows both types of matrix for the special case of one-
dimensional MBRs. The thirteen Allen relationships reduce to eight topological relationships
in both cases. So we see that the topological relationship is a special case of the Allen
relationship, except, of course, that the topological relationship is not limited to MBRs. If
we restrict the Egenhofer representation in higher dimensions to solids, that is items with
the full dimensionality of the embedding space, and with no holes, there are always only
these same eight matrices. We will discuss numbers of 9Inter(dim) matrices in a moment,
after explaining the examples in figure 2.

Consider case 4 in figure 2. The interior of interval 1 has a one-dimensional intersection
with the interior of interval 2, so the 4,i entry of the 9Inter(dim) matrix is 1 (and the i
entry of the Egenhofer matrix is true, shown as 1). The interior of interval 1 has a zero-
dimensional intersection with the boundary of interval 2, so the 4,b entries are 0 and true,
respectively. The interior of interval 1 has a one-dimensional intersection with the exterior
of interval 2, so the i,e entries are 1 and true, respectively. The boundary of interval 1 has
no intersection with the interior of interval 2, so the b,i entries are - (the no-intersection
symbol: it could be a negative integer) and false, respectively. And so on.

Case 6 has exactly the same matrices, although Allen distinguishes them.

22

1. symmetrical (under exchange of solids)

1D 2D 3D dD #
disjoint - - 1(- - 2(- - 3 - - d 1
- - 0 - - 1(- - 2 - - d—1
o 112 1 2|3 2 3 d d—1 d
touching - - 17- - 2 - 3 - - d d
-0 0}- kK 1|- k 2 - k d—1]k=0.d-1
1 0 112 1 2|3 2 3 d d—1 d
overlapping |1 0 1|2 1 23 2 3 d d—1 d 1]2
0o - 01 k£ 1|12 Kk 2|d-1 k d—1|k=d-2,d-1
1 0 1(2 1 2|3 2 3 d d—1 d
equal 1 - -]2 - -3 - - d - - 1
- 0 -1- 1 -] - 2 - - d—1 -
- - 1] - - 2 - 3 - - d
2. unsymmetrical (transposes not shown)
1D 2D 3D dD #
contained 1 0 1|2 213 2 3 d d—1 d 2
- 0] - - 17- 2 - - d—1
- - 1] - - 2 - - 3 - - d
cont.,touch |1 O 1|2 1 2|3 2 3 d d—1 d 2d
- 0 0}- kK 1(- Ek 2 - k d—1|k=0.d-1
- - 1- - 2(- - 3 - - d

Figure 3: The 9-Intersection Approximation for d Dimensions

The matrix for case 4 is not symmetric: its transpose appears in cases 6° and 4’. In
general, swapping the intervals transposes the matrix. Four of the matrices are symmetrical,
in each representation, and two are not. Including these and their transposes gives all eight
matrices in each representation.

In higher dimensions, the Egenhofer matrices for relationships between solids are the same
eight, but the 9Inter(dim) matrices increase in number to reflect the increased possibilities
for intersections having different dimensions, but can still be considered in eight groups.
Figure 3 is a table showing these groups for the 9Inter(dim) matrices for one, two, three,
and d dimensions.

It is worth noting that because the Allen relationships are between MBRs, in two or
more dimensions there are 9Inter(dim) relationships that Allen cannot model: these are the
relationships in which one item contains the other, the contained item is touching the outer
one, and the dimensionality of the contact is less than d — 1. In two dimensions, for a
contained item to touch the containing item (which may be an MBR) at only one point (0
dimensions), the inner one must, if it is rectangular, be tilted, and so cannot be an MBR.

The 9Inter relationships can be extended to ternary by using 3 x 3 X 3 “matrices”, thus
giving 27 intersections, and so on for n-ary relationships. As with the Allen extensions, this
is not, practical for modelling multiple items.

Thus, k-nearest-neighbour queries cannot be posed in the 9Inter approximation, and, of
course, directions are excluded by the topological nature of the approximation.

Investigations made by both Egenhofer and Clementini & Di Felice and their collab-
orators include topological relationships between items of lower dimensionality than the
embedding space. For instance, Egenhofer and Herring [23] give 20 region-line relationships,

23

where the line may be simple or may have branches, and 57 line-line relationships. (The 85
relationships that include these and the 8 region-region produce only 61 distinct matrices,
so the dimensionality of the components must also be represented in the approximation.)
Of course, in the approximation of MBRs, these all reduce to the region-region relationships
discussed above.

One remaining column in figure 2 has not been discussed. This is an even coarser ap-
proximation than Egenhofer’s, which may be called the Venn topological approximation,
from the common way of representing set relationships. The four headings stand for gap,
left difference, right difference, and overlap, and the entries below them indicate whether
they exist for the relationship (with 1 meaning true and 0 meaning false. Here, by “left’
and “right” we mean not geometrical left and right, but the formal left and right according
to which interval 1 is “left” and interval 2 is “right”. Thus, “left difference” means 1—2
and “right difference” means 2—1. The Venn approximation distinguishes only six of Allen’s
relationships and is independent of shape and dimension, and, of course, distance and direc-
tion. (These could be written as 2 x 2 matrices, of which four are symmetric and two not,
but transposes of each other.)

3.5.4 A hierarchy of approximations

Each of the above representations allows us to approximate a certain set of fully precise
spatial predicates. Since it may be useful to approach a predicate by successive refinement,
certainly in data mining applications, and even for normal queries, we would like to know how
these representations are related to one another hierarchically. If there is a simple hierarchy,
we can start by testing a predicate at the most approximate level, and, if the result is
promising, refine it to more and more precise levels until we finally test the exact predicate.
(For data mining, where very many potential predicates may need to be investigated, this
will eliminate irrelevant ones early on without incurring a great burden of computation.)

From the foregoing discussion, it is apparent that kdAllen, kdString, and 9Inter do not
fit into a simple hierarchy. But we can provide a partial ordering, and we show it in figure 4.
Here, the decreasing refinement from metric to topological is laid out horizontally, left to
right, and the decreasing refinement from full precision to most approximate is laid out
vertically, from top to bottom. There is one “almost” refinement, in that kdString is not
quite a refinement of kdAllen, because it fails to distinguish separateness from contiguity.

The discussions above should amplify this depiction of the hierarchy of approximations.
The only approximation shown but not discussed already is 4Inter, a precursor to 9Inter
which involves only interiors and boundaries and hence forms 2 x 2 matrices. Since kdAllen
is restricted to MBRs, any other method shown to be a special case of kdAllen is so only
when restricted to MBRs.

Given the hierarchy, we can in principle derive the more approximate predicates from
the less approximate ones. For example, starting with ss, se, es, and ee, we can use
their signs to calculate the ternary value that gives the 1dAllen relationship, then use the
rank of this to find which of the seven labels (or their complements) applies. From here, we
could find the 9Inter relationship for 1dMBRs, with or without overlap dimensionality, by
lookup in a table of thirteen entries; and we could find the 1dString and Venn relationships
similarly. Or, we could go directly from ss, se, es, ee to a metric Venn relationship in
1d by defining

gap = (es max 0) — (se min 0)

ldiff = (ss max 0) — (ee min 0) — gap

rdiff = (ee max 0) — (ss min 0) — gap

olap = (L1 — (ss max 0) + (ee min 0))max 0

24

Metric Projective Topological

Full predicate

MBR

kdAllen(metric) kdString 9Inter(dim)

Imost)

kdAllen 9inter

9Inter(solids) 4inter

compass directions Venn

Figure 4: Hierarchy of approximations to spatial predicates

= (L2 — (ee max 0) + (ss min 0))max 0

where L1 and L2 are the lengths of intervals 1 and 2, and can also be derived from ss, se,
es, ee

L1 =ss —es =se — ee

L2 =se — ss =ee — es

When we go to higher dimensions, we can use Cartesian products for the direct calcula-

tions on MBRs, but the lookup tables become unwieldy. When we go beyond MBRs, we can
no longer use Cartesian products. Thus, finding 9Inter, even for solids with arbitrary shapes
in higher dimensions involves us in spatial algorithms from computational geometry such as
region-region and region-line intersections. The advantage of having the approximations is
offset by having to precalculate and store representations of these relationships for all pairs
of items of interest in our maps. Finding kdStrings also requires spatial precomputation,
but results in only one index to be stored for any map.

3.5.5 Queries and Spatial SQL

The original use, in database and secondary storage contexts, of predicates was, and continues
to be, for queries. So it behooves us to discuss at least one query language for spatial
predicates. Since the emphasis of this tutorial goes far beyond queries and query languages,
to general geospatial algorithms and processing, we do not consider more than one query
language. We pick Spatial SQL [22], because of its use of some of the above approximations
(4Inter), and because of an important contribution which goes beyond the scope of this
tutorial.

This contribution is the recognition that a spatial query language is inseparable from a
spatial display and interaction capability, and the incorporation of this in Spatial SQL via the
graphical presentation language, GPL. The simplest such interaction allows the formal query,

25

typed from the keyboard, to refer to GUI (graphical user interface) actions to select parts of
the map. This uses the PICK keyword (quite different from the pick operator introduced
later in this tutorial) as a function in a select clause, such as WHERE geom=PICK.

More advanced display capabilities allow the query to specify graphical properties for
its results, such as showing selected parcels in black and selected roads cross-hatched. An
important display capability is to provide the context for a query: it is not adequate to
display only the query results, because a viewer needs to see the setting. For example, the
language allows the querier to specify that the context is parcels, buildings and roads. Given
all this preparation, the query can be made for a particular street in a particular town, and
the map will display the street and its context using the graphics specified. Subsequent
queries can alter this map by highlighting, overlaying, etc.: a MODE operation tells what
to do next.

This tutorial is concerned with the database language needed to implement a query
language such as this, and more, but not with the important issues of display.

The spatial queries themselves add to conventional SQL first geometry fields and second
functions and relationships involving these new types of data. The four new types of field
are called spatial_d, where d is 0,1,2, or 3 dimensions. The relationships include eight 4Inter
relationships. The functions are unary (length, area, boundary, etc.) or binary (distance,
direction). Geom, above, is a field which might be of type spatial 2.

Any spatial query or processing language must include something like this, either built
into the language, as in Spatial SQL, or provided as abstract data types, which we prefer,
because of the immense variety of possibilities. The discussion we have just gone through
of spatial predicates should alone persuade the reader that a language with all possible
capabilities hard-wired into it would be immense, and yet it still may not have included
related important things such as temporal relationships and functions.

3.5.6 Spatial Data Mining and Causality

Data mining, on the other hand, demands exploration of a potentially unlimited number
of predicates, to see which one applies. (It will usually be more than one. If a hierarchy
of related predicates is discovered, the one to be reported should be the most general: this
will also be the shortest of the set.) We have introduced approximations and refinements so
that this extensive search can be speeded up. But there is still an unacceptable amount of
computation to be done.

It makes sense, while mining data, to limit the predicates we inspect to those that
could involve causation. Causal spatial predicates certainly might involve relationships such
as proximity, being downhill, downwind, downstream (or, more generally, downcurrent),
or visible. Intersections and overlaps of the various kinds discussed above may arise, but
are probably less important. So it might be more profitable for spatial data miners to
precalculate these four from the base, metric data. Note that this data would need to include
elevations, possibly temperature gradients, and current distributions for air and water.

Of these, closeness has been used extensively as a spatial data mining predicate([30] sec-
tion 9.2), especially in its most general sense. This sense includes all but one of the 9-
intersection relationships, and 11¢ of the 13¢ kdAllen relationships, because contiguity, over-
lap, and so on, all necessarily involve closeness. A problem with closeness is that, as a metric
predicate, a threshold distance must be specified, and this will be relative to the application:
a micron may be “close” in cellular biology, as opposed to a light-year in astronomy.

This brings us to distance, another notion which has various approximations and which
has not been catered for by the above discussion of metric, projective, and topological ap-
proximations. It is a metric concept. In fact, a metric is the general name for the many

26

varieties of distance, whose formal requirement is only that it satisfy the “triangle inequal-
ity”: in a triangle of sides of lengths a,b, and ¢, a + b > c¢ is required, for any assignment
of a,b, and ¢ to the three sides of the triangle. The usual metric is crowfly, or Euclidean,

\/(acl — 29)? + (y1 — y2)? being the distance between two points with coordinates (x1,%;) and

(x9,y2). Other metrics are possible. A useful one in the context of a regular grid of city
streets is the taxi, or Manhattan, metric, | 1 — 22 | + | y1 — y2 |. Road distances in general
cannot be reduced to a simple relationship between the coordinates of the two points, and
require fairly complex geospatial processing.

Geospatial distances may often be road distances, but it is useful to approximate them
with crowfly distance in the first instance, if we wish to eliminate pairs of features that are
too far apart.

Of course, spatial data alone cannot capture the central ingredient of causality, which
is priority in time. This suggests that spatial data mining may need to be completed by
spatio-temporal data mining.

Finally, the above prescription should be taken in moderation. Two patterns in the data
may have a common cause which is not revealed by the data. (An example of such a situation
arises in section 6.5.3, where we do, informally, some non-causal mining on the 9-Intersection
matrices in two dimensions, in order to implement them.)

3.5.7 Hierarchies of General Predicates

After all this discussion of spatial predicates, we can look briefly at two hierarchies which
apply to any predicates. First, let us recall that we wish to use hierarchies to approximate
predicates in such a way that analyzing the approximation can tell us something definite
about the refined predicate. For example, if two features are too far apart as the crow flies,
they are also too far apart by road distance.

The first such hierarchy that is applicable to predicates on any subject is the and/or
hierarchy. If p or ¢ is false, then p is certainly false, and, from this, p and ¢ is false: this
hierarchy transmits falsehood. Conversly, a truth-transmitting hierarchy goes from p and ¢
top toporg.

Furthermore, we can see that and and or are the only practical means of providing such
hierarchies: there are 22" possible functions of n boolean variables, which means 16 for the
two variables, p and g. The table gives them all, where f and t mean, respectively, false
and true, and the names given to the sixteen functions are fairly self-evident (Dewdney [21]
elaborates informatively).

p ¢|]T Vv €« = -A P Q =@ P -Q -V =& -= A F
f £t £ t t t f f f t t t t f f f f
f t|t t f t t f t t f f t f t f f f
t £t t t f t t f t f t f f f t f f
t t|t t t t f t t f t f f f f f t f

What we are looking for in this table, say for a falsehood-transmitting hierarchy, is a function
whose falsehood implies that of p or ¢, and another function whose falsehood is implied by
that of p or q. To be useful, these functions should be symmetrical, the first should have
fewer fsin its column than p or ¢, and the second should have more fs in its column than p
or g. (The last two conditions mean that the hierarchy is actually giving an approximation,
not just the same thing.) Only or (V) and and (A) satisfy all these conditions for falsehood,
and, taken in the other order, for truth.

27

The second kind of approximation hierarchy for predicates can be derived from approx-
imation hierarchies on the fields that the predicates describe. For example, if we have the
two-level hierarchies for time of year and direction

Year(month quarter) Direction(angle enws)

January 1 22.5 E
February 1 67.5 NE
March 1 122.5 N
April 2 157.5 NW
May 2 202.5 W
June 2 247.5 SW
July 3 292.5 S
August 3 337.5 SE
September 3 360.0 E
October 4
November 4
December 4

the predicate
quarter=1 and enws="SE"

is a falsehood-transmitting approximation to
month="February" and angle=330.

Thus, hierarchies of field values (known also as concept hierarchies [30]) can induce pred-
icate hierarchies in any domain of discourse. But we must be careful what predicates we use:
quarter#1 is not a falsehood-transmitting approximation to month#"February" (although
obviously it transmits truth); and enws<"SE" certainly is not a meaningful approximation
to angle<330.

Predicates can be thought of as a special kind of expression on the underlying fields.
We can thus generalize predicate hierarchies to hierarchies of expressions based on concept
hierarchies of fields. For example, consider the lower two rows of the table

West Prairie Ont East
BC | AL SK MN ON QC NS
VIE C|S RIW|HT O/M Q| H
12 12 511 0 0 3 8 213 1 1
4 1 21 1 1 1 3 11 1 1

where the third row is cities (with abbreviated names), the fourth row is thousands of
immigrants last year, and the last row is the same values expressed as quartiles of the
maximum (Vancouver’s influx of 12,000). We can think of the last two rows as a numeric
concept hierarchy in which the quartiles are an approximation to the absolute numbers. In
these two rows, any expression defining the max or min of two or more entries in one row
has the same meaning in the other row. Thus, the predicate telling us that Vancouver had
a larger influx than Toronto would be the same expression in both cases and have the same
value. The aggregate expression that answers the question which city had the largest influx
with the result "V" is the same for both rows.

Changing gears slightly, consider the top two rows of the table, where the top row is the
region top level in a geographical concept hierarchy, and the second row is the provincial level
in this hierarchy. Summing the numbers in the fourth row by province gives the immigrant
influx by province. Summing the provincial numbers by the regions in the top row follows
exactly the same process, and, in a good programming language, uses the same expression.

28

This is another way of keeping the same expression with the same meaning across levels of
a hierarchy.

Of course, it is easy to see that many expressions do not keep the same meaning. For
instance, summing the quartiles by province or by region fails to make sense in the same
way as summing the absolute numbers, without further operations. And, of course, the two
levels being subjected to the same expression must be of the same type: we can subtract
angles, but not the character strings "E", "NE", etc.

(Concept hierarchies, while applicable equally to spatial or nonspatial data, are well
known to mapmakers who routinely reduce continuous numerical variables such as altitude
to half a dozen colours representing, say, below sea level, very low, low, medium, high, and
very high.)

3.6 Computer-Aided Design

Another important computational discipline involving spatial data is computer-aided design
(CAD). This is used, for instance, by architects to plan buildings or by engineers to design
mechanisms (even to the extent of directly instructing a numerically-controlled cutting tool
how to make the components) or structures. Different disciplines make different demands on
CAD, but they are mostly more interested in three dimensions than is G.I.S. They mostly
deal with smaller models than maps, usually sufficiently small to fit into RAM and so they
are of less interest to us.

Architectural CAD [36, 46] usually proceeds from two dimensions to three by translation.
A two-dimensional plan is extruded upwards to give the walls of a building. A sloping
roof may be made by specifying different heights for its ends, but more elaborate three-
dimensional designs, such as geodesic domes, elude most architectural CAD. Mechanical
engineering CAD [28] can also rotate a section to produce cylindrical three-dimensional
models, or can use full constructive solid geometry (CSG). This uses point-set operations in
three dimensions to build solid shapes out of a base set of simple solids.

The kinds of operations needed on the constructed models include visualization (for
clients and sales brochures), and, for architecture especially, walk-throughs of the designed
building. Mechanical engineers need simulations of motion of components, such as gears and
linkages. Civil engineers need stress-strain analyses of designed structures often using finite
element techniques (another computational adaptation of geometrical calculus).

3.7 Advanced Geospatiotemporal Applications

We cannot possibly achieve complete coverage of the field, so we have not addressed topics
such as map generalization, map transformation, spatial statistics, population potentials,
etc. [39]. We encourage the reader to apply the techniques we discuss below, to discover if
they suffer from fundamental omissions.

4 Spatial Data Structures for Secondary Storage

The purpose of this tutorial is to unify spatial computation with all the associated data
processing needed by geospatial systems, nonspatial in particular. This means that we must
be able to do everything with one language. And that means that spatial is not special, at
least as far as language is concerned. This is hardly surprising. Programming languages in
which algorithms, including spatial algorithms, are written, such as the venerable FORTRAN

29

or the more recent C, do not have spatial dialects. Their formalisms are general-purpose, and
both spatial and non-spatial topics can be expressed without special syntax or semantics.
Only on secondary storage has it become the practice to introduce special dialects or whole
languages for spatial computation, with the result that G.I.S. have grown up independently
of database languages, for instance, and with the consequence that putting the two back
together is now a consuming and potentially painful effort.

In the realm of data structures, spatial is special, as are most particular applications. It
is central to the optimal algorithms of computational geometry, for example, to use the right
data structures. This section discusses spatial data structures for programming on secondary
storage.

We have established the foundations of a secondary storage programming language, based
on relations and relational operators, for the reasons given in section 2. So our data struc-
tures must be relational data structures. We define a data structure, for secondary storage
purposes, to be a set of relations.

This definition excludes a rich collection of implementation data structures, such as those
eruditely covered by Samet [44] and more recently extended by van Oosterom [49]. Such
data structures are at a lower level of abstraction than geospatial programmers should deal
with. They offer much scope for the implementation of relations and relational operators
(remember we said that relations do not have to be implemented as simple files), but the
present discussion must be able to avoid such levels of detail.

We must reveal one caveat about this exclusion. Since relations abstract whole files, and
since sublinear computational complexity, e.g., O(1) or O(logn), involves only part of a file
of n blocks, none of the algorithms we discuss can be shown to have sublinear complexity
without invoking the implementation. When we claim, below, sublinear complexity for any
algorithm or any part of an algorithm, we depend on knowledge, beyond the scope of this
tutorial, of the implementation. (It is for this reason that this tutorial does not discuss
spatial indexing, a technique which is important for implmenting sublinear searches, but not
usually useful for more complex processing.)

4.1 Enumerated Sequences versus Element-Pairs

We can start with the data structure illustrated in section 2. This represented triangles as
sequences of vertices, and can be extended to any polygons. The id field distinguishes one
polygon from another. A type field could be added to distinguish polygons (closed sequences)
from polylines (open sequences), and a zero-dimensional item, consisting of a vertex by itself,
could be considered a special case of either, with only one element in the sequence. The type
information would inform any calculations being done on the data structure that a polygon
has an extra edge connecting the last with the first vertex in the sequence, while a polyline
does not.

Thus, the representation of section 2 is already quite versatile, capable of representing
zero-, one-, and two-dimensional features of a map or two-dimensional construct, using only
one relation.

This data structure uses a sequence number to order tuples in the relation. An equivalent
representation of a sequence represents each edge in the polygon or polyline as an ordered
pair of vertices. Here are the triangles of section 2 in this new form.

30

polygons ' (id
F1
F1
F1
F2
F2
F2

Y1

=N WN - Q)H
cococoococooo™
NWN R NN
cococoo
WEFENWNDE- 8
cocoocoocooV
NN WN R N
oo oo o—

.0 .0

We call the representation using the sequence numbers an enumerated sequence and that
using pairs of vertices an element-pair representation. For cycles, i.e., closed sequences,
appendix A shows the equivalence of these two representations, by giving the programs for
secondary storage that transform each into the other.

An advantage of the latter is that each tuple can to some extent be considered inde-
pendently of other tuples (although a set of tuples is still required to represent a whole
polygon). Calculations are often easier with independent tuples, except when the whole se-
quence must be put in order. It is also easier for an implementation to execute operations in
parallel if the processing does not depend on a sequence. A potentially serious disavantage,
however, arises in representing sequences with repeated elements: the sequence, (a, b, a,c) is
unambiguous as the set {(a, 1), (b,2), (a, 3), (¢,4)}, but cannot be reconstructed from the set
{(a,b), (b,a),(a,c)}. (Planar and spherical polygons do not have repeated vertices, but poly-
gons on a torus may. We will discuss data structures that do not care about the underlying
topology, and so work well for tunnels and bridges as well as more conventional geospatial
data.)

Drawbacks are that the resulting relation has more fields, the connections between the
edges are not so obvious to the eye, polygons must be distinguished from polylines by the
explicit presence of the closing edge, and isolated vertices do not fit nicely into the scheme.

On the other hand, the enumerated sequence representation is easier for the human
viewer, precisely because it shows the whole sequence clearly when the tuples are displayed
in sequence order.

A difficulty with the element-pair representation as given above is that the connections of
the edges to each other depend on the coordinates given for their endpoints. A little roundoff
error in one of the coordinates may cause the connection to be missed. This is easily fixed
by storing the coordinates in another relation and giving each vertex a name or identifier to
link the endpoints both to the coordinates and to each other for the connectedness. This
amounts to separating the geometry from the topology by separating out the coordinates.

A further advantage of separate coordinates is that the dimensionality of the space is also
separated from the topology. The coordinates can be three-dimensional, for instance, and
algorithms involving the topology need not be concerned. (Three-dimensional, nonplanar,
polygons are of interest to computational biologists studying proteins, and, of course, for
maps.)

With separate coordinates, each of the above two data structures (enumerated sequence,
and element-pair) now consists of two relations, Here is the latter for the two triangles.
Notice that the sharing of two vertices by the triangles is now explicit.

polygons"(id vy wy) wvertices(id x = y)
F1 V1 V2 vi 3.0 2.0
F1 Vv2 V3 v2 1.0 2.0
F1 v3 V1 V3 2.0 1.0
F2 V1 V4 v4 2.0 3.0
F2 v4 V2
F2 v2 Vi1

31

There are some problems with even this improvement, which we can see from the example.
Two of the triangles share an edge (V2, V1), and this edge is repeated in the data structure.
Such redundancy is risky when updates are made, in case one of the edges gets changed
but not the other, although there may be a semantic constraint that these two occurrences
are always the same edge. (We do not talk about “wasted storage”, because this is an
implementation issue and not our concern at this level of abstraction.)

The data structure is good for isolated polygons and polylines (and vertices, in the case
of the enumerated-sequence version), but not for general subdivisions of the plane, as maps
usually are. Such subdivisions usually have many shared edges, to the extent that almost
every edge belongs to two polygons and so gets repeated.

It also does not generalize to more than two dimensions. An isolated polyhedron is a planar
subdivision wrapped up in three dimensions to be topologically equivalent to a sphere (or
a torus, or some “multiply-connected” manifold), and representing it by this data structure
has the same problems as representing a planar subdivision. Such objects are of less interest
to GIS than to CAD, but we mention them because they have the same representational
difficulties as maps, and it would be valuable to find a solution to both problems if there is
no extra cost.

4.2 The Quad-Edge Representation

The idea needed to solve all these problems is to move from sequences of vertices to sequences
of edges. The basis for this move is that a vertex is a cycle of edges; and a polygon, or face,
is also a cycle of edges. The sequences in this new approach are all cycles, so we need no
longer distinguish closed from open sequences. Even the endpoint of an isolated edge is a
cycle of one edge. And a face can have one edge, and one vertex which is both endpoints
of the edge: this would also be a cycle of one edge. (We are getting free of straight edges
and polygons, which are both geometrical concepts, since straightness requires the concept
of distance. We can really separate topology from geometry.) The cycles are conventionally
taken counterclockwise, in the direction of increasing angle.

An important extra benefit of this way of thinking is that representing both vertices and
faces of a subdivision captures both the topology and the dual topology of a map. The dual
of a subdivision is a subdivision whose faces were vertices in the original, and whose vertices
were faces in the original. Each edge of the original has an edge from the dual which crosses
it. The dual of our two connected triangles has five edges (as do the triangles themselves) and
three vertices. Two of these vertices correspond to the two triangular faces in the original,
and so each have three dual edges emerging from them. The third vertex corresponds to the
external “face”, and has four dual edges, corresponding to the four edges bounding this face.
This external face is usually included in topological thinking, for completeness. It contains
the “point at infinity”, which makes the plane topologically equivalent to a sphere. (For
mapping, this is an easy concept, since the Earth is (almost) a sphere.) Figure 5 shows the
original using solid lines and the dual using dashed lines.

Each edge generates four labels in this representation. Consider, for example, the edge
labelled e in figure 5. This is a solid line. Its dual, the dashed line crossing it we could label
€', but there are also the lines with opposite directions, and we will have too many primes.
So we will use indexes from 0 to 3 to distinguish each label, and represent the four as (edge,
direction) pairs: (e, 0), (e, 1), (e,2), (e,3). The even indexes stand for the original edge and its
oppositely-directed counterpart; the odd indexes are the dual edge and its opposite. These
may be thought of as a cycle of counterclockwise rotations, from edge to dual to opposite
edge to opposite dual. The name “quad-edge” is from the four directed edges thus generated

32

Figure 5: A subdivision of space and its dual

for each edge in the original.

The reason we need the oppositely directed edges and duals is so that we can al-
ways use outgoing edges to identify each vertex and face. Thus, vertex V1 is the cycle
(a,0),(c,2),(d,0), and face F2 is the cycle (a,1),(d,3), (e,3). The data structure for this
example could be written, as an enumerated sequence, as shown in figure 6. Note that both
vertices and faces are represented in the same way, and so all the topology may be included
in the single relation, QuadEdgeES.

Element pairs are a better way to represent these cycles, and encounter no ambiguities
since no cycle repeats any edge. We can remove references to vertices and faces from the
topology, since these are used above only to group the sequences. To identify faces and
vertices, and to record the coordinates of the latter, we introduce the notions of the origin
and destination vertices of an edge, and the left and right faces, and we represent these in
an intermediate relation, VertFace. The direction is omitted from VertFace, and is taken to
be 0; the entries for the three other directions are easily generated. (See figure 7.) Note
that we have modified Geom to include information about the faces as well as coordinates
of the vertices. The coordinates shown for the faces are for the junctures of the edges of the
Voronoi diagram of the four vertices. This is the set of edges that divide the plane into four
regions whose points are, respectively, nearest to each of the four vertices. In this example,
the junctures for faces F'1 and F'2 are common, both at the centre. The juncture for face
F3 is taken to be the point at infinity (or the point on the Earth diametrically opposite the
centre).

The quad-edge data structure was proposed by Guibas and Stolfi [27], who show that it is
capable of representing subdivisions not only of the extended plane or sphere, but of any two-
dimensional manifold, no matter how multiply-connected (e.g., a torus is doubly-connected),

33

QuadEdgeES(fv
Vi

V2

V3
V4

F1

F2

F3

seq

B WNFF WNRF WNFENFEDNRFEWN - WN -

edge

a

SO A0 DO A O TR DA T QT

dir)

H R A EWWRFWWWONOoONNNDNODONO

Geom(vert

V1
V2
V3
V4

3.0
1.0
2.0
2.0

Y)
2.0

2.0
1.0
3.0

Figure 6: Quad-Edge Relations (Enumerated Sequence)

QuadEdge(edgel dirl

SO QU O AU OO T2 AOCT TR0 R
H R HE HFWWHWWWONONNNNODOND

Figure 7: Quad-Edge Relations (Element Pairs)

QT AL DDA TR DD DAL

2

i EE WWWWWNoONNOoODOoONDNNDO O

edge?2 dir2)

VertFace(edge

34

DA

Geom(uf
V1
V2
V3
V4

F1
2
F3

org
V1
V2
V3
V1
V4

3.0
1.0
2.0
2.0

2.0
2.0

dest
V2
V3

V1

V4
V2

2.0
2.0
1.0
3.0

2.0
2.0

left
F1

F1
F1
2
F?2

right)
2
F3
F3
F3
F3

or even if inside and outside are the same (e.g., a Klein bottle). They give a thorough
treatment, which we here adapt to secondary storage. We are indebted to Christopher
Gold [25] for not only insisting on the importance of this structure for geomatics but for
sending us copies of the paper and of his own implementation.

4.3 The Splice Operator

As we have said for databases in general, it is not sufficient to provide a representation
only. What makes or breaks a data model or structure is the facility with which it can be
manipulated. For this we need operators, such as provided by the relational algebra. In the
case of the quad-edge structure, apart from operators to create or destroy edges, only one
operator is needed, and it is particularly simple. This is the splice operator.

For any sequence or cycle, splice(t, u) is the operator on two elements, ¢ and u, that swaps
their positions at the start (or at the end) of their element pairs. Strictly speaking there are
two splice operators in general, one for the firsts of pairs and one for the seconds of pairs,
but these will be combined for the quad-edge representation. To begin, we will distinguish
them as splicel(t,u) and splice2(t,u).

Let’s see what happens when we splice1((b,0), (a,2)) in the cycle

(b,0), (a,2), (e, 2)

(edgel dirl edge2 dir2) (edgel dirl edge2 dir2)
b 0 a 2 a 2 a 2
a 2 e 2 = b 0 e 2
e 2 b 0 e 2 b 0

The splice disconnects the cycle, making two: a unit cycle of (a,2), and a binary cycle of
(b,0), (e, 2).

Because it is a swap, splice() is obviously idempotent: it is its own inverse. So doing
splice1((b,0), (a,2)) a second time has the effect of inserting (a,2) after (b,0) in its cycle.
(Splice() is also commutative: splice(t, u) =splice(u,t).)

Splice2() has the effect of inserting before. Here is splice2((b,3), (a,1)) applied to the
cycles

(a,1),(d,3), (e, 3) and (a, 3), (b, 3), (¢, 3)

(edgel dirl edge2 dir2) (edgel dirl edge2 dir2)
a b 3 a 3 a 1
b 3 c 3 a 1 d 3
c 3 a 3 = d 3 e 3
a 1 d 3 e 3 b 3
d 3 e 3 b 3 c 3
e 3 a 1 c 3 a 3

The effect is to break each of the two cycles just before the operand in splice2(), then combine
them into one cycle at these breaks. (Note that the rows have been reordered to reveal the
single cycle.)

The corresponding effect of splicel(), applied to two cycles, is to break each of the two
cycles just after the operand, then combine them into one cycle at these breaks. The above
example, with a unary cycle, does not show this clearly.

For quad-edge, we now define splice((e, d), (¢/,d’)) to be (d,d’ even)

splicel((e, d), (¢, d"))

35

Figure 8: The effect of splice((b,0), (a,2))

splice2((e,d — 1), (¢/,d — 1))
performed in either order, where the arithmetic is done modulo 4. The overall effect on
the example subdivision is shown in figure 8. We see that splice((b,0), (a,2)) completely
disconnects edge a from its common vertex with b before it (and e after it), and automatically
merges the faces on either side of a.

Because the disconnection has created a new vertex and eliminated a face, we must make
corresponding changes to relations VertFace and Geom in the data structure. The presence of
a new vertex and the loss of a face appear with the unary cycle in QuadEdge, ((a, 2), (a, 2)).
In VertFace, the tuple

(a, V1,V2 F1,F2)
must be changed to

(a,V1,V5, F2, F2)
to reflect the new origin of (a, 2) (i.e., destination of (a,0)) and the merging of F2 with F'1.
Coordinates must be supplied for the new vertex, V5, which must be additional input to
the disconnect procedure that includes splice((b,0), (a,2)). No other occurrence of V2 need
be changed, but F'1 must be replaced by F'2 everywhere in VertFace: this happens only for
tuples containing dual edges between (b,3) and (a,1). If the data in Geom for F'2 must be
changed, this must also be supplied, as well as new coordinates for V5.

A further disconnect operation, using splice((d, 0), (a,0)), will remove the other end of
a, creating a vertex V6 and leaving a square. The dual edge to a also gets disconnected, so
that @ and its dual are completely isolated and can be thought of as occupying an entirely

36

QuadEdge(edgel dirl edge2 dir2) VertFace(edge org dest left right)

d 0 c 2 a V6 V5 FO FO
c 2 d 0 b V2 V3 F2 F3
a 0 a 0 c V3 V1 F2 F3
a 2 a 2 d V1 V4 F2 F3
b 0 e 2 e V4 V2 F2 F3
e 2 b 0

b 2 c 0

c 0 b 2 Geom(vf Y)

d 2 e 0 Vi 3.0 2.0

e 0 d 2 V2 1.0 2.0

a 3 a 1 V3 20 1.0

b 3 c 3 V4 20 3.0

c 3 d 3 V5 1.75 2.0

a 1 a 3 V6 2.25 2.0

d 3 e 3

e 3 b 3

e 1 d 1 FO o 00

d 1 c 1 F2 1.5 2.0

c 1 b 1 F3 o 00

b 1 e 1

Figure 9: Quad-Edge Relations with Edge a Disconnected

separate manifold. In this sense, we can imagine that a new face, F'0, has been created as
the only face of this new manifold. Figure 9 is the data structure showing the final result

after
splice((b, 0), (a, 2))
splice((d, 0), (a,0))
with the changes shown in bold.

The inverse process, inserting a new edge in a subdivision, starts with the edge in a
separate manifold, created, let’s say, by a createEdge() operation, and uses exactly the same
two splice() operations to insert it after d at V1 and after b at V2.

To “swap” edge a, so that it connects V3 to V4 instead of V1 to V2, we disconnect a as
above, then reconnect it using

splice((e, 0), (a, 2))
splice((c, 0), (a, 0)).
This is useful in constructing Delaunay triangulations.

To add a vertex to an edge of a polygon, say to convert a triangle to a quadrilateral, we
must disconnect an endpoint vertex of the edge, then insert a new edge between that vertex
and the newly created vertex. For example, we could insert a new edge, f, between a and
V2, after disconnecting the first end of a, as above, by creating f, then following

splice((b,0), (a, 2)),

splice((£,0), (a,2))
splice((b,0), (f,2)).

This is useful, among other applications, in constructing polygon overlays.

with

37

(22 60T @2 2 (t0)

(0,0)—= (0= @2y~ (1.3

Figure 10: Combining Splices into Substitutions

4.3.1 Splice on Secondary Storage

The splice operation is microscopic, from the point of view of secondary storage: it affects
only four records, by swapping either the first or the second elements of the two pairs. Yet,
many constructions require several splices in sequence, and may even affect the bulk of the
file of pairs.

We have said that it is better, on secondary storage, to do all required processing on data

once retrieved, than to retrieve it repeatedly for each processing step. A sequence of splices
is a case in point. For example, the above sequence,

splice((b, 0), (a, 2))
splice((f,0), (a, 2))
splice((b, 0), (f,2))

has the following effect on the vertex cycles.

(el d1I e2 d2) (el diI e2 d2) (el d1I e2 d2) (el dI e2 d2)
b 0 a 2 a 2 a 2 f 0 a 2 f 0 a 2
a 2 e 2 = b 0 e 2 = b 0 e 2 = f 2 e 2
f 0 f 0 f o0 f 0 a 2 f 0 a 2 f 0
f 2 f 2 f 2 f 2 f 2 f 2 b 0 f 2

(Refer back to figure 7 for the full starting data.)

This can be achieved in one step by combining the effects of all the splice operations before
applying them to the file. Each splice is a swap: combining them does not always give swaps,
but can result in simple substitutions (half swaps). Figure 10 shows the swaps specified by
the three splices. Each swap is numbered according to the place of the corresponding splice
in the sequence: the last two splices are independent, so can be performed in any order, so

are given the same number. The lower diagram in figure 10 shows the substitutions that
result,
(f,

0
f’ (a’ 2
a’) (f’ 2
(f,2) — (5,0).

To work with quad-edge data structures on secondary storage, it is usually advisable to
combine all the required splice operations in this way before applying the result to the file.

The combination can usually be done in RAM, and the relevant parts of the file need be
accessed only once.

b,

~—

I

I

0
0
2

NSNS
~—

144

S— o —

38

5 The Domain Algebra and Nested Relations

In this section, we introduce a set of operations complementary to the relational algebra (and
to SQL), which allow arbitrary manipulation of the fields of a relation. These operators form
a “domain algebra”. (This is mistakenly named, because “domain” is a poor synonym for
“field”, or even “attribute” in the database sense.)

The domain algebra can be divided into scalar and aggregate operators. It is much more
expressive than the limited arithmetic capabilities of SQL, and than SQL’s weak collection
of aggregate functions, which furthermore demands explicit syntax for each (COUNT, SUM,
AVG, MAX, MIN). It can, fortunately, be added to SQL with no changes to existing SQL
syntax.

The domain algebra is algebraic in that it operates on fields (“domains”) to produce new
fields. It is closed: only fields result. It is abstract: the relations the fields may belong to
are not considered in the formalism. These two properties give the programmer using the
domain algebra a great deal of intellectual freedom to avoid extraneous thinking.

5.1 The Scalar, or “Horizontal”, Operations

Scalar operations apply within tuples. They are also called “horizontal” in reference to the
table form of relations (which is not the only way to think of relations) in which each tuple
is a row of the table.

Simple arithmetic, or boolean or string operations, within each tuple is the obvious capa-
bility provided by the scalar domain algebra. All the usual arithmetic and other operations
are available, such as +, X, unary and binary —, and, or, etc., and infix binary min and
max, as well as the usual collection of functions (sqrt(), abs(), trigonometric, etc.). As an
illustration, consider the Euclidean and Manhattan lengths of a set of edges,

let eLen be sqrt ((Xorg—Xdest)A2 + (Yorg— Ydest)A2);
let mLen be abs(Xorg—Xdest) + abs(Yorg— Ydest);

We can see what this looks like for the quadrilateral at the end of section 4.3. EdgeSet
is a relation which has all the fields needed for both these calculations. We show it below,
with the new fields written outside the parentheses, to indicate the values that might be
calculated if the above domain algebra were somehow applied to edgeSet: we will not discuss
how this might happen until section 5.3.

edgeSet(edge Xorg Yorg Xdest Ydest) eLen mLen
b 1.0 2.0 2.0 1.0 1.4142 2.0
c 2.0 1.0 3.0 2.0 1.4142 2.0
d 3.0 2.0 2.0 3.0 1.4142 2.0
e 2.0 3.0 1.0 2.0 1.4142 2.0

We note that the domain algebra let-statement defines a value for the new field for each
tuple of edgeSet. There is no choice: since relations are not part of the domain algebra
formalism, any relation to which the new field is eventually connected must have a value for
that field for each tuple. Thus the domain algebra, like the relational algebra, abstracts over
looping, and so works at the same high level of abstraction.

We also note that, in this particular example, both new fields happen to have the same
values in each tuple. They are thus, accidentally, what is called a “constant field”. Constant
fields are one special capability of the scalar domain algebra.

let One be 1;

39

or, more subtly, the 2 in

let eLen be sqrt ((Xorg—Xdest)A\2 + (Yorg— Ydest)A2);

A second special capability of the scalar domain algebra is renaming. We needed this in

section 2.

let seq! be seq;

let seq2 be seq;
Note that an existing field can be renamed in more than one way, but renaming two existing
fields to the same new name at the same time is ambiguous. However, two existing fields
may be renamed to the same new name at different times. (These restrictions are analogous
to societies which permit serial polygamy while discouraging concurrent polygamy.)

5.2 The Aggregation, or “Vertical”, Operations

Aggregation operations apply within fields and across tuples. They are also called “vertical”
in reference to the table form of relations (which is not the only way to think of relations)
in which each field is a column of the table.

There are two families of aggregation operators, reduction and functional mapping. These
each include a simple form and a grouping form.

5.2.1 Reduction and Equivalence Reduction

Examples of reduction are to find the perimeter of the above quadrilateral, and to find its
area, using Stokes’ theorem (section 3.4).

let perim be red + of eLen;

let area be red + of (Xorgx Ydest — Yorgx Xdest);
Here are these results associated with edgeSet

edgeSet(edge Xorg Yorg Xdest Ydest) perim area
b 1.0 2.0 2.0 1.0 95.6569 2.0
c 2.0 1.0 3.0 2.0 5.6569 2.0
d 3.0 2.0 2.0 3.0 5.6569 2.0
e 2.0 3.0 1.0 2.0 5.6569 2.0

Once again, the new fields are constant, this time not accidentally: the perimeter and the
area apply to the whole polygon. Once again, we have no choice but to associate the constant
value with each tuple. The apparent wastefulness is not an issue: it is only apparent, and
the programmer can avoid it easily (see section 5.3).

The red clause takes an operator as its operand. In this case we want to sum so the
operator is +. It could also be X, max, min, and, or, etc. It could not be —: it must be
both associative and commutative, because relations define no order on their tuples, and only
operators that are both associative and commutative give results that are independent of the
order of the operands. We call such operators reduction operators, or “redops’. (Operators,
such as absolute difference, that are commutative but not associative, we call symmetric
operators, or “symops’. Operators, such as string concatenation, that are associative but
not commutative, play no special syntactic role.)

Special cases of reduction are thus sum, count, min, max, and average.

let sum be red + of elLen;
let count be red + of 1;

let min be red min of elen;
let maz be red max of eLen;

40

let avg be (red + of eLen)/(red + of 1);
or
let avg be sum/ count,

The example of average is possible because of the closure and the abstraction of the
domain algebra: if sum or count, or their anonymous equivalents, red + of eLen and red
+ of 1, were not themselves fields, independent of any relation, we would not be able to
combine them, and the interpretation of the result would be confused.

Of course, we can now go beyond these basic aggregations.

let stdDev be sqrt((red + of (eLen—avg)A2)/count);

The reduction calculations, above, are done on a single polygon. If we have many poly-
gons, or a subdivision, we need to be able to calculate, say, perimeters and areas for each
without writing loops. We introduce a poly field, which breaks the tuples of the relation into
equivalence classes, each class with all the same values for poly.

let perim be equiv + of eLen by poly;

let area be equiv + of Xorgx Ydest — Yorgx Xdest by poly;
Here are these results associated with edgeSet extended to include poly and describing the
two triangles in section 2.

edgeSet(poly edge Xorg Yorg Xdest Ydest) perim area

F1 a 3.0 2.0 1.0 2.0 4.8284 1.0
F1 b 1.0 2.0 2.0 1.0 4.8284 1.0
F1 c 2.0 1.0 3.0 2.0 4.8284 1.0
F2 d 3.0 2.0 2.0 3.0 4.8284 1.0
F2 e 2.0 3.0 1.0 2.0 4.8284 1.0
F2 a 1.0 2.0 3.0 2.0 4.8284 1.0

The constancy of the new fields is now, again, accidental. We expect them to have the
same value within each polygon, but not necessarily the same from one polygon to the next.
If we had included F'3 in the relation, the same domain algebra would have yielded

edgeSet(poly edge Xorg Yorg Xdest Ydest) perim area

F1 a 3.0 2.0 1.0 2.0 4.8284 1.0
F1 b 1.0 2.0 2.0 1.0 4.8284 1.0
F1 ¢ 2.0 1.0 3.0 2.0 4.8284 1.0
F2 d 3.0 2.0 2.0 3.0 4.8284 1.0
F2 e 2.0 3.0 1.0 2.0 4.8284 1.0
F2 a 1.0 2.0 3.0 2.0 4.8284 1.0
F3 e 1.0 2.0 2.0 3.0 5.6569 -2.0
F3 d 2.0 3.0 3.0 2.0 9.6569 -2.0
F3 ¢ 3.0 2.0 2.0 1.0 5.6569 -2.0
F3 b 2.0 1.0 1.0 2.0 5.6569 -2.0

Note that Stokes’ theorem produces a negative area if the edges are traversed clockwise.
This is useful to find the area of a region with holes in it, and to detect left versus right
turns from one edge to another.

(For a triangle, Stokes’ form of the area reduces to half the determinant

T9 —T1 T3 — X1 14 1
T1Yo — ToY1 + Tayz — T3Y2 + T3Y1 — T1Y3 = _ _ =22 Y 1
Y—U Ys— U 23 ys 1

41

which makes sense if we realize that diagonalizing the matrix makes the determinant a
product of two orthogonal directions. Similar results apply to the volumes of tetrahedra,
and of any simplex (d-dimensional polytope with d + 1 vertices).)

“Group-by” sums, counts, averages, etc. can all be found using this equivalence reduction.
The requirement that the operator be associative and commutative (a redop) holds for
equivalence reduction also.

5.2.2 Functional Mapping and Partial Functional Mapping

In spatial data, ordering can be important, as in the case of the order induced by a sequence
field on the tuples of the relations in section 2. Here, the tuples are not ordered in themselves.
They can appear in the relation in any order. But each tuple has a position in the strict
ordering defined by the value of seq.

We can use this ordering to calculate a cumulative sum, say, of a histogram (a distribution
function) to give the cumulative distribution function.

let cumL be fun + of histL order value;
let cumR be fun + of histR order value;
Note the order clause, which induces the order on the tuples.

Here are two histograms on the same range of values, for which the above domain algebra
statements respectively compute the cumulative values. (Strictly, this example does not show
distributions, which should be normalized to 1, but it has been contrived to have the same
number, 60, of entries in each case, so dividing everything by 60 would give the distributions.)

histograms(value histL histR) cumL cumR proporL proporR
0 8 3 8 3 0.87 0.95
1 24 3 32 6 0.47 0.90
2 23 19 55 25 0.08 0.58
3 5 35 60 60 0.00 0.00

(The average values can be computed from the histograms.
let avgL be red + of valuexhistL;
let avgR be red + of valuexhistR;
The proportion of each set of data where the value exceeds a specified value can be computed
from the cumulations.
let proporL be 1.0 - cumL/(red max of cumlL);
let proporR be 1.0 - cumR/(red max of cumR);
Here, we have done the division that would not be needed if cum were true distributions.)
If the original histograms resulted from spatial data, we have derived and used spa-
tial cumulative distribution functions (SCDF) [4]. For example, the two histograms might
have come from the left and right halves of the following spatial observations (or from
regions defined by more complicated polygons over a more complicated choropleth map).
001112102333323
000112210323322
001122201333232
011222211233333
122221123233223
112332122332323
112332113223333

1122321223323
Superimposed plots of the two cumulative distributions help to reveal differences between

the regions.

42

Any operator may appear after the fun keyword, not just associative or commutative
operators. For —, for instance, the functional mapping is defined so as to produce an
alternating sum.

We can add a grouping facility, as in equivalence reduction, to functional mapping, giving
partial functional mapping. This saves us writing repeated statements in the above example.

let cum be par + of hist order value by region;

let avg be equiv + of valuex hist by region;

let propor be 1.0 - cum/(equiv max of cum by region);
It also allows us to do all the calculations for an indefinite number of regions with exactly
the same three statements.

histograms(region wvalue hist) cum propor
8 8 0.95
24 32 0.90
23 55 0.58
5 60 0.00
3 3 0.87
3 6 0.47
19 25 0.08
35 60 0.00

=v~c =~ "2 e
WNHHOWND—O

Two operators are useful in the context of functional (and partial functional) mapping,
which have little significance on their own. These are the successor and predecessor operators,
succ and pred, respectively. We can use them, for instance, to convert from the enumerated-
sequence representation of a cycle to the element-pair representation.

let zcoord’ be par succ of zcoord order seq by id;
let ycoord’ be par succ of ycoord order seq by id;
Applied to the relation polygons in section 2, these give

polygons(id seq xzcoord ycoord) zcoord' ycoord’

F1 1 3.0 2.0 1.0 2.0
F1 2 1.0 2.0 2.0 1.0
F1 3 2.0 1.0 3.0 2.0
F2 1 3.0 2.0 2.0 3.0
F2 2 2.0 3.0 1.0 2.0
F2 3 1.0 2.0 3.0 2.0

where we note the cyclic effect of par succ of (par pred of is likewise cyclic). For sequences
that are open, not cycles, the last tuple can be got rid of by a relational algebra selection.

5.3 Some More Relational Algebra

Although the domain algebra seems a slight extension of SQL capabilities, aggregation in
particular, the significant advance over SQL is subtle: the complete separation of domain al-
gebra from relations. Fortunately, this makes the domain algebra orthogonal to the relational
algebra, and so it could be added to SQL with no changes to existing SQL syntaxes.

To do this requires us to revisit the relational algebra. The domain algebra is an advance
because it allows the programmer to separate thinking about fields within relations from
thinking about the relations. Eventually however, the two must be connected. The fields
defined by domain algebra statements must eventually take their places in the context of
relations.

43

All the results of the domain algebra shown so far have been wirtual, not yet evaluated
for any particular relation, although we have shown them as columns appended to particular
relations for concreteness. The step we now address is actualization.

Actualization is easy, from the point of view of language syntax: any virtual field may be
named anywhere actual fields have hitherto been used in relational expressions. For example,
the successor coordinates in the last example can simply be named in the projection list

select id, zcoord, ycoord, xcoord’, ycoord'
from polygons
Virtual field actualization in SQL

This creates a new relation (not named by SQL), with the fields id, zcoord, and ycoord from
polygons, and the two newly actualized fields zcoord’ and ycoord’ from the domain algebra
definitions. Those definitions referred only to fields id, seq, xzcoord, and ycoord, which are
already present in polygons, so the actualization is fully specified.

A virtual field name may be used anywhere in the relational algebra where actual fields of
the relations have hitherto been used. The implementation of a relational algebra expression
will check any field named against the relevant relation; if it is an actual field of the relation,
this is used, or else if it is a virtual field defined by some domain algebra statement, the
above check is done recursively on the fields used by the domain algebra to define it; if
ultimately some needed field is neither actual in this relation nor virtual (i.e., defined by
domain algebra), then the actualization fails, otherwise the field is evaluated by the relational
algebra. This, of course, specifies a major change in the implementation of the relational
algebra, although the syntaz changes not at all.

This shows us that which virtual fields are actualized, and in what contexts, is entirely up
to the programmer. Thus the apparent redundancies of constant values, especially resulting
from reduction and equivalence reduction, are illusions: the programmer is free to avoid
them or to perpetrate them.

Anonymous domain algebra expressions (i.e., any of the above statements omitting the
let .. be) may also be used in most places actual domains appear in the relational algebra,
with the exception being any usage which would place an anonymous field in the result
relation.

An important consequence of the domain algebra is that it leads to operations on nested,
or “non-first-normal-form”, relations. Since the domain algebra is a formalism by which
fields can be manipulated, it can use the operators of relational algebra as well as those
of arithmetic, etc., and the fields can themselves be relations. To support this, we need a
relational algebra notation which distinguishes clearly between expressions and statements,
and in which join expressions in particular are explicit. We take a little space and time
to examine notation which departs from SQL in ways that are small in appearance but
significant in reality.

The unary operator syntax is that of the programming notation introduced in section 2.

[<field list>] where <tuple conditional expression> in <relational expression>
where the where-clause may be omitted for pure projection and the [<field list>] may be
omitted for pure selection.

The major advantage of this rearrangement of the SQL order is that it puts the <relational
expression> last so that compound expressions are more easily read and more easily further
articulated.

44

5.3.1 Joins

The binary operator syntax is kept extremely simple and the different operators are explicit.
<relational expression> join <relational expression>
or, if the join fields must be named explicitly because their names are not common to the
two operands,
<relational expression> [<field list> join <field list>] <relational expression>

Now we elaborate on the kinds of join. In section 2, we had only join, the natural join.
Here we note that a whole family of joins related to the natural join is possible. The natural
join generalizes set intersection to relations. The other set-valued set operations are union,
difference, and symmetric difference. The first of these generalizes to relations in the same
way as intersection generalizes to natural join, giving what is usully known as the outer
join. The others do not have conventionally known generalizations. We can call the whole
suite ijoin, ujoin, djoin, and sjoin, respectively, to emphasize these generalizations, and
to these we can add ljoin and rjoin, which generalize the trivial set operators that return,
respectively, the left and right operand. For this tutorial, we use only the first three. We
call them join, union, and diff, respectively, for familiarity. The latter two we use mainly
as simple set operators, as far as we can hold back to the limitations of SQL.

The above family generalizes the set-valued operators on sets. Another family of opera-
tors on sets is logic-valued, such as test for set containment, intersection, etc. In his second
paper on the relational model, Codd [16] introduced generalizations to relations of two of
these, superset (sup) and intersection-not-empty (@), as division and natural composition,
respectively. These did not make it into SQL. All twelve set comparisons may be so gener-
alized to give another family of join operators. These are called o-joins, to distinguish them
from the above family, the y-joins. In this tutorial, we use only one, the natural composition,
comp in the syntax. Natural composition can also be thought of as a natural join followed
by a projection which gets rid of the join field(s). It could be left to the programmer to write
it in this way when needed, but it is a useful operator to implement (along with the other
eleven o-joins) because it frequently avoids a need for cumbersome field renaming.

In summary, for this tutorial, we use three binary operators, or joins: the natural (inter-
section) join, join, the outer (union) join, union, and the natural composition, comp. We
use these symbols to replace the generic join in the binary operator syntax, above.

As an example of the use of comp and union, consider a road network consisting of the
four segments given by edges with the following origin and destination vertices. (We will
come to the length field shortly.)

Edges(edge org dest length)
a V1 V2 4.0

b V2 V3 2.0
c V2 V4 5.0
d V3 V4 2.0

For the moment, we are interested only in the origin and destination vertices of this
network.
OD <— [org, dest] in Edges;
The expression to find out what vertex can be reached from what in this network is on
the right of the assignment arrow:
TC <— OD union OD]|dest comp org|OD;
The natural composition is done first, and finds paths of length two.

45

OD(org dest) | OD[dest comp org| OD

Vi V2 | (org dest)
V2 V3 V1 V3
V2 V4 V1 V4
V3 V4 V2 V4

The union then combines this result with OD to give TC.

This simple statement works for this example, because once all paths of length two are
accounted for, there are no new connections to discover. (Although there is a path of length
three, V1-V2-V3-V4, we already found a length-two connection from V1 to V4, namely
V1-V2-V4.) In general, however, we would need a loop containing the slightly modified
statement,

TC <— OD union OD]|dest comp org| TC
Here, TC will accumulate (because of union) paths of length one (the original OD) and
greater (because of comp of OD with the growing 7°C).

In general, this statement can be expressed as a recursive view, and a looping construct
is not needed. Discussion of efficient execution of such views, which is under the control of
the programmer, is beyond the scope of this tutorial [15].

TC is so named because it is the transitive closure of the graph contained in OD. The
recursive view will compute the transitive closure of any graph, with or without cycles.

More than knowing what vertices can be reached from what, we would like to know
what the shortest path is between pairs of vertices. This involves a combination of domain
and relational algebra, and illustrates well the advantage of keeping these two formalisms
independent of each other. The relational algebra part is very similar to the above, except
that we must accumulate the total length of the paths. This accumulation can be calculated
independently:

let length' be length;

let length” be equiv min of length + length' by org, dest;

let length "' be length min length";
The second of these statements adds the lengths of two adjoining paths, and the first just
renames the length from one of these paths to distinguish it in the sum. The second statement,
goes on to find the least of all the sums that connect the same org-dest pair. The third
statement is needed in case a newly-found path happens to have a shorter length than an
earlier path that happened to have fewer edges.

The relational algebra to actualize all this must just do the renaming and the calculations
in the right places. We start with one last renaming, to close the loop and give the result
the same fields as the input, ODL, which we must first create.

ODL <— |org, dest, length] in Edges;
let length be length";
TCL <— |org, dest, length| in
[org, dest, length"] in
(ODL union [org, dest, length] " in
(ODL[dest comp org| [org, dest, lenght'] in TCL)

Here, T'CL is initially equal to ODL, and the code has the following effect.

46

TCL(org dest length') result of union

Vi V2 4.0 (org dest length length"” length")
V2 V3 2.0 Vi V2 4.0 4.0
V2 V4 5.0 V2 V3 2.0 2.0
V3 V4 2.0 V2 V4 5.0 4.0 4.0

result of comp V3 V4 2.0 2.0
(org dest length length') length” V1 V3 6.0 6.0
Vi V3 4.0 2.0 6.0 Vi V4 9.0 9.0
Vi V4 4.0 5.0 9.0 V2 V4 2.0 2.0 4.0

After a loop, or execution of the corresponding recursive view, the cost of 9.0 from V1
to V4 gets reduced to 8.0, and there is no further change. This code will find the all-points
shortest path for a network of any size, with or without cycles.

Note that the union operator here transcends simple set union. The two non-matching
fields, length from one side, and length " from the other, are recorded separately, with nulls
(blanks) where the join fields from one side or the other do not match. The sum that creates
length " treats these nulls as the identity element, 0.

5.3.2 Updates

The domain algebra and all the relational algebra operators described so far, except for the
assignment operator, are functional, in the technical sense that the same operands always
give the same results, and there are no side-effects. Functional programming is very elegant
and avoids most of the opportunities a programmer has for error in non-functional languages.
It can be used for databases, however, only by copying entirely every relation one wishes to
“change”, and this is prohibitively expensive. So we need non-functional update operations,
which have the side-effect of changing a relation in place.

SQL offers three separate commands for this, one for each of insert, change, and delete
operations, with the insert command unfortunately differing from the other two by unfortu-
nately working with only one tuple. It is cleaner to make them all relational and to avoid
the ambiguity of the word, “update” by using it only to refer to relations, not tuples. It is
also cleaner to isolate the update operations from the conditions determining which parts of
the relation are affected. The T-selector and joins already discussed are ample to provide
this control.

Here are the three cases of the update statement.

update R add S;

update R delete S;

update R using S change <statements>;
S is always a relation, and the using S clause (which is optional) in the change command
uses the natural join of S with R to select the parts of R that will change. The <statements>
in this case are usually assignment statements changing values of fields. They may contain
domain algebra expressions on the right hand side. Of course, S may be any relational
expression in all three cases. It may also be preceeded by a join operator, if simple join is
not enough for the task.

5.4 Relations as Domains: Nested Relations

With the domain algebra and a cleaned-up relational algebra, we get nested relations for
free (syntactically, that is: the implementation is more difficult, although everything we are

47

about to say can be built with non-nested relations). The linguistic step is to subsume the
relational algebra into the domain algebra.

Nested relations are relations whose field values may themselves be relations. Thus, to
work with them, we need a formalism to create new relation-valued fields from existing ones.
The domain algebra, with relational operations incorporated into it, can do this.

Although nested relations add nothing whatsoever to the functionality of the “flat” rela-
tional and domain algebras, which is what we have discussed so far, they do at times simplify
our thinking, and so have a rightful place in secondary storage programming. They also repair
an aesthetic inegality of the data types in the programming language: numbers, strings, and
other scalar data types have hitherto had privileges relations have not, namely the ability
to be included as values in relational tuples. Nesting gives relations these privileges, too.

Because in many instances nested relations offer no advantages over the relational algebra
and, particularly, the domain algebra, as we have seen them so far, we must be careful in
presenting a motivating example. We consider the two triangles of section 2, but we add a
colour for each triangle. We could just extend the relation we used then

polygons(id seq xcoord ycoord colour)

F1 1 3.0 2.0 red
F1 2 1.0 2.0 red
F1 3 2.0 1.0 red
F2 1 3.0 2.0 blue
F2 2 2.0 3.0 blue
F2 3 1.0 2.0 blue

but normal relational habits would lead us to decompose this into two relations to avoid the
effects of redundancy (update inconsistencies, for instance).

polygons(id seq xzcoord ycoord) colours(id colour)
F1 1 3.0 2.0 F1 red
F1 2 1.0 2.0 F2 blue
F1 3 2.0 1.0
F2 1 3.0 2.0
F2 2 2.0 3.0
F2 3 1.0 2.0

This decomposition is not in itself a problem, but subsequent operations, which might need
the colours associated with the coordinates, would need a join to put the relations back
together again. We may prefer to think about this in the context of only one relation.

So we express the data as a nested relation.

polygons
(id structure colour)
(seq zcoord ycoord)
F1 1 3.0 2.0 red
1

F2 blue

WN - WN
=N W N

[eNeoNeoNeoNe
N WN -~ N
OO O OO

Polygons now has only two tuples, and three fields: structure, which is itself a relation, and
1d, and colour.

48

As an example calculation with this, we project the inner relation on the coordinates
alone and derive a new relation containing only this projection and the colour. This latter
is also a projection. The important mental simplification offered us by the prescription that
the domain algebra now includes the relational algebra is to isolate the two levels of the
relation, and the two projections, from each other. Since the inner projection is on a field,
albeit a field which is a relation, we do it in the domain algebra.

let coords be [zccord, yecord] in structure;
Then we use the ordinary relational algebra (but with a relation as one of the fields) to do
the top-level projection.

colourCoord <— [coords, colour] in polygons;

colourCoord

(coords colour)
(zcoord ycoord)

3.0 2.0 red

1.0 2.0

2.0 1.0

3.0 2.0 blue
2.0 3.0

1.0 2.0

This result also has two tuples, and a relation-valued field, coords.
We can also use the domain algebra at both levels. Here is a count of the number of

vertices in each polygon.

let count be red + of 1;

let size be [count] in structure;

polySizes <— [id, size, colour] in polygons;
This still has two tuples, and size is an inner relation even though it is a singleton in each
tuple. To “raise” the level of its field, count is a simple matter, involving no new syntax. We
just do not name the field; its anonymity will force the system to raise it. We rewrite the
code.

let size be [red + of 1] in structure;

polySizes <— [id, size, colour] in polygons;
Now size has no field, and so can no longer be a nested relation. (It is important in doing
this raising operation that the inner relation being raised is a singleton.)

polySizes(id size colour)
F1 3 red
F2 3 blue

Finally in this brief coverage of nested relations, we look at an aggregation which will be
useful to us later. This finds the union of the coordinates in colourCoord and projects on
them only.

let unionCoord be red union of coords;

aggregate <— [unionCoord| in polygons;
And, since the result, aggregate, is a singleton relation (with only the one tuple, containing
the union of all the coordinates), we can rewrite this, raising the inner relation to an ordinary
set, of fields.

aggregate <— [red union of coords| in polygons;

49

aggregate(zcoord ycoord)
3.0 2.0

1.0 2.0
2.0 1.0
2.0 3.0

5.5 Relational Programming

It is beyond the scope of this tutorial to take further the operations on relations and on fields
that we have discussed. It is clear, though, that these operations are only the start of a pro-
gramming language for secondary storage. They provide a formalism, much as arithmetic
provides a formalism for working with numbers, to which must be added programming lan-
guage considerations of procedural and data abstraction, scoping, type systems, etc. These
can all be done by a careful program of examining the fundamental ideas of both fields,
programming languages and databases, and putting them together. We do not discuss this
here.

We only warn the reader of how not to do it, namely by the copout of getting only so far
with the database language, then embedding calls to it in some other, entirely incompatible,
programming language. This imposes on the programmer a conceptual mismatch which
defeats the purpose of a good language. This purpose is to aid thinking, not hinder it. In
the worst case, this mismatch can destroy the advantage of the database language itself for
secondary storage, which is to abstract over looping and away from individual records and
field values. SQL’s dismally retrograde notion of a “cursor” is such a throwback.

Postscript. The limitations of SQL are by now abundantly clear, and we avoid SQL notation
in the remainder of this tutorial. Support for our stance comes even from the heart of the
relational community [19]:

SQL involves so many inconsistencies, exceptions, and special cases that ... it [is]
very difficult to see the forest for the trees.

. the official standard is not particularly easy to read. In places, in fact, it is
well-nigh impenetrable.

The current draft (encompassing both SQL3 and SQL4) is over 1500 pages long,
while SQL/92 was “only” about one third that size.

Unfortunately, many who recognise these defects in SQL have also rejected all relational
concepts and operations, thus throwing out the groundwork for a clean and elegant treatment
of all secondary storage problems, including G.I.S.

Programming for secondary storage is far too important to be left entirely to committees.

6 Spatial Algorithms for Secondary Storage

Always program in the highest-level language, even if

no implementation is on hand—Christopher Strachey

Since we cannot expound secondary storage techniques for all possible spatial algorithms,

we pick two applications which are significant and which illustrate a variety of the methods
available. Polygon overlay generates all possible polygons that result when two polygonal

90

1275

1020

915
867

765

675
595

510

255 V6

255 510 765 1020 1275 255 510 765 1020 1275

Before After

Figure 11: Source of the Overlay Example

subdivisions are superimposed. The Delaunay triangulation and its dual, the Vorono: dia-
gram, identify neighbours of vertices, polygons whose interiors are nearer the given vertices
than are any other points.

The G.I.S. user would expect to find the two constuctions that we discuss in detail
below already built and available. We are not advocating that hey now be required to code
them from scratch. We are illustrating the spatial capabilities of the database programming
language. The G.I.S. user should find these algorithms, already coded, in a library. This
library must be compatible with any programming we may want to do for non-spatial values
and so the interfaces must use the general secondary-storage language. It is best if the
construction also uses this language.

In the following discussion, we work with simple examples. Once the program is written
for the simple example (assuming all exceptional cases, such as vertical lines or collinear
vertices, have been accounted for), it applies to all other cases. This is an advantage of
abstracting over loops. We do not give full program code below, although the reader will see
that the programs are short.

6.1 Polygon Overlay

The simple example for polygon overlay is the two triangles in figure 11 (Before). This
figure shows coordinates along the vertical axis. There are also some coordinates along the
horizontal axis: the figure is x—y symmetrical, so the remaining horizontal coordinates may
be inferred.

ol

TwoTriangles(edgel dirl edge2 dir2) VertFace(edge org dest left right)

c 2 a V1 V2 Al Ul

b V2 V3 Al Ul

c V3 V1 Al Ul

d V4 V5 A2 U2

e Vb V6 A2 U2

f ve V4 A2 U2
Geom(vf Y)
V1 1275 765
V2 255 1020
V3 255 510
V4 675 1275
V5 510 255

V6 1020 255

Al
A2
Ul
U2

QLOAHY2 OO AL T2 AIHRAIHRATO & >0
HHHHEE S WWWWWWNNONONONONONO

A O Q TATHRD R O TR OO AR TR D
H R E E WWWWWWONONONONO N D

Figure 12: Data Structure for the Overlay Example

We must find which edges intersect and where, generate vertices and edges corresponding
to these intersections, and then find the set of polygons corresponding to the overlay. To
save space, we do not go on to find the subset of these polygons corresponding to G.I.S.
procedures such as erase, identity, intersect, or union, nor do we discuss edge elimination
between adjacent polygons, or operations such as update. These follow in the same manner.

The data structure for the two polygons is in figure 12. We see that the two triangles are
initially considered to be on separate manifolds: thus we have two triangular faces, Al and
A2, and two complementary faces, U1 and U2. For this example, we record no coordinates
or other data for these four faces.

6.1.1 Intersecting Edges

To find which edges intersect and where, the easiest approach is to take the Cartesian product
(a special case of join) of the edges, a,b, and ¢, from Al with the edges, d,e, and f, from
A2. We can use a construction on two edges to see if they intersect, and then do linear
interpolation between the endpoints to find out where.

The intersection test for two finite edges described by vertices oi,d; and oy,ds, re-
spectively, checks the two pairs of triangles, o1, d;, 09 versus oi,d;,ds, and 0o, d;,0; versus
09, do, dy. If the triangles in a pair have opposite directions (e.g., clockwise versus counter-
clockwise), and if this is true for both pairs, then the edges intersect somewhere between
their endpoints. Since the area of a triangle is positive if the vertices are processed counter-

52

clockwise, and negative if clockwise, this test just compares signs of areas:

area(01, dyi, 09) X area(oy, dy, d3) < 0

and

area(0, da, 01) X area(oq, do, di) < 0
We showed in section 5.2.1 how to find areas. If any two of the four areas equal zero, the
segments are collinear; to tell if they coincide, a further test is needed to detect if an endpoint
of one segment lies between the endpoints of the other.

The linear interpolation finds equations for the edges,

y — slopexx = constant
and uses the slope for, say, edge o1,d; to find the values of the constant for parallel lines
passing through oy and through dy. (This constant is the y-intercept of the extrapolated
edge.) The interpolation fraction can be found using these two constants and the original
constant for edge o1, d;. This fraction gives the interpolated coordinates of the intersection
point. Here is the domain algebra.

let s be (ydl — yol)/(xzdl — zol); //slope

let c1 be yol — s x zol; //constant 01-d1
let co2 be yo2 — s X z02; //constant 02
let cd2 be yd2 — s x zd2; //constant d2
let f2 be (cl — co2)/(cd2 — co2); //fraction

let x be 02 + (zd2 — z02) X f2; //x-intersect

let y be yo2 + (yd2 — yo2) x f2; //y-intersect

We leave it as an exercise to the reader to do the join, intersection test, interpolation,
and all the necessary renaming. The result we need is

el z0l yol =xzdl ydl s cl e2 xzo2 yo2 xd2 yd2 co2 cd2 f2 T

a 1275 765 255 1020 -—-1/4 17 d 765 1275 510 255 23 6 6/17 675
a 1275 765 255 1020 —-1/4 17 f 1020 255 765 1275 8 23 3/5 867
¢ 255 510 1275 765 1/4 7 d 765 1275 510 255 17 2 2/3 595
c 255 510 1275 765 1/4 7T f 1020 255 765 1275 0 17 7/17 915

(To keep the entries simple, we have used smallest integers for c1,co2, and cd2, which
are used only in ratios.)

(The calculation is complicated by a case not shown here, in which one of the intersecting
edges is a vertical line and has infinite slope. The calculation must be shifted to the other
edge, which necessarily has finite slope.)

We started this calculation with a Cartesian product of every edge on one side by ev-
ery edge on the other. This has quadratic complexity, and is not asymptotically optimal
(although a better algorithm might not beat it in practice on secondary storage unless the
language implementation is very sophisticated). We now discuss briefly the plane sweep algo-
rithm for detecting edge intersections by sorting the endpoints of the edges on z-coordinate
within y-coordinate, hence incurring only O(nlogn) complexity.

We follow the treatment of de Berg et al. [20] (p.25), using an “event queue”, @), which
stores endpoint coordinates of the edges in decreasing order of y, and a temporary workspace,
T, which stores records from () in increasing order of = until two endpoints of the same edge
can be matched up and tested for crossing any other edge.

We must address the issue of “store .. in decreasing order of ” in the relational context.
We cannot explicitly sort a relation, but we can use functional mapping from the domain

93

Y
915

867
995
675

algebra to induce the ordering we need. (Descending order can be induced by using a minus
sign, e.g., order —y.) We also use red max and equiv max to extract the current largest
value. To resolve different points with the same y value, we refine the ordering to include
increasing values of x within decreasing values of y. The code begins

while [| in @) //Q is not empty
{ event <— where (y=red max of y)
and (r=equiv min of z by y)
in Q;
update () delete event;

We here introduce the empty projection list, [|. This produces a nullary relation, one with
no fields. Such a relation is interpreted as a boolean value, using the rather abstract claim
that a nullary relation can have only two states, empty, and not empty, and making the
convention that the former is interpreted as false and the latter as true. The form, [| in @,
can be pronounced “something in).

Q(e, z,y,sie,z',y") holds the name, e of the edge, its starting vertex, (z,vy), its ending
vertex, (z',y") (y > ', and for horizontal lines, z < z'), and the flag, sie, which is s if (x,y)
starts the edge, e if (z,y) ends the edge (in which case, (2',y') are null), and i if (z,y) is an
intersection point discovered in the course of the algorithm.

Here is @) before the first step, in the case of our two triangles. These embody some
special cases, such as vertical and horizontal edges and shared endpoints.

Qe x Yy sie 'y
d 765 1275 s 510 255
f 765 1275 s 1020 255
a 255 1020 s 1275 765
b 255 1020 s 255 510
a 1275 765 e
c 1275 765 s 255 510
b 255 510 e
c 255 510 e
d 510 255 e
e 510 255 s 1020 255
e 1020 255 e
F 1020 255 e

The loop continues with just about one statement per sentence from the algorithm given
on p.26 of [20]:

p <—[z,y| in event; // Not used, but connects to [20]
U <—le,z,y,z',y'| where sie="s" in event; // segments with upper end at p
C <—le,z,y,2',y'| where sie="1" in event, // .. with p as intersection point

L <—[e,z,y,2',y'] in (event[z,y comp z',y'] [z',y'] in T); // segments with lower end at p
UC <—U union (|

UCL <— UC union L;

let ct be red + of 1;

OUT <+le, z,y] where ct>1 in UCL; // Newly found intersection point
update 7" delete L; // remove segments ending
update 7" add U; // insert segments starting

54

Here are @), event, U, C, and L after the first iteration.

Qe x y sie ' y) eventle x y sie AT

765 1275 s 910 255
f 765 1275 s 1020 255

a 255 1020 s 1275 765

b 255 1020 s 255 510 Ue = y 'y
a 1275 765 e d 765 1275 510 255
c 1275 765 s 255 510 f 765 1275 1020 255
b 255 510 e

c 255 510 e Cle = y Yy
d 510 255 e

e 510 255 s 1020 255 Le =z y 'y
e 1020 255 e

F 1020 255 e

This iteration reports (in OUT) d and f as edges intersecting at point (765, 1275). We
knew this already, but the algorithm is formulated to report all intersections of every pair of
edges; a later pass will filter out the significant intersections between the two different edge
sets we might be interested in.

OUT(e =z Y)
d 765 1275
f 765 1275
Finally, T is

!/

Te =« y)
d 765 1275 510 255
f 765 1275 1020 255

No new intersection point must be computed in this iteration, so we defer discussion of
that part of the code, and return to the top of the loop. Here are the results of the second
iteration.

Qe x Yy sie ' y') event(e T Yy sie 'y

a 255 1020 s 1275 765
b 255 1020 s 255 9510

a 1275 T65 e
c 1275 765 s 255 510 Ule = y Y
b 255 510 e a 255 1020 1275 765
c 255 510 e b 255 1020 255 510
d 510 255 e
e 510 255 s 1020 255 Cle = y Y
e 1020 255 e
f 1020 255 e Le = y Y

95

Again, in QUT there is an intersection which is not new.

oUT(e =z Y)

@ 255 1020
b 255 1020
This time, T is

T(T y)
255 1020 255 510
255 1020 1275 765
765 1275 510 255
f o765 1275 1020 255

QLI O

And we will find that the tuples for a and d, which are adjacent in the horizontal ordering
on z and z', intersect at a new point, so we now discuss the code to find this new point.

The code to detect intersecting edges and to find the intersection point was essentially
given above when we looked at the Cartesian product method, and we do not repeat it.
A simplistic formulation of the algorithm just checks the predecessor and the successor of
every record in 7', ordered on z’ within z. Here is the domain algebra statement giving the
predecessor of the x coordinate.

let pz be fun pred of z order z,2;

The other three predecessors are similarly found, then the intersection coordinates, zp and
yp, are found (null if the edge does not intersect with its predecessor). The data that will
be added to () is finally renamed and assigned to new(.

let = be zp;

let y be yp;

let sie be "i";

new@® <—le, z,y,sie, z',y'] in [e,zp,yp,sie,x’,y'] in T}

The same process checks the succesor of each record in T for intersection at (zs,ys), conclud-
ing

new@® <t [e,x,y,sie, ', y'] in [e,xs,ys,sie,x’,y'] in T}
As a result, new@ contains modified tuples for edges a and d, with x and y now the
coordinates of the intersection point, instead of the upper point.
new@(e x ysie y')

a 675 915 i 1275 765
d 675 915 i 510 255

26

We terminate the loop by updating @ to add the new intersection point(s).

update Q add new@);
}

Thus, when the loop enters the third iteration,) has the two new tuples from new(@.
After this iteration, OUT reports the first new intersection.

oUT(e = y)

a 675 915
d 675 915
At the end of the loop, OUT will contain all intersections. Here are the new ones.

oUT(e z= y)

a 675 915
d 675 915
a 867 867
f 867 867
f 915 675
c 915 675
d 595 595
¢ 595 595

We should note that the loop contains four update statements, which each delete or
add only one or two tuples. This can render the loop, which is clearly over all tuples, very
expensive for secondary storage: on secondary storage, we should avoid repeated accesses
to the same block. Hence our point, above, that the quadratic method which takes the
Cartesian product might be better. However, a good implementation will sort the relations
as the domain algebra indicates.

The above code, which is almost as short as the abstract specification of the algorithm
it implements, is still a slight compromise between efficiency for secondary storage and
optimal code for the algorithm as specified for RAM. Instead of processing every tuple in 7',
we need only compare the first and last records of UC with their predecessors and successors,
respectively, in T (or, if UC is empty, then the predecessor and successor records in T' of
C union L, which was deleted from T'). To do this requires more code and possibly more
accesses to secondary storage. It is easily done, though, if we want: use the original () to
give search ranges for any neighbouring record in 7', construct an index field for 7" to give
the ordering, and use the relational algebra to process singleton relations, i.e., individual
records.

57

6.1.2 Generate Vertices, Edges, and Splices

We have now found the following edge intersections.

el e2 w y edgeGeom(e z0 yo xd yd)

a d 675 915 a 1275 675 255 1020
a f 867 867 ¢ 255 510 1275 675
c d 595 595 d 675 1275 510 255
c f 915 675 f 1020 255 675 1275

This also shows the geometry for the relevant old edges, for reference.

Since there are four tuples, we must generate four new vertices, say, V8, V7, V9, and V10,
respectively (the labels, and their order in particular, do not matter, but we keep the coun-
terclockwise order shown in figure 11). Since each edge appears twice in the result, we must
generate eight new edges, say, g, h, %, j, k, [, m, and n. Finally, we must decide how to associate
these new edges with the old, and with the new vertices. We replace each old edge by a triplet:
a — (a,g9,h),c — (¢,i,5),d — (d,k,1),f — (f,m,n). Then we can use the geometry to
string the vertices into these triplets: (a,g,h) — (a,V7,9,V8,h),(c,i,7) — (¢, V9,i,V10, j),
(d,k, 1) — (d,V8,k,V9,I),(f,mmn) — (f,V10,m,V7,n). (This latter step notices, for
instance, that the z-coordinates related to a go, from xo to xd, 1275, 867, 765, 255, and so
the internal vertices are ordered from origin to destination of a as V7 then V8.)

All this gives us the data structure shown in figure 13 for the new, still disconnected,
edges. (We have put them all on a single, new manifold, with face U3, which we can get
away with since disconnected edges form no new faces.)

Our final activity in this section is to generate all the splices needed to construct the
overlay of the two triangles, now that we have the new vertices and edges. First, we must
disconnect the old edges, a,c,d, and f, that have been broken up, at their destination
vertices, since we have decided to add the two new edges for each before these destinations.
The splice pairs are

((a,2),(b,0)), (¢, 2), (a,0)), ((d, 2), (¢, 0)), and ((f,2), (d,0)).

Next, we must connect the new edges with these destinations to the edges we just dis-
connected from. Splice pairs:

((h,2), (b,0)), ((4,2), (a,0)), ((l,2), (€,0)), and ((n, 2), (d,0)).

Finally, we must do the succession of splices that connect the edges around the four new
vertices. We can add edges one at a time to a starting edge: a total of three splices per
vertex.

Because each splice(p, ¢) adds the vertex cycle containing ¢ counterclockwise after p in its
vertex cycle (and the vertex cycle containing p counterclockwise after ¢ in its vertex cycle),
we must be sure to perform these connections in counterclockwise order, so we need to know
what this is at each vertex. An edge, ¢, is counterclockwise from edge p at the same vertex
if the angle from p to ¢ is positive.

V7, for instance, is the destination of ¢ and m, and the origin of ¢ and n. So we must
arrange (a,2),(g,0),(m,2), and (n,0) in counterclockwise order before connecting them.
That is, we must arrange the origins of ¢ and m, and the destinations of g and n, in
counterclockwise order. If we start with the original edge, a, then its new continuation, g,
then follow with m then n, we have the sequence

a.org, g.dest, m.org, n.dest,
where we have abbreviated vertices from VertFace in figures 12 and 13 using the org and
dest fields. Naming the vertices directly, this is the sequence

V1,V8,V10, V4.

o8

NewEdges(edgel dirl edge2 dir2) VertFace(edge

3 S —_~ N . >

S3F T T T e TR IS I I T TS s e TR
WHF WHF WFWHFWHFWHFWHFWHFNONOODNOODNDODNDNODODNONOD
S3ISII ~ TN eI TR IIII TN e eI
HWHFWHFWHFWHFWHFWFWFWNNONOODNODNODNODODNONONO
-
w

org
VT
V8
V9

V10
V8
V9

V10
V7

867
675
995
915

dest
V8
V2

V10
V1
V9
V5
V7
V4

867
915
995
675

left
U3
U3
U3
U3
U3
U3
U3
U3

Figure 13: Data Structure for the New Edges and Vertices

99

right)
U3
U3
U3
U3
U3
U3
U3
U3

To make this a counterclockwise sequence of vertices,
V1,V4,V8 V10.

we need only move V4 from last to second position.
This same process applies to each of the crossing lines, because of the counterclockwise
direction of the original edges, a, b, c and d, e, f around the two triangles. Thus

V1,V8,V10,V4 — V1,V4,V8,V10

V4, Vo, Vi, V2 = V4, V2 VI, VT
V3,V10,V8,V5 = V3,V5,V10,V8
Ve, V7i,Vo, V1 = V6, V1, V7, V9

In terms of edges, the final sequences are

(a,2), (n,0), (g,0), (m,2)

(d,2), (h,0), (k,0),(g,2)
(¢,2),(1,0), (5, 0), (k,2)
(f,2),(5,0), (m,0), (4, 2)
and so the splices we need are

((a,2), (n,0)), ((n,0), (g,0)), ((9,0), (m, 2))

((d,2), (h,0)), ((h,0), (k,0)), ((k, 0), (9, 2))

((¢,2),(1,0)), ((1,0), (,0)), ((2,0), (k, 2))

((f,2), (4,0)), ((4,0), (m, 0)), ((m, 0), (i, 2))

6.1.3 Update the Data Structure

Combining these twelve splices with the eight, above, that precede them, we get twenty-four
substitutions (before), in four cycles of six, for the vertices,

(a,2) = (h,2) | (¢,2) = (5,2) | (d,0) = (,2) | (f,2) = (n,2)
(h,2) = (b,0) | (4,2) = (a,0) | (k,2) = (e,0) | (n,2) — (d,0)
(b,0) = (m,2) | (a,0) = (k,2) | (e,0) = (9,2) | (d,0) = (i,2)
(m,2) = (9,0) | (k,2) = (c,0) | (9,2) = (k,0) | (i2) = (m,0)
(9,0) = (n,0) | (c,0) = (1,0) | (k,0) —= (h,0) | (m,0) = (5,0)
(n,0) = (a,2) | (1,0) = (¢;2) | (h,0) = (d,2) | (5,0) = (£,2)
and a further twenty-four (after), for the faces
(a,1) = (h,1) | (¢,1) = (5,1) | (d;3) = (1, 1) | (f,1) = (n,1)
(h.1) > (5,3) | (1) = (@,3) | (k1) = (€,3) | (n,1) = (d,3)
(b:3) = (m.1) | (@,3) = (k.1) | (e3) = (g.1) | (d,3) = (i,1)
(m,1) = (9,3) | (k,1) = (¢;3) | (9,1) = (k,3) | (31) = (m,3)
(9,3) = (n,3) | (¢,3) = (1,3) | (k,3) = (h,3) | (m,3) = (j,3)
(n,3) = (a,1) | (1,3) = (¢, 1) | (h,3) = (d,1) | (5,3) = (/;1)

D
]

The first twenty-four will be produced as a relation,

subst(e d € d)
a 2 h 2
h 2 b 0

and the second twenty-four can be derived from this by reducing d and d' by 1 modulo 4,

a 1 h 1
h 1 b 3

Applying these substitutions to figures 12 and 13, we get the final data structure for the
overlaid triangles shown in figure 14. The faces are labelled for ease of identification: Q)i for
the three quadrilateral faces, and 7% for the two new triangles.

The relational code for generating the vertex and face topology in OverlaidA is based on
join of the source relations, TwoTriangles (figure 12) and NewFEdges (figure 13), with subst
and with subst modified by domain algebra. Since not every tuple is changed (although
most of them are for an overlay: in the example, only 8 of 56 tuples are not changed by the
substitutions), it is (perhaps) best to do an update.

First, we separate the vertex topology from the face topology in the combined source
relations

VertTopol <— where dl mod 2 = 0 in TwoTriangles
union
where d1 mod 2 = 0 in NewFdges;
FaceTopol <— where dl mod 2 = 1 in TwoTriangles
union
where d1 mod 2 = 1 in NewFdges;
Next, we apply subst to the vertex topology, inserting before
update VertTopol using [el, d] join e, d] subst change el <—¢'; d1 <—d';
and we apply the modified subst to the face topology, inserting after
let D be if d =0 then 3 else d — 1;
let D' be if d = 0 then 3 else d' — 1;
update FaceTopol using [€2,d2 join e, D] subst change e2 <—¢';d2 <—D’;
The result is the union of these updated topologies.
OverlaidA <— VertTopol union FaceTopol,

We have worked this simple example of two triangles thoroughly. The relational code
follows our workings, and is then applicable to any overlay of two subdivisions with any
number of polygons or arcs.

Postscript. Considered as an operator, overlay takes two subdivisions (usually sets of con-
nected polygons) and produces a subdivision. The operator is commutative and associative:
a redop. Thus it can be coded as an abstract data type on nested relations, and used for
aggregation in domain algebra red and equiv expressions.

The spatialUnion operation, which is overlay followed by removal of the internal edges, is
also a redop and can also be aggregated by red and equiv expressions. So are intersection,
symmetric difference, etc.

6.2 Map Overlay

Geography differs from geometry in that it associates non-spatial fields (“attributes” in GIS
terminology) with spatial figures. For example, the triangles in section 5.4 might be coloured.

61

OverlaidA(edgel

S o570 0w J 0 TR m e UTO S TN D e O e TU e a TR AT O T A S e o D

dirl edge2 dir2) VertFace(edge
0 j 2 a
2 a 0 b
0 h 2 c
2 b 0 d
0 b 2 e
2 c 0 f
0 n 2 g
2 d 0 h
0 l 2 i
2 e 0 7
0 e 2 k
2 f 0 l
0 m 2 m
2 a 2)
2 n 0
0 g 0
0 k 0
0 g 2 Geom(uf
2 d 2 Vi
2 h 0 V2
0 k 2 V3
2 c 2 V4
2 l 0 Vb
0 i 0 V6
0 m 0 \
0) 2 V8
2 f 2 V9
2 j 0 V10
1 i 1
1 f 1
1 e 1 T1
1 l 1 T2
1 c 1 Q1
1 b 1 Q2
1 h 1 Q3
1 d 1 Uld
1 a 1
1 n 3
3 d 3
3 g 1
1 l 3
3 e 3
3 f 3
3) 1
1 h 3
3 b 3
3 c 3
3 k 1
1 j 3
3 a 3
3 m 1
3 k 3
3 1 3
3 m 3 62
3 g 3

Figure 14: Final, Overlaid, Data Structure

org
Vi
V2
V3
V4
Vb
Vo6
v
V8
V9

V10
V8
V9

V10
v

1275
255
255
765
510

1020
867
675
595
915

dest
%
V3
V9
V8
V6

V10
V8
V2

V10
Vi
V9
V5
%
V4

765
1020
510
1275
255
255
867
915
595
675

left
T1
Q1
Q1
T2
Q2
Q2
Q3
Q1
Q3
T1
Q3
Q2

T2

right)
U1
Ul
Ul
Ul
Ul
Ul
T2
Ul
Q2
Ul
o1
Ul
T1
Ul

Although nested relations can be useful, in this section we do not use them, but simply add
fields to the Geom relation in the quad-edge representation.

Maps are also represented in layers, each specializing in a different aspect of the geog-
raphy, such as topography, waterways, roads, political boundaries, agricultural products,
climate, etc. The map overlay example we discuss in this section considers the horizontal
triangle (A1) (see figure 11) of the previous section to be one element of a triangulated
irregular network (TIN) in a layer giving the heights of land, and the vertical triangle (A2)
to be an element of a climate layer giving temperatures. We are interested in overlaying
these to study correlations between altitude and temperature.

We complicate the problem, for interest, by associating heights with the vertices of the
subdivision in the topographic layer, and temperatures with the faces in the thermal layer.
The Geom relations of the quad-edge representation initially are

GeomTopog(vf =z Y h) GeomTherm(vf y)

V1 1275 765 50 V4 765 1275

V2 255 1020 305 V5 510 255

V3 255 510 254 V6 1020 255

Al 595 765 A2 765 595 20
Ul 00 U2 oo 00

The coordinates for the faces, Al and A2, are those of the centroids. These are found
using Stokes’ theorem (section 3.4). We will also need Stokes’ theorem to find the gradients,
so we outline the results here. First, we must combine GeomI with the corresponding
VertFace relation from the quad-edge representation to give edgeSet.

edgeSet(edge Xorg Yorg Horg Xdest Ydest Hdest)
a 1275 765 50 255 1020 305
b 255 1020 305 255 510 254
c 255 H10 254 255 765 50

Then the four quantities we shall need (plus the area, which we repeat from section 3.4)
are

quantity integral domain algebra

area, A [[4 dzdy red + of Xorgx Ydest - Yorgx Xdest

z-centroid, T | [[4xdxdy red + of (XdestA\2 + Xdestx Xorg + XorgA2)x(Ydest — Yorg)/area
y-centroid, § | [[,ydzdy red + of (YdestA2 + Ydestx Yorg + Yorgwedge2)x(Xdest — Xorg)/area
z-gradient, hy | [[,0h/0xdzdy red + of (Hdest + Horg)x (Ydest — Yorg)/2/area

y-gradient, hy | [[,0h/0ydxdy red + of (Hdest + Horg)x (Xdest — Xorg)/2/area

Using these, we calculate the two components of the mean gradient for A1, which we can
subsequently use to find the mean height of A1l and of any polygon with the same gradient.
The mean height is the height of the centroid of the polygon, as computed using the mean
gradient. o o

h(z,y) = h(z1,y1) + he X (T — 21) + hy X (T — 11)

for any point, (x1,y;), whose height is related to the height of the polygon, e.g., one of the
vertices.
The relevant parts of the Geom relations are

GeomTopog(vf =z Y hy hy h) GeomTherm(vf =z y 1)
Al 595 765 —459/8/255 51/2/255 203 A2 765 595 20

63

These preliminaries convert the topographic layer to one with the height field associated
with the faces. We can now execute the overlay of the previous section to get combined faces
with two fields each, h and ¢. (Actually, we keep the two components of the gradient as well,
because they are used to find the mean heights of the faces.)

Geom(vf x Yy ha hy h t)
T1 1016.12 723.61 —459/8/255 51/2/255 104.1 20.6
T2 723.61 1016.12 20
Q1 752.33 752.33 —459/8/255 51/2/255 166.33 20
Q2 431.56 769.3 —459/8/255 51/2/255 240.2 19.3
Q3 769.3 431.56 20

We see that the thermal value, 20, is associated with the mean height, 166.33. In the above
we have cheated by introducing two new thermal values, 20.6 and 19.8: to give ourselves more
than one thermal value to correlate with the three mean heights, without complicating the
geometry of our simple example, we have supposed that a temperature of 20.6 was measured
to the right of A2, and that a temperature of 19.3 was measured to the left. Now we can
go on to show a negative correlation of temperature with mean height if we want, a drop of
approximately one Fahrenheit degree for 200 feet of altitude.

6.3 Delaunay and Voronoi Diagrams

A set of vertices has a Voronoi diagram which is a subdivision of the plane into polygons,
each containing all points nearer to one vertex than to any other. Figure 15 shows this
diagram (dashed lines) for the four vertices discussed in section 4.2. (We will change the
coordinates to suitable integers.) The solid lines in this figure are the triangulation of the
four vertices, called the Delaunay triangulation, that is dual to the Voronoi diagram. The
faces shown pertain to the triangulation: the Voronoi diagram has four faces corresponding
to the four vertices.

We will find the Delaunay triangulation first, then proceed to its dual, the Voronoi
diagram. We follow the dynamic algorithm given by Guibas and Stolfi [27], which supposes
that the Delaunay triangulation has been found for a set of points, to which one more point
is to be added and the new triangulation found. This algorithm has two parts: finding the
triangular face that contains the new point (a special point-in-polygon search); and then
adjusting this face so the new point is included in the triangulation. (The overall cost of
adding n points this way is O(n?), since the point-in-polygon search is linear and must be
repeated n times. This is more expensive than the divide-and-conquer algorithm for the
static problem in which all n points are initially known.)

In figure 15, we see that the horizontal edge connecting V'1 with V2 could equally be
replaced with a vertical edge connecting V'3 and V4: the Delaunay triangulation is not,
in this example, unique. If V3 and V4 were a little closer together, the vertical edge, not
the horizontal one, would be in the Delaunay triangulation, which is defined to consist of
triangles with the largest possible internal angles. A Delaunay edge connects two vertices if
the smallest circle containing those vertices contains no other vertex.

The process of changing this edge from horizontal to vertical we call swapping.

When we insert a new vertex, V5, in the diagram, we connect it to each of the vertices,
V1,V2,and V3, of the triangle it lands in. Then we must check the opposite edge in each of
these new triangles to see if it should be swapped in order to meet the smallest-circle test.
Of these three opposite edges, a, b, and ¢, only a must be swapped, as we see in the After
version in figure 15.

64

Before After

Figure 15: Voronoi and Delaunay Diagrams: Inserting V5

We also see that the Voronoi edges are the right bisectors of the Delaunay edges, as must
be the case to satisfy the definition of the Voronoi diagram.

6.3.1 Point-in-Triangle

Finding which triangle contains a vertex is a special case of finding which convex polygon
contains the point, and the more general problem is as easy to code. If every angle subtended
at the vertex by the edges is non-negative, the vertex is in the polygon or on its boundary,
otherwise it is not. (This is equivalent to the assertion that the vertex is always to the left
if we negotiate the convex polygon counterclockwise: the mathematics is identical.)

The sign of the angle is the sign of the determinant, x1y2+Zoyp +TpY1 — T1Yp — T2Y1 — TpY2,
formed by the edge, ((x1,v1), (z2,2)), and the vertex, (x,,y,), where the edge direction is
counterclockwise around the polygon. (This determinant is twice the area of the triangle
formed by these three vertices, positive if the vertex order is counterclockwise.)

The relation for the example can be obtained by relational algebra from the data structure
for the original diagram.

pip(face xy y1 T2 Y2 TR Yp) det
F1 18 10 2 10 10 8 32
F1 2 10 10 2 10 8 48
F1 10 2 18 10 10 8 48
F2 18 10 10 18 10 8 80
F2 10 18 2 10 10 8 80
F2 2 10 18 10 10 8 -32

The domain algebra to produce det is
let detbe x1 X Yo + T2 X Yp +Tp X Y1 — 1 X Yp — T2 X Y1 — Tp X Yo

65

and then we find the face containing the point
face where (equiv and of det>0 by face) in pip
(The general point-in-polygon is more complicated. A non-convex polygon containing the
vertex can nonetheless have some negative values of det, so we must compute the angle as
well, and take the total of the signed angles. If this total is 27, the vertex is in the polygon.
Other algorithms avoid the expense of computing inverse trigonometric functions, but for
secondary storage applications, this expense is relatively unimportant.)

6.3.2 Delaunay Edges and Swapping

Now that we know that vertex V5 is in the lower triangle, F'1, we can construct the three
edges and connect them from V5 to the three vertices, V1,V2, and V3. We generate
edges f,g, and h, originating at V5 and destined to V1,V2, and V3, respectively. At V1,
(f,2) is counterclockwise after (a,0), so the splice needed is ((a,0), (f,2)). At V2 we splice
((b,0),(g,2)), and at V3 we splice ((c, 0), (h,2)).

For the new edges to meet at V'5, we splice them in counterclockwise order, ((f,0), (g,0))
and ((g,0), (h,0)).

The first three of these five splices are independent, and so each generates two sub-
stitutions. For example, ((a,0),(f,2)) gives ((a,0) — (f,2)) and ((f,2) — (a,0)). The
last two splices are cyclic, and produce a cycle of three substitutions, ((f,0) — (g,0)),
((g,0) — (h,0)), and ((h,0) — (£,0)).

We do not apply these substitutions yet. More work must be done first. We must check
each quadrilateral that could be produced by removing one of the original edges, a, b, or c to
see if this edge should be swapped from its present pair of vertices to the other two vertices
of the quadrilateral. Only a is a candidate in this example. Here is the InCircle test to see
whether a should continue to connect V1 and V2, or should be swapped to connect V4 and
V5.

The predicate, InCircle(V1,V4,V2,V5), for vertices V1,V4, V2, and V5, with the first
three forming a counterclockwise triangle, is true iff V5 is inside the circle on V'1,V4, and
V2. Guibas and Stolfi [27] use the positiveness of the determinant

Ty ys 1 1 oy 1 1 oy 1 1 oy 1
210 %2 Yo 1| —2z4| T2 Yo 1 |+20| Ta Ya 1| —25] 28 ys 1
r5 Ys 1 r5 Ys 1 T5s Ys 1 To Y2 1

as this test, where z; = x2 + y2.

If InCircle(V1,V4,V2,V5) is true, then the opposite vertices V4 and V5 are closer to
each other than the opposite vertices V1 and V2, and so V4 and V5 form the Delaunay edge.
If InCircle(V1,V4,V2,V5) is false, V1 and V2 form the Delaunay edge. In this example,
the determinant is 480, so InCircle(V1,V4,V2,V5) is true.

Accordingly, we must swap a by disconnecting it from V1 and V2 (splices ((d, 0), (a, 0))
and ((g,2), (a,2))), and then connecting it to V4 and V5 (splices ((e, 0), (a, 2)) and ((f,0), (a,0))).
Combining these four splices with the previous five gives twelve substitutions: a cycle of

six, a cycle of four, and a cycle of two.

((a,0) = (f,2)) | ((g,2) = (6,0)) | ((c,0) — (h,2))
((f,2) = (d,0)) | ((b,0) = (e,0)) | ((h,2) = (c,0))
((d,0) = (f,0)) | ((e,0) = (a,2))

((f;0) = (h, 0)) | ((a,2) = (9,2))

((h,0) = (g,0))

((9,0) = (a,0))

Applying these substitutions in the way we did for polygon overlay in section 6.1.3, we
get the topology of After in figure 15.

6.3.3 Voronoi Diagram

Since this topology includes the dual, both the Delaunay triangles (solid lines in figure 15)
to the Voronoi polygons (dashed lines) are already present. All we must do is change the
direction values, so that the vertices of the Voronoi diagram (faces of the Delaunay diagram)
have even numbered directions and the faces have odd numbers. We do this by subtracting
1 from the odd-numbered directions, and adding 1 to the even.
let dir!’ be if dir! mod 2 = 0 then dir! + 1 else (dir! — 1)mod 4;

(We do this for both dir! and dir2, then we rename both back again.) Figure 16 shows the
Delaunay (before) and the Voronoi (after) topologies. Figure 16 also shows the relationships
between edges, vertices and faces, VertFace, for both diagrams. We can see that the exchange
of vertices and edges is trivial.

The remaining task is to calculate the coordinates of the Voronoi vertices (formerly the
faces of the Delaunay diagram; we shall continue to label them F'%, for consistency with
figure 15). Each vertex, except the vertex at infinity, is on the right bisector of all three
edges of the triangle it belongs to. (That is, it is the circumcentre of the three vertices of
the triangle.) We need to compute the slope, o, and y-intercept, x, for the right bisector of
each edge connecting to the internal vertex. Then we must solve these equations in pairs to
get the coordinates of their intersections.

let o be (z —2')/(y' — v);
let k be (y+4')/2 — (2 —z) x 0/2;

! !

e z = y y o kK
a 10 10 8 18 0 13
g 10 2 8 10 4 -15
h 10 10 8 2 0 5
f 10 18 8 10 -4 65

let x be (k' — k)/(0c — 0);
let y be z X 0 + k;

e ¢ o o kK K zx y
a g 0 4 13 -15 7 13
g h 4 0 <15 5 5 5
h f 0 -4 5 65 15 5
f a -4 0 65 13 13 13

In general, solving these equations at each internal vertex will give us three pairs of
equations for each circumcentre. Ideally, all three will give the same result, and relational
duplicate elimination will return just one tuple. In practice, roundoff errors may cause the
results to differ, in which case we can use the average (and we can write code to find to how
many significant figures they agree and so tell us the precision of the answers).

With these results, we have the third, geometrical, component of the data structure,
which is common to both Delaunay and Voronoi.

67

DelaunayA(edgel dirl edge2 dir2) VoronoiA(edgel dirl edge2 dir2)
a a

QAR TR0 T 0 Q2 0 LD T TN QALY AN HRITD Q
WWH WHWWHWHFWWHRFREFRENONONNNNODONNODOOO
QO T HRTQ T2AQ DL TOATTOQ TN ALIHRALO R
H W WWWHWWHRHWHRWERHFREFRNNONONONNINONOO OO
QAR TR0 TcQ 2T LTI AU HRITQ 2 %
QAHRO T HRTQ T2 Q AT ATTOR TDDD AR R
NN NONNONONOCOO R WHWR WRF H HQWkHF W W w

NDNNONONNNODONODNNNDDODODDODWH WHFWWWWHFFWWHRFEFH

o

a a
DVertFace(edge org dest left right) VVertFace(edge left right dest org)
V5 V4 Fo6 F5 V5 V4 F6 F5
V2 V3 F3 Ul Vs V2 F3 Ul
V3 Vi F4 U1 Vb V3 F4 Ul
Vi V4 F5 Ul Vs Vi1 F5 Ul
V4 V2 Fo6 Ul V5 V4 F6 Ul
V5 Vi1 F5 F4 V5 V4 F5 F4
Vb V2 F3 Fo6 Vb V4 F3 F6
Vb V3 F4 F3 V5 V4 F4 F3

SO Q0 o
S R0 Q0 o

Figure 16: The Dual Topology of Delaunay and Voronoi

68

Geom(vf = y)

Vi 18 10
V2 2 10
V3 10 2
V4 10 18
Vs 10 8
F3 5 5
F4 15 5
F5 13 13
F6 7 13

Ul oo oo

6.4 Polygon Skeleton by Divide-and-Conquer

The Delaunay triangulation algorithm of the previous section can run at best in time linear
in the number of vertices already present when the new vertex is inserted. (This linear cost
is incurred by finding which Delaunay triangle the new vertex is in; subsequently finding
the new Delaunay edge is independent of the size of the diagram.) Thus, to build an entire
Delaunay triangulation of N points will cost O(IN?) operations using this method.

Such a circumstance is a potential candidate for a generic technique in computer science
called “divide-and-conquer”, which is good for this tutorial to introduce. The idea is that
if a problem costs worse than a linear number of operations to solve, and if the solution to
two (or more) small parts of the problem can be combined into the solution of the merged
problem in linear time, then an improvement on the super-linear solution is to divide it into
two, solve each of the two, and merge the solutions. And how do we solve each of the two
smaller problems? Why, by dividing them each into two and merging, and so on, recursively.

A simple illustration of this procedure is sorting, which has exactly the same divide-and-
conquer analysis that Voronoi diagrams will turn out to have. A super-linear sort algorithm,
which is quadratic in cost, is the sort in which we make a pass of the data to find the smallest
element (at linear cost), then make a second pass of all but this element to find the next-
smallest, and so on, for one pass for each element. The cost of this is plainly O(N?), and
indeed N?2/2, just like the Delaunay triangulation. However, two sorted sets of data can be
merged into a single, combined sorted set in linear time, so divide-and-conquer decomposes
sorting into a tree of merges, with the root of the tree being the result of merging its two
descendents, each of which is a merge of its two descendents, and so on until a level is reached
in which the sets of data are so small that sorting each one is trivial (for instance, each is
just one element). So the cost is in the logo (V) levels of merge of the N elements, with each
level of merge costing N. The total cost is O(N log N) instead of O(N?).

In this section, we will do the same thing for Voronoi diagrams. The details are rather
more complicated than sorting, and so provide a test of the programming operations for
secondary storage that we have been illustrating. We could apply divide-and-conquer directly
to Delaunay triangles by splitting the problem on either side of some z-value and zipping
the two solutions together by building a sequence of new Delaunay edges for increasing y-
values [27]. Instead, we will tackle a somewhat more difficult, related problem, which has
useful applications in mapmaking, particularly in label placement.

This is the problem of finding the skeleton, or medial azis (or “anti-crust”) of a polygon—
or, for that matter, of a whole set of polygons. It can also be called a Voronoi diagram
problem, because the skeleton is the set of points in the interior of the polygon which are
equidistant from the nearest parts of the polygon boundary. Sometimes the right bisector
of the line connecting two points is part of the skeleton, just as in the point-point Voronoi

69

diagrams we have been constructing. In addition, however, the skeleton can include lines
which are equidistant from two edges in the polygon boundary—the bisector of the angle
between those two edges. Or it can include lines which are equal distances from a vertex
and from an edge of the polygon boundary, and such lines are no longer straight.

Because of the added involvement of edges in this variant of the equi-distance problem,
the dual to the Voronoi diagram is not a simple Delaunay triangulation, so we will build the
Voronoi diagram directly.?

Polygons come in various classes, and we should clarify which classes of polygon arise
in mapmaking. General polygons include simple polygons, which in turn include convex
polygons. The edges of convex polygons all meet at vertices with interior angles less than
two right angles. Simple polygons allow “reflex” vertices, at which the interior angle exceeds
two right angles: such vertices give rise to the point-point and point-edge components of
the skeleton mentioned above. Maps can have both convex and simple polygons. They can
also contain the kind of non-simple polygon that has “holes” in it, for example, a lake with
islands, or a contour containing higher (or lower) contours. (The second kind of non-simple
polygon, in which the edges of the same polygon may cross, is less usual in maps.)

To get started, we can inspect the skeleton of a convex polygon, which is composed
entirely of parts of the bisectors of angles between various edges of the polygon. From
figure 17 we can see that a convex polygon of N edges (or vertices) can have N — 2 skeleton
vertices. Each of these six vertices is numbered in the figure, and the corresponding number
is also associated with the polygon edge eliminated by the vertex. The first vertex is the
centre of the smallest inscribed circle touching at least three edges, the second is of the
next-smallest, and so on, until the last vertex accounts for the three remaining edges (which
need not be adjacent), hence N — 2.

(To stress that the skeleton of a polygon is a generalized Voronoi diagram, and that the
algorithm we will discuss is based on the algorithm for point-point Voronoi diagrams, the
figures use “Voronoi” to label the skeleton edges.)

In figure 18, one of the vertices has been made reflex. We see that the reflex vertex
causes an additional skeleton vertex, and so a number has been assigned to the reflex vertex,
and the corresponding number to the skeleton vertex that eliminates it. Thus, a polygon
with N edges and r reflex vertices has up to N + r — 2 skeleton vertices. Euler’s formula,
(v+ f = e+ 2) relating numbers of vertices, v, faces, f, and edges, e, tells us therefore that
the skeleton can have up to 2(N + r) — 3 edges. (Smaller numbers occur if two or more
skeleton vertices coincide, which they do in the case that the circle centred there touches
four or more polygon edges.)

The general algorithm to find skeletons will thus consider both edges and reflex vertices
to be elements of the polygon. Since the number of skeleton vertices is linear in N and r,
we could hope for an algorithm of linear complexity. Such an algorithm exists for simple
polygons ([12]). For polygons with holes, however, we can presently do no better than the
O(N log N) divide-and-conquer algorithm that is the topic of this section.

We do not need closed polygons to make such constructions, and the merge part of the
algorithm combines pairs of open “polygons”. We may limit our attention to the skeleton of
one side only of such a polyline, namely the side that will be the inside of the final polygon.
A terminal vertex of such a polyline is considered reflex. Its contribution to the skeleton is
the line orthogonal to the edge it terminates, just as the separators of vertex 4 in figure 18
are orthogonal to the two edges it connects.

2An approzimation to the medial axis of a polygon can be found by triangulating the polygon (a Delaunay
triangulation of its vertices: O(N log N)) then using the centres of circles inscribed in each triangle as skeleton
vertices.

70

Polygon Voronoi

Figure 17: Skeleton of a Convex Polygon

Polygon Voronoi

Figure 18: Skeleton of a Reflex Polygon

71

perpendicular

line .

bisector - A"'»._Ol

edge to edge

point to edge

Figure
\Voronoi

point to point

b03

Figure 19: Skeleton of a Left Side

Figures 19 and 20 show the left and right sides, respectively, of the merge that we will
now demonstrate. (They are related in structure so that we can easily imagine what the
skeleton of the other side of each looks like.) These two figures will be merged to form a

further portion of a polygon, which is still not a complete polygon.

In the next two sections we will, respectively, introduce the operations needed in skeleton
construction by building the skeleton of the left portion (figure 19), and then go on to

illustrate the merge process.

6.4.1 Preamble to the Merge: the Basic Calculations

The data structure for the two-edge part of the polygon shown in figure 19 is

QuadFEdge VertFace
(edgel dirl edgel dirl) (edge org dest left right)
1 0 1 0 1 0 b12 U U
1 2 2 0 2 b12 3 U U
2 0 1 2
2 2 2 2 Geom
2 1 1 1 (vf x Y)
1 1 1 3 0 4800 6600
1 3 2 3 b12 1200 3600
2 3 2 1 3 2400 3000

Here, the edges (1, 2) and the reflex vertices (0,3), are listed as labelled in the figure. The

unlabelled vertex connecting edges 1 and 2 is listed as b12.

72

12 2’3

0111 3141

Figure
\Voronoi

Figure 20: Skeleton of a Right Side

Without showing the code, we extract from this another representation of the elements
needed for the skeleton calculation, the reflex vertices and the edges.

Reflex Edges

(el 1y 1ry) (el by by €x ey dy dy)
0 4800 6600 1 4800 6600 1200 3600 —6 —5
3 2400 2000 2 1200 3000 2400 3000 2 -1

Here, we use special field names for the coordinates of the reflex vertices, (rs,), and of the
beginnings, (b;,b,), ends, (es,e,), and directions, (d;,d,), of edges. The latter are needed
because the Voronoi diagram has semi-infinite edges, with only one end point. (For finite
edges, the direction can be derived from the beginning and end vertices:

dy = ey — by;dy =€y, —by.)

Note that (ds, dy) could be replaced by a single slope, dy/d,, but that this gives problems for
vertical lines. Because we use two numbers for direction instead of the slope, we have some
leeway in signs and in relative sizes. We choose the signs of the direction so that the point
(by + dg, by + dy) is on the line (i.e., “after” the beginning vertex). Also, for the example,
we choose the values of d, and d, to have a greatest common divisor of 1, but this is not an
essential step.

(We will also need a further relation in the quad-edge data structure for semi-infinite
edges.)

We will need five kinds of calculation for the merge step in the next section, and we
can practice them here by partially constructing the Voronoi diagram on the right of this
left-hand side. (That is, to the right as we look at figure 19. The edges in the quadedge
representation and in Edges are directed downwards, so that the Voronoi diagram is on their
left.)

The first calculation is to find the semi-infinite edges starting at the reflex vertices and
orthogonal to the edges they terminate. The beginning vertices of these edges are the reflex
vertices themselves, and their directions are found from the directions of the orthogonal

73

edges by negating one component and then swapping. In fact, in both cases, we rotate the

direction components using
0 —1 dy
1 0 dy

because, for 0, we rotate 1 clockwise from its beginning vertex, while, for 3, we rotate 2
counterclockwise from its end vertex. So we get the following two semi-infinite edges.

Edges
(el b, by e, e, dy dy)

01 4800 6600 5 —6

23 2400 3000 1 2
The second calculation is to bisect the angle between 1 and 2, i.e., at vertex b12. Since
the bisector, which will also be a semi-infinite edge, starts at the common vertex, (2, 6), we
reverse the representation of edge 2, which for this calculation means negating both d, and
dy. The following is true about the sine, s, and the cosine, ¢, of the angle of the line bisecting
the angle between two edges with angles of sines s; and s, respectively, and cosines ¢; and

Cco, respectively.
cC —S cC —S _ CiT —851 Cop —So
s ¢ s ¢ st oo Sg C2

1-2s2=2c2—-1=c*—5> = cicy — 5159
2cs = S1co+ €159

This tells us that

and we can solve the first for both ¢ and s?, and use the second to find the relative sign of s
and c. The absolute signs of the direction components for the bisector are given by requiring
that the bisector lie to the left of the two edges, in terms of their original directions. That is,
going from a point on 1 to a point on 2 to a point on the bisector should be a counterclockwise
motion. These points can be given by the displacements from the common vertex, v, by
the respective directions, normalized so they lie on a unit circle centred at v and so are not
collinear. Since ¢; and s; are just the normalized values of d, and d,, respectively, for each
line, s = 1 and 7z = 2, the calculation requires only the ability to extract square roots and
to find a determinant, once the different values of d, and d, have been combined for edge 1
(negated) and edge 2. As a result, we add the following semi-infinite edge.

Edges
(el by by e; ey dy dy)
12 1200 3600 0.9933 0.1153

The third calculation finds the intersection of two semi-infinite edges, for example the
bisector, 12, we just found, and the orthogonal, 23, at 3. Instead of the method used in
section 6.1.1 for finite edges, we first find the intersection point as if the edges were infinite
straight lines, then we check if this intersection point lands on the portion of interest. For
this, we express the equation of each line in terms of its beginning point and direction.

0= —dy(zr —by) +ds(y —by) = —dyx + dyy +¢

where ¢ = dyb, — dyb, (which is a 2x2 determinant). The solution of two such equations
uses the three further 2x2 determinants contained in

_ldy 1dy 1C
_2dy ody oC

74

where prefix subscripts distinquish the two lines from each other. The point common to the
two lines is
1dg 2€¢ —2 dg 1C — 1€ ody +2 € 1dy

Cp = ,Cy =
- ldy 2d:c +2 dy ldav Y - ldy Zda: +2 dy ldz

It is then easy to check whether (c;,c,) is on the interesting portion of either semi-infinite
edge: for each line, (¢; — by, ¢y — b,) will have the same signs as (d,,d,). For the example of
lines 12 and 23, the result is (c,, ¢,) = (2792, 3780), and we can update the entries in Edges
with this as a new end vertex for 12 and 23.

Edges
(el b, by €y ey d, dy)

12 12‘00 36.00 27'92 37.80 0.9‘933 0.1.153
23 2400 3000 2792 3780 1 2

(This calculation of intersection points will also work for finite edges. We must only conclude
with one further test, that each component of (¢; — by, ¢, —by) is less than the corresponding
component of (e, — by, e, —by).)

The Voronoi diagram of figure 19 now has one triangle, bounded by edges 2, 12 and 23.
This contains all points that are closer to 2 than to any other element. We call the new
vertex b13.

The fourth calculation, which is needed to find the the Voronoi edge 13, separating
edge 1 from vertex 3, involves the curved line that is equidistant from a straight edge and
a vertex. We normalize the problem by rotating the coordinate axes so that the straight
edge is parallel to the new X-axis, and translating them so that the vertex is on the new
Y-axis, with the new origin halfway between the two. We will call the straight edge the
directriz and the vertex the focus. The Y-separation between the two we call the semi-
latus rectum, or 2/ A, with the parameter, A, that we will soon see the use for. In the new
coordinate system, a point, (X,Y), on the curve we are trying to find, will be distance

Y + 1/A from the directrix and distance \/X 24+ (Y —1/A)? from the focus, and these two

distances are equal, by our requirement. (In particular, the origin will be on the curve.)
Solving (Y + 1/A)? = X% + (Y — 1/A)? gives Y = AX?, the equation of a parabola. (Of
course, one of the definitions of a parabola is the locus of points equidistant from a straight
line and a given point, just our requirement.)

So the fourth calculation will be first to determine the parameter, A, for the parabola
defined by elements 1 and 3, then to find where it intersects the semi-infinite edge 01. To
find the intersection of a parabola with a straight line, we also transform the line into the
favoured coordinate system for the parabola, and solve the quadratic equation. (In this
case, line 01 is vertical in the rotated coordinate system, and so has the simple equation
X = constant, which is particularly easy to solve.) Transforming the line means rotating
and translating the coordinates of its beginning vertex, and rotating its direction. (Since
a direction is a difference between vertices, it is invariant under translation.) We will also
rotate and translate the beginning vertex, b13, of the parabola, because we will eventually
need to confirm, as we did with intersecting straight lines, whether the intersection point is
on the part of the parabola that interests us.

Rotating the coordinate axes is easy, given the direction, (d,,d,), of the directrix: the
rotation matrix consists of only these two quantities. The only subtlety is to rotate in such a
way that the focus is above the directrix in the new Y direction. If the vertices (b;, by), (€5, €y)
and (fy, fy) (the latter pair gives the focus) are in counterclockwise sequence, we rotate one

75

way, otherwise the other way. Here, these are the beginning and end vertices of the directrix,
1, and the coordinates of the focus, 3. These are the vertices whose coordinates must be

rotated.
(1bX 1€x 3fX) — (dm dy) (lbw 1€g 3f:v) —
by ey afy _dy dy 1by 1€y 3fy
—6 -5 4800 1200 2400 —61800 —25200 —29400
5 —6 6600 3600 3000 —15600 —15600 —6000

From this we have the semi-latus rectum, 2/A =| —15600 + 6000 | = 9600. (Notice that by
using d, and d, directly, instead of the cosine and sine, respectively, we have also scaled the
coordinate system. For the sake of keeping integer values, we allow this scaling, but must
remember to scale back again, by a factor d2 +d. = 61, when we reverse the transformation.)
We also have the translation needed, which is by a distance (vx,vy) = (fx, (by + fv)/2) =
(—29400, —10800).

Now we rotate (and scale) and translate the beginning vertices of line 01 and of the
parabola 13. (Note that in this case, we already know the result of the former, because it is
also the beginning vertex of line 1, the directrix.)

01bx 13bx 1dy 1dy —Ux 01bz 13bg
otby 13by = - ldy 1dy —vy 01 by 13by =
1 1 1 1 1 1 1

—6 =5 29400 4800 2792 —32400 —6254
5 —6 10800 6600 3780 | = | —4800 2082
1 1 1 1 1 1 1

And we rotate (and scale) the direction of line 01 (which in this case is orthogonal to the
directrix, 1).

(38)- (5%) () (3 D(%)-()

OldY N - 1dy 1d;¢ 01dy - 5 —6 —6 o 1

where we replaced 61 as the result for o;dy by 1 as a (valid) simplification. Thus, the equation
for the line 01 is

0 = - OidY(X - OibX) + 01dx(Y - o1by) = —X —_ 32400

Combining this with the equation for the parabola, Y = AX? we have Y = 32400?/19200 =
54675 so the intersection point is (—32400,54675) in the transformed coordinates.

The part of the parabola that interests us must have a smaller X value than that of
its beginning vertex, (-6254,2082). We know this because we are building the skeleton to
the left of the original edges, including the directrix, which we traversed in the direction of
increasing X. Now we are coming back again, so X is decreasing. The above intersection
point is indeed on the relevant part of the parabola.

The final step of the fourth calculation is to transform this back (remembering to scale

by 1/61).
Cz \ _ 2 2 1dy — 1dy cx +vx \ _
(Cy) = 1/lds+ 1dy) (1dy 1dy) (cy + vy) N
1/61 (-6 5) (—32400 — 29400) _ (9675)
-5 —6 54675 — 10800 750

We now have a parabola with both beginning and end points. We need a new relation to
represent either semi-infinite or finite parabolas.

76

ParabEdges
(el b, by € ey A fe fy dy dy)

13 2792 3780 9675 750 1/19200 2400 3000 -6 -5
And we can finish by updating Fdges 01 with this new end point.

Edges
(el by by €x ey dy dy)

01 4800 6600 9675 750 5 —6

We call the endpoint we have just found b03.

The fifth calculation finds the right bisector of the line between two points, in this case,
the vertices 0 and 3: the last Voronoi edge of an open polygon is this semi-infinite bisector,
starting at the Voronoi vertex that completes the elimination of all the elements except the
terminating vertices. The direction of the line between points 0 and 3 is

dw = 3V — oVs, dy = 3Uy — oUy
and the right bisector is orthogonal to this, rotated counterclockwise.
Ode o 0 -1 3V — oUg _ 0 -1 —4 _ 6
03dy o 1 0 3Vy — oly o 1 0 —6 B —4

The beginning vertex is, of course, b03. So we have the final new edge of the Voronoi
diagram,

Edges
(el by by e e dy dy)
03 9675 750 6 —4

The purpose of this section has been to present the above five kinds of calculation. They
are not directly used to find the Voronoi diagram of the edge in figure 19, which is further
decomposed and the Voronoi diagram found by merging Voronoi diagrams of the components.
However, we will need the Voronoi diagram of this figure in the next section, which describes
the merge, and we happen to have found it completely by the examples of the above five
calculations. So we summarize them before proceeding to the merge step.

Reflex Edges

(el 1y ry) (el by by € ey dy dy)

0 4800 6600 1 4800 6600 1200 3600 —6 -5

3 2400 2000 2 1200 3000 2400 3000 2 -1
12 1200 3600 2792 3780 0.9933 0.1153
23 2400 3000 2792 3780 1 2
01 4800 6600 9675 750 5 —6
03 9675 750 6 —4

Parabolas

(el b, by €x ey A fa fy dy dy)

13 2792 3780 9675 750 1/19200 2400 3000 -6 -5

7

This converts back to the quadedge representation, with new relations for semi-infinite
edges and for parabolic segments, as follows.

QuadEdge VertFace
(edgel dirl edgel dirl) (edge org dest left right)

1 0 01 2 1 0 b12 Vi F3

01 2 1 0 2 b12 3 V2 F3
1 2 2 0 01 b03 0 Vi F3
2 0 12 0 12 bi2 b13 F3 V2
12 0 1 2 13 b13 b03 Vi F3
2 2 23 0 23 3 b13 V2 F3

23 0 2 2 03 b03 00 F3 F3
12 2 23 2

23 2 13 0 Geom

13 0 12 2 (vf x Y)

01 0 13 2 0 4800 6600

13 2 03 0 b12 1200 3600

03 0 01 0 3 2400 3000

01 1 03 1 b13 2792 3780

03 1 13 1 b03 9675 750

13 1 23 1

23 1 2 1

2 1 1 1 InfinitySlopes
1 1 01 1 (edge = Y)

2 3 23 3 03 6 —4

23 3 12 1

12 1 2 3 Parabolas

2 3 23 3 (edge dirz focus A)
1 3 12 3 13 1 3 1/19200

12 3 13 3

13 3 01 3

01 3 1 3

The right part, shown in figure 20, has a very simple Voronoi structure, which we show
directly in its quadedge representation.

78

QuadEdge VertFace

(edgel dirl edgel dirl) (edge org dest left right)
1° 0 0’1 0 1’ 0’ 27 V1’ F4’
0’1’ 0 1’ 0 3’ 27 4’ V3’ F4°
1’ 2 3’ 0 0’1’ 0’ o0 F4° V1’
3’ 0 2’3 0 1°2° 2’ oo V1° V2’
23 0 1°2° 0 2’37 2’ co V2’ V3’
1°2° 0 1’ 2 3’4’ 4’ 00 V3’ F4’
3’ 2 3’4’ 0

3747 0 3’ 2 Geom

0’1’ 3 34 1 (vf x Y)

3’4’ 1 3’ 1 0’ 2400 3000

3’ 1 1° 1 2’ 3600 3600

1° 1 0°1° 3 4’ 6600 2400

1’ 3 1°2° 3

1227 3 01 1 InfinitySlopes

0’1’ 1 1’ 3 (edge x Y)

1°2° 1 2’3 3 0’1’ —1 2

2’3 1 3’ 3 1°2° —1 2

3’ 3 3’4’ 3 2’3 2 5

3’4’ 3 273 1 3’4’ 2 5

None of the code has been shown for this section. It is a straightforward application of
the domain algebra, mainly, with selections to find the edges needed for each step, and with
Cartesian products (joins with renaming) to combine two edges when their intersection is
needed.

We are now ready to describe the merge.

6.4.2 The Merge

The central part of the skeleton-finding algorithm is to merge pairs of Voronoi diagrams for
open polygons. This is done when climbing out of the recursive process that decomposed the
original polygon into parts so simple that finding their Voronoi diagrams is trivial. In this
section, we illustrate one such merge, between the left and right skeletons discussed above,
giving the result in figure 21.

The calculations are all of the same types just discussed. In the previous section, among
other procedures, we showed how to find the intersection points of two edges. What we
did not show was how to determine which edges intersect with the new edge of the Voronoi
diagram currently under construction. A summary of the merge in figure 21 is

21 hits 12 — 11° hits 1’2’ — 12’ hits 2’3’ — 13’ hits 01 — 03’ hits 3’4’ — 04,
where the separator edges, i.e., the Voronoi edges separating the left (unprimed) component
from the right (primed) component, 21, 11°, 12, 13’ , and 03’ , hit either a left Voronoi
edge (12, 01) or a right Voronoi edge (1°2°, 2°3?, 3°4’). We must determine all of these
hits in linear time.

Notice, for future reference, that once we have determined a hit, the next new separator
edge is found directly from the names of the two intersecting edges. For example, the sepa-
rator edge 21’ hitting the left Voronoi edge 12 eliminates edge 2 from further consideration,
and leads to 11’ as the next separator edge. Thus, we will modify our data structure for
Voronoi edges to include the two parts of the name explicitly. This permits us to implement
the — of the above sequence as a form of natural composition.

79

12 0

12
- B)
12
Figure Voronoi 03

21’ hits 12 —> 11’ hits 1’2’ => 12’ hits 2’3’ —=> 13’ hits 01 —> 03’ hits 3'4’ —> 04’

Figure 21: Merged Skeleton

The algorithm we follow is due to D. T. Lee [38], and is based on the earlier divide-
and-conquer algorithm for Voronoi diagrams of point sets (see, e.g., [42]). The central
consideration in these algorithms, which makes the merge linear, is that we do not need to
revisit any of the edges in the Voronoi diagrams of the components while seeking the next
edge intersected by the current separator edge. The edges it will hit belong to the Voronoi
diagram of either the left side or the right side. If we inspect the edges of the current face
of the left Voronoi diagram in counterclockwise order, and the edges of the current face of
the right Voronoi diagram in clockwise order, we will not need to backtrack ([42]).

1. Bisect angle 21° and intersect with left or right Voronot edge.

The algorithm starts with the bisector of the angle between edge 2 of the left component
and edge 1’ of the right. This is at the vertex that was called 3 in the left component and
0’ in the right. Here is the representation of edges 2, 1’ and the bisector 21’, using two
fields, lel and rel, to decompose the names of the edges into their components.

Edges
(lel rel by by €y ey dy dy)
2 1200 3600 2400 3000 2 -1
1’ 2400 3000 3600 3600 2 1
2 1> 2400 3000 0 1

The next task is to find which existing Voronoi edge is intersected by this new edge, 21°,
and where. The counterclockwise sequence of edges in the left Voronoi diagram, and the
clockwise sequence in the right Voronoi diagram, are given by the quadedge representation
(using reverse sequencing for clockwise). We adapt the code of Appendix A to convert the
cycles in QuadEdge to sequences which end at the last occurrence of the vertex originating
the angle bisector (3 or 0’ in this case). Here are the left- and right-hand sequences, after
joining with VertFace for the other information needed.

80

leftCCW right CW

(id seq edge dir org dest) (id seq edge dir org dest)
V2 2 2 3 bl2 3 vi’> -3 1’ 3 0’ 2’
V2 3 23 3 3 b13 vi> -1 1°2° 3 2° 00
V2 1 12 1 bl2 b»i13 Vi’ -2 0’1’ 1 0’ o0

Constructing these sequences would be preceeded by a selection to find the Voronoi faces
containing vertex 3 (left side) or 0’ (right side), and succeeded by a selection to eliminate
the tuples containing these vertices.

We can then sequence through each of the remaining tuples, to test them in ascending seq
order for intersection with the angle bisector, 21°. (In the example so far, there is only one
such remaining tuple on either side, because the Voronoi faces are both triangles. We find
that each of these edges does intersect with 21°, as follows (where (c,, ¢;) is the intersection
point and (pos;,pos,) is this point relative to the beginning of 217).

Edges

(lel rel b, by €y ey dy dy) Cy Cy POSy POSy
1 2 1200 3600 2792 3780 0.9933 0.1153 2400 3738 0 738

1> 22 3600 3600 -1 2 2400 6000 0 3000

These (posg,pos,) values tell us that both intersections fall in the relevant parts of the two
edges. The intersection with the smaller of (pos;,pos,) is the winner, so we have a new
vertex, (2400, 3738), the intersection of 21’ with 12.

To anticipate, in the step following this, we will be in a new face of the left Voronoi
diagram, and, in the right Voronoi diagram, we will be in the same face and will start with
1’2’ the edge that lost out this time.

Since 21 hits 12 the next separator edge will be 11°, and we can call the new vertex b11’.
The edge data can be updated accordingly, as can Geom in the quadedge representation.
Here are the new edges.

Edges

(lel rel b, by €y ey dy dy)
1 2 1200 3600 2400 3738 0.9933 0.1153
2 1’ 2400 3000 2400 3738 0 1

We can also generate the following splice operations for QuadFEdge, with the sequence
numbers shown. To disconnect the figure edges from the Voronoi edges on both left and
right sides:

1. splice((2,2),(23,0))

1. splice((1°,0),(0°17,0))
To connect the left and right sides, and the new angle bisector:

2. splice((17,0),(217,0))

3. splice((217,0),(2,2))
This latter must be done in counterclockwise order, which is the same as the ascending order
of arctan(d,, dy) given that if diris 2 or 3, the sign of (dy, d,) is negated.

We postpone the splices at the new vertex, b11’, until we have edge 11’ at the end of
the next step.

2. Bisect angle 11° and intersect with left or right Voronoi edge.

We find the direction of the bisector of the angle between edges 1 and 1’, and start the
bisector at vertex b11’.

81

Edges

(lel rel b, by €y ey dy dy)
1 1200 3600 4800 6600 6 5
1> 2400 3000 3600 3600 2 1
1 1> 2400 3738 0.8369 0.5473

The counterclockwise sequence of the new left Voronoi face gives only 01 to inspect. The
clockwise sequence of the previous right Voronoi face gives 1’2’ then 0°1’. The current
separator edge, 117, intersects 01 and 1’2’ on the edges, and 1’2’ is first. The resulting
new edges are

Edges

(lel rel b, by €r ey dy dy)

1 1> 2400 3738 3252 4296 0.8369 0.5473
1> 2’ 3600 3600 3252 4296 -1 2

and the splices need only connect edges 11°, 12, and 21’ in arctan(d,, d,) order:
4. splice((11°,0),(12,2))
5. splice((12,2),(21°,2))

3. Find parabola 12’ and intersect with left or right Voronoi edge.
Since 11’ hits 1’2’ the next separator edge is 12’, which is the parabola defined by
directrix 1 and focus 2’. The vertex we have just created is b12’. The new parabola is

Parabolas
(edge dtrz focus A)
12° 120 1/24000

or, with details

ParabFEdges
(lel rel by by s ey A fa fy dy dy)
1 27 3252 4296 1/24000 3600 3600 -6 -5

(Note that the rotation is the same as in the fourth calculation in section 6.4.1, because the
directrix is the same. The focus is in a different position and further away.)

The counterclockwise sequence of the previous left Voronoi face gives only 01 to inspect,
and the clockwise sequence of the new right Voronoi face gives 2°3°. The current separator
edge, the parabola, intersects both, but 2’3’ first. The resulting new edges are

ParabEdges
(lel rel b, by €y ey A fo fy ds dy)
1 22 3252 4296 3984 4566 1/19200 3600 3600 -6 -5

Edges
(lel rel b, by €r ey dy dy)
2?7 37 3600 3600 3984 4566 2 5

Going back to the previous new vertex, b12’ we must splice to connect 12°, 11’, and
1’27 in that order. For the straight edges, 11’ and 1’27, this is given by arctan(d,, d,), and
for the parabola, 12’ we can surmise that it is not between 11’ and 1°2’, because it is the
new edge.

82

6. splice((12°,0),(117,2))
7. splice((117,2),(1°27,2))

4. Bisect angle 13’ and intersect with left or right Voronoi edge.
Since 12” hits 2’37, the next separator edge is 13’. We find the direction of the bisector
of the angle between edges 1 and 3’, and start the bisector at vertex b13’.

Edges

(lel rel by by [ey dy dy)

1 1200 3600 4800 6600 6 5
3’ 3600 3600 6600 2400 5 -2

1 3’ 3984 4566 0.988 0.156

The candidate intersections are with 01, again, from the left, and 3’4’ from the right:
01 is first, and the new edges are

Edges
(lel rel b, by € ey dy dy)
0 1 4800 6600 6180 4920 -6 -5

1 3” 3984 4566 6180 4920 0.988 0.156

We must splice 13°, 12’, and 2’3’, in that order, to connect them at vertex b13’.
8. splice((137,0),(127,2))
9. splice((12°,2),(2°37,2))

5. Find parabola 03 and intersect with left or right Voronoi edge.
Since 13’ hits 01, the next separator edge is 03’, which is the parabola defined by
directrix 3’ and focus 0. The vertex we have just created is b03’. The new parabola is

Parabolas
(edge dtrz focus A)
03° 3 0 1/34800

or, with details

ParabEdges
(lel rel b, by e; ey A fx fy dy dy)
0 3 6180 4920 1/34800 4800 6600 5 -2

We are now beyond the Voronoi diagram of the left component. The clockwise sequence
of the previous right Voronoi face gives 3’4°. The current separator edge, the parabola,
intersects this.

ParabEdges
(lel rel b, by € ey A fe fy dy dy)
0 3’ 6180 4920 7800 5400 1/34800 4800 6600

Edges

(lel rel by by €r ey dy dy)
3’ 4’ 6600 2400 6180 4920 2 5

83

The connections at vertex b03’ are of 03’, 01, and 13°.
10. splice((037,0),(01,2))
11. splice((01,2),(137,2))
6. Right bisect line from 0 to 4’

Since 03’ hits 3’4, the next separator edge is 04’. We find the direction of the right
bisector of the points 0 and 4’, and start it at vertex b04’.

Reflex

(el 1y Ty)
0 4800 6600
4’ 6600 2400

Edges
(lel rel b, by ey e, dy dy)
0 4’ 6180 4920 7 3

We are now outside both Voronoi diagrams, so this is the last edge.
The final connections are 12. splice((047,0),(3°4°,2))
13. splice((3°47,2),(03,2))

The quadedge data structure contains all the information needed to code this sequence,
and, in particular, it can give the Edges, Refler, and ParabEdges relations, and can absorb
the updates to these relations obtained during the calculations. The relational and domain
algebras can be used to find many bisectors and so on at once, at the risk of finding ones
which are not needed and so increasing the complexity of the calculation. The intention of
the merge sequence is to keep the complexity linear, so the relational and domain operations
must be repeated many times, following selections to isolate those parts of the relations
to be worked on at any one time. The linear cost of the merge will depend on a good
implementation of the relational operators.

6.4.3 A Whole Polygon

Figure 22 shows a complete polygon, containing the two components we have just merged
and two other components which have been merged together, then the combination merged
with the result of the last section. This gives an example of a polygon with a hole.

6.4.4 Grass Fire Skeletons

Another perspective on the skeleton of a polygon is that it is the set of points inside the
polygon where the fire goes out if the polygon contained grass and the boundary is set on
fire. This leads to algorithms whose costs depend on the area of the polygon, rather than
on the number of edges. In most cases, such algorithms are likely to be more expensive
than the divide-and-conquer skeleton algorithm we have just developed, but they have some
advantages. First, they are readily parallelized, and this makes them especially accessible
to the relational and domain algebras, and thus suitable for secondary storage. Second,
although this may not be of interest to map makers, they are superior in higher dimensions,
such as in finding medial planes of (three-dimensional) polyhedra.

Figure 23 shows the advancing front of the grass fire. We see that the technique must
detect discontinuities, or “singularities”, in the front, where the skeleton lies. A robust
approach, and an overview of various methods, is available [45]. These methods are frequently
used when the polygons are provided as images: their costs are functions of the number of
pixels.

84

Figure Voronoi

Figure 22: The Result of Merging Four Components

Figure Voronoi

Figure 23: Skeleton by Wavefront Techniques

85

not

here; This is the place to put the label, or

here.

Figure 24: Labelling a Polygon on its Skeleton

6.4.5 Example: Label Placement

The idea of a skeleton of a polygon was introduced by Blum [9] as a means of simplifying
polygons for pattern recognition. It can also be used to find the best place to print labels in
polygons. Figure 24 illustrates this. Often, we can use the skeleton to find the “fattest” part
of the polygon, by moving the centre of a variable-sized circle, which touches the edges or
reflex vertices of the polygon, from vertex to vertex of the skeleton, and choosing the vertex
that gives the circle the maximum radius. The label can be centred at this vertex. But we
see from figure 24 that this may not be the best placement of the label, especially if we can
write the label at an angle. However, the skeleton can be used in other ways to find such
better alternatives.

Of course, placing a label in a single polygon hardly touches the surface of the general
problem of label placement. What if the polygon is one of many contained in a larger
polygon, such as provinces in a country or islands in a lake? Then labelling the contained
polygons might follow the above prescription, but the containing polygon must be labelled so
that its label does not collide with any of the others. We can start by placing the labels of the
contained polygons, then treating these labels themselves as holes in the containing polygon.
Inevitably, some subsequent adjustments must be made. Even the problem of labelling a
collection of random points in two dimensions, penalizing overlaps between each label and
either other labels or other points, is computationally intractable [41] and so heuristics must
be used.

6.5 Implementing Spatial Predicate Approximations

In section 3.5, above, we discuss spatial predicates and their approximations. All of the pred-
icates considered there are implicit in the quad-edge structure. Here, we would like to derive
explicitly the three approximations or models considered earlier: kdAllen (section 3.5.1), kd-
String (section 3.5.2), and 9Inter (section 3.5.3). We work with the two intersecting triangles
of figure 11 (Before) in section 6.1.

86

2dAllenMetric

(face face xss xse wzes xee yss yse yes yee)
Al A2 255 765 -765 -255 -255 765 -T765 255
A2 Al -255 765 -765 255 255 765 -765 -255

2dAllen

(face face sxss szse szes szee syss syse syes syee)
Al A2 + + - - - + - +
A2 AL - 4+ -+ o+ o+ -

2dAllenTern

(face face xtern ytern)
Al A2 72 20
A2 Al 20 72

2dAllenDir

(face face dir)
Al A2 empty string
A2 Al empty string

Figure 25: Data Structure for the Overlay Example

6.5.1 2dAllen

We can easily find the minimum bounding rectangles of the two triangles from the auxiliary
relations, VertFace and Geom, of the quad-edge representations (figure 12).

let face be left;

let zs be equiv min of x by face;

let ys be equiv min of y by face;

let ze be equiv max of z by face;

let ye be equiv max of y by face;

MBR <— [face, zs, ys, ze, ye| in (VertFace [org join vf] Geom);

From this, the metric 2dAllen distances between any pair of features can be found by
Cartesian product (we do not write the simple domain algebra to rename each field, f, to
7).

let zss be zs— zs;

let zse be z¢ — xs;

let zes be z5'— ze;

let zee be z¢ — ze;

let yss be ys'— ys;

let yse be ye'— ys;

let yes be ysd— ye;

let yee be ye'— ye;

2dAllenMetric <— [face, face, xss, zse, zes, zee, yss, yse, yes, yee| in

(MBR join [facé, z¢, yd, z¢, y¢'] in MBR);

This result and the following three relations are shown for the example in figure 25. (Note
that the code produces a symmetrical result, with tuples for both the A1-A2 relationship
and the A2-A1 relationship.)

To find the sign pattern only, from 2dAllenMetric, we need domain algebra such as

87

1275

935
595
255
255 595 935 1275 255 595 935 1275
Triangles MBRs

Figure 26: Grid Approximation to Overlapped Triangles

let szss be if zss< 0 then " — " else if zss= 0 then " 0 " else " + ";
and so on, followed by a projection from 2dAllenMetric.
To find the ternary value of the sign pattern, we need a similar conversion of each value
to the ternary digit, 0, 1, or 2
let tzss be if rss< 0 then 0 else if zss= 0 then 1 else 2;
and so on, followed by
let ztern be tree + 3x (tzes + 3% (tzse + 3x(trss)));
let ytern be tyee + 3x(tyes + 3x(tyse + 3x(tyss)));
and a projection from 2dAllenMetric.
The ternary values can be used to find compass directions.
let zdir be if ztern>73 then "W" else if ztern<19 then "E" else "";
let ydir be if ytern>73 then "S" else if ztern<19 then "N" else "";
followed by a projection from 2dAllenTern. We see from figure 25 that the two triangles of
the example are considered by these definitions to coincide.

6.5.2 2dString

A 2dString approximation to the two triangles of section 6.1 starts with a grid approximation.
Figure 26 (Triangles) shows one such approximation, which divides the region with the two
triangles symmetrically into nine grid cells. A cell is considered to contain part of a triangle
if it is more than half-filled by it. Thus, two cells contain the horizontal triangle, A1, and
two contain the vertical triangle, A2, giving a total of three cells, because one is common.
The quad-edge representation of the 24 edges of the grid requires 96 tuples, and we do

88

Cell
(z y face) zrank yrank z_min z_maz y-min Yy maz
_rank _rank _rank _rank

255 595 Al 0 1 0 1 1 1

595 255 A2 1 0 1 1 0 1

595 595 Al 1 1 0 1 1 1

595 595 A2 1 1 1 1 0 1
2dStringDir

(face face x_min z_mazr y-min y-mar z-min xmar y-min y-maz) zdir ydir dir
_rank _rank _rank _rank _rank’ _rank’ _rank _rank

Al A2 0 1 1 1 1 1 0 1 empty strings
A2 Al 1 1 0 1 0 1 1 1 empty strings
2dStringDist

(face face xrank yrank zrank’ yrank') z_min z-mar y-min y-maz neighb
_dist _dist _dist _dist
Al A2 0 1 1 0 0 1 0 1 0
A2 Al 1 0 0 1 0 1 0 1 0

Figure 27: Relations for 2dString Approximation

not show it. By a process of overlay between the grid and each triangle in turn, like that of
section 6.1, we can arrive at the decomposition of the triangles into their pieces in each grid
cell. Comparing the areas of these pieces with the 340x340 units in each square cell, we can
obtain the relation Cell in figure 27, where we are about to derive the virtual fields to the
right of the parentheses:

let zrank be (fun + of 1 order z) — 1;

let yrank be (fun + of 1 order y) — 1;

let z_min_rank be equiv min of zrank by face;

let z_maz_rank be equiv max of zrank by face;

let y_min_rank be equiv min of yrank by face;

let y_max_rank be equiv max of yrank by face;

Renaming fields with primes and taking a Cartesian product using join enables us to
calculate directions. The relational formulation enables us to define directions for 2dStrings
as we did with 2dAllen, distinguishing east from west in the x-direction, north from south
in the y-direction, and combining the two to get all eight compass directions. This breaks
up the definitions of section 3.5.2 into a component for each dimension.

let zdir be if z_maz_rank<z_min_rank’ then "W" else
if z_maz_rank’ <z_min_rank then "E" else "";
let ydir be if y_maz_rank<y_min_rank’ then "S" else
if y-maz_rank’ <y_min_rank then "N" else "";
let dir be zdir cat ydir;
We see in figure 27 (2dStringDir) that these definitions, like those for 2dAllen, also consider
the two triangles to coincide.

To find nearest neighbours, we take a second Cartesian product, 2dStringDist, also shown

in figure 27, define distances

89

let z_min_dist be equiv min of abs(zrank — zrank’) by face, face';

let z_maz_dist be equiv max of abs(zrank — zrank') by face, face';

let y_min_dist be equiv min of abs(yrank — yrank’) by face, face’;

let y_maz_dist be equiv max of abs(yrank — yrank’) by face, face';

let neighb be if z_maz_dist=0 & y_maz_dist=0 then 0 else 1;
The result in figure 27 (2dStringDist) is that the two triangles are deemed to be nearest
neighbours.

Since 2dStrings are capable of representing relationships among more than two compo-
nents of a figure, we can also find kth-nearest neighbours, but this requires careful analysis
of the structure of each component, including gaps and holes.

Figure 26 also shows the grid approximation for the minimum bounding rectangles of
each of the triangles. The 2dString approximation for this is

Al < A2A1: A2 < Al A2 < A1A1: A2 < A2
which differs from the 2dString for the original triangles:
Al < A2A1: A2 A2 < ATA1: A2

Note that we do not need to derive the actual 2dStrings themselves to do the calculations
to find directions and nearest-neighbour distances.

6.5.3 9Inter in Two Dimensions

Deriving the 2dString approximation from the full quad-edge representation required overlay
and face-intersection calculations, only slightly simplified by the rectilinear properties of the
grid. Each of the kdAllen and kdString relationship approximations involved the quadratic
costs of Cartesian products in order to pair up spatial features in binary relationships.
These efforts must be traded off against the relative ease of evaluating predicates involving
the approximate relationships once they have been precomputed.

The 9-intersection topological approximation also requires Cartesian products, and ap-
parently involves calculating nine intersections of faces and their boundaries. In fact, this
work can be reduced to between four and six tests, with one more possible test, in two di-
mensions, for the dimensionality of the intersection of boundaries. We see this by “mining”
the d-dimensional matrices in figure 3 to give the following dependences among the nine
matrix elements, ii, ib, ie, bi, bb, be, ei, eb, and ee.

ii=-" = ib='-" & bi=‘-’
ie="-" = be='-" & ib="‘-’
ei="" = eb='-" & bi=‘-’
ie=‘d’ = be=‘d -1’
ei=‘d’ = eb='d -1’
ee=‘d’
Finally, we also notice that only bb can take on more than one non-‘-’ value, namely 0 or 1
(in two dimensions).
This means that we can start with four tests, ii, ie, ei, and bb. The first three

are face-face intersection tests and the fourth is line-line. If these are all *-’, then only
the exteriors of the features intersect and all other intersections are void: the features are
disjoint.

If ii#*-’ then ii=d and we must test ib and bi.

If ie#-’ then ie=d, be=d — 1 and we must test ib.

If ei#-’ then ei=d, eb=d — 1 and we must test bi.
Finally, if bb#‘-’ then we must further test bb to determine its dimensionality.

Both face-face and line-line intersection tests are special cases of the overlay calculations
discussed in section 6.1, and the dimension of bb is 1 if and only if the two boundary edges

90

are collinear (section 6.1.1).

Postscript. At this point in the tutorial, we hope to have persuaded the reader that there is
no spatial data processing that needs special language constructs, even though we have not
formulated every possible spatial operation in database terms. It should now be relatively
safe for the reader to approach the rest of the field of spatial databases without risk of
disorientation. A concise summary of the current state of confusion of the field is given by
Adam and Gangopadhyay [1]. To be explicit, for the reader’s benefit, the primary wrong
turn taken by the field appears in chapter 4 of that book, which visits many of the extensions
to database “models” that have been produced to make databases spatial. (The distinction
between “field-based” and “object-based” GIS applications, is also artificial, because both
end up using spatial subdivisions, usually polygons. The distinction misleadingly separates
Voronoi diagrams (field-based) from the quad-edge structure (object-based), for example.)

7 Spatial On-Line Analytical Processing

The term “on-line analytical processing” (OLAP) was coined by Codd [17] to contrast with
“on-line transaction processing” (OLTP), the dominant use of database systems up to that
point. He writes

..relational DBMS were never intended to provide the very powerful functions
for data synthesis, analysis and consolidation that is being defined as multi-
dimensional data analysis..

and we cannot dispute his claim, for Codd also invented relational databases. We can,
however, regret that his early serendipity was thus later lost, for, intended or not, relational
databases are perfectly capable of all the operations of OLAP. (It is noteworthy that much
subsequent research on OLAP has used the relational model. It does not, however, require
extensions to relational functionality or syntax, even though SQL is inadequate [26].)

These operations are primarily aggregations, which we have seen are the realm of the
domain algebra. They also involve descent and ascent through hierarchies.

7.1 Data Cubes

We start with an example with no overtly spatial component. Consider precipitation mea-
surements taken over a day at four stations, distinguishing rain from snow and hail (fig-
ure 28). We will suppose that the amounts of precipitation are given in compatible units,
e.g., equivalent millimeters of rainfall.
It is easy to calculate the total precipitation over all time (by type and station)
let totTS be equiv + of amount by type, station;
or by type
let totT be equiv + of amount by type;
or just the grand total
let tot be red + of amount;
These amounts are shown, once for each group, beside the relation in figure 28. (The total
over all stations makes sense only as a step to taking an average, but we will suspend disbelief
for the moment.) Gray et al. [26] call this sequence a rollup.
In fact, we can calculate all possible (sub)totals with some simple code. This amounts to
32 — 1 totals, for the three fields, type, station and time. With judicious use of null values,

91

DataCube(type
rain
rain
rain
rain
rain
rain
rain
rain
rain
rain
rain
rain
rain
rain
rain
rain
sSnow
snow
sSnow
snow
snow
sSnow
sSnow
snow
sSnow
snow
snow
sSnow
Snow
snow
sSnow
snow
hail
hail
hail
hail
hail
hail
hail
hail
hail
hail
hail
hail
hail
hail
hail
hail

Figure 28: The Precipitation Datacube

station

PR PDPOOWWOWWNNMNNNNRERPRPRPRPERER DDA POOOWODNNMNNNNNERP R R, DD POOOONNMNDNNNRERPRP

time
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800
0000
0600
1200
1800

92

amount)
20

10

0

o

= N

-
QO OO U OO OO OOOQUNNO OO OO ODOOD OO OO ODODODO0OO0ODODODODO0ODOODODOOOOOOO

TotTS totT

30

10

30

10

10

10

10

80

30

10

tot
120

generated by the union operator, we can create a new tuple in the original relation for each
total, and we do not need to recompute any sum (which the above domain algebra would
do).
We write an equivalence reduction followed by an update for each of the three fields,
time, station and type.
let amount be tot;

let tot be equiv + of amount by type, station;
update DataCube add [type, station, amount] in [type, station, tot] in DataCube;

let tot be equiv + of amount by station, time;
update DataCube add [station, time, amount] in [station, time, tot] in DataCube;

let tot be equiv + of amount by type, time;
update DataCube add [type, time, amount| in [type, time, tot] in DataCube;

This gives the fully expanded datacube, shown in figure 29. This time, only the tuples
with nonzero precipitation have been shown from the original datacube: the others could
have been omitted from the start without affecting the sums (although omissions would
affect averages). The tuples with the aggregate values all have at least one DC null value.
They are shown in three groups, in the order in which these groups are added by the code
above.

This buildup of aggregate tuples can be imagined as adding a plane surface to a rectan-
gular polyhedron (the “datacube”) in each direction. Thus, the 3 x 4 x 4 cube is expanded
by adding first a 3 x 4 plane in the tzme direction, then a 4 x 5 plane in the type direc-
tion, and finally a 4 x 5 plane in the station direction. The resulting expanded datacube is
(3+1) x (44+1) x (4+1) in size. It contains all possible aggregates in the three dimensions
of the datacube.

Figure 30 shows a picture of the buildup of these three faces of the datacube.

In general, a loop of d aggregations will calculate all 2¢ — 1 possible sets of aggregates in
d dimensions. A datacube of size Eg s; expands to 23(1 + 8i)-

Gray et al. [26] call the above the cube operator, which they introduce as a generalization
of rollup. (They were reluctant to use null values, and introduced an ALL value instead: the
domain algebra can do this if desired.) The planar faces holding the generated aggregates
are called cross-tabs.

Of the 100 numbers in this example, only 49 are nonzero: 11 of the initial 48, 9 of the
next 12, 15 of the next 20, and 14 of the final 20. In figure 29, the bulk of the tuples shown
(38 of 49) are aggregates. This suggests that executing the above code all at the outset,
and thus “materializing” the aggregates for storage, may not be the best practice. On the
other hand, it could be expensive to materialize nothing but evaluate an aggregate each
time it is needed. Considerable research is under way to determine strategies for partial
pre-aggregation, but this is beyond the scope of this tutorial. (See, e.g. [32].)

Even the totals we have calculated may be too detailed. We may need to abstract each of
the dimensions of the datacube into concept hierarchies. For example, the four times could
be divided into AM and PM, the three types of precipitation could be divided into 1iquid and
frozen, and the four stations could fall into regions lower ({1, 3}) and upper ({2, 4}),
respectively.

These three hierarchies are captured in three auxiliary relations, which we call rays be-
cause, taken together with DataCube, they form what is known as a star schema.

93

DataCube(type station time amount)

rain 1 0000 20
rain 1 0600 10
rain 2 0600 10
rain 3 0600 20
rain 3 1200 10
rain 4 0000 10
snow 1 1200 10
snow 2 1200 10
snow 4 0600 10
hail 1 1800 5
hail 3 1800 5
rain 1 DC 30
rain 2 DC 10
rain 3 DC 30
rain 4 DC 10
snow 1 DC 10
snow 2 DC 10
snow 4 DC 10
hail 1 DC 5
hail 3 DC 5
DC 1 0000 20
DC 1 0600 10
DC 1 1200 10
DC 1 1800 5
DC 1 DC 45
DC 2 0600 10
DC 2 1200 10
DC 2 DC 20
DC 3 0600 20
DC 3 1200 10
DC 3 1800 5
DC 3 DC 35
DC 4 0000 10
DC 4 0600 10
DC 4 DC 20
rain DC 0000 30
rain DC 0600 40
rain DC 1200 10
rain DC DC 80
snow DC 0600 10
snow DC 1200 20
snow DC DC 30
hail DC 1800 10
hail DC DC 10
DC DC 0000 30
DC DC 0600 50
DC % 1200 30
DC 64 1800 10
DC DC DC 120

Figure 29: The Precipitation Datacube Fully Aggregated

R

S H

0,30
6 /40 10
12 /10 20

18 101

80 30 10 12

10

3
5
3072(
10
10

Datacube

A W N P

|
|
f ! <
|
2 i :774”777">'3
4 L
I V I
I S 4 - - =
| |
| |
| 4 |
[P [
¥ Rz
o = A
o =17
R S H LF

Cube of Cubes

Figure 30: The Datacube and a Cube of Cubes

TimeRay(time

In general, these ray relations can capture hierarchies of arbitrary depth, not just depth two.
Or they can store auxiliary information about each of the three principal dimensions of the

data cube.

The code to aggregate on all possible combinations of these coarser classifications is a

0000
0006
0012
0018

AP)
am
am
pm
pm

StationRay(station
1

3
2
4

UL)
low
low
upp
upp

TypeRay(type
rain
SNnow
hail

/2

/6

LF)
liq
frz
frz

sequence of three sets of statements, quite similar to the datacube generator, above.

let amount be tot;

let tot be equiv + of amount by type, station, AP;
let time be AP;

update DataCube add [type, station, time, amount] in [type, station, AP, tot|

in (DataCube join TimeRay);

let tot be equiv + of amount by LF, station, time;
let type be LF;

update DataCube add [type, station, time, amount| in [LF, station, time, tot|

in (DataCube join TypeRay);

let tot be equiv + of amount by type, LU, time;

let station be LU,
update DataCube add [type, station, time, amount] in [type, LU, time, tot|
in (DataCube join StationRay);

95

DataCube

type station time amount .
(vp) rain low 0000 20
rain 1 am 30 .
. rain low 0006 30
rain 2 am 10 .
. rain low 0012 10
rain 3 am 20 .
. rain upp 0000 10
rain 3 pm 10 .
. rain upp 0006 10
rain 4 am 10
cnow 1 0 10 snow low 0006 10
P snow low 0012 10
snow 2 pm 10
snow 4 am 10 snow upp 0012 10
. hail 1low 0018 10
hail 1 pm 5 .
hail 3 0 5 rain low am 50
. P rain low pm 10
liq 1 0000 20 rain upp am 20
. snow low am 10
liq L 0006 10 snow low m 10
liq 2 0006 10 St pm 10
liq 3 0006 20 oW upp P
. hail low pm 10
liq 3 0012 10 .
. liq 1low 0000 20
liq 4 0000 10 .
liq low 0006 30
frz 1 0012 10 .
lig 1low 0012 10
frz 2 0012 10 .
liq wupp 0000 10
frz 4 0006 10 .
liq wupp 0006 10
frz 1 0018 5
frz low 0012 10
frz 3 0018 5
. frz low 0018 10
liq 1 am 30
. frz upp 0006 10
liq 2 am 10
. frz upp 0012 10
liq 3 am 20 .
. lig low am 50
liq 3 pm 10 .
. lig low pm 10
liq 4 am 10 .
lig upp am 20
frz 1 pm 15
frz low pm 20
frz 2 pm 10
frz upp am 10
frz 3 pm ° frz u m 10
frz 4 am 10 PP P

Figure 31: The Precipitation Datacube with Hierarchies

Figure 31 shows the tuples that this adds to DataCube (omitting the eleven originals), in
three groups.

Figure 30 shows the cube of cubes that this process constructs from the original datacube.
The first three statements create cube 1 from cube 0; then cubes 2 and 3 are built; followed
by 4-7. If each hierarchy were three levels deep, the cube of cubes would be 3 x 3 x 3 and
three further join statements would be needed.

Generating any one of these cubes from one of finer classification is also called rollup.

Finally, we can use our earlier cube operation to compute the aggregation faces for each
cube in the cube of cubes.

Once the generation is done, either of the cube-of-cubes or of the aggregation faces, rollup
consists simply of selecting tuples with null values (or the dummy value, ALL) in the desired
fields. The inverse operation is called drill-down. If we are presented, for instance, with the
aggregation faces shown in figure 28 and want to “drill down” to the hidden numbers behind

96

the aggregations, we use the field values that interest us to select all tuples with these values.
This will give both the base data and their aggregate(s).
In any of these cubes, i.e., in the DataCube relation, we can select tuples with one or
more values of one or more fields, and still get the aggregations. This is called slice-and-dice.
As with the cube operation, the issue of when to do the aggregation—before or after the
slice-and-dice, for instance—is of practical importance due to the costs of computing and
the sizes of the results, but this is not the programming issue of how to do it.

The aggregations we have looked at so far are numeric. As well as sums, we could find
products (e.g., ands of probabilities), minima, maxima, boolean ands and ors, various aver-
ages (e.g., arithmetic, geometric, or harmonic), standard deviations, and more complicated
aggregates such as ors of probabilities. Beyond numeric aggregates, we might be interested
in aggregating sets of items. For example, the field to be aggregated might be type instead
of amount, and we might want to know the set of precipitation types for each station, for
instance.

This is done even more directly than numeric aggregation: it needs only three projections,
followed by the three updates we used for the datacube. Here is the segment of the resulting
datacube that gives precipitation types per station.

DataCube(station time amount type)

DC DC rain
DC DC snow
DC DC hail
DC DC rain
DC DC snow
DC DC rain
DC DC hail
DC DC rain
DC DC snow

Both types of aggregation could be combined. For instance, we could define a wet region
as one whose station accumulated over 30 units of precipitation, and ask what kinds of
precipitation fall in wet regions.

DR WWNDNDE - -,

DataCube(station time amount type)

wet DC DC rain
wet DC DC snow
wet DC DC hail
dry DC DC rain
dry DC DC snow

7.2 Spatial Data Cubes

Spatial OLAP adds the problem of aggregating spatial data [31]. For example, each of the
four stations in the previous example could be replaced by a polygonal region representing
its catchment area. For simplicity, we show these as triangles, and, for interest, the triangles
overlap each other. Here are two of the relations, including the geometry, of the quad-edge
data structure for the original four triangles. (The faces are numbered 1..4 after the stations,
their corresponding complement faces are U1..U4, and the coordinates given for the faces
are the positions of the stations themselves.)

97

VertFace(edge org dest left right) Geom(uf x)
a A D 3 U3 A1 2
b C F 1 Ul B 2 1
c F H 4 U4 Cc 8 1
d G B 2 U2 D 9 2
e I A 3 U3 E 9 8
fJ ¢ 1 Ul F 8 9
g K E 4 U4 G 2 9
h L G 2 U2 H 1 8
i1 D I 3 U3 I 5 6
i F J 1 Ul J 4 5
k H K 4 U4 K 5 4
Il B L 2 U2 L 6 5

1 7 5
2 3 5
3 5 3
4 5 7

The aggregation faces of a spatial datacube, with region as the aggregation field, would show
combined shapes for each aggregate. Figure 32 shows the part of this result that aggregates
station over all amounts by type and time. The aggregates are shown as sets and as shaded
parts of the overall shape.

These spatial aggregations could be carried in the flat relational algebra, using a relation
for the datacube and the three relations of the quad-edge data structure, but the joins
needed become confusing and conceptually unwieldy. So instead we use nested relations
and the notion of an abstract data type. The spatialUnion operator, discussed at the end
of section 6.1, is a redop operator on the quad-edge structure, If we take this combination
of data structure and operator as an abstract data type, we can use one instance of it per
tuple in the DataCube relation. Then the aggregation can be done with a simple equiv
spatialUnion of the field containing this abstract data type, and all thinking about joins can
be buried in the implementation of nesting and data abstraction.

8 Spatial Data Mining

“Data mining” means knowledge discovery in databases, and is a branch of machine learning
specialized to large quantities of data on secondary storage. It is a large field, and we touch
on it in this tutorial only enough to give a springboard to its specialization, spatial data
mining. The examples presented will be particularly simplistic, aimed at giving a quick
grasp of the core of the field and not at all at the central problems of efficiency. These are,
as usual, tackled by algorithm refinements and by good implementation of the underlying
formalisms. We do not advance, for instance, beyond the level of Chapter 4 in Witten and
Frank [50].

Note that in particular we do not try to advance the point of view that data mining
would profit by considering causal relationships as mentioned in section 3.5.6. Instead, we
limit ourselves to the major approaches of classification, association, and generalization dealt
with in the literature. We conclude with spatial applications of some of these ideas.

98

type time amount station

rain 0000 - 1,4 % .

rain 0600 - 1,2,3 ///
rain 1200 - 3

snow 0600 - 4 %
snow 1200 - 1,2 %

hail 1800 - 1,3 %

Figure 32: Regions Aggregated by Type and Time

99

8.1 Classification

The job of a classification algorithm is to find a procedure whereby a tuple with known fields
but unknown class can be assigned to a class. The algorithm starts with a set of tuples whose
fields and classes are both known (the “training data”). Here is a classic example [43].

Training (Outlook Temperature Humidity Windy Class)

1 sunny hot high f N
2 sunny hot high t N
3 overcast hot high f P
4 rain mild high f P
) rain cool normal f P
6 rain cool normal t N
7 overcast cool normal t P
8 sunny mild high f N
9 sunny cool normal f P
10 rain mild normal f P
11 sunny mild normal t P
12 overcast mild high t P
13 overcast hot normal f P
14 rain mild high t N

(The first column is a tuple identifier for later reference, and is not part of the data.) The first
four fields are the data supplied for classification, and Class indicates whether the tuple is a
positive or a negative instance of the classification sought. Once the classification procedure
has been discovered, typical applications might be to find the Class of the tuple

(sunny, cool, high, t, ?).

In this example, Class has only two values, N and P. In general, the tuples may classify
into several classes.

Classification algorithms make heavy use of aggregates, and can start with a datacube.
We do this here, for clarity, although in practice the whole datacube is never used. Figure 33
shows the datacube for the above dataset. The datacube shown stores pairs of integers as
its basic elements. The first integer of the pair is the count of the number of N tuples for the
given values of the other fields. The second integer is the count of P tuples. Ordinarily, these
counts would never exceed 1, but we have reduced a four-dimensional problem to three by
eliminating the Temperature field, so two of the tuples repeat the values of the other fields.

The first classification procedure we look at builds a decision tree. The “theory” extracted
from the training data is thus a tree, which will be applied to future tuples of unknown
class. The decision tree is constructed to minimize information. This seems contrary, but
information theory defines information to be the measure of surprise one experiences in
receiving a message (no surprise: we knew it already; no information), and surprise is what
a classifier should eliminate. Information theory is statistical, and information is a function
of the probability of an outcome, —plg p, to be precise. This quantity is positive, since p < 1,
is zero in the two cases of certainty (p = 0 and p = 1), and is maximum when uncertainty
is greatest (p = 1/2). The information we will be minimizing is the expected information
needed to classify any new tuple.

The information content of the unprocessed Training tuples, vis-a-vis the classification
into Negative and Positive instances is

5 5 9.9
22— e L — (141g14 — 51g5 — 91g9) /14 = 0.94
TR STEEYA Y (141g 51g5—91g9)/ 0.940

100

Humidity
¢S O R

Windy
Figure 33: The DataCube for the Weather Classification

bits, where the base of the logarithm, lg, is 2. The 5 and the 9 are from the final aggregate
in the datacube, the common corner of the aggregate faces. Since we will need it frequently,
we define

I(n,p) = ((n+p)lg(n+p) —nlgn—plgp)/(n+p)

A decision tree builder looks at each field to find the one which, if made the root
of the tree, would result in the least information being needed for a subsequent search.
The expected value of this information for the Outlook field is 5Z(3,2)/14 + 47(0,4)/14 +
5Z(2,3)/14 = 0.694, where the arguments for the three instances of Z(..) come from the
aggregate edge of the datacube for Outlook. Similar calculations for the other two edges give

7 7

—7(4,3) + —Z(1,6) = 0.788
for Humidity, and

8

6
~7(2 —17(3,3) = 0.892
L(2.6) + 27(3,3) = 0.89

for Windy. Since Qutlook gives the smallest of these, it becomes the root.
To find the subtrees, we repeat this process for the two aggregate planes containing this
edge for Outlook. For Outlook=sunny, this requires us to compare

3 2
T(2.1) + £7(1,1) = 0.951

(Windy) with

3 2
=2(3,0)+ £7(0,2) =0

(Humidity), which is smaller, so Humidity forms the subtree below Qutlook=sunny.

101

For Outlook=overcast, the total information, Z(0,4), is already zero, so no subtree is
needed: every Class for Qutlook=overcast is P.
Finally, for Outlook=rain, the comparisons

3 2
£2(0,3) + :1(2,0) = 0

(Windy) with

EI(L 1)+ gI(l, 2) =0.951
(Humidity) give the subtree to Windy.
The upper tree in figure 34 is the final decision tree. This can be used as the final
classifier, or it can be converted to a set of rules by reading off each path as a conjunction.
if Outlook=sunny and Humidity=high then Class=N
if Outlook=sunny and Humidity=normal then Class=P
if Outlook=overcast then Class=P
if Outlook=rain and Windy=f then Class=P
if Outlook=rain and Windy=t then Class=N

(Doing the full four-dimensional datacube, which includes Temperature, gives the same
result. We can see from the interior of the datacube that Temperature does not split any
entry into both an N and a P, so it has no effect.)

The domain algebra needed to find the expected information along any row or column of
the aggregate faces is similar to that needed to compute the datacube in the first place, but
involving

Sum((n + p)lg(n + p) — nlgn — plgp))/Sum(n + p).

A faster algorithm computes only the aggregates needed by the above processing.

A simpler, but less complete, classifier is the 7R (“one-rule”) approach, which looks at
only one field. This uses the aggregate edges of the datacube to find how many errors are
caused by simply asserting, for example, that all tuples where Outlook=sunny are classified
N. The field with the fewest errors for all values is chosen. The total error is

Sum(n minp).

For Outlook, this is 5—3 4+ 4—4 + 5—3 = 4; for Humidity it is 7T—4 + 7—6 = 4; for Windy
it is 8—6 + 6—3 = 5 (and for Temperature, left out of the datacube, it is 4—2 + 6—4 + 4-3
= 5). Breaking the tie for smallest error between Outlook and Humidity, we choose Outlook
and get the (approximate) classifier
if Outlook=sunny then Class=N
if Outlook=overcast then Class=P
if Outlook=rain then Class=P The lower tree in figure 34 is the equivalent
of these rules in tree form.
A third classifier simplifies in another direction. One-rule supposed that we could isolate
a single field which controls the classes, neglecting other fields. The Naive Bayes approach
assumes that all fields contribute equally. Again, we need only the aggregate edges of the
datacube. We convert the counts to probabilities by dividing each N count by the total
number of Ns for that field, and the P count by the total Ps for the field. We do this for each
field, and so for each of the edges where the aggregate faces of the datacube meet.
With these probabilities, and with no further processing, we can treat any new tuple that
comes along needing classification. For each field in the new tuple, we look up the probability
of that value occurring for that field if Class were N, and again for the case that Class were

102

Outlook

Sunny / Rainy
Overcast
Humidity P Windy
(—Iigh \\Iormal % R
N P P N
Outlook

Sunny / Rainy
Overcast

N P P

Figure 34: Decision Trees for the Weather Classification

103

P. The probability of the tuple being N (respectively, P) is the product of these probabilities
multiplied (this is where Bayes’ prescription is introduced) by the overall probability of N,
5/14 (respectively, P, 9/14). The larger product wins.
Thus, for the tuple
(sunny, cool, high, t, ?)
the two products are

3 1 4 3 5

— X =-X=X=x—=0.02

5><5><5><5><14 0.0206
for N, and

2 3 3 3 9

§x§x§x§xﬁ—0.0053

for P, so the tuple is classified N.

Figure 35 shows the parts of the datacube used by each of the above three classifiers, and
the results of the calculations.

The following unclassified tuples are classified as shown by the three methods. These do
not necessarily agree.

Outlook Temperature Humaidity Windy Class
D. Tree 1R Bayes
sunny cool high t N N N
rain hot high f Y Y N
rain hot high t N Y N

A fourth classifier uses the training data itself as the “theory”, and needs no aggregates.
This is instance-based learning, which uses distance measures on the multidimensional space
of the training data (in our case, Training has four dimensions) to find the training tuple
nearest to the new tuple to be classified. The new tuple takes the Class of this neighbour. If
the data is noisy, more than one neighbour may be used, and a vote taken, possibly weighted
by distance.

Figure 36 is four four-dimensional maps, flattened into 2D, which help us visualize the
weather data in the above examples. The original training data are given in the top two
maps. The N regions predicted by the decision tree are shaded in the upper left map, and
the N regions predicted by 1R are shaded in the upper right map. The lower two maps show
predictions only, Bayes on the left and IBL on the right. Note that Bayes incorrectly predicts
one of the original training points. The IBL predictions are iterated: the training data form
the Oth iteration. At the first iteration, some verdicts are tied (shown as “?”), because equal
numbers of nearest neighbours contradict each other. Some predictions cannot be made
because no training points are nearest neighbours (shown as “-”). Most of these are cleared
up in a second iteration, which uses the predictions of the first iteration (thereby effectively
going to second-nearest neighbours to get the classification). One prediction needs a third
iteration, and two never get resolved by nearest neighbours.

So far, there is no spatial component to these classification techniques. To extend them
to spatial data mining, we replace the counts in the analyses by regional areas. This assigns
importance according to how much ground is covered by a tuple, instead of weighing each
tuple equally. The datacube changes, but the analyses do not. Figure 37 shows the new
datacube resulting from the regions shown in figure 1: the tuple identifiers from the Training
relation at the beginning of this section are identified with the region numbers in figure 1.
The upper number in each box is the (aggregate) area for the N tuples with the given values
of the other fields, and the lower number is the area for the P tuples. The regions do not

104

0951 0 0892

e 2 ¥

2,6
59
3.3
59
32 04 13
59 59 59
43
_!9
5
i
5
22 24 13
59 59 59
Naive Bayes

5
26
3.3

4---3,2 0,4 2,3 5,9

5---22 2,4 13

T

One—-Rule

Humidity

H

N
S OR

F Outlook

Windy
H MC
Temperature

The Dimensions

Figure 35: Parts of DataCube Used by Decision Tree, 1R, and Bayes

105

ol

o ol

o

P P[P N

P P[P N
P PP N

P PP N

Training Data andOne—Rule
S O R

ftftft

P| P P|P

N
P

P

P

P

O
T
H

hi{N N

h

n|-p

h
n

h>#P [P P[P N

n

P
N

N
P

ftftft

Training Data and Decision Tree

O
T
H

hIN N[P P[N N
nP N|P P|P
hIN N[P P[P

nP P|P PN N
hIN N[P P[P
nP PP P|P

Instance—Based Learning

Naive Bayes

Figure 36: The Four-Dimensional Weather Training Data
106

T Humidity
S

921"
406/ 16881551/364 H
921 { s6a’ /S
fffffff 1058 044 ./ 4067526" N
406 | 7 1285 /' 996/282%/ 6/
406 639, 99 / / 5.7 Outlook
364 498 8129214, 155Y1157//g
1376 7
”””” SRTT L
406! 3763 1285 | 498 5,58
,,,,,,, 14821 644 4
| 498 11
81214393 907 6

/Vindy

Figure 37: DataCube for Training Weighted by Region Areas

appear in the datacube except through their areas. They can be considered an additional
field in Training, clearly a nested abstract data type.
The results of the classification methods on this spatially weighted data are:

e the decision tree is the same, mainly because of the absence of Ns for Qutlook=overcast
and the clear categorizations by Humidity when it is sunny and by Windy when it is
rainy;

e the one-rule is the same, for the same reasons;

e the Bayes classification is largely the same, but differs in six places (the numbers of
Ns and Ps are the same as before, which is strange since the overall probability of N is
much lower now: many of the Bayesian decisions are very closely tied, and the result
is what happens in some riding-based elections);

e instance-based learning is unaffected since weights play no part.
The significance of using areas as weights, instead of just counting tuples, is that the size

of a region reporting given weather conditions is now a part of its influence on the outcome.

8.2 Association

Association mining attempts to find rules of the form “if one set of items occurs in a given
situation, then a second set of items also occurs”, for specific sets of items. The usual
motivation offered is to help retail stores to discover associations among sets of products in
customers’ shopping baskets. Here is an example which appeared in the early literature.

107

ShoppingBaskets(zact item) confden
beans 2
beans
beer
beer
bread
bread
bread
bread
bread
butter
butter
butter
butter
butter
coffee
coffee
coffee
milk
milk
rice
rice

QSO PNPWFROPWONELPNPDPWONEOITN OO®
NN NWWWOILOCTOTOT OOt Ot OOt O N N N

[N

(The virtual field, confden, shown, is used a little later.)
Examples of an association rule in this case might be
if {bread, coffee} then {butter}
if {butter} then {bread}
The set before then is the antecedent, and the set after then is the consequent. Associated
with each is a set of transactions, which is the intersection of the sets associated with the
individual items. This intersection must be non-empty for any set of items considered.

Since the general problem is to find sets of items that associate, the computational cost is
potentially exponential. This worst case is not usually reached because the pairs of associated
sets must share at least one transaction. We further reduce the number of results (and the
amount of work) by imposing two, user-specified, criteria.

The first criterion is that the cover exceed a given minimum. The cover set of a set of
items is defined to be the associated set of transactions. The cover of a set of items is the
size of the cover set, and the cover of a rule is the size of the intersection of the cover sets of
the antecedent and of the consequent. Requiring the cover to be of a minimum size specifies
that the rule must be based on a threshhold number of entries in the database. Users may
specify relative cover, called support. The support of a set or of a rule is its cover divided by
the total number of transactions.

The covers of {bread}, {butter}, {bread, butter}, {coffee}, {bread, coffee}
and {bread, butter, coffee} in the above example are, respectively, 5, 5, 4, 3, 3, and 3.
The supports are, respectively, 0.5, 0.5, 0.4, 0.3, and 0.3, because there are ten transactions
in the example.

The second criterion is that the confidence exceed a given minimum. The confidence of a
rule is its cover divided by the cover of its antecedent set. This requirement sets a threshhold
on the number of transactions associated with the intersection of antecedent and consequent
relative to the number of transactions associated with the antecedent. We are more confident
in a rule if most of the transactions in the antecedent figure in the rule as a whole, rather

108

than if only a few of the transactions associated with the antecedent participate in both
sides.
The confidence of the first rule, above, is 3/3 = 1.0. The confidence of the second rule is
4/5 =0.8.
We can specify these quantities in the domain algebra.
let cover be equiv + of 1 by item, item’;
let confden be equiv + of 1 by item;
Confden is the denominator of the confidence, while cover is the numerator. It is not an error
that they are both specified by the same expression. This is an idiom of the domain algebra:
confden is intended to be actualized before a join, while cover will be actualized after the
join. For this reason, we anticipated by showing confden in the table for ShoppingBaskets,
above.
Here is the rest of the code for the simple case of singleton sets in the antecedents and
consequents.
let item’ be item;
SingletonRules <— [item!, item]
where item’ # item and cover/ confden > minconfin (ShoppingBaskets join
[zact, item!, confden] where confden > mincover in ShoppingBaskets);
To make the whole process clear, we will show the result of this code as if the two
threshholds, mincover and minconf, were both zero. Then we will see what happens when
they are set up to 3 and 0.8, respectively.

SingletonRules(item' item) cover/ confden zacts
beans rice 1/2 9
beer bread 1/2 2
beer butter 1/2 2
beer milk 1/2 2
bread beer 1/5 2
bread butter 4/5 1,2,34
bread coffee 3/5 1,3,4
bread milk 2/5 2,4
butter beer 1/5 2
butter bread 4/5 1,2,3,4
butter coffee 3/5 1,3,4
butter milk 2/5 2,4
coffee bread 3/3 1,3,4
coffee butter 3/3 1,3,4
coffee milk 1/3 4
milk beer 1/2 2
milk bread 2/2 2,4
milk butter 2/2 2,4
milk coffee 1/2 4
rice beans 1/2 9

Here, confden is the cover of item’ in SingletonRules, and cover is the number of zacts shared
by item' and item.

If mincover is set to 3, no tuple with a denominator, confden, less than 3 appears: this
removes nine of the above 20 tuples. If minconf is set to 0.8, all but four of the remaining
tuples go, leaving us with the rules

if {bread} then {butter}

109

if {butter} then {bread}
if {coffee} then {bread}
if {coffee} then {butter}
This gives the idea, but we must go on to deal with all possible sets of items. We do this
in two stages. First, we find all possible item sets and their associated transaction sets and
covers. Then we use an adaptation of the above code to discover the rules. The code we
show for this procedure is not optimally efficient; we leave the touchups as an exercise for
the reader.
To generate and use all subsets of items, we use nested relations to ease our thinking. We
must first create a nested relation from ShoppingBaskets, and this requires one new operation
we did not discuss in section 5.4. To add a level of nesting, we add a relation operator to
the domain algebra. This pushes a named set of fields one level down, and creates a singleton
relation in each top-level tuple with the name given after the let keyword. We need
let items be relation(item);
let zactset be relation(zact);
let zacts be equiv union of zactset by item;
followed by the actualization
SBsets <— [items, zacts| in ShoppingBaskets;
Actually, to use mincover to eliminate most of the tuples, we replace this last line by
more restrictive code.
let cover be [red + of 1] in zacts;
SBsets <— [items, zacts| where cover > mincover in ShoppingBaskets;
(Note that we use anonymity in the first of these statements to lift the level of the field in
cover so that cover becomes an integer-valued field, not nested, and can be tested against
mincover in the second line in the normal way.)
This reformats the original relation. We now go on to generate all subsets above the
minimum cover. (Any tuple that we eliminated with the test on cover cannot contribute
further, because merging sets by intersection can only reduce the cover further.) We find
the closure of SBsets under set union of the items sets and set intersection of the zacts sets.
As with most closure operations, this is most clearly done by a recursive view. First, some
domain algebra.
let items be items;
let zacts be zacts;
let items” be items union items';
let zacts’ be zacts join zacts';
let items be items”;
let zacts be zacts”;
Next, the recursive view.
SBsetsClos is SBsets union [items, zacts| in [items”, zacts|
where [] in zacts”
in SBsets join [items', zacts'] in SBsetsClos;

With mincover at 3, this produces the nested relation

110

SBsetsClos(items — zacts) confden
(item) (zact)

bread 1 5
2 5
3 5
4 5
7 5
butter 1 5
2 5
3 5
4 5
6 5
coffee 1 3
3 3
4 3
bread 1 4
butter 2 4
3 4
4 4
bread 1 3
coffee 3 3
4 3
butter 1 3
coffee 3 3
4 3
bread 1 3
butter 3 3
coffee 4 3

(The first three tuples of the seven are the initial SBsets.)

Again, we have shown confden for future reference. This must be generated by slightly
different code. For each zacts relation, one per tuple of the nested relation, we just count its
tuples.

let confden be [red + of 1] in zacts;
As before, we have effectively the same specification of cover
let cover be [red + of 1] in zacts’;

This leads us into the second part of the calculation, the modification of the above flat-
relation code for nested relations. (We do not repeat the above specifications for items',
zacts', or zacts’.)

GeneralRules <— [items', items]

where (not(items comp items') and || in zacts” and cover/confden > minconf)

in (SBsetsClos join [zacts, items', confden] where confden > mincover in SB-
setsClos);
(Note that the composition operator, comp, on two relations with the same fields, produces
a nullary relation, which we have decreed in section 6.1.1 to be a boolean. Therefore we can
negate it with not.)

Here are the results, controlled by mincover, but before selecting with minconf.

111

GeneralRules(items items) zacts" cover/confden
(item) (item) (zact)
bread butter 1 4/5
2
3
4
bread coffee 1 3/5
3
4
bread butter 1 3/5
coffee 3
4
butter bread 1 4/5
2
3
4
butter coffee 1 3/5
3
4
butter butter 1 3/5
coffee 3
4
coffee bread 1 3/3
3
4
coffee butter 1 3/3
3
4
coffee bread 1 3/3
butter 3
4
bread coffee 1 1/4
butter
bread butter 1 3/3
coffee 3
4
butter Dbread 1 3/3
coffee 3
4

From these eleven tuples the confidence threshold selects seven rules, the four we had

above for the singleton sets, plus the following three.

if {coffee} then {bread, butter}
if {bread, coffee} then {butter}
if {butter, coffee} then {bread}

A more complicated example introduces name-value pairs into the sets, but the calcu-
lation is not significantly changed. For example, the weather data of section 8.1 could be
mined for association. Association mining can thus be seen as a generalization of classi-
fication mining, which associated the other fields with single values of a favoured, Class

field.

112

An example of spatial association mining can be developed along the same lines as the
example of spatial classification mining, by using areas as weights in the calculation of cover
and confidence. We could, for instance, replace ShoppingBaskets by the isomorphic relation,
SpeciesDistrib, using the areas of the first ten regions in figure 1.

SpeciesDistrib(region species) confden
beaver 994
beaver 994

bees 683
bees 683
deer 6739
deer 6739
deer 6739
deer 6739
deer 6739
cedar 3474
cedar 3474

cedar 3474
cedar 3474
cedar 3474
cougar 2346
cougar 2346
cougar 2346
mice 1008
mice 1008
fisher 683
fisher 683

QCQOPNPWFROPWONRFEP NP WONEFEOIN O©O®

-

We have again anticipated by showing confden, which is the sum of the areas of the regions
in figure 1.

The significance of replacing counts by regional areas is that weight is given to the
area containing a population of a given species, rather than weighting all regions equally,
irrespective of size.

We show how this affects the singleton rules, and leave the mining of the remaining
subsets to the reader.

113

SingletonRules(item’ item) cover/confden

beaver fisher 406/683 =0.59
bees deer 364/994 =0.37
bees cedar 364/994 =0.37
bees mice 364/994 =0.37

deer bees 364/6739 =0.5
deer cedar 2976/6739 =0.44
deer cougar 2346/6739 =0.35
deer mice 1008/6739 =0.15
cedar bees 364/3474 =0.10
cedar deer 2976/3474 =0.86
cedar cougar 2346/3474 =0.68
cedar mice 1008/3474 =0.29
cougar deer 2346/2346 =1.00
cougar cedar 2346/2346 =1.00
cougar mice 644/2346 =0.27
mice bees 364/1008 =0.36
mice deer 1008/1008 =1.00
mice cedar 1008/1008 =1.00
mice cougar 644/1008 =0.64
fisher beaver 406/683 =0.59

Using the same mincover and minconf threshholds, this gives three of the singleton rules we
had before.

if {cedar} then {deer}

if {cougar} then {deer}

if {cougar} then {cedar}
(The rule we no longer have enough confidence in, because the supporting area is too small,

° if {deer} then {cedar}.)

8.3 Generalization

Another way to mine data is to generalize each tuple and count the numbers of identical
tuples that result. These counts can be taken as votes supporting each distinct generalization.
If the result still contains too many tuples to make simple sense, generalize further. Ways
to generalize include maintaining a hierarchy of values for each field and moving up the
hierarchies; or omitting fields altogether. We might do the latter for fields that have no
generalization hierarchy. Han, Cai, and Cercone [29] provide example hierarchies for a
relation Students(Name, GPA, Status, Major, Birthplace), which we show in figure 38.
With these concept hierarchies, a tuple,
Wise, 3.9, freshman, literature, Toronto
could generalize to
-—, excellent, freshman, literature, Toronto, 1
where the Name field has been omitted because it has no generalization hierarchy, and where
a count, 1, for this particular tuple, has been appended as a new field. If thirteen tuples
from Students all generalize to this same tuple, we have
-—, excellent, freshman, literature, Toronto, 13.
The original tuple could also generalize to
--, 3.9, ugrad, literature, Toronto, 1

114

GPA
ANY
poor
0..1.99
average
2..2.99
good
3..3.49
excellent
3.5.4

Status
ANY
ugrad
freshman
sophomore
junior
senior
grad
M.S.
M.A.
Ph.D.

Figure 38: Example Field Hierarchies

Major
ANY
art
literature
music
painting
science
biology
chemistry
physics

115

Birthplace
ANY
Canada

Alberta
Calgary
Edmonton

B.C.
Burnaby
Vancouver
Victoria

Ontario
Hamilton
Toronto
Waterloo

Foreign

China
Beijing
Nanjing
Shanghai

India
Bombay
New Delhi

Germany

Sweden

or to
--, 3.9, freshman, art, Toronto, 1
etc. The generalizations could further generalize to, say,
--, excellent, ugrad, art, Toronto, 1.
The concept hierarchy for Birthplace allows further levels of climbing. We might get
-—, excellent, ugrad, art, Ontario, 1
or, further up,
-—, excellent, ugrad, art, Canada, 1.
The ultimate generalization gives one tuple for the entire relation,
--, ANY, ANY, ANY, ANY, 300
but this would clearly be overgeneralizing as far as extracting anything useful from mining
is concerned. [29] allow the user to specify thresholds for the number of tuples in the final
result and for the number of distinct values a field may have in the result.

This process of generalization is familiar to us from OLAP (section 7.1). It is essentially
the cube of cubes shown in figure 30, with a new field, Count, added to aggregate on. (The
omitting of the Name field can be achieved by giving it the trivial generalization hierarchy;,
ANY on top of all possible Name values.)

We can explore the datacube of figure 30 using these two kinds of generalization. If we
accumulate amount while generalizing fields type and time and omitting field station, we get

DataCube(type station time amount)

liqg ANY a.m. 50
lig ANY p.m. 30
frz ANY a.m. 10
frz ANY p.m. 30

which tells us that the temperature was dropping over the region increasing the snow and
hail to half of the precipitation in the afternoon from 16% in the morning.
If we generalize fields station and omit fields {ype and time,

DataCube(type station time amount)
ANY low ANY 80
ANY upp ANY 40

we see that the lower stations had twice the precipitation the upper stations did. Generalizing
time and omitting the other fields

DataCube(type station time amount)
ANY ANY a.m. 60
ANY ANY p.m. 60

reveals that the precipitation was the same in the morning as in the afternoon.

To discover that the storm was moving in a southwesterly direction, below the divide
between the upper and lower stations, would require some spatial knowledge and another
distinction between easterly and westerly stations. This latter is in addition to the gener-
alization we already made, giving upper vs. lower, and leads to generalization graphs as
opposed to the tree hierarchies we have so far considered.

Spatial generalization mining is easily absorbed into this technique, since spatial data has
natural hierarchies of containment. The Birthplace field in our earlier example is a case in
point. It produced the largest concept tree and is the furthest from being complete. Rather
than reinvent its concept hierarchy explicitly, we can refer to a map of the world and do
point-in-polygon operations to generate the memberships of cities in provinces or countries,
and the membership of provinces in Canada.

116

8.4 Predicate Mining, Illustrated for Spatial Data

The above suggestions for spatial mining extensions to the classical examples of data mining
are severly limited, since they use spatial data only to compute weights for the classical
processes. Section 3.5 discussed predicates, spatial and otherwise, and their hierarchies. We
now consider some more ambitious examples of spatial data mining, involving predicates. It
turns out, once again, that spatial predicates can be handled in just the same way as any
other predicate.

We start by using generalization to convert binary predicates, such as proximity of two
features or their visibility from each other, to unary predicates, such as proximity of a feature
to a certain class of features. This will be useful, because the resulting unary predicates can
be mined by the methods we have discussed above. We show this in the case of association
mining, and produce from the results some general implications among predicates. We also
show how special treatment of these predicates can be used for classification mining.

8.4.1 Generalization and Predicate Simplification

We use a moderately complicated example, involving the spatial binary predicate Visible,
the spatial ternary predicates Distance and Direction (which describe two objects and their
numerical distance and direction from each other), and the binary nonspatial predicate
Townsize, which assigns a population to each town. We will use thresholds to reduce the
ternary predicates to the respective binary predicates CloseTo and WestOf, and then we will
use generalization to reduce these to unary predicates which we will pass on to the next
section for association mining.

We start with three relations that we can suppose to have been derived from a map and
related data, represented as in section 4. FromMap lists features and the longitudes and
latitudes of their centres of mass. TownSize provides auxiliary information about the popu-
lations of features that are towns. Visible gives the result of involved geospatial calculations
that determine which features are visible from others. These relations are shown in figure 39.

The source of these three relations is the spatial data which we intend to mine. In addi-
tion, we supply some background knowledge in the form of a concept hierarchy, ConceptHier,
which we will use to generalize the features used in the predicates. This is also shown in fig-
ure 39. In addition, the concept hierarchy contains other elements which can be represented
compactly by domain algebra statements:

let PopSize be if Pop>250000 then "large" else
if Pop>10000 then "medium" else "small";

let Dir be if 45<Angle and Angle<135 then "north" else
if 135<Angle and Angle<225 then "west" else
if 225<Angle and Angle<315 then "south" else "east";

We can put FromMap together with itself using some joins, selections to find towns in
relation to other features, and some more geometry to calculate distances and angles. Here
is a result, which anticipates the next paragraph by including only features that are close to
the towns. This gives the ternary predicates, Distance and Direction, in a single relation for
conciseness.

117

FromMap
(Feature
Regina

Sault Ste Marie
Winnipeg
Vancouver
Schumacher
Estevan

Red Deer
Garibaldi
Hinton
Lethbridge
TC(Sask 1)

US border 49
Laird
US(Mich)75

US border 46
Lake Superior
TC(Man 1)

TC (BC 1)
Georgia Strait
McIntyre

Alta 2

Coast Mtns
Rocky Mtns

TownSize
(Town
Regina
Sault Ste
Winnipeg
Vancouver

Schumacher

Estevan
Red Deer
Garibaldi
Hinton

Lethbridge

Lat
50-27
46-31
49-53
49-15
48-28
49-08
52-16
49-58
53-25
49-42
50-27
49-00
46-24

46-29
47-00
49-52
49-15
50-00
48-28

56-00
56-00

Marie

Long)
104-37
84-20
97-09
123-07
81-20
102-59
113-48
123-09
117-34
112-49

84-04
84-20

88-00

125-00

81-15
113-51
130-00
122-00

Pop)
250000
100000
750000

1000000
500
10000
50000
100
10000
60000

ConceptHier
(Feature

Regina

Sault Ste Marie
Winnipeg
Vancouver
Schumacher
Estevan

Red Deer
Garibaldi
Hinton
Lethbridge
Coast Mtns
Rocky Mtns
Georgia Strait
Lake Superior
US border 49
US border 46

FeatGen

town

town

town

town

town

town

town

town

town

town
mountains
mountains
water

water
national bdy
national bdy

TC(Sask 1) autoroute
US(Mich) 75 autoroute
TC(Man 1) autoroute
TC(BC 1) autoroute
Alta 2 autoroute
Laird mine
McIntyre mine
Visible
(Town Feature)
Hinton Rocky Mtns
Garibaldi Coast Mtns

Figure 39: Three Relations From a GIS, and a Concept Hierarchy

118

Displacement

(Town Feature FeatGen Dist Angle Dir)
Regina TC(Sask 1) autoroute 0 270 south
Regina US border 49 national bdy 160 270 south
Sault Ste Marie Laird mine 25 300 south
Sault Ste Marie US(Mich)75 autoroute 5 270 south
Sault Ste Marie US border 46 national bdy 0 270 south
Sault Ste Marie Lake Superior water 0 150 west
Winnipeg TC(Man 1) autoroute 10 270 south
Winnipeg US border 49 national bdy 100 270 south
Vancouver TC (BC 1) autoroute through 0 east
Vancouver US border 49 national bdy 20 270 south
Vancouver Georgia Strait water on 180 west
Schumacher McIntyre autoroute 10 0 east
Estevan US border 49 national bdy 20 270 south
Red Deer Alta 2 autoroute 6 180 west
Garibaldi Coast Mtns mountains contain 0 east
Hinton Rocky Mtns mountains 30 210 west
Lethbridge Rocky Mtns mountains 100 180 west

We recall from section 3.5.6 that “closeness” is a relative notion, so we define it differently

depending on the type of feature, as specified by FeatGen. Here is a possible definition.
let CloseTo be if FeatGen="national bdy" then Dist<200 else
if FeatGen="mountains" then Dist<200 else
if FeatGen="provincial bdy" then Dist<50 else
if FeatGen="mine" then Dist<50 else
if FeatGen="autoroute" then Dist<10;
Under this definition, every tuple in Displacement happens to satisfy CloseTo.

Now we can use the concept hierarchies to reduce the ternary predicates Distance and
Direction given by Displacement, and the binary predicates TownSize and Visible, to a
collection of unary predicates describing each town. For TownSize we define

let Predicate be Popsize cat " town",;
For Visible we define

let Predicate be FeatGen cat " visible";
And for Displacement we need both

let Predicate be "near " cat FeatGen;
and

let Predicate be FeatGen cat " to " Dir;

The result of applying these four definitions of Predicate to the three relations and the
concept hierarchy is the following seventeen unary predicates.

119

autoroute to east
autoroute to south
autoroute to west
large town

medium town

mine to south
mountains to east
mountains to west
mountains visible
national bdy to south
near autoroute
near mine

near mountains
near national bdy
near water

small town

water to west

Some of the results are given in the next section.

8.4.2 Association and Predicate Implication

If we suppose that, by a process of manual analysis which is beyond the automation consid-
ered in this tutorial, we have decided to focus on the seven of the above unary predicates that
are restricted to directions only if there are mountains to the west, and ignoring nearness of
mountains other than being visible or to the west, then the following is a result of the above.

AssociationPredicates

(Town Predicate)

Regina large town

Regina near autoroute
Regina near national bdy
Sault Ste Marie near mine

Sault Ste Marie mnear autoroute
Sault Ste Marie near national bdy
Sault Ste Marie near water
Winnipeg large town
Winnipeg near autoroute
Winnipeg near national bdy
Vancouver large town
Vancouver near autoroute
Vancouver near national bdy
Vancouver near water
Schumacher near autoroute
Estevan near national bdy
Red Deer near autoroute
Garibaldi mountains visible
Hinton mountains visible
Hinton mountains to west
Lethbridge mountains to west

120

Our motivation for this arbitrary selection of results is to save further space and analysis
in this tutorial: the result is now isomorphic to ShoppingBaskets of section 8.2, under the
mappings

zacts < Town

1 < Regina

2 < Sault Ste Marie

3 < Winnipeg

4 <+ Vancouver

5 <+ Schumacher

6 <+ Estevan

7 <+ Red Deer

8 < Garibaldi

9 < Hinton

10 < Lethbridge

item < Predicate

coffee <> large town

bread <+ near autoroute
butter <> near national bdy
milk <+ near water

beer <> near mine

beans < mountains visible
rice <+ mountains to west

We can then conclude the following association rules, with the same support and confi-
dence factors, from the analysis of section 8.2.
near autoroute < near national bdy
large town = near autoroute and near national bdy
near autoroute and large town = near national bdy
near national bdy and large town = near autoroute
From this discussion, we find that association mining applies to unary predicates, which
may be spatial or not, and which can be extracted from map and other data. These predicates
may, of course, be written with universally quantified variable, z, if we like
nearAutoroute(r) < nearNationalBdy(z)
and so on, if such a fashion is needed.

8.4.3 Classification and Predicate Approximation

In the above discussion of generalization and association mining we have used predicate
approximation, but not for the important purpose outlined in section 3.5, which is to speed
up processing, especially spatial processing. Since we have also not yet elaborated on spatial
classification mining, we tackle both now (bearing in mind that the two are not indissolubly
linked: spatial predicate approximation can speed up any kind of mining or query processing).

We pick a different example, but similar in structure to the example developed in the
last two sections. There is a Distance relation, which can be derived from a map. There
are two relations embodying a three-level concept hierarchy of features, Grouping, the first
level, and Categories, the upper level, which also contains a threshold value below which the
distance can be considered closeTo for each category of features. These three are shown in
figure 40

121

Distance

(Neighbourhood Feature
Oromocto Legislature
Oromocto Town Hall
Oromocto U.N.B.
Oromocto CFB Gagetown
Rossdale Legislature
Rossdale U. Alberta
Rossdale Klondike Pk
Crystal Beach Parliament
Crystal Beach Carleton U.
Crystal Beach HQ Nortel
Richmond Town Hall
Richmond U.B.C.
Richmond YVR
Dundas Town Hall
Dundas McMaster U.
Dundas Stelco Inc
Milton-Park Concordia U.
Milton-Park Town Hall
Milton-Park McGill U.
Milton-Park Nortel
Sandy Hill Parliament
Sandy Hill U. Ottawa
Sandy Hill Carleton U.
Sandy Hill N.R.C.
Assiniboia Legislature
Assiniboia U. Manitoba
Assiniboia Winnipeg Airport
Yorkville Legislature
Yorkville U. Toronto
Yorkville HQ Bank of Montreal
Waterloo Town Hall
Waterloo U. Waterloo
Waterloo Waterloo Maple
Ste-Foy National Assembly
Ste-Foy U. Laval
Ste-Foy Desjardins
Rockcliffe Park Parliament
Rockcliffe Park U. Ottawa

Rockcliffe Park Rockcliffe Airport

Ottawa South Parliament

Ottawa South Carleton U.
Ottawa South Expt Farm

Verdun Town Hall

Verdun Concordia U.
Verdun Nortel

Dist)

e - — [
NOPNNOODOON

P WORFRPRFPONWPOOONODODODWORPROODUTWOFL,LNOOOORFR P, UUDITIOOOOWO -

Grouping
(Feature
Carleton U.
CFB Gagetown
Concordia U.
Desjardins
Expt Farm

HQ Bank of Montreal

HQ Nortel
Klondike Pk
Legislature
National Assembly
Nortel

N.R.C.

Parliament

Rockcliffe Airport

McMaster U.
Stelco Inc
Town Hall
U.Alberta
U.B.C.

U. Laval

U. Manitoba
U.N.B.

U. Ottawa

U. Ottawa

U. Toronto

U. Waterloo
Waterloo Maple
Winnipeg Airport
YVR

Categories
(Group
fed

prov
municip
univDM
univD
univ
indusHQ
indus

Group)
univD
indus
univD
indus
indus
indusHQ
indusHQ
indus
prov
prov
indus
indus
fed
indus
univDM
indusHQ
municip
univDM
univDM
univDM
univDM
univD
univDM
univDM
univDM
univD
indus
indus
indus

DistThresh Categ)

15 Govt
15 Govt
1 Govt
1 Univ
1 Univ
1 Univ
5 Ind
1 Ind

Figure 40: One Relation from a GIS, and Two Giving a Concept Hierarchy

122

We are also given socio-economic data about neighbourhoods in the relation Classific,
which classifies them into rich or poor. We will seek spatial proximities that influence this
classification: to industry, to universities, and to each of the three levels of government.

Classific

(Neighbourhood RichPoor)
Assiniboia poor
Crystal Beach rich
Dundas rich
Milton-Park poor
Oromocto poor
Ottawa South rich
Richmond rich
Rockcliffe Park rich
Rossdale poor
Sandy Hill rich
Ste-Foy rich
Verdun poor
Waterloo rich
Yorkville rich

We start the processing by defining “close to” (relative to the type of feature) as Dist< Dist Thresh,
and selecting those features that are close to neighbourhoods in the combination of Distance,
Grouping, and Categories.

Close <— [Neighbourhood, Feature, Group, Categ]
where Dist< DistThresh in Distance join Grouping join Categories;
This produces 31 tuples.

123

Close

(Neighbourhood Feature Group Categ)
Oromocto N.B.Legislature prov Govt
Oromocto Town Hall municip Govt
Oromocto CFB Gagetown indus Ind
Rossdale Alberta Legis. prov Govt
Crystal Beach Parliament fed Govt
Crystal Beach Nortel indusHQ Ind
Richmond Town Hall municip Govt
Richmond YVR indus Ind
Dundas Town Hall municip Govt
Dundas McMaster U. univDM Univ
Dundas Stelco Inc indusHQ Ind
Milton-Park Town Hall municip Govt
Milton-Park McGill U. univDM Univ
Sandy Hill Parliament fed Govt
Sandy Hill U. Ottawa univDM Univ
Assiniboia Manitoba Legis prov Govt
Assiniboia Winnipeg Airport indus Ind
Yorkville Ontario Legis prov Govt
Yorkville U.Toronto univDM Univ
Yorkville HQ Bank of Montreal indusHQ Ind
Waterloo Town Hall municip Govt
Waterloo U.Waterloo univD Univ
Waterloo Waterloo Maple indus Ind
Ste-Foy National Assem prov Govt
Ste-Foy U. Laval univDM Univ
Rockcliffe Park Parliament fed Govt
Ottawa South Parliament fed Govt
Ottawa South Carleton U. univD Univ
Ottawa South Expt Farm indus Ind
Verdun Town Hall municip Govt
Verdun Nortel indus Ind

But we have not said anything about how Dist is measured, and so about how precise
the meaning of “close to” is. Since the data in the map could be very extensive, it makes
sense to calculate distance by a succession of approximations. The first approximation is to
consider the crowfly distance between the boundaries of rectangles (MBRs) containing the
features. We suppose that all the above calculations were done using this approximation.

The second approximation can be applied to those features that were found to be close
by the first approximation. This is to consider the crowfly distance between the boundaries
of the polygons that actually define the features. This more expensive calculation need not
be applied to any features that were found too far apart by the first approximation, since
if the MBR distance is too great, the polygon distance also will certainly be too great. We
will suppose that using the second approximation changes the values of Dist in figure40, but
happens not to put any distances over the respective thresholds.

The third calculation is the most expensive, and so is performed only for those features
found close by the second approximation. This is the road distance between polygon bound-
aries. It requires geospatial calculations on a map database that contains road information
as well as everything else. So we go back for a third iteration on the above data, and we

124

suppose that still nothing changes significantly except for the distance between Verdun and
Nortel on Nun’s Island just across the channel: the road distance is 3 km, whereas the first
and second approximation distances were about 1 km. This is now over the threshold spec-
ified for distances from ordinary industry, and so the Verdun—Nortel tuple vanishes from
Close on this third pass.

We now have 30 tuples in Close: those shown, except the last.

We would like to turn this result into a classification relation with one tuple per neighbour-
hood, with attributes Govt, Univ, and Ind, and with the RichPoor classification attribute.
For Gouvt, we want to record which of the three levels of government the neighbourhood is
near (and if more than one, we wish to keep only the highest-ranking in the order fed,
prov, and municip). For Univ and Ind, we will not care which type of university or industry
is involved, but will simply record yes if the feature is close and no if it is not.

So we need a ranking of levels of government:

let GovRank be if Categ="Govt" and Group="fed" then 3 else
if Categ="Govt" and Group="prov" then 2 else 1;
We will select tuples for which GovRank has the maximum value by Neighbourhood and
Category.

We need a single attribute, Value, which will hold the level of government if Categ is Govt,
which will be yes if an industry is close and no if not, or which will be yes if a university is
close and no if not. This requires us to construct a set of no values which we will use to fill
the gaps:

let ValNo be "no";

CategNo <— ([Neighbourhood| in Distance) join [Categ, ValNo| in Categories;
(For instance, Oromocto has no Univ tuple in Close, above: this obliges us to supply a tuple
for Univ which indicates that no university is close to Oromocto.)

Finally, we need a definition of Value which uses these nos where necessary, and takes
yess and levels of government from Close. This exploits the null values that result from
unmatched tuples in the outer join, union:

let Value be if Feature=null then ValNo else
if Categ="Govt" then Group else "yes"
CloseGenl <— ([Neighbourhood, Categ, Value]
where GovRank=equiv max of GovRank by Neighbourhood, Categ
in
(Close union CategNo)) join Classific;
Here is the result. (The virtual attributes, Govt, Univ, and Ind, are defined immediately
below.)

125

CloseGenl
(Neighbourhoods — RichPoor Categ Value) Gout Univ Ind

Oromocto poor Govt prov prov no yes
Oromocto poor Ind yes prov no yes
Oromocto poor Univ no prov no yes
Rossdale poor Govt prov prov no no
Rossdale poor Ind no prov no no
Rossdale poor Univ no prov no no
Crystal Beach rich Govt fed fed no yes
Crystal Beach rich Ind yes fed no yes
Crystal Beach rich Univ no fed no yes
Richmond rich Govt municip municip no yes
Richmond rich Ind yes municip mno yes
Richmond rich Univ no municip mno yes
Dundas rich Govt municip municip yes yes
Dundas rich Univ yes municip yes yes
Dundas rich Ind yes municip yes yes
Milton-Park poor Govt municip municip yes no
Milton-Park poor Univ yes municip yes no
Milton-Park poor Ind no municip yes no
Sandy Hill rich Govt fed fed yes no
Sandy Hill rich Univ yes fed yes no
Sandy Hill rich Ind no fed yes no
Assiniboia poor Govt prov prov no yes
Assiniboia poor Ind yes prov no yes
Assiniboia poor Univ no prov no yes
Yorkville rich Govt prov prov yes yes
Yorkville rich Univ yes prov yes yes
Yorkville rich Ind yes prov yes yes
Waterloo rich Govt municip municip yes yes
Waterloo rich Univ yes municip yes yes
Waterloo rich Ind yes municip yes yes
Ste-Foy rich Govt prov prov yes no
Ste-Foy rich Univ yes prov yes no
Ste-Foy rich Ind no prov yes no
Rockcliffe Park rich Govt fed fed no no
Rockcliffe Park rich Univ no fed no no
Rockcliffe Park rich Ind no fed no no
Ottawa South rich Govt fed fed yes yes
Ottawa South rich Univ yes fed yes yes
Ottawa South rich Ind yes fed yes yes
Verdun poor Govt municip municip no no
Verdun poor Univ no municip no no
Verdun poor Ind no municip mno no

The domain algebra for the virtual attributes, above, is
let Govt be equiv max of if Categ="Govt" then Value
else "" by Neighbourhood,
let Univ be equiv max of if Categ="Univ" then Value
else "" by Neighbourhood,

126

let Ind be equiv max of if Categ="Ind" then Value
else "" by Neighbourhood,

followed by

Training <— [Gout, Univ, Ind, RichPoor] in CloseGenl,
and we see that Training is isomorphic to Training in section 8.1 if we leave out the attribute
Temperature and link Govt with Outlook, Univ with Humdity, Ind with Windy, and, of course,
Class with RichPoor.

The decision tree (or any of the other classification results) is the same as before, and we

can conclude (from this evidently manipulated data) that

e if the neighbourhood is near the federal government it is rich;

e if the neighbourhood is near a provincial government then if it is near a university it
is rich otherwise it is poor;

e if the neighbourhood is near a municipal government then if it is near industry it is
rich otherwise it is poor.

9 Spatial Collaboration on the Internet

There are many paradigms for collaborative work, most of which go back to the origins
of humanity: conversation, which has a take-turns protocol; meetings, where turn-taking
is moderated by a chairman; teams, where interaction is structured by a shared construct
or goal; negotiation; arbitration; etc. The Internet, and related computer networking, have
introduced remote variants, such as multi-user domains (“MUDs”), with a chat protocol in a
shared environment, and simple constructs, such as meeting schedulers (which those familiar
with spatio-temporal concepts will recognise as an or-overlay of impossible times). Before
the Internet, of course, the postal system and the telephone provided remote take-turns
conversations; and printing made available replicated shared resources in the form of books
and lighter reading.

The two central elements of computer-supported cooperative work (CSCW) are shared
resources and the protocols for sharing them. We consider the protocols to be social in nature,
rather than technological, and that, given a technology supporting sufficiently transparent
sharing, the protocols developed over the millennia will be used, as appropriate for the
situation, by the participants. We are primarily interested in technologies which are as
invisible as the air between two talkers and as straightforward as a shared blackboard or a
common map.

We look at two forms of sharing. In the first, there is instant exchange among participants.
This would apply to a brainstorming session, for example. We call this the discussion mode
of sharing. In the second, individuals agree to work on their own on some aspect of a shared
project, and later negotiate the integration of their work with that of others. This is the
checkout-checkin form of sharing. It is suitable whenever more focussed work is needed on
the common goal.

It is important that a participant in either of these modes each have access to heir
own preferred view of the shared resource. For example, some may want WYSIWYG for
a text document while others prefer marked-up text. For a design project, some may want
a perspective view, and some may want a plan view. For geospatial collaboration, some
may prefer an orthographic projection and others transverse mercator. Indeed, any single
participant may simultaneously need multiple views.

127

Thus, the sharing must take place at the level of a common abstraction, rather than at
the level of the display representation. This leads us to consider at least two layers on top of
the transport layer of the ISO/OSI and of the TCP/IP models for Internet communication.
The lower layer will be abstract, and at the level of the relations basically representing the
shared resources and constructs. The upper layer will offer specific display representations.

We can distinguish two classes of user corresponding to these two layers. The programmer-
user deals with the relational abstraction, which is the level we have discussed exclusively so
far in this tutorial. The end-user interacts with the displays and is the ultimate participant
in the collaborations. The programmer-user’s interest is in the relations and the high-level
relational operators that provide the displays with something to show the end-user. The end-
user, on the other hand, is interested in all the details of the data which the programmer-user
considers only as abstract relations.

In fact, the issues of Internet protocols and the details of the sockets that link these ap-
plication layers with the TCP/IP of the transport layer are beyond the scope of this tutorial.
So, for simplicity, we interject another layer in between, and use electronic mail, which is
familiar to everybody, as the application protocol on which we base the communication of
the shared work at the relational level.

Thus, we assume email as the basis for this discussion, on top of which we build first the
relational layer, then the display layer. This is not to claim that email should be used for
this; a more direct protocol would undoubtedly be more effective. However, it gives us two
simplifying advantages, in addition to familiarity on the part of the reader.

The first advantage is that we get an almost memoryless protocol. Apart from the
updates to the shared relations, no state of interactions must be maintained. By making
the individual participants independent of each other, this greatly simplifies the design of
the collaborative software. The second advantage follows, namely that the whole approach
is completely decentralized. There is no central resource or control, only the participants’
copies, which are automatically kept up to date, according to whether the mode is discussion
or checkout-checkin, to the extent that an automated system can keep them up to date.
(Beyond this extent, the participants themselves are invited to decide the current state of
the project, and provided with tools to help.)

The next two subsections discuss the relational and display layers, respectively. The
relational layer must take care of the sharing, and so must support updates caused either by
the display editors above it or by the emails, below it, from other users’ relational layers. This
involves locking in case simultaneous updates produce nonsense, and relaying the events of
updates from the layer above or below to the layer below or above, respectively. This requires
us to discuss event database techniques for programming and for concurrency.

The display layer supports editors which give different views of data in a single data
structure. It is also concerned with sharing and with relaying update events, but in the
context of a single user whose actions on different views we will not consider to be concurrent.

9.1 Concurrency and Events

The relational layer is an intermediary between the Internet communications and the dis-
plays. Both of these layers update relations, and these updates are the events that the
relational layer relays through. The updates must be protected from certain kinds of con-
currency, and this requires locking mechanisms.

Both concurrency mechanisms and event handlers are techniques for coordinating inde-
pendent processes. Event techniques are used when one process, usually a program, is to
respond to another, often a user interacting with the program. Concurrency techniques are

128

1.1,1.2,21,22;1.1,21,1.2,2.2 1.1,21,22,1.2

Figure 41: Interleaved Splice Operations

used to delay a process until some other process has accomplished a specified task. The ap-
proaches are quite different. The blocking mechanism that implements delay in concurrency
control implicitly puts the invoking process to sleep and relinquishes its computing resources
to other processes which may be sharing the same CPU. The event handler, on the other
hand, is simply a procedure body, and introduces no new concepts of time or synchronization
to the programming language that uses it.

9.1.1 Concurrency

A process sharing a resource with another may have to force the other to delay until it
is finished, even in the most cooperative environment. Figure 41 shows the results of two
users each adding an edge between vertices V1 and V2 of a shared diagram represented as a
quad-edge data structure. The update operations involve splices:

User 1 User 2
1.1 splice(a0, do0) 2.1 splice(z0, d0)
1.2 splice(a2, b0) 2.2 splice(z2, b0)

The two steps required by each of these users could be executed in six different interleaved
sequences, with four different outcomes. Figure 41 shows the two of these with step 1.1
executed before step 2.1. The other two outcomes have the positions of a and z reversed.
Presumably the right-hand result would be preferred to the left. But quite likely any of the
four should be deemed a conflict: probably both users had the same idea, to connect V1 and
V2 by a single edge, and only one of them should have carried this out.

In this case, there is a conflict between the two users, and the first one off the mark
should have delayed the second until heir intentions were clear. The concurrency control
mechanism to impose such a delay is a lock, which prevents access to the shared resource
until it is released by the process that set it in the first place. The code, as well as the
splices, should contain the instructions to lock the shared edge ends.

129

User 1 User 2

lock(d0, b0) lock(d0, b0)

1.1 splice(a0, do0) 2.1 splice(z0, d0)
1.2 splice(a2, bO) 2.2 splice(z2, 10)
unlock(d0, b0) unlock(d0, b0)

Now, User 1 finishes before User 2 is permitted to start, or vice versa, and we presume
that User 2 (resp., User 1) is shown the result.

Because the users are sharing the diagram, we do not lock the whole data structure. We
lock the relations at the finest granularity possible. Here, this is the two intended endpoints
of the new edge. Strictly, two operations interfere with each other only if they affect the same
vertex at the same position in the cycle of edges around that vertex. All other operations
may run concurrently. But we see from the left side of figure 41 that we might get undesired
results if we do not protect the whole edge to be inserted.

Locks become especially important if the two users are updating locally stored copies of
the shared diagram, which are supposed to remain in agreement with each other. User 1
might run splice(a0, d0) on his local copy, and User 2 splice(z0, d0) on hers. Then the
system may transmit these updates to the other users’ copies, so the effect on User 1’s copy
is 1.1, 2.1, while the effect on User 2’s is 2.1, 1.1, and the new edges, a0 and z0, leave the
vertex in different orders at different sites.

The locking procedure must be to request a lock on all sites, then not proceed until all
locks are acknowleged as successful. If the lock request must wait on some site(s), this means
that another user has been granted the lock there and is about to be granted it everywhere:
the request is denied and retried.

A waiting lock request (the lock having already been granted to another user) could be
recorded at each site, and indicated on the display, perhaps by a flashing edge and vertex.
This would serve to alert users of conflicting operations, so that one could voluntarily back
down: otherwise, there is a problem of deadlock, two users waiting for each other, as when
User 1 has a lock on d0 and is waiting for the lock on b0 held by User 2, who is waiting
for the lock on d0. Since the process is cooperative, we are less concerned about undetected
deadlocks, or even about the inconsistencies that “two-phase locking” techiques prevent,
than we would be in a fully automatic concurrent system.

The syntax which implements delays in the relational algebra is an almost invisible change
from the T-selector

[<projection-list>]| where <condition> in R
to
[<projection-list>] when <condition> in R

The interpretation of this is close to Linda’s [10] blocking mechanism: if the T-selector
(with where) would have returned an empty relation, the blocking T-selector (with when)
blocks until R is updated, by some other process, in such a way that the result is no longer
empty. (Unlike Linda, the blocking T-selector is fully deterministic, returning all relevant
tuples in the case that it does not block.) This can be used to construct semaphores, which
are the usual mechanism to implement locking.

Even greater confusion can arise if both users are trying to add the same edge, say, a,
to the same or different places of the shared diagram. This can be avoided by having a
system-wide generator for the internal identifiers of edges, which gives everyone a unique
new edge whenever they create one. We can suppose from now on that two users do not
share the edges they are adding to a shared diagram. (User-perceived names, such as a,
could be extra data, not used to identify edges to the system, and so shareable.)

130

The fact that the system is distributed as well as concurrent also affects us when we
want to commit an operation. This issue arises in the checkout-checkin mode of sharing,
when a user, having completed a modification, wishes to have it generally accepted. The
“two-phase commit” methodology for distributed transactions is useful here. In the voting
phase, (actually a veto phase) everyone considers whether the modification is accepted, and
in the commit phase, if it is accepted, the copies are updated. In this cooperative system,
it is the users who vote (veto) and decide on the outcome, rather than some algorithm, as
would be the case in an ordinary distributed database.

(Two-phase commit is inadequate in the presence of host or communication failures.
For deeper treatment, an elegant and thorough treatment of transactions, concurrency, and
distributed databases can be found in the early book by Bernstein, Hadzilacos, and Good-
man [8].)

We can provide a differencing tool to show what has changed. We suppose that checkout
makes a copy of the data at the site where the updates are made. It also notifies all sites
that the data structure has been checked out. The first task of checkin is to run the differ-
ence operator on the old and changed copies. The result can then be broadcast as splice()
arguments to all other sites. If nobody else has checked out the data, these arguments can
be used to update all sites directly, using the above locking strategies. If somebody has also
checked it out, negotiations must take place, possibly waiting for checkin to be initiated on
all checked out copies.

The difference operator for quad-edge diagrams is a simple diff on relations (see sec-
tion 5.3.1). Just as the union operator is not the pure set union of SQL, the difference join
is not simple set difference. Suppose that OldDiagram and CheckedOut are the former and
updated quad-edge relations, respectively.

OldDiagram(el dl1 e2 d2) CheckedOut(el dl e2 d2)

2 d 0 c 2 d 0

d 0 C 2 d 0 a 0
b O e 2 a 0 C 2
e 2 b 0 a 2 e 2
b 2 C 0 e 2 b 0
c O b 2 b O a 2
d 2 e 0 b 2 C 0
e 0 d 2 ¢c 0 b 2
b 3 C 3 d 2 e 0
c 3 d 3 e 0 d 2
d 3 e 3 b 3 C 3
e 3 b 3 c 3 a 3
e 1 d 1 a 3 b 3
d 1 C 1 d 3 e 3
c 1 b 1 e 3 a 1
b 1 e 1 a 1 d 3
e 1 d 1

d 1 C 1

c 1 b 1

b 1 e 1

Then we apply the following
NewVertices <— where d1 mod 2 = 0 in CheckedOut;
OldVertices <— [€2,d2] where d1 mod 2 = 0 in OldDiagram,

131

difference <— NewVertices diff OldVertices;
which gives

difference(el dl €2 d2)
d 0 a O
b 0 a 2

and this is exactly the operands for the two splice() operations that changed OldDiagram to
the new version of CheckedQut.

If another user has also checked out the relation, two such diff operations, one going each
way, will identify the different updates that were made to the two checked out relations. This
should help in the discussion about how the two versions are to be integrated again.

9.1.2 Distributed Processing

To transmit update events to other sites, we have decided to rely on email for the purposes
of this discussion. For this, we need to introduce the notions of source relation and sink
relation. These are pseudo relations, which can appear, respectively, to the right or left of an
assignment arrow, and do such things as reading or printing relations, and, for our present
interest, receiving or sending email.

Thus,

print <— <relation>;
will print relation in some preformatted way to the current output device.
.mailout <— <relation>;
will send the relation as email, provided relation contains a field To:, and a field Subject:.
Then each tuple will be mailed to its respective address, with the subject header.
These are sink pseudo-relations. Examples of source pseudo-relations are
<relation> <— .read;
which reads a relational expression from the current input device and evaluates it before
assigning it to relation:
update <relation> add when <condition> in .mailin;
waits for the specified email to be received and adds it to relation (using an update..add
statement, which can generate events for the display editors).

A simple example shows these mail constructs in the context of distributed processing,
which avoids the complication of display interfaces (discussed in section 9.2) and human
collaboration. We consider a distributed program to perform matrix multiplication, with a
parent site coordinating and integrating results from child sites which each multiply one row
of one matrix, A, by the entire second matrix, B. These are represented, respectively, by
the relations A(i, j,a) and B(j, k,b), each with attributes for row, column, and value.

First, the matrix multiplication code in general needs one equivalence reduction from the
domain algebra and one natural join from the relational algebra.

let ¢ be equiv + of a x b by i, k;

C <—li,k,c] in (A join B);
This implementation can be used either to multiply the two matrices completely at a single
site, or to multiply a row of A by all of B at a child site, depending on how many rows of A
are represented by the relation A(i, j,a).

We will use a simple convention for .mailout which requires only two special attributes,
To: and Subject:. For .mailin, we can assume that any of the usual mail headers generated
by the underlying email clients (such as From:, Date:, etc.) are available as attributes, but
we will not use them here. With this convention, here is the code for the parent site.

132

let To: be "child" cat i;
let Subject: be "A";
.mailout <— [To:, Subject:, i, j, a] in A;
let Subject: be "B";
.mailout <— ([To:, Subject:] in A) join B;
for count <— 1 to [red max of 7] in A
update C' add when Subject:="C" in .mailin;
The first .mailout has a different To: value for each child site, according to the value of
1, and so mails a row of the matrix to each child. The second .mailout sends a copy of all
of B to each child, one for each value of 7 in A. The .maulin loop iterates for each ¢ in A to
receive the responses from the child sites, and puts the union of these results (in any order)
into C.
Each child site receives its mail, does the multiplication, and mails the result to the
parent.
A <— when Subject:="A" in .mailin;
B <— when Subject:="B" in .mailin;
let ¢ be equiv + of a x b by i, k;
C <—[i,k,c] in (A join B);
let To: be "parent'";
let Subject: be "C";
.mailout <— [To:, Subject:, i, k, c| in C;
(It is also useful to have a mechanism for creating alias email addresses at the different
sites. In this way, parent could be the same site as childl, say.)
This simple example provides the groundwork for more complicated cooperation involving
humans, displays, and events. It also shows that distributed processing is a special case of
distributed cooperative work.

9.1.3 Events

We have covered the basics of the concurrency control, notably locking, that must be used
to protect the shared work from confusion. We have also presented the difference operations,
which can pinpoint differences between map versions. We must now consider how to ensure
that displays are refreshed, both locally and remotely, whenever an update is made anywhere.
This applies both to the discussion mode and, at checkin time, to the checkout-checkin mode
of collaboration.

The technique is to use events. We ensure that the display editors (to be discussed
in the next section) are built to respond to events, whether from the user’s mouse- and
keyboard-actions, or from remotely-generated updates to the underlying data structure.

In contrast, to some extent, with delay synchronization, events are extremely simple con-
cepts already familiar to any programmer. They are not, however, what the word, “event”,
implies in English. An event handler is a procedure. An event is a system-generated pro-
cedure call. When a display editor responds to a mouse click, it is executing a procedure,
which was called by a system command in response to the end-user’s action on the mouse.
We provide similar procedure calls when a relation is updated, and the display editor must
respond to them in the same way.

Furthermore, this mechanism makes it possible for two or more display editors, running
concurrently on the same data structure, possibly offering different views of the same data,
to affect each other’s displays as a result of an update in one or another. The active editor,
in which the user makes a change, updates the underlying relations; this in turn causes an

133

event which results in procedure calls in the other editors to refresh their displays reflecting
the change.

The syntax for an event handler is identical to that for a procedure, except that the name
of the procedure must reflect the calling event. For relation updates, the general forms of
the name are

[pre|post| add <relation>
[pre|post| delete <relation>
[pre|post| change <relation>:<field>

Postscript. In characterizing an event as only a system-generated procedure call, we have cut
a Gordian knot in the research literature on events, and have also deprived ourselves of being
able to write syntax for combinations of “events” (such as more than one bank withdrawal
per hour, or withdrawals or deposits on a certain day). But the definition we give allows us
to build a log of such “events”, and use ordinary database querying or further event handlers
to detect these compound events. The great variety of possibilities one might want to check
for makes special syntax counterproductive in any case, given the general query capabilities
already available.

9.2 Update Editors

We turn from the relational layer to the display layer. The user of the relational layer is the
database programmer. The user of the display layer is the end user, whose interest is in the
spatial data itself rather than the relational abstractions. The bridge between the two is an
extension of the update statement in the relational layer.

Suppose we have built a display editor which emulates the interface of a G.I.S. and have
called it GISedit. The relation layer interface might be

update Map GISedit;
where Map is a relation holding the map data.

The previous update commands invoked algorithms to add, delete, or change the rela-
tion. The update .. edit command invokes the named editor which opens window(s) to
the end user to view and manipulate the data. When the end user closes the session, the
update statement completes, with Map suitably changed. To the relational programmer,
all the update commands behave in the same way. They execute, changing the relation.
Only the duration of the update .. edit variant is likely to be longer, and unpredictable.

An editor used in update .. edit mode should directly update the relation, causing
update events which can be handled by procedures in the relational layer. It should also be
able to respond to update events that may arise from externally caused updates to the same
relation, running concurrently. The most basic response is to refresh the display to reflect any
external updates to the end user. In this way, update instructions that have arrived by email
from remote participants will be displayed by the editor as soon as they are accomplished.
Further, the local program could be running more than one display editor concurrently, to
provide the end user with different views, and changes by any of these editors are reflected
by the others.

(A purely functional form of editor can be invoked as a relational expression, rather than
as an update statement. To the relational layer, it seems to be a unary operator, such as
a T-selector. It does not change the operand relation, but returns an updated copy as the
value of the relational expression. It cannot cause or respond to concurrent updates because
it does not update. It is a functional editor, as opposed to the above update editor.)

Postscript. Cooperative computing on the Internet goes beyond the standard, client-server,

134

paradigm. A client is a program which initiates an interaction, while a server is software
which can respond to such an initiative. By analogy with the telephone system, the client
dials and the server answers. An example of this is the world-wide web browser and website
interaction. The server manages the pages of the website and responds to browsers requesting
connection and subsequent services. The browser is the client and offers its users the services
of document display, applet execution, and so on. In electronic mail, there is usually a server
to distribute mail, with a corresponding “send” client, and a server to receive and sometimes
manage one user’s mail, with a corresponding “receive” client.

In our model of cooperative work, we rise above these considerations to a more symmet-
rical, peer-to-peer, perspective. An update at any site is broadcast to and reflected at all
other sites. Beneath it all, of course, are the email client-server pairs, but the user, and to an
important extent the programmer, need not be aware of this machinery behind the scenes.

9.3 Example: Distributed Workflow in Collaborative Mapmaking

To illustrate these ideas, we consider two simplified issues in mapmaking. The first is the
process of inspection of maps by the client (government, for instance) after (or as) they are
drawn by the contractor. The second is the problem of map registration when the contractor
has divided the geographical region among several subcontractors, and the resulting regional
maps must be concatenated.

9.3.1 Online Inspection

The traditional interaction between customer and contractor, which we seek to improve upon,
was for the contractor to prepare the maps ordered by the client, then courier them to be
inspected. The customer’s inspector would note the incorrect street names, missing streets,
buildings, hydrants, etc., and courier the drafts back for correction. This slow process could
go on for several iterations.

The fanciest improvement to this would be to link the contractor’s map editor to the
inspector’s in the way described in section 9.2, so that the inspector could detect in real
time whenever the contractor makes a mistake. This is not useful because the inspector
has other things to do than watch maps being drawn line by line, and because time zone
differences in a large country make it further impracticable. So we look at an intermediate
solution involving email.

In this approach, the contractor periodically mails the three components of the map,
QuadEdge, VertFace, and Geom (see section 4.2), to the inspector, and awaits the comments.
Since this can be done a little more frequently than the contractor would have sent a courier
in the past, it is advisable to label each transmission, say with today’s date, so that the
contractor knows which draft the comments refer to when they come back. Here is the
simplest code, at the contractor site.

let To: be "inspector@maps.gov'";

let Subject: be "QuadEdge:" cat today;

.mailout <— [To:, Subject:, edgel, dirl, edge2, dir2] in QuadFEdge;

let Subject: be "VertFace:" cat today;

.mailout <— [To:, Subject:, edge, org, dest, left, right] in VertFace;

let Subject: be "Geom:" cat today;

.mailout <— [To:, Subject:, vf, z, y] in Geom;

Comments <+ when From: = "inspector@maps.gov" and
Subject = "Comments" cat today in .mailin;

135

At the inspector’s end of the line, the three relations arrive by email
let date be substr(Subject:, ":");
QFE <— [From:, date, edgel, dirl, edge2, dir2)
when substr(Subject:, 0, ":") = "QuadEdge" in .mailin;
VF <— [From:, date, edge, org, dest, left, right|

when substr(Subject:, 0, ":") = "VertFace" in .mailin;
G <— [From:, date, vf, z, v
when substr(Subject:, 0, ":") = "Geom" in .mailin;

(the substring function has been streamlined for brevity). Using the data abstraction tech-
nique of section 10, to follow, we now suppose that the three relations have been combined
into the nested relation, Map. The inspector can examine this using a functional editor
(since hey does not need to alter the map) to generate comments, which are mailed back to
the contractor.

Comments <— GISedit Map;

.mailout <— Comments;

9.3.2 Map Registration

A large mapping project may be delegated by the contractor to several subcontractors, with
the resulting problem of combining the results into a single map at the end.

In an ideal world, this would be a simple matter of uniting the individual maps, and
the Map nested relation gives us an easy way of doing this. The main contractor now
plays the role of the inspector in the above discussion, and receives a draft map from each
subcontractor. Map now has several tuples (whereas in section 9.3.1, above, it had only one),
consisting of the nested components QuadEdge, VertFace, and Geom. The simple-minded
union of these is achieved by three lines of domain algebra.

let QuadFEdgeU be red union of QuadFdge;
let VertFaceU be red union of VertFace;
let GeomU be red union of Geom;

Unfortunately, the world is not ideal and there will be discrepancies among the map
sheets provided by the separate subcontractors. This is the registration problem, which
requires the contractor to check that features in each map align with the same features in
adjacent maps, before uniting the maps. The subcontractors’ maps all overlap at the edges,
to permit this check. The inspector compares the coordinates, from the two maps, of the
vertices of a shared feature, and the differences for any three vertices tell hem whether that
part of one map has been scaled, rotated, or translated relative to the other.

We illustrate this with the feature of figure 5, which has two triangles. Figure 42 shows
this feature as it might be represented at the adjacent edges of two different maps. The
discrepancies are greatly exaggerated for visual clarity. As it happens, in one of the maps
relative to the other, the upper triangle has been reduced by a scale factor of 1/2, then
rotated 53.13 degrees, then translated vertically by 10% of its original height. The lower
triangle has been treated almost alike, except that it was deformed by an initial scaling of
1/2 in the z direction and 2/3 in the y direction, before rotating and translating.

How do we discover what these (presumed accidental) transformations were, from the
corresponding coordinates alone? Let’s start supposing we know the transformations, calcu-
lating their effect on the coordinates, and then seeing if we can reverse the calculation.

A scaling of a point (z,y) by a factor s, in the z direction and s, in the y direction,
followed by a rotation through an angle whose cosine and sine are ¢ and s, respectively,
followed by a translation ¢, units in the original z direction and ¢, units in the original y

136

(-9,-9) (16.-9)"

(0.-30)
Figure 42: Two maps, one feature (exaggerated)

direction, is given by?3

2\ s c —s sz O x
(y’)_<ty)+(s c)< 0 Sy><y)

This gives the new coordinates, (2',4'), in terms of the old. Because we are going to
have to invert this calculation, and find s, sy, ¢, s, t;, and t, given x,y, ', and y' for a set of
points (three points, to be precise, because there are six unknowns), it is more convenient
to express the transformation solely in terms of matrix multiplication. We can do this by
imagining a z-axis at right angles to the maps, and supposing that the map and all features

on it are on the plane z = 1. Then translation becomes a shear transformation given by the
leftmost matrix below.

Iy

t

T’ 1 ¢c —s 0 s 0 0 x
(y |=10 Y s ¢ 0 0 s, 0 Y
1 0 1 0 0 1 0O 0 1 1

Note that the z-axis is not affected by the transformations, and that both the input and the
result vectors have z = 1.
In our example, the transformation of the three points of the lower triangle is thus

9 16 —9 100\ /3/5 —4/5 0 1/2 0 0 30 0 —30
15 -9 -9)=(013][45 3/5 0 0 2/3 0 0 —30 0
1 1 1 00 1 0o 0 1 0 0 1 11 1

3This is a special case of an affine transformation, used for instance in fractal compression of images [6].
In the general affine transformation, there are two ¢s and two ss, and so two angles of rotation, one asso-
ciated with the original z-axis and one with the y-axis. The extension of our discussion to the full affine
transformation is minor, and we consider only single angles.

o~ O

137

If we did not know the transformation, this would be

9 16 -9 1 0 ¢ c —s 0 sz 0 0 30 0 —30
15 -9 -9 =101 ¢ s ¢ 0 0 sy, 0 0 -30 0
1 1 1 0 0 1 0 0 1 0 0 1 1 1 1

We can rewrite this with a single matrix of unknowns

9 16 -9 €Sy —8Sy 1 30 0 —30
15 =9 =9 | =1 ss; c¢sy ty 0 -30 0
1 1 1 0 0 1 1 1 1

We find the unknowns by inverting the matrix of known coordinates that it is multiplied by

1 9 16 -9 30 30 900 3/10 —8/15 0 CSy —SSy g
— | 15 =9 -9 0 —60 0 | =1 4/10 4/10 3 | =| ss; csy U
1800\ 1 1 1 —30 30 900 1 11 0o o 1

We can represent the product matrix, which gives the result of the unknown scaling,

rotation, and translation, as a relation, and we can use the domain algebra to solve for the
separate unknowns. (The angle is now in radians.)

SclRotTrans(i j wal) ty, t, sz Sy c s 0
1 1 0.3 0 3 05 0.666 06 08 0.9273
1 2 04 0 3 05 0.666 0.6 0.8 0.9273
2 1 -533 0 3 05 0667 0.6 0.8 0.9273
2 2 04 0 3 05 0.666 06 08 0.9273
3 2 3 0 3 05 0.666 0.6 0.8 0.9273
3 3 1 0 3 05 0.666 0.6 08 0.9273

let ¢, be red max of if i = 1 & j = 3 then val else 0;
let ¢, be red max of if i =2 & j = 3 then wval else 0;
let s, be sqrt(
(red max of if i =1 & j = 1 then valxval else 0) +
(red max of if i = 2 & j = 1 then valxwval else 0));
let s, be sqrt(
(red max of if i =1 & j = 2 then valxval else 0) +
(red max of if i = 2 & j = 2 then valxval else 0));
let c be if s, > 0
then sign(val)x (red max of if i = 1 & j = 1 then abs(val) else 0)/s,
else sign(val) x (red max of if i = 2 & j = 2 then abs(val) else 0)/sy;
let sbe if s, >0
then sign(val) x (red max of if i =2 & j = 1 then abs(val) else 0)/s,
else —sign(val)x (red max of if i = 2 & j = 2 then abs(val) else 0)/s,;
let # be arctan(c, s);

The inversion and multiplication of the three-by-three matrices also involves algebra
which can be expressed by domain algebra. It is long but obvious, and we do not explicitly
write it out.

Since the distortion of the maps may vary from place to place, we must repeat this solution
for every triangle: the reductions, above, become equivalence reductions. The triangles we
choose should be Delaunay triangles, since these minimize the linear dimensions of the region

138

affected by each distortion. In general, the Delaunay triangles of one distorted map will not
be Delaunay triangles of the second distorted map, but in practice the distortions will be
small and the Delaunay triangulations should be the same. In any case, one of the two maps
should be triangulated, and the same triangles used for the corresponding vertices of the
other map.

The result of repeating the above solution for both triangles of the example would be

Diff(triangle t, t, Sz sy 6)
F1 0 3 05 0666 0.9273
F2 0 3 05 0.5 0.9273

Note that these calculations give only the distortions of one map relative to the other.
Since both maps may have been distorted, the results are a clue only to the differences in
distortion. Two equally distorted maps will ring no bells.

Once manual intervention, alerted by calculations such as these, have brought the two
maps into agreement, they may be united by the union operations at the beginning of this
section. Similarly, all the component maps, once made to agree across their overlapping
edges, can be united into the single map the contractor offered to provide.

The coding offered in this section only touches the more general problems underlying map
registration, known as map conflation [51]. These problems include automated matching of
features common to the two maps to discover which parts of the maps are to be registered
with each other. Polygon skeleton techniques (see section 6.4) can be used.

10 Programming Language Techniques

It is commonly claimed that the relational formulation of data on secondary storage is limited
in its power to capture complex structures, and so must be thrown away in favour of other
paradigms. We have seen that “complex objects” are well supported by nested relations
(which are in turn built from the classical, flat, relations) and that “multidimensional data”
is relational and readily processed with the domain and relational algebras.

Yet we have in this tutorial hardly touched upon the most ordinary of programming
language constructs, such as scoping, type systems, or procedural and data abstraction.
We raised the need for the latter when we first proposed a spatial data structure of some
three relations together with its basic operation of splicing. We now discuss some of these
constructs.

To get to data abstraction, we must first consider procedural abstraction. Having data
abstraction leads us to the notions of state, instantiation, and classes of instances. These
are the ideas behind “object-orientation”, which is a constellation of programming-language
concepts.

Since they are not database concepts, they do not conflict with relations. There is no
more problem about an object-oriented relational programming language than there is about
an object-oriented list programming language or an object-oriented numerical programming
language. In fact, the high level of programming offered by relations, which abstract over
tuples and over looping, allows us to raise our sights from “objects” to their higher-level
abstraction, classes. Just as a relational programming language has no concept of a tuple,
it need have no concept of an individual object.

This is fortunate, because the term, “object”, itself is a misnomer and becoming jaded.
It misleads many into thinking that they are programming with chairs or balls or other
“objects”, and that there is something particularly “objective” and real about objects. We
will use the term instance, but we will program with classes.

139

10.1 Procedural Abstraction

Object orientation is a programming technique for limiting the side effects of assignment
and update operations. It achieves this by encapsulating mutable data in a package defined
by its data structure and the operations devised for that data structure. The operations
are represented by the much older programing language device, the procedure. This is an
abstraction of a piece of program code which, usually, allows some parts of the code (usually
variables) to be parametrized. Thus, it is called parametric abstraction. We call it procedural
abstraction for familiarity.

A special form of procedure is the function. This is a procedure without side effects:
every time it is invoked with a fixed set of values for its parameters, it gives the same result.
That is, it has no memory, no internal data which gets changed by the invocation, no state.
It is also, usually, a procedure in which one parameter is the output and the remaining
parameters provide input only; it may be written so that the output is not named explicitly
by a parameter, but is returned as a value using, say, the name of the function itself.

A function is thus the antithesis of object-orientation, because it has no state to worry
about. Stateless, or “functional”, programming is a very elegant paradigm, with proponents
who argue that all programming should be functional. In a database, or secondary storage,
context, this is an extreme stance: functional relational programming would require copying
completely every relation needing the slightest modification—perhaps gigabytes of copying
for a few tens of bytes of update.

But functions provide the basis for a relational form of procedural abstraction, because
functions are also special cases of relations. Functions are relations on their parameters
such that providing values for a subset of the parameters leads to a complete evaluation of
the remaining parameters. The only limitation is that this evaluation works only one way.
In conventional programming language functions, the input parameters are fixed and the
output parameter (often only one) is, too.

Relations, on the other hand, through T-selectors, find the values of any subset of fields
given values for any other subset of fields. There may even be many such values for each
“output” field, because many tuples match the values of the “input” fields.

Since there is such a close connection between a programming language function and
a database relation, it would be a shame to ignore it and simply parachute conventional
procedural abstraction into the relational programming language. That would require new
syntax and a mismatch of concepts, where the same concept can in fact be used for both
and no new syntax introduced.

So the simple idea is to generalize functions so that they can work in more than one
direction, and to use the relational algebra to invoke them. We call the generalized functions
computations. Computations are specialized relations and are used in the relational algebra.
They are, of course, not explicit relations, with a given set of tuples giving the relationship
among the fields; they are implicit, with the relationship given by algorithmic code.

Here is the computation that gives the full relationship among the coordinates, (z,y),
of a two-dimensional point, and its coordinates, (z',%'), after the coordinate axes have been
rotated an angle # counterclockwise. (The alt keyword separates the alternative blocks of
code that give each possible direction of calculation.)

comp rotate(z,y, ',y 0) is
6 <— arccos(z x ' +y xy)/(x A2+ y A2));
alt
{2’ <—x X cosf + y x sin¥;
Yy <——1x Xsinf +y X cosb;
} alt

140

{z <—2"xcosf —y' xsinb;
y <—x' X sinf +y' x cosb;
} alt

{z <—2'/cosf — y x tanb;
y' <— —1z' x tanf + y/ cosb;
} alt

{2 <—z/cosf+y' x tanb,
y <—x X tanf + y'/ cos b,

(If v = sinf and the units are such that the velocity of light is 1, the latter two are the
Lorentz transformation of space-time geometry and its inverse, an interesting connection
between spatial rotations and spatio-temporal rotations.)

Here are two invocations, using T-selectors from the relational algebra (€ in degrees).
These are ordinary rotations, and inverses of each other.

[',y']| where §# =90 and z = 1.0 and y = 1.0 in rotate;
[z,y] where # = 90 and 2’ = 1.0 and y' = —1.0 in rotate;
For multiple invocations, we can use a join. Suppose a relation,
points(z,y),
contains many points. Then new coordinates can be found for all these points after axis
rotation.
let 6 be 90;
rotPoints <— [z, y'] in rotate join [x,y, 0] in points;
We see that rotate is in all ways a relation.

This computation, and many others, are purely functional, in the technical sense that
they have no state and always give the same results for the same inputs. Computations
with state are also important, and lead us towards object orientation. The simplest possible
computation with state is a counter.

comp counter(current) is

state count initial 0;

count <— count + current;

alt

current <— count;
The field, current, can be input, usually with a value of 1, and then count will be incremented.
Alternatively, it is the output giving the current value of count.

Thus far, we have no machinery which lets us use two or more counters in the same
program. Making multiple uses of rotate would be no problem, because rotate has no state.
But if we wanted to count both sheep and goats, we would have to make a copy of the state,
count, inside counter. This is called instantiation, and is the heart of object orientation. An
object-oriented language would instantiate with a keyword such as new, as in

sheep = new counter

goats = new counter
but this is too low-level for a relational language. We do not want to have to deal with
individual instances. Before dealing with this problem, we look at data abstraction.

10.2 Data Abstraction

Abstract data types are a programming language construct invented to permit programmers
to extend the language to include new types of data. Suppose the base language contains
arithmetic, but a geometrical programmer needs two-dimensional vectors and operators to

141

translate and rotate them. It would be handy to have wvector type for which one vector,
v, can be translated by the distance and direction given by another vector, ¢, by writing
v +t. Or to rotate v by the direction of a vector, r, and increase its magnitude by a
factor which is the magnitude of r: v x r. The abstract data type the programmer could
define for this would provide the vector type, the two operators (which might perfectly well
“overload” the existing arithmetic addition and multiplication operators of the language),
and the capability of creating new instances. (The way we have formulated the problem, by
the way, this new type would be the complex numbers, and scaling can be accommodated
by scalar multiplication, a further overloading.)

Many programming languages now provide syntax for this kind of language extension.
An insightful paper by Atkinson and Morrison [5] shows that new syntax is not needed, but
only first class procedures. A programming language construct or type is first class if it can
be used anywhere any other construct or type in the language can. This is a relative ranking.
For instance, in most languages, integers are favoured over arrays. To make a case in point,
integers can be returned as the result of a function, but arrays cannot: arrays are second
class. In functional programming languages, functions are usually first class, which means
that they can be the arguments or the results of other functions. Atkinson and Morrison
point out that if functions and procedures are first class, they can be returned by an ordinary
procedure, which can be used to define the abstract data type.

In this way, we can have a procedure

complex(translate, rotate, scale)
which returns the procedures to do addition, multiplication, and scalar multiplication of
vectors (we do not address the issue of overloading). If, furthermore, procedures can be
persistent, i.e., stored on secondary storage and shared among different programs, complex
can be so stored, and becomes a library procedure.

We can work an example once we deal with instantiation, which we now see is needed
both for computations (procedures) with state and for data abstraction.

10.3 Classes and Instantiation

We can now define a class to be an abstract data type with state. Alternatively, it is the
set of all possible instances for that state, subject to the declarations and operations defined
in the abstract data type. We can illustrate with the complex number example, since it is
simple and frequently used as an example. We omit parts, such as the rotate computation,
that tell us nothing new. (Note that rotate here will not be the same as rotate above, in
section 10.1, but will use complex (vector) arguments, having the form, say rotate(v, 6, u).)
comp complex(assign, translate, scale)
{ domain r real; // real part
domain ; real; // imaginary part
state c(r, i) initial {(0.0, 0.0)};
let ' be r; let r” be 7;
let 7/ be i; let 7" be i;

domain realpart real,;
domain imagpart real;
comp assign(realpart,imagpart) is
{ let r be realpart,
let ¢+ be imagpart;
¢ <— [r,4] in;

142

} alt ... // block for ¢ — a,b

domain v(r, 7);
domain ¢(r,4);
domain u(r,i);
comp translate(v,t,u) is
redop
{let r be ' + ",
let i be i’ +i";
u <—[r,i] in (([7',7'] in v) join ([r",7"] in t));
} alt ... // blocks for subtraction

domain s real;
comp scale(v, s,u) is
{let r be ' x s;
let i be i’ X s;
u <— [r,d] in [r',d] in v;
} alt ... // blocks for scalar division

(Note in assign that c is a singleton relation consisting only of the tuple containing the re-
alpart and tmagpart that have been passed as parameters. Thus c is created by a projection
from no relation. Note also that we have identified addition of vectors, the first block of
translate, as a reduction operator (redop), so that it can be used in the domain algebra to
calculate aggregates.)

This is the class definition. No instances have yet been created. Since we are thinking
relationally, we imagine that we might have a relation with many points which we wish to
express as complex numbers.

manyPoints(identifier, z, y)
where values have already been supplied for the three fields in each of many tuples. We
must combine the complex number class, expressed as the computation, complex, with the
data in the relation manyPoints, so as to instantiate a complex number for each tuple and
eventually to hide in its real and imaginary parts z and y, respectively. To keep our thinking
from descending to the level of individual instances, we must avoid using anything like a
new operator to instantiate.

How do we combine computation and relation? With a join, just as before. Here is the
code. First, we instantiate a complex number on every tuple.

instances <— complex join manyPoints;
This creates a relation with visible and hidden fields

instances(identifier, , y, assign, translate, scale) ¢
The visible fields are written within the parentheses. The last three are computations, and
have the same value for all tuples. The hidden field, ¢, is the state from complex, and is
inaccessible except through the visible computations, notably assign. It is shown above
outside the parentheses. It is, of course, a nested relation, albeit a simple one.

Next, we assign x and y as the values of the real and imaginary components, respectively,
of the hidden complex number.

update instances change assign(z,y);
Here we must use an update statement, because the assign operation is non-functional.

Third, we can get rid of the working coordinates, x and y, by making a new relation with

143

just the complex data type.
complexPoints <— [identifier, assign, translate, scale] in instances;

We have coded this class in a way which leads to a problem. We did not really need a
state for complex numbers, and we coded translate and scale to be independent of the state.
This saves us from the unpleasant asymmetry that plagues doctrinaire object orientation,
which is obliged to write a + b as a.plus(b) instead of, at worst, plus(a,b). But we did not
code assign to be independent of state, which we could have done. So now our complex
vector has no name, and there are no operations that can get at it. But we have illustrated
both the stateful and the state-free aspects of data abstraction, and we can leave the reader
to fix our compromise by moving it either fully to or fully away from an abstract data type
with state.

It should also now be apparent to the reader how a whole data structure such as the
quad-edge representation of planar subdivisions can be represented as an abstract data type
with a state consisting of three or more relations, but which we can manipulate with the
domain (and relational) algebra, and with updates of the sort illustrated above. We can
furthermore edit any instance of such a class with a specially-written update editor of the
sort discussed in section 9.2.

It follows that a library of the geospatial data structures and operations we have discussed
in this tutorial can be provided, with clean interfaces so that G.I.S. professionals are spared
the details of the implementations we have gone through. What this approach offers those
professionals is a straightforawrd combination of spatial with non-spatial data in all G.I.S.
contexts.

10.4 Example: A Map ADT

In section 9.3.1 we anticipated the ability, which we now have, to construct the abstract
data type for Map, so we give it as an example of the foregoing. We do not give the details
of the construction of what we can call QEADT, the abstract data type containing all the
operations needed for the quad-edge representation of maps, because this would be to repeat
much of the foregoing tutorial. But we will suppose that QEADT exports operators for
map overlay, Delaunay triangulation, spatial datacubes, and so on from the earlier parts
of the tutorial, together with all useful G.I.S. capabilities that the reader should by now
know how to write in the relational and domain algebras. We will in particular assume an
assign operator similar to that written in section 10.3, above, for complex numbers, and a
fetch operator which allows us to extract the three basic components of the quad-edge data
structure.

These three components are the relations QuadFEdge, VertFace, and Geom. They will be
stored as hidden nested components of the Map relation. We procede, given QEADT(assign,
fetch, ..), just as we did to create instances, above, except that we here build only a single
instance, and so begin with no relation corresponding to manyPoints.

We pick up from our omission at the end of section 9.3.1, where the inspector has received
the three components as separate relations, and called them QF, VF, and G, respectively.
Each has its topological and spatial fields, and the field, From:, giving the source. We will
extract a To: field for the map as a whole from one of these From: fields, supposing them
to be the same in all three relations, so we can mail back the comments.

let QuadEdge be QFE;

let VertFace be VF;

let Geom be G;

let To: be [red max of From:| in QFE,

144

let Subject: be "Comments";

Maps <— [Subject:, To:, QuadEdge, VertFace, Geom) in;

MapForm <— [Subject:, To:, QuadEdge, VertFace, Geom, assign, fetch, ..] in
(Maps ijoin QEADT);

update MapForm change assign(QuadEdge, VertFace, Geom);

Map <— [Subject:, To:, assign, fetch, ..] in MapForm;

With Map thus an instance of the QEADT abstract data type, we can return to sec-
tion 9.3.1 for the inspector to make comments and mail them back to the contractor.

10.5 Example: Distributed Geospatial Objects

Despite the singular inappropriateness of the term “object”, we have seen that the essential
idea behind programming language object orientation is the concept of state, from which
instantiation follows. The simplest objects are thus things like counters (whose state is
the current count), stopwatches (whose state is the current elapsed time), or even stack
calculators (whose state is the stacked values). These can all be distributed so as to be
remotely accessed. What is needed is a protocol which supports requests for instantiation
followed by method invocations on particular instances. Thus, if I want to use a counter,
such as defined in section 10.1, provided by another site, I need to send a request for an
instance, get back an identifier for that instance, then send requests with that identifier, and
the parameters, for specific methods. The remote instance is then mine to use until I have
finished with it.

The email technique used in section 9.1.3 for Internet communication can be used for
such a protocol, giving us a complete, if rudimentary, architecture for distributed objects.
We should observe, however, that while state is the essence of object-orientation, none of our
Internet applications depend on one site holding a state for another. Such stateless commu-
nication is preferable and safer between remote sites, because, among other considerations,
it is not affected by crashes. This dichotomy between stateless remote communication and
state in objects is significant enough to have led people to speak of “stateless objects”, which
is of course a self-contradiction.® What they are trying to describe is the earlier notion of
library procedure. We should perhaps introduce the term “confused object” to denote either
a remote object (with state) or a remote library procedure (without state).

A nice way around the inflexibility and expense of purchasing entire software systems in
order to use only a very small part of their capabilities, is to “rent” remote facilities, in the
form either of remote objects or remote library procedures. The care and maintenance of
these facilities is then entirely in the hands of the rental agency, and users need pay only for
what they use, and when they do. Examples of such remote services for geoprocessing include
display (zoom, pan, select, identify, layer control, colour style, etc.), access (download from
server, upload from local, overlay layers from different sources, etc.), transformation (e.g.,
geographic coordinates to projected UTM coordinates), label placement (see section 6.4.5),
map registration (see section 9.3.2), terrain analysis (interpolation, shading, etc.), three-
dimensional visualization, and so on. These do not require state to be maintained remotely,
and so can be done with remote library procedures.

4Nonsense may be classified by example: “jumbo shrimp” is the standard example of oxymoron, jux-
taposed opposites; “colourless green ideas sleep furiously” goes further and juxtaposes contradictions; “All
mimsy were the borogroves” uses invented but evocative words in correct grammar; “Wear a fierce mat,
do” (hint: “Darn Body Oatmeal’s Dream”), or, bilingually, “Un petit, D’un petit, sa tante en vol”, takes
wordplay to extremes. “Stateless objects” falls into the second level of nonsense. (“Object” itself can be
seen as a rare, single-word oxymoron.)

145

The important part of an architecture to support this rental approach is called a broker.
The job of a broker is to provide and advertise descriptions of the available remote services,
to handle the users’ interaction with them (usually by running the facility on the agency’s
machine), and to manage billing and payment. A handy acronym for a confused object
broker is COB. This is the service provided by a collaboration of almost all providers of
Internet enabled software, who have called it CORBA (Common Object Request Broker
Architecture).

We conclude this section by suggesting a geoCOB which actually needs state, and there-
fore objects. Consider a weather recording system, with remote stations distributed across
the nation, or the world. The state of each of these stations is its current readings of tem-
perature, humidity, wind strength and direction, etc., or possibly a history of these readings.
Each station offers methods to report on individual readings, to provide smoothed analyses
of trends of single variables or correlations among different variables, and so on. At the
next level up, the regional states are the results of these reports and analyses for all stations
within the region, and the regional methods provide averages, standard deviations, and other
statistical analyses. Finally, at the global level, averages and so on are cast into a choropleth
map over all regions.

11 Conclusions

We have examined in detail calculations that represent the work of our group on geospatial
data warehousing, mining, collaboration, and distribution over the Internet, and we have
described them in tutorial form. In doing so, we have shown that geospatial operators,
algorithms, and processes can be expressed in a single programming language, tuned only
for secondary storage and not specifically for spatial data. As well as providing a theoretical
framework for our specific project on collaborative geospatial decision-making, the tutorial
establishes a computational basis for geographical information systems in general.

12 Acknowledgements

We are indebted to the Networks of Centres of Excellence program for support through the
GEOIDE Project, GEODEM, and the Natural Sciences and Engineering Research Council
of Canada. We acknowledge the work of many predecessors, whose imaginative innovations
are so pleasing to explain: such as the quad-edge representation of spatial data; the ideas
of datacubes, and of association, classification, and generalization data mining; the power-
ful underlying concept of data relations and their high-level operators; and the wonderful
paradigms that underly modern programming languages.

We are grateful to Chris Gold for his advocacy of the quad-edge representation, and
to Godfried Toussaint for bringing up to date our summary of computational geometry
complexities in section 3.3, and for numerous other consultations.

References

[1] N. R. Adam and A. Gangopadhyay. Database Issues in Geographic Information Systems.
Kluwer Academic Publishers, Boston, 1997.

[2] S. G. Akl and K. A. Lyons. Parallel Computational Geometry. Prentice-Hall, Engelwood
Cliffs, N.J., 1993.

146

[3] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832-43, November 1983.

[4] L. Anselin. Interactive techniques and exploratory spatial data analysis. pages 253-66.
(in [39]).

[6] M. P. Atkinson and R. Morrison. Persistent First Class Procedures are Enough, volume
181 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1984.

[6] M. Barnsley. Fractals Everywhere. Academic Press, Inc., San Diego, 1988.
[7] Y. Bédard. Principles of spatial database analysis and design. pages 413-24. (in [39]).

[8] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley Publishing Company, Reading, Mass., 1987.

[9] H. Blum. A transformation for extracting new descriptors of shape. In W. Whaten-
Dunn, editor, Proc. Symp. Models for Perception of Speech and Visual Form, pages
362-80, Cambridge, MA, 1967. M.I.T. Press.

[10] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444-458, April 1989.

[11] S-K Chang, Q-Y Shi, and C-W Yan. Iconic indexing by 2-d strings. IEEE Trans. on
Pattern Analysis and Machine Intelligence, PAMI-9(3):413-28, May 1987.

[12] F. Chin, J. Snoeyink, and C. Wang. Finding the medial axis of a simple polygon in
linear time. Discrete Computational Geometry, 77(77), 1999.

[13] N. R. Chrisman. FEzploring Geographic Information Systems. John Wiley and Sons,
Inc., New York and Toronto, 1997.

[14] E. Clementini, P. Di Felice, and P. van Oosterom. A small set of formal topological
relationships for end-user interaction. In D. Abel and B. C. Ooi, editors, Advances in
Spatial Databases - Third International Symposium, SSD’93, pages 27-95, Singapore,
June 1993. Springer-Verlag. Lecture Notes in Computer Science LNCS 692.

[15] A. Clouatre. Implementation and Applications of Recursively Defined Relations. PhD
thesis, McGill University, School of Computer Science, 1987.

[16] E. F. Codd. Further normalization of the data base relational model. In R. Rustin,
editor, Data Base Systems, pages 34-64. Prentice-Hall, Engelwood Cliffs, N. J., 1972.

[17] E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP to user-analysts:
An IT mandate. Technical report, E. F. Codd & Associates, Hyperion Solu-
tions, Sunnyvale, CA, 1993. http://www.arborsoft.com/essbase/wht_ppr/coddps.zip,
http://www.arborsoft.com/essbase/wht_ppr/coddTOC.html.

[18] D. J. Coleman. GIS in networked environments. pages 317-29. (in [39]).

[19] C. J. Date. A Guide to the SQL Standard. Addison-Wesley Longman Inc., Reading,
Mass., 1997. (with Hugh Darwen).

147

[20] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwartzkopf. Computational Ge-
ometry: Algorithms and Applications. Spring-Verlag, Berlin Heidelberg, 1997.

[21] A. K. Dewdney. The Turing Omnibus: 61 Excursions in Computer Science. Computer
Science Press, Rockville, MD, 19809.

[22] M. Egenhofer. Spatial SQL: A query and presentation language. IEEE Transactions on
Knowledge and Data Engineering, 6(1):85-96, Jan 1994.

(23] M. J. Egenhofer and J. R. Herring. Categorizing binary topological relations between
regions, lines, and points in geographic databases. Technical Report 94-1, NCGIA,
Orono, ME, 1994.

[24] A. A. Freitas and S. H. Lavington. Mining Very Large Databases with Parallel Process-
ing. Kluwer Academic Publishers, Boston, 1998.

[25] C. M. Gold. Private communication. A quad-edge implementation, July 1997.

[26] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichert, M. Venkatarao, F. Pellow,
and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1:29-53, 1997.

[27] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the
computation of voronoi diagrams. ACM Transactions on Graphics, 4:74-123, 1985.

[28] M. J. Haigh. An Introduction to Computer-Aided Design and Manufacture. Blackwell,
Oxford, 1985.

[29] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in databases: An attribute-
oriented approach. In Li-Yan Yuan, editor, Proceedings of the 18th International Con-
ference on Very Large Data Bases, pages 547-59, Vancouver, Canada, August 1992.
Morgan Kaufmann.

[30] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco, 2000.

[31] J. Han, N. Stefanovic, and K. Koperski. Selective materialization: An efficient method
for spatial data cube construction. In Proc. 1998 Pacific-Asia Conf. on Knowledge
Discovery and Data Mining (PAKDD’98), pages 144-58, Melbourne, Australia, April
1998. Springer Verlag.

[32] V. Harinarayan, A Rajarman, and J. D. Ullman. Implementing data cubes efficiently.
In Proceedings of the 1996 ACM SIGMOD International Conference on Management of
Data, pages 205-16, Montreal, Canada, June 1996. ACM Press.

[33] Environmental Systems Research Institute Inc. Understanding GIS, The ARC/INFO
Method. Geolnformation International, a division of Pearson Professional Limited
(United Kingdom) and John Wiley & Sons, Inc. (United States), Redlands, Calif.,
1996.

[34] Environmental Systems Research Institute Inc. Using ArcView GIS. GIS by ESRI,
1996.

148

[35] Ian Johnson. Understanding MapInfo, a Structured Guide. Archaeological Computing
Laboratory, University of Sydney, Sydney 2006, Australia, 1996.

[36] D. N. Jump. AutoCAD Programming. TAB Books Inc., Blue Ridge Summit, PA, 1989.

[37] Morris Kline. Mathematical Thought from Ancient to Modern Times. Oxford University
Press, New York and Oxford, 1990. In three volumes.

[38] D. T. Lee. Medial axis transformation of a planar shape. LE.E.E. Transactions on
Patern Analysis and Machine Intelligence, PAMI-4(4):363-9, July 1972.

[39] P. A. Longley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind, editors. Geographical
Information Systems: Principles and Technical Issues, volume 1. John Wiley & Sons,
Inc., New York, Toronto, 1999.

[40] P. Marchand, Y. Bédard, and G. Edwards. A hypercube-based method for spatio-
temporal exploration and analysis. Spatial predicate hierarchies, 2001.

[41] J. Marks and S. Schieber. The computational complexity of cartographic label place-
ment. Technical Report TR-05-91, Harvard University, Center for Research in Comput-
ing Technology, 1991.

[42] F. P. Preparata and M. I. Shamos. Computational Geometry An Introduction. Springer-
Verlag, New York, 1985.

[43] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

[44] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley Pub-
lishing Company Ltd., Reading, Mass. & Don Mills, Ont., 1990.

[45] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker. Hamilton-Jacobi skeletons.
Technical Report SOCS-01.10, McGill University, School of Computer Science, Sept.
2001.

[46] Mark Stephens. MiniCad Version 6 Tutorial Reference Manual. conVRgence Ltd.,
Barnet, Herts.

[47] G. T. Toussaint. Pattern recognition and geometrical complexity. In Proc. 5th Inter-

national Conference on Pattern Recognition, pages 1324-47, Miami Beach, December
1980. I.LE.E.E.

[48] A. Valdivia-Martinez. Relix implementation of GIS queries: ARC/INFO and MaplInfo.
Master’s thesis, McGill University, School of Computer Science, June 1998.

[49] P. van Oosterom. GIS interoperability. pages 385-400. (in [39]).
[50] I. H. Witten and E. Frank. Data Mining. Morgan Kaufman, San Francisco, 2000.

[51] S. Yuan and C. Tao. Development of conflation components. In Proceedings of Geoin-
formatics’99, Ann Arbor, Mich., June 1999.

149

A Equivalence of Sets and Sequences for Cycles in
Graphs

We have used two important representations for the topological component of spatial data,
the set and the sequence. This appendix shows how to map between them, and thus that
they are equivalent. Since cycles (e.g., of vertices around a polygon, or edges around a vertex
or a face) are important, we discuss disjoint cycles in a graph. The results are general for
this case, but an example helps to follow them.

Gseq(id seq el) <& Gee(s e)
f 1 a a f
f 2 f b ¢
e 1 b c d
e 2 ¢ d e
e 3 d e b
e 4 e f a

(The identifier of each cycle in G is one of the elements in the cycle, which must be unique
if the cycles are not disjoint.)

We use the programming notation, not SQL, for the selections, projections, and joins in
these mappings.

To map from the sequence representation to the set representation is easy and requires
only the domain algebra.

let s be el
let e be par succ of el order seq by id

The worst-case cost is Nlog N, because of the sorting needed for the partial functional
mapping. However, each cycle can be processed separately, and since we can expect each
cycle to be small enough to fit into RAM, a good implementation is likely to cost only
n transfers from and to secondary storage, with negligible in-RAM sorting and processing
costs. (Here, N is the number of records, and n is the (smaller) number of blocks.)

To map back from the set to the sequence representation requires more sophistication.
We use the union operator, akin to SQL’s, which combines two relations on the same fields
by taking the set union of the records. We also use, comp, the natural composition, which
is just join, except that the join fields are omitted from the result. This saves us the
complication of some of the renaming. Both of these were defined in section 5.3.

The mapping procedure joins G to itself, using comp, as many times as the length of
the longest cycle, and introduces a nested relation in the intermediate results to keep track
of the sequence of the elements of the cycles. G is G augmented by a level count, Iy = 1,
which will generate the sequence numbers. In the loop, G; accumulates all cycles that have
returned to their starting points, G5 holds the cycles that have not returned to their starting
points, and G5 actualizes the increasing level count, [/, and the growing sequences, ¢, in the
join of G with itself. G5 eventually becomes empty if Gg; contains only cycles, and the
loop condition may be read “something in G5”, i.e., while G5 is not empty..

let [, be 1

let ll be [+ lo

let [be [//rename
let gy be relation (e, 1)

150

let ¢; be ¢ union relation (e,)

let ¢ be ¢ //rename
GO <_[85 e, lOa (]0] in Gset
G <—¢ //empty

Gsls, e, l,qg <—s,e,lg,qo]Gy //rename
while [| in G,
{ G1 <—G; union [s,q| where s = ¢ in G3
Gy <— where s # e in G
G3 <_[8a €, la Q] in [Sa €, ll: ql] in (G2[e comp S]GO)

let id be s //rename
let el be e //rename
let seq be [//rename

Gseq <— [1d, [seq, €l] in g] where (s = equiv max of s by [e] in ¢) in G,

The last four lines take the result of the loop, namely all the cycles and their sequences
accumulated in ¢, selects a representative of each cycle by arbitrarily taking the one with the
largest value of the s field, which becomes the id. [e] in ¢ projects the set of elements of the
cycle from the sequence of elements of the cycle: the sequence is different for each starting
point, but the set is the same for all. Finally, the projection flattens the nested relation by
the anonymity of [seg, el] in gq.

If Gget were modified to include an identifier for each cycle (which it could get from Ggeq),
the implementation could cluster on this field, and the cost of this inverse mapping could
also be linear in transfers from and to secondary storage, with the loop being executed in
RAM for each cluster. This supposes that each cycle is small enough to fit into RAM, a
plausible supposition for spatial data.

B Terminology

Any collection of ideas with commercial

potential is inadequately specified.

— Corollary of Murphy’s Law

Spatial knowledge has many roots—geometry, topology, graphics, computer-aided design

and geographical information systems being only the principal ones. As a result, terminology

is rampant and diverse. We here provide a unification of terms as used in this tutorial. We

attempt to stay as close to the specialized usages as is consistent with unification. We
characterize and illustrate terms rather than defining them.

B.1 Terminology: Geometry and Topology

The geometrical aspects of spatial features are concerned with metric properties, particularly
leading to notions of distance and related ideas of length, area, angle, etc. This is usually
captured using a coordinate system, with one coordinate for each dimension.

Topology abstracts away from metric ideas to focus on more general relationships. The
topological terms we shall use in two dimensions are vertez, edge, and face. (These are
characterized, circularly, below.) Although not metric, topology is not free from numbers or
equations, as Euler’s formula, v+ f = e+ 2 (1750, for the topological equivalent of a sphere)
illustrates.

151

A point is both a topological and a geometrical concept. Euclid (~ 300 BC) defined it
as that which has no part, but we lesser mortals must elaborate. Geometrically, a point has
coordinates. In general, we will distinguish between arbitrary points in a space and points
that occur in the features we are processing (and hence that must be represented by the
data structure). For instance, the program to find which polygon contains a given point
is supplied an arbitrary point, which we need not retain, but holds the points that are the
corners of the polygons in its internal representation. The latter are nodes. Special nodes
are called wvertices, a term used only topologically. A vertez is a cycle of edges or a cycle of
faces.

An arcis a geometrical concept, consisting of at least two nodes, which are its endpoints,
connected by sections of lines (possibly curved, possibly straight). Extra nodes in an arc
can be used to shape it: one intermediate node might specify a circular arc (circarc); several
intermediate nodes can specify a spline arc (splinarc) or a polyline. The reason for distin-
guishing nodes from vertices, above, is that when we abstract from geometry to topology,
only the two endpoint nodes of an arc must abstract to vertices. Any intermediate nodes
need play no topological role.

A side is an arc with exactly two nodes.

An edge has two meanings. Topologically, it connects two vertices. Geometrically, it is
a geodesic side, that is, the shortest distance between the two points (nodes) that are its
vertices. Thus, an edge(G) in the plane or in higher-dimensional Euclidian space is a straight
side, while an edge(G) on a sphere is a section of a great circle. The context should always be
clear, so we do not introduce a separate term for a straight edge. On the other hand, context
does not always make clear whether we are saying “edge” topologically or geometrically, so
we use edge(T) or edge(G) when necessary. In the following, we add the (G) or (T) prefix
to each new term for clarity, even if the term is only ever used in one way.

(Our “arc(G)” has the same intent as the chain of the Spatial Data Transfer Format
(SDTF), in that it may have zigs and zags. But our “node(QG)” is intended to separate the
zigs and zags, whereas “node” in SDTF marks only the endpoints of the chain. This resembles
a geometric variant of our “vertex(T)”, but not quite. We use “vertex(T)” to conform to the
usual use in topology, and “node(G)” to indicate a point which must be represented in the
data structure. If we defined endnode(G) to be the end node of an arc, then “arc(G)” and
“endnode(G)” would be synonymous, respectively, with the SDTF “chain” and “node”.)

A polygon(G) is a cycle of sides, or a cycle of nodes (or a cycle of angles: “ywria” in
Greek). Special cases are simple polygons, whose sides do not intersect except at nodes (the
“dreaded bowtie” is a counterexample) and which have no “holes”; and embedded polygons,
whose nodes all lie within a prescribed two-dimensional space, and whose sides are edges(G).
A planar polygon is embedded in the plane and has straight edges; a spherical polygon is
embedded in a sphere; a toroidal polygon is embedded in a torus; counterexamples are a
closed organic molecule, or a beaded necklace (on its owner, with or without knots). When
the context is clear, “polygon” means “planar polygon”. A facet, or a hedron, is a simple,
planar polygon.

A face(T) is a cycle of edges, or a cycle of vertices.

A subdivision(T) is a set of (usually connected) vertices, edges and faces. It subdivides a
topological sphere, the plane (which is often combined with the “point at infinity” to become
a topological sphere), a torus, a Klein bottle, or any topological manifold, with or without an
“inside”. In a subdivision, vertices and faces are dual(T) to each other: a dual subdivision
may be created by “rotating” edges so that the cycle of edges that was a vertex becomes the
cycle of edges of a face, and vice versa.

A layer(G) is a geometrical specialization of a subdivision: coordinates are given to the

152

vertices to make them nodes. In geographical information systems, this is a layer of a map.
In computer-aided design, it is a layer of a model. We sometimes say “map” or “model” to
mean “layer”, where it is clear.

A polyhedron(G) is a geometrical specialization of a connected subdivision in which each
vertex terminates at least three different edges. All nodes of a regular polyhedron lie on
a sphere embedded in Euclidean three-space; there are five, and the duals(T) of regular
polyhedra are regular. Other polyhedra with all edges(G) of equal length include the prism
and the triangular hexahedron.

A polytope is a polygon, polyhedron, or analogous figure in any number of dimensions.

For contrast, and to emphasize that we have not used them above, here are four further
terms. A line(G) is a set of points in a two-dimensional space whose coordinates are related
by a linear equation. It has no nodes. Its points are ordered. It can also be represented in
a dual(G) two-dimensional space by the point whose coordinates are the two coefficients of
the linear equation. A plane(G) can similarly be defined in a three-dimensional space. More
generally, a curve(G) is a set of points in the plane whose coordinates are related by a single
equation, and a surface(G) is such a set in three-space.

We have used section(G) to refer to a portion of a line or a curve with two endpoints,
and semi-infinite edge(G) to refer to a portion of a line with one endpoint.

B.2 Glossary

This section is an index to the first use and definitions of terms in the text. “(G)” refers to
geometrical properties and “(T)” refers to topological properties.
9Inter. See sections 3.5.3, 6.5.3.

Abstract Data Type. See section 10.2.
Aggregate Operation. See sections 3.2, 5.2.
Angle bisector. See sections 6.4.1, 6.4.2.
Arc(G). See section B.1.

Association Mining. See section 8.2.
Buffering Operator. See section 3.1.
Chain(G). See section B.1.
Checkout-Checkin Sharing. See section 9.
Choropleth Map. See section 3.2.
Circarc(G). See section B.1.

Class. See section 10.3.

Classification Mining. See section 8.1.
Closeness Operator. See section 3.1.
Computation, comp. See section 10.1.
Containment Operator. See section 3.1.
Cross-Tabs. See section 7.1.

Cube Operator. See section 7.1.
DataCube. See section 7.1.

Deadlock. See section 9.1.1.

Decision Tree. See section 8.1.

Delaunay Triangulation. See section 6.3.
Discussion Sharing. See section 9.
Divide-and-conquer. See section 6.3.
Drill-Down. See section 7.1.

Dual(G). See section B.1.

153

Dual(T). See sections 4.2, B.1.

Edge(G). See section B.1.

Edge(T). See section B.1.

Element-Pair. See section 4.1.

Encapsulation. See section 10.1.

Endnode(G). See section B.1.

End-User. See section 9.

Enumerated Sequence. See section 4.1.
Equivalence Reduction, equiv. See section 5.2.1.
Event Programming. See section 9.1.3.

Face(T). See section B.1.

Facet(G). See section B.1.

First Class Type. See section 10.2.

Functional Mapping, fun. See section 5.2.2.
Functional Programming. See section 10.1.
Filter Aggregations. See section 3.2.
Generalization Mining. See section 8.3.
Geometry. See section B.1.

Hedron(G). See section B.1.

InClircle Test. See section 6.3.

Instance-Based Learning. See section 8.1.
Instantiate. See section 10.

Intersecting edges. See sections 6.1.1, 6.4.1, 6.4.2.
Join Operator, join, diff, union, comp. See section 5.3.1.
kdAllen. See sections 3.5.1, 6.5.1.

kdString. See sections 3.5.2, 6.5.2.

Layer of Maps. See sections 3.2, 6.2.

Layer(G). See section B.1.

Locking. See section 9.1.1.

Map(G). See section B.1.

Medial azis. See skeleton.

Model(G). See section B.1.

Naive Bayes Classifier. See section 8.1.
Neighbourhoods: Raster, Polygon. See section 3.2.
Node(G). See section B.1.

Nullary Relation. See section 6.1.1.

One-Rule Classifier. See section 8.1.

Qverlaps Operator. See section 3.1.

Qwerlay Operation. See sections 3.2, 6.1, 6.2.
Parabola. See sections 6.4.1, 6.4.2.

Partial Functional Mapping, par. See section 5.2.2.
Persistent Type. See section 10.2.

Planar polygon(G). See section B.1.

Plane Sweep Algorithm. See section 6.1.
Planimeter. See section 3.4.

Point. See section B.1.

Point-Set Operator. See section 3.1.
Polygon(G). See section B.1.

Polyhedron(G). See sections 4.1, B.1.

154

Polyline(G). See section B.1.

Polytope(G). See section 5.2.1.

Predecessor Operator, pred. See section 5.2.2.
Programmer-User. See section 9.
Quad-Edge Representation. See section 4.2.
Recursive View. See section 5.3.1.
Reduction Operator. See section 5.2.1.
Reduction, red. See section 5.2.1.
Registration of Maps. See section 3.2.
Right bisector. See sections 6.4.1, 6.4.2.
Rollup. See section 7.1.

Scalar Operation. See sections 3.2, 5.1.
Section(G). See section B.1.

Semi-infinite edge(G). See section 6.4.1.
Side(G). See section B.1.

Sink Pseudo-Relation. See section 9.1.3.
Shortest Path. See section 5.3.1.
Slice-and-Dice. See section 7.1.

Skeleton. See sections 6.4, 3.3 3.5.

Source Pseudo-Relation. See section 9.1.3.
Spherical polygon(G). See section B.1.
Splice Operator. See section 4.3.
Splinarc(G). See section B.1.

Star Schema. See section 7.1.

State. See section 10.1.

Stokes’ Theorem. See sections 3.4, 6.2.
Subdivision(T). See sections 4.1, B.1.
Successor Operator, succ. See section 5.2.2.
Symmetric Operator. See section 5.2.1.
Topology. See section B.1.

Toroidal polygon(G). See section B.1.
Transitive Closure. See section 5.3.1.
Triangulation. See section 6.3.

Two-Phase Commit. See section 9.1.1.
Update Editor. See section 9.2.

Update Operator, update. See section 5.3.2.
Vertex(T). See section B.1.

Voronoi Diagram. See sections 6.3, 6.4.

155

