
A Generalized Two-Dimensional Display Editor for
Relations

Lili Zhu

School of Computer Science

McGill University, Montréal, Québec, Canada

December, 2005

A thesis submitted to McGill University

in partial fulfilment of the requirements of the degree of

Master of Science

T. H. Merrett, Advisor

Copyright c© Lili Zhu 2005

Abstract

This thesis discusses the design and implementation of a two-dimensional display

editor (display2D) for a relational database programming system jRelix. The purpose

of this thesis is to integrate relational data visualization into jRelix.

The graphical information for any basic geometric shape, such as points, lines,

polylines, triangles and text, can be stored in relations. These relations are visualized

by the display2D operation, which analyzes the relations and invokes Xfig, an open

source drawing tool, to display them. With the displayed data, the users can interac-

tively perform creation, deletion, relocation and modification, on the various objects.

The display2D operation will generate a new relational value from an updated graph.

The display2D operation also provides flexibility with additional user defined vocab-

ulary relations, which allow users to provide alternate names for attributes so that

they can better describe the graphs they represent.

ii

Résumé

La présente thèse traite de la conception et de la mise en œuvre de l’éditeur d’écran

bidimensionnel (display2D) conçu pour le système de programmation de bases de

données relationnelles jRelix. Cette thèse cherche à intégrer la visualisation des

données relationnelles à jRelix.

L’information graphique de toutes les formes géométriques de base, telles que les

points, lignes, polylignes, triangles et texte, peut être stockée en relations. Le dis-

play2D visualise ces relations, les analyse et appelle l’outil de dessin à code source

libre Xfig pour les afficher. Avec les données affichées, l’utilisateur peut créer, sup-

primer, déplacer et modifier les divers objets de façon interactive. Le display2D génère

ensuite une nouvelle valeur relationnelle à partir du graphique mis à jour. Aussi, la

flexibilité du display2D quant à la définition de relations de vocabulaire utilisant

différents noms d’attributs permet aux utilisateurs de mieux décrire les graphiques

qu’ils représentent.

iii

Acknowledgments

First and foremost, I wish to thank my thesis supervisor Professor Tim Merrett for

his attentive guidance, valuable advice, enthusiastic encouragement and generous

financial support throughout the research and preparation of this thesis. He provided

much insight into the implementation and this thesis benefited from his careful reading

and constructive criticism.

Many thanks to my colleagues in the Aldat lab, especially Zongyan Wang, who

has provided great help in my understanding of the jRelix system.

I wish to thank my parents for their unconditional support and encouragement to

pursue my interests, without which it would be impossible for me to have achieved

so much.

Last but not least, I owe special thanks to Jared Tanner, for his endless love,

constant support and understanding during my study.

iv

Contents

Abstract ii

Résumé iii

Acknowledgments iv

1 Introduction 1
1.1 Information Visualization . 1

1.1.1 Static Information Visualization 2
1.1.2 Interactive Information Visualization 8

1.2 Relational Database System . 9
1.2.1 Relational Model . 9
1.2.2 jRelix . 10

1.3 Motivation . 11
1.4 Thesis Outline . 12

2 Overview of jRelix 13
2.1 Declarations . 13

2.1.1 Domain Declarations . 13
2.1.2 Relation Declarations . 15

2.2 Relational Algebra . 18
2.2.1 Assignments . 18
2.2.2 Unary Operations . 19
2.2.3 Binary Operations . 22

3 Overview of Xfig 27
3.1 Introduction . 27
3.2 Native Fig Format . 28

3.2.1 Header . 29
3.2.2 Objects . 30

4 User’s Manual on display2D 35
4.1 Getting Started . 35
4.2 Examples of Displaying 2D Graphs Using Flat Relations 36

4.2.1 Displaying Text . 36

v

vi CONTENTS

4.2.2 Displaying a Set of Points . 38
4.2.3 Displaying a Set of Labelled Points 38
4.2.4 Displaying a Set of Lines . 41
4.2.5 Displaying a Set of Labelled Lines 42
4.2.6 Displaying a Set of Triangles 44
4.2.7 Displaying a Set of Labelled Triangles 45
4.2.8 Displaying a Sequenced Polyline 47
4.2.9 Displaying a Sequenced Polyline with Labelled Vertices . . . 48

4.3 Examples of Displaying 2D Graphs Using Nested Relations 50
4.3.1 Displaying a Sequenced Polyline with a Label 50
4.3.2 Displaying Several Polylines or a Combination of Different Shapes

51
4.4 Displaying a Graph with a Vocabulary Relation 53
4.5 Examples of Updating the Display 56

4.5.1 Valid Updates . 57
4.5.2 Invalid Updates . 59

5 Implementation of display2D 63
5.1 Overview . 63

5.1.1 System Architecture . 63
5.1.2 Building the Display2D Syntax 64
5.1.3 Examples of the Display2D Syntax Tree 65
5.1.4 evaluateDisplay2D Algorithm 65
5.1.5 Class XfigObj . 68

5.2 Displaying 2D Graphs Using Flat Relations 69
5.2.1 Non-Text . 69
5.2.2 Text . 72

5.3 Displaying 2D Graphs Using Nested Relations 75
5.4 Updating the Display . 82

6 Conclusions 91
6.1 Summary . 91
6.2 Future Work . 92

6.2.1 Further Xfig Object Implementation 92
6.2.2 Polar Coordinates . 94
6.2.3 Text Length . 95
6.2.4 A Simpler Method to Label Points with Their Coordinates . . 95
6.2.5 Extending Display Update . 96

6.3 Conclusions . 99

A Keywords in Display2D 102

Bibliography 105

List of Figures

1.1 A linear model for generating a graphical visualization from relational
data . 4

2.1 An example of domain declaration . 14
2.2 Sample output for the command “sd” 15
2.3 Declare the flat relation Points . 16
2.4 Content of the file Points . 16
2.5 Declare the nested relation Graph . 17
2.6 The nested relation Graph and its underlying dot relation .Lines . . . 18
2.7 Sample output for the command “sr” 19
2.8 Assignment operations . 20
2.9 Example of a projection operation . 21
2.10 Example of a selection operation . 22
2.11 Example of a T-selection operation 23
2.12 Example of a µ-join operation . 25
2.13 Example of a σ-join operation . 26

3.1 Xfig display window . 28
3.2 A Sample Xfig file header . 30
3.3 Sample Xfig code for a line . 31
3.4 Sample Xfig code for a text string 32
3.5 Sample Xfig code for a compound object 34
3.6 A complete Xfig file . 34

4.1 Starting jRelix . 36
4.2 jRelix input for displaying text . 37
4.3 Displaying text . 37
4.4 jRelix input for displaying points . 38
4.5 Displaying points . 39
4.6 jRelix input for displaying labelled points 40
4.7 Displaying labelled points . 40
4.8 jRelix input for displaying a set of lines 41
4.9 Displaying a set of lines . 42
4.10 jRelix input for displaying a set of labelled lines 43
4.11 Displaying a set of labelled lines . 43

vii

viii LIST OF FIGURES

4.12 jRelix input for displaying a set of triangles 44
4.13 Displaying a set of triangles . 45
4.14 jRelix input for displaying a set of labelled triangles 46
4.15 Displaying a set of labelled triangles 46
4.16 jRelix input for displaying a sequenced polyline 47
4.17 Displaying a sequenced polyline . 48
4.18 jRelix input for displaying a sequenced polyline with labelled vertices 49
4.19 Displaying a sequenced polyline with labelled vertices 49
4.20 jRelix input for displaying a sequenced polyline with a label in its centroid 50
4.21 Displaying a sequenced polyline with a label in its centroid 51
4.22 jRelix input for displaying a combination of different shapes 52
4.23 Displaying a combination of different shapes 53
4.24 Print relation .vocabulary . 54
4.25 jRelix input for displaying Text2 (using Assignment) 56
4.26 jRelix input for displaying Text2 (using Projection) 56
4.27 Projection result . 56
4.28 After flipping the top triangle . 58
4.29 After drawing a new triangle . 58
4.30 After changing the filling pattern of the bottom triangle 59
4.31 After changing the border width of the bottom triangle 60
4.32 Popup error message 1 . 60
4.33 Popup error message 2 . 60
4.34 Adding a line to the graph . 61
4.35 Adding a box to the graph . 62
4.36 Popup warning message . 62

5.1 System Architecture . 64
5.2 Syntax Tree for “NewText <- display2D () Text; ” 66
5.3 Syntax Tree for “NewText2 <- display2D (TextVocabulary) Text2; ” 66
5.4 Multiple text strings in the relation Picture 73
5.5 Displaying multiple text . 73
5.6 Nested relation Graph and its underlying dot relations 76
5.7 A tree structure representation for the nested relation Graph 76
5.8 Algorithm for the function dispNestedRel 78
5.9 An open polyline . 80
5.10 Algorithm for the function run() in detectFileDiffThread.java 83
5.11 Xfig File for a Polyline . 84
5.12 A sample original Xfig file representing non-polylines 85
5.13 A sample updated Xfig file representing non-polylines 86
5.14 An algorithm for detecting violations to Rule #2 87
5.15 Xfig file for three points . 89

6.1 Relation UpdatedPoints3 . 98
6.2 Polymorphic relation UpdatedPoints3 98

LIST OF FIGURES ix

6.3 jRelix input for displaying the matrix form of the relation Chair . . . 101
6.4 Matrix form of the relation Chair . 101

List of Tables

2.1 The display form of the nested relation Graph 17
2.2 µ-join operators . 24
2.3 σ-join operators . 25

3.1 Xfig file header . 29
3.2 Type 2 Xfig Object Format . 31
3.3 Type 4 Xfig Object Format . 33
3.4 Type 6 Xfig Object Format . 34

4.1 Relation Text . 36
4.2 Relation Points . 38
4.3 Relation LabelledPoints . 39
4.4 Relation Lines . 41
4.5 Relation LabelledLines . 42
4.6 Relation Triangle . 44
4.7 Relation LabelledTriangle . 45
4.8 Relation Polyline . 47
4.9 Relation LabelledVertexPolyline . 48
4.10 Relation NestedPolyline . 50
4.11 Nested relation Graph . 52
4.12 Relation Text2 . 55
4.13 Relation TextVocabulary . 55
4.14 Relation NewTriangle . 57
4.15 Relation NewTriangle (after update) 61

5.1 Relation NestedPoints . 80
5.2 Relation NestedLines . 81
5.3 Relation NestedTriangles . 82
5.4 A relation represented by the Xfig file from Figure 5.15 90

6.1 A vocabulary relation for ellipses and circles 93
6.2 Spline types . 94
6.3 A vocabulary relation for splines . 94
6.4 A vocabulary relation for arcs . 94
6.5 A vocabulary relation for the polar coordinate system 95

x

LIST OF TABLES xi

6.6 A vocabulary relation for cart1show and cart2show 96
6.7 Relation LabelledPoints2 . 96
6.8 Relation Points3 . 98
6.9 Relation Chair . 100
6.10 Relation ChairVocab . 100

A.1 Keywords in vocabulary relations for display2D 105
A.2 Xfig object parameter names and the keywords for display2D 106

Chapter 1

Introduction

Visualization is the process of transforming data, information, and knowledge into

visual form making use of humans’ natural visual capabilities [GEC98]. It signifi-

cantly improves our understanding of complicated relations and larger quantities of

data.

This thesis presents the design and implementation of a two-dimensional display

editor, which graphically visualizes the data stored in relations, for a relational data-

base programming system jRelix [Bak98, He97, Hao98, Sun00, Yua98].

In this chapter, we will introduce the background and preliminary material needed

throughout the thesis. Section 1.1, describes the research background and the pre-

vious achievements in the area of information visualization. Section 1.2 reviews the

relational data model. Section 1.3 presents the motivation for the integration of in-

formation visualization into JRelix. The last section serves as an outline of the topics

covered in this thesis.

1.1 Information Visualization

Information visualization is defined as “the use of computer-supported, interactive, vi-

sual representations of abstract nonphysically based data to amplify cognition” [CMS99].

It is a broad and complex research area, which involves research in visual design,

1

2 CHAPTER 1. INTRODUCTION

human-computer interaction, computer graphics, database systems and cognitive sci-

ence. The two main aspects of the research are static and interactive information visu-

alization. For static information visualization, researchers focus on methods to display

different types of data statically, such as scientific numerical data, relational data and

geographical data. For interactive information visualization, researchers focus on real-

time interactive visualization, which is the “ability of the system to respond quickly

to the users’ direct manipulation commands” [CC96]. Dynamic queries [AWS92] is

one of the major themes for interactive information visualization.

1.1.1 Static Information Visualization

According to the data type taxonomy [Shn96] proposed by Shneiderman, static in-

formation visualization is used to visualize seven data types: one-dimensional, two-

dimensional, three-dimensional, temporal, multi-dimensional, tree and network data.

One-Dimensional Data

One-dimensional data is linear data, such as text, which includes pure text documents,

source code of computer programs, etc. Naturally, a user can easily visualize a small

one-dimensional data set, such as a short letter. To enable users to visualize the

overall structure of a very long textual document and to understand the connections

between parts of the document quickly, special techniques have to be applied.

Through the work of many researchers, there have been several tools created for

visualizing large one-dimensional data sets. Developed in AT&T Bell Laboratories,

the Seesoft software visualization system [ESJ92] can display and analyze up to 50000

lines of source code. Each line in the source code is visualized as a single coloured

thin line. The line colour can represent various aspects, including the date that a

line is created, the date that a line is modified, etc. Each file is represented by a

rectangle, grouping all of the lines in the file. The actual code can be displayed in

an additional window. The reduced representation of the source code provides users

with an entire overview of a large software program. It also allows users to accomplish

1.1. INFORMATION VISUALIZATION 3

version control efficiently [ESJ92]. Another approach to visualizing one-dimensional

data is Document Lens [RM93]. It visualizes multiple pages of text in a reduced size

using a three-dimensional fisheye view [Fur81]. This allows users to access parts of a

presentation quickly without losing the global context.

Two-Dimensional Data

Two-dimensional data consists of two attributes. In a vector format, two-dimensional

data is stored in terms of x and y coordinates. Geographic information systems (GIS)

is the most common research area in two-dimensional data visualization. GIS is a tool

for storing and retrieving, transforming and displaying spatial data [Bur86]. A GIS

is usually a combination of a collection of map layers which can be linked together.

Each layer is a two-dimensional representation for an aspect, such as, cities, rivers,

mountains, roads, etc.

One approach for displaying the map layers, presented by Egenhofer and Richards,

is to use a combination of data cubes and map templates [ER93]. The data cubes

represent the geographic data. Each cube has a spatial location and orientation. The

map templates describe the display parameters, which are rules for displaying data

cubes among different views.

Another effort to visualize GIS is Geditor [Che01], a GIS editor and visualizer

for a relational database system, jRelix (see section 1.2.2). The Geditor analyzes

both spatial and non-spatial data stored in the relational database, and displays map

layers in a graphical user interface written in Java Foundation Classes (JFC) Swing.

The Geditor allows users to edit maps, generate thematic maps and perform spatial

queries [Che01].

In addition to geographic information, two-dimensional relations can also be cate-

gorized as two-dimensional data. To visualize this relational information by graphical

presentations, such as bar charts, scatter plots, connected graphs, etc, a linear model

for generating graphical visualization [Mac86], shown in Figure 1.1 is usually used.

4 CHAPTER 1. INTRODUCTION

Application

Relations
Database Data

extract

Presentation Tool

Graphical design

synthesize render

Image

Figure 1.1: A linear model for generating a graphical visualization from relational

data

Three-Dimensional Data

For scientific data visualization, such as architectural and medical applications, two-

dimensional images can not always provide a comprehensive mapping from the data

to the graphical presentation. Therefore, it is better to use three-dimensional data

visualization.

For example, the Visible Human Project [NSP96] created a collection of detailed,

three-dimensional representations of the human body. Through a user interface in

the National Library of Medicine, users can visualize the collection, browse contents

and retrieve images.

Another example is WebBook [CRY96], a three-dimensional representation for

HTML Web pages. Each page of WebBook is a page from the web. A collection of

web pages is visualized as a simulated three-dimensional physical book. WebBook

users can quickly interact with each page and find the connections between the pages

of the book.

Multi-dimensional Data

Multi-dimensional data consists of more than three attributes. Most relational and

statistical databases are considered to be multi-dimensional data.

The parallel coordinate system [Ins81], proposed by Inselberg, is an effective tech-

nique to present multi-dimensional data. It maps higher dimensional data sets into

two-dimensions. For Cartesian coordinates, all axes are perpendicular. Therefore,

1.1. INFORMATION VISUALIZATION 5

having more than three orthogonal axis is impossible in three-dimensions. In the

parallel coordinate system, the axes are represented by parallel and equally spaced

straight lines in a plane. Several multi-dimensional geometric shapes, such as points,

lines, etc., can be displayed by using the parallel coordinates. The parallel coordinate

system can be found in applications for air traffic control, robotics, computer vision,

computational geometry, statistics and instrumentation [Ins90].

There are many other interesting approaches to multi-dimensional data visualiza-

tion. For example, there is Table Lens [RC94], a spreadsheet-like tool for visualizing

a table, much larger than the tables supported by conventional spreadsheets. Table

Lens displays a table by using the focus+context (fisheye) mechanism, which allows

users to see the global graphical presentation of the table and to zoom in on spe-

cific table cells. There is also the HomeFinder [WS92], an application allowing users

to do dynamic database searches to provide multi-dimensional real-estate data vi-

sualizations. Additionally, a commercial software product called Spotfire provides

multi-dimensional data visualization for various areas, such as life science, engineer-

ing, finance, etc. It is also a system based on the concept of interactive dynamic

queries. Its users can interactively query, filter, zoom, and pan visualizations [Ahl96].

Temporal Data

Temporal data is data that explicitly refers to time. Project time lines and historical

data are both temporal data.

LifeLines [PMR+96], developed at the University of Maryland, is an application

providing a personal history visualization. On one screen, an individual’s information

such as criminal record, medical, employment and education history, is displayed as

horizontal lines labelled with detailed information. The flexible time scale for the

display could be in years, months, weeks, days, hours and even in minutes.

For many video and animation editing software packages, such as Adobe Pre-

miere [Ado06], Macromedia Director [Mac04] and Flash [Mac05], temporal data vi-

sualization is used to synchronize layers and objects.

6 CHAPTER 1. INTRODUCTION

Tree (Hierarchical) Data

In graph theory, a tree is a collection of nodes with each node having a link to one par-

ent node (except the root node). Business organizations, family trees, animal species

trees and directories of a computer hard disk can all be organized in a hierarchical

tree structure.

One approach to visualizing tree data is the Cone/Cam Tree [RMC91], an ani-

mated three-dimensional visualization of hierarchical structures. The Cone Tree is

a vertically oriented tree structure of vertical cone shapes with the parent nodes at

the cone tips. Child nodes are spaced equally in the base of a (vertical) cone shape

with the parent node (at the top). The Cam Tree is a horizontally oriented tree

structure of horizontal cone shapes with the parent node at the cone tips. Child

nodes are spaced equally in the base of a (horizontal) cone shape with the parent

node (at the left). When the user selects a node with the mouse, the selected node is

highlighted and the Cone/Cam Tree rotates to bring the selected node to the front

of the view. This interactive animation shifts some of the user’s cognitive load to the

human perceptual system. Also the user gains insight into the relationships between

substructures [RMC91].

Another approach for the hierarchical information visualization is a Tree-Map,

which is a one hundred-percent utilized rectangular display filled with nested rectan-

gles [JS91]. To represent a tree by a Tree-Map, each node of the tree must have an

attribute representing its size or weight. Each leaf node of the tree is represented by

a rectangle. The size of a rectangle in the Tree-Map indicates the relative size within

the entire hierarchy. The contents of a node, such as name and size, can be displayed

in the rectangle representing the node. The application of the Tree-Map is broad. It

can be used to give a better representation of the utilization of storage space on a

hard disk. It can also visualize the number of book collections by subject in a library,

or the number of employees and the amount of budget allocated to each department

in a business organization [Shn92].

1.1. INFORMATION VISUALIZATION 7

Network Data

Network data refers to objects linked to an arbitrary number of other objects. Since

there can be multiple paths between two objects (nodes), a network can be very com-

plicated. Therefore, network data visualization is an essential tool for understanding

the network structure.

Becker, Eickt, and Wilks [BEW95] proposed three techniques, linkmap, nodemap

and matrix display, to visualize an American network of telecommunication traffic

on a geographical map. The linkmap technique works as follows. On a map, ac-

cording to the geographical relationship of two nodes, a coloured line is drawn to

connect the nodes. However, there may be too many links causing a map-clutter

problem. Therefore, an alternative approach to visualize the network is presented.

The nodemap displays node data by showing a symbol, such as a circle or a square

at each node on the map, with an aggregation of node information. The nodemap

solves the display clutter problem, but it loses detailed information about particular

links. Like linkmap, the matrix display concentrates on the links of a network. It

uses a visual prominence for longer line links. The longer (transcontinental) linkage

lines may overplot other lines. Matrix display gives a better graphical presentation

than linkmap when there are many lines on the display map [BEW95].

Three-dimensional visualization is mostly used for network data. Various visual-

izations are developed to show the World Wide Web. The Natto View [SM97] is an

interactive visualization tool for a collection of web pages. Each web page is a node

placed on a flat horizontal plane, which has two axes for representing two attributes

of a web page. The attribute can be a page name, file size, number of links, number

of images, etc. The position of the node is determined by the value of the two at-

tributes of the corresponding web page. A user can select a node and lift it up. By

doing so, the links of the selected node are raised, so that the user sees a dynamic

three-dimensional display. An alternative approach is a three-dimensional hyperbolic

space, which is formed inside a sphere. Each node represents a web page and is placed

inside the sphere and connected to other nodes by Euclidean straight lines [MB95].

8 CHAPTER 1. INTRODUCTION

1.1.2 Interactive Information Visualization

Dynamic Queries

As the main approach for interactive information visualization, dynamic queries [AWS92]

allow users to formulate queries with graphical widgets, such as buttons, check boxes

or sliders, and visualize results immediately. For example, when the user is moving the

drag box in a slider, the value for the corresponding criterion changes, and simulta-

neously the user sees that the visualization is changing too. Compared to Structured

Query Language (SQL), dynamic queries do not require users to have knowledge of

the syntax or semantics of query commands. The graphical presentation of the data-

base and the immediate graphical feedback for dynamic queries provides users with

a better understanding of the database and query results.

As mentioned before, the commercial application, Spotfire [Ahl96] is a system

based on the concept of dynamic queries. There is also the HomeFinder [WS92], an

application visualizing multi-dimensional real-estate data. The HomeFinder displays

a map containing all of the locations of houses for sale. By manipulating sliders, users

can perform dynamic database queries by selecting the home’s distance to desired

locations, the numbers of bedrooms and the cost of the house. As these selections are

changed, the houses that best satisfy the criteria are immediately displayed.

Another tool, called PDQ (Pruning with Dynamic Queries) Tree-browser [KPS97],

is used for hierarchical data visualization with dynamic queries. PDQ Tree-browser

provides a graphical overview and detailed view of a tree in node-link forms. A

dynamic query panel, consisting of an attributes list on the left and a widgets panel

on the right, is below the tree display. Dynamic queries can be done at different levels

of the tree. The result nodes matching the query are highlighted.

1.2. RELATIONAL DATABASE SYSTEM 9

1.2 Relational Database System

1.2.1 Relational Model

The relational model of data was invented by Codd [Cod70]. Since then, it has been

recognized for its simplicity, uniformity, data independence, integrity and evolvabil-

ity [Ger75]. In his relational model, a new data structure, called a relation, which is

represented in a table format, is used to model and store data. Each row in the table

is called a tuple. Each column is referred to as a domain. The name of a domain is

an attribute. From a mathematical perspective, a relation is a subset of the Cartesian

product of its domains. Each relational table has the following properties:

1. All rows are distinct from each other.

2. The ordering of rows is immaterial.

3. Each column has a different name (attribute) and the ordering of columns is

immaterial.

4. The value in each row under a given column is atomic, i.e., it is non-decomposable.

Operations on Relations

Operations on relations are performed by relational algebra, which is proposed by

Codd [Cod70]. In relational algebra, the relational operators take relations as operands

and return a new relation as the result. Depending on the number of operands, the

relational algebra operations are classified as unary or binary operations. Unary op-

erators require one relation as the lone operand. Projection and selection operations

are both unary. Binary operators take two relations as operands. µ-join and σ-join

are binary operations.

Operations on Domains

The algebra on attributes is called domain algebra. Proposed by Merrett [Mer84],

domain algebra treats attributes independently from relations. It allows users to

10 CHAPTER 1. INTRODUCTION

create new domains from existing ones, and also to generate new values from existing

values in a tuple or from values along an attribute. The domain algebra consists of

horizontal and vertical operations.

• Horizontal operations

– Constant

– Rename

– Function

– If-then-else

• Vertical operations

– Reduction

– Equivalence Reduction

– Functional Mapping

– Partial Functional Mapping

1.2.2 jRelix

jRelix (the java implementation of a Relational database programming language in

Unix) was developed in the Aldat lab of the School of Computer Science at McGill

University. jRelix contains a database management system (DBMS) and a program-

ming language Aldat (Algebraic Data Language), which supports relational alge-

bra and domain algebra on flat and nested relations [Hao98, Yua98, Sun00, Kan01,

Cha02]. The integration of computations (procedures and functions) [Bak98] and

ADT (Abstract Data Type) [Zhe02] to jRelix provides procedural abstraction and

data abstraction. A GIS editor (Geditor) [Che01] in jRelix, allows users to view graph-

ical maps and provides a set of GIS functions. jRelix aldatp (aldat protocol) [Wan02]

integrates collaborative and distributed Internet capability into jRelix.

1.3. MOTIVATION 11

1.3 Motivation

The graphical representation of information is referred to as information graphics.

The basic objects forming an information graphic are text, points, lines, boxes, arcs,

and circles. The basic elements used to describe the properties of information graphics

are colour, texture and scale. For example, LiftLines [PMR+96] uses coloured lines,

text, and coloured rectangles to record an individual’s history. HomeFinder [WS92]

uses coloured points, a textured area and text to represent the information on houses

for sale. Cone/Cam Tree [RMC91] uses ellipses (two arcs) to represent the projection

of the bases of three-dimensional cones on to a two-dimensional textured plane.

jRelix, as a high-level database programming and query language, is proposed to

provide applications in various areas, such as expert systems, numerical computing,

data mining, information visualization, etc. In order to enable jRelix to visualize

information, it is necessary to implement the mechanism for the drawing of basic

graphical objects.

Static graphical representation of information has improved our understanding and

recognition of complex data sets. But our ability to understand graphical informa-

tion can be even better with user interactivity in visualizations. For example, with

Cone/Cam Tree [RMC91] users can select a node and the whole Cone/Cam Tree ro-

tates to bring the selected node to the front of the view. In Natto View [SM97] users

can select a node lying in a two-dimensional plane and lift it up. Then all of the links

to the selected node are raised simultaneously. All of these techniques give users in-

sight into the visualizations. However, users are limited to manipulating the existing

structure without operations such as creation, deletion, relocation or modification.

We propose to give jRelix an extensive ability for interactive information visual-

ization. In other words, jRelix will not only provide information graphics, but will

also allow users to operate on the visualizations interactively . We need to develop

an automatic mechanism that analyzes user changes to visual content and makes

updates to the database accordingly.

12 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

The current chapter, chapter 1, presented a literature background on information

visualization, relational models and jRelix. In addition, the motivation and outline of

this thesis are presented in this chapter. Chapter 2 introduces the use of the jRelix

system. Chapter 3 gives a tutorial of Xfig and the Xfig file format. Chapter 4 is the

user manual on display2D. Chapter 5 presents the implementation of the display2D

operation in jRelix. Chapter 6 concludes the thesis with a summary and proposes

future work.

Chapter 2

Overview of jRelix

In this chapter, we give a tutorial about the current jRelix system, so that the reader

can understand material presented in the later chapters of this thesis. Section 2.1

explains how to declare domains and relations in jRelix. Section 2.2 introduces

relational algebra, including assignments, unary and binary relation operations.

2.1 Declarations

2.1.1 Domain Declarations

A relation is defined on one or more attributes. Each attribute is associated with a

set of values called a domain [Mer99]. The data type of an attribute is determined

by its domain. In jRelix, there are two types of domain declarations, atomic-typed

and complex-typed.

JRelix provides eleven atomic data types: integer, short, long, float, double,

boolean, string, text, numeric, universal [Mer01] and attribute [Mer01]. The syntax

for the atomic-typed domain declaration is the following:

domain <dom name1, dom name2, ...> <atomic data type>;

A nested relation is one that can contain another relation as its attributes. A

complex-typed domain declaration declares nested domains from nested relations.

13

14 CHAPTER 2. OVERVIEW OF JRELIX

This allows multiple level nesting in jRelix. The syntax for the complex-typed domain

declaration is the following:

domain <nested domain name> (<dom name1, dom name2, ...>);

An example of a domain declaration is shown in Figure 2.1. Note that the nested

domain Lines is defined using the atomic-typed domains, x1, y1, x2 and y2. The

2-level nested domain Graph is defined using the atomic-type domain label and the

complex-typed domain Lines.

In jRelix, once a nested domain is declared, a corresponding relation, called a dot

relation (which has a name beginning with a “.” and followed by the name of the

nested domain), is created by the system automatically. Therefore, in the example

from Figure 2.1, relation .Lines is generated. We will provide more details about this

in section 2.1.2.

>domain x1, y1, x2, y2 intg; << integer type domain >>
>domain label strg; << string type domain >>
>domain Lines (x1, y1, x2, y2); << nested domain >>
>domain Graph (label, Lines); << nested domain with 2-level nesting>>

Figure 2.1: An example of domain declaration

To display the information for all the domains currently declared in the system,

we use the command “sd;”. To show the information for a specific domain, we use

the command “sd ” followed by the domain name.

sd <dom name>;

Given the domains declared in Figure 2.1, the output for the “sd” command is

shown in Figure 2.2.

To delete a specific domain from the system, we use the command “dd” followed

by the domain name.

dd <dom name>;

2.1. DECLARATIONS 15

>sd;
------------------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List
--
y2 integer 1 false
y1 integer 1 false
Lines idlist 1 false .id, x1, y1, x2, y2,
Graph idlist 0 false .id, label, Lines,
label string 1 false
x2 integer 1 false
x1 integer 1 false
--
>sd x1;
------------------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List
--
x1 integer 1 false
--

Figure 2.2: Sample output for the command “sd”

2.1.2 Relation Declarations

As mentioned in the last section, a relation is defined on one or more attributes.

Therefore the attributes in a relation must be declared before the relation is declared.

The syntax of the relation declaration is the following:

relation <rel name> (<dom name1, dom name2, ...>);

Note that <dom name1, dom name2, ...> is a list of existing domains in the current

system. They can be either atomic type or complex type.

The above syntax declares an empty relation. To initialize the relation with actual

data tuples, we need to apply the following syntax:

relation <rel name>(<dom name1, dom name2, ...>) <- <Initialization list>;

The three rules for the initialization list are:

1. A relation is always surrounded by a pair of curly brackets.

16 CHAPTER 2. OVERVIEW OF JRELIX

2. Inside a relation, each tuple is surrounded by a pair of round brackets.

3. Tuples are separated by commas.

Figure 2.3 gives an example of a flat relation declaration. In addition, after any

relation is initialized, in the directory where jRelix is running, a file having the same

name as the relation and containing the data of the relation is created by the jRelix

system. Given the relation Points from Figure 2.3, the content of the file “Points”

is shown in Figure 2.4.

relation Points(x1, y1) <- {

(1363, 3013),

(2942, 3010),

(3426, 1508),

(2148, 583),

(873, 1514)};

Figure 2.3: Declare the flat relation Points

873^F1514^F

1363^F3013^F

2148^F583^F

2942^F3010^F

3426^F1508^F

Figure 2.4: Content of the file Points

Either syntax could also be followed to declare and initialize a nested relation.

Table 2.1 shows the nested relation Graph. Its declaration and initialization are

shown in Figure 2.5.

Only the very top level relation (e.g. Graph) is initialized during a nested relation

declaration. However, as mentioned in the last section 2.1.1, once a nested domain

is declared, a corresponding invisible relation, which has a name beginning with a “.”

is created. In this example, relation .Lines is created.

2.1. DECLARATIONS 17

Graph

label Lines

x1 y1 x2 y2

group1 2000 1000 3000 1000

5000 3000 1000 2000

group2 1500 500 10000 3000

2000 2000 1500 3000

Table 2.1: The display form of the nested relation Graph

relation Graph (label, Lines) <- {
("group1", { (2000, 1000, 3000, 1000),

(5000, 3000, 1000, 2000) }),
("group2", { (1500, 500, 10000, 3000),

(2000, 2000, 1500, 3000) })
};

Figure 2.5: Declare the nested relation Graph

To reveal the data stored in any relation, we use the command “pr”. In Figure 2.6,

the contents of the relation Graph and its underlying dot relation .Lines are printed.

The top level relation, Graph, and its underlying dot relation(s) .Lines, are linked

by surrogate numbers. In the top level relation, the surrogate numbers are stored in

the nested attributes. In the dot relations, the attribute .id contains the surrogate

numbers linking the current dot relation to its corresponding upper level relation.

Note that all dot relations have the attribute .id. In our example, the nested attribute

Lines in the relation Graph has surrogates 1 and 2 stored. In the relation .Lines,

attribute .id has value 1 and 2. Therefore, the first two tuples in the relation .Lines

can be linked to the first tuple of the relation Graph by surrogate 1. The last two

tuples in the relation .Lines can be linked to the last tuple of the relation Graph by

surrogate 2.

Besides the command “pr”, there are two additional commands for performing

operations on declared relations. To remove a specific relation from the system, we

use command “dr”.

18 CHAPTER 2. OVERVIEW OF JRELIX

>pr Graph;
+----------------------+----------------------+
| label | Lines |
+----------------------+----------------------+
| group1 | 1 |
| group2 | 2 |
+----------------------+----------------------+
relation Graph has 2 tuples
>pr .Lines;
+----------------------+-------------+-------------+-------------+-------------+
| .id | x1 | y1 | x2 | y2 |
+----------------------+-------------+-------------+-------------+-------------+
| 1 | 2000 | 1000 | 3000 | 1000 |
| 1 | 5000 | 3000 | 1000 | 2000 |
| 2 | 1500 | 500 | 10000 | 3000 |
| 2 | 2000 | 2000 | 1500 | 3000 |
+----------------------+-------------+-------------+-------------+-------------+
relation .Lines has 4 tuples

Figure 2.6: The nested relation Graph and its underlying dot relation .Lines

dr <rel name>;

To list all the declared relations in the current system, the command “sr;” should be

used. To get the information of a specific relation, we do the following:

sr <rel name>;

A sample output for the command “sr” is shown in Figure 2.7.

2.2 Relational Algebra

2.2.1 Assignments

The assignment operator is used to create new relations from old ones. There are two

types of assignment in jRelix, replacement assignment and incremental assignment.

The replacement assignment copies the right-hand operand to the left-hand operand.

The syntax for the replacement assignment is the following:

2.2. RELATIONAL ALGEBRA 19

>sr;
------------------------------ Relation Table ------------------------------
Name Type Arity NTuples Sort Active
--
Graph relation 2 2 2 0
Points relation 2 5 2 0
--
>sr Points;
------------------------------ Relation Entry ------------------------------
Name Type Arity NTuples Sort Active
--
Points relation 2 5 2 0
--

Figure 2.7: Sample output for the command “sr”

<new relname> <- <expression>;

or:

<rel L> [<attr list rel L> <- <attr list rel R>] <rel R>;

The syntax for the incremental assignment is the following:

<new relname> <+ <expression>;

or:

<rel L> [<attr list rel L> <+ <attr list rel R>] <rel R>;

The incremental assignment appends the additional tuples from the right-hand

relation to the left-hand relation. The attributes in left-hand relation must be com-

patible with those in the right-hand relation. Figure 2.8 gives examples of assignment

operations.

2.2.2 Unary Operations

Unary operations take a single relation as input and generate a new relation as output.

jRelix provides three unary operations, projection, selection and T-selection.

• Projection

20 CHAPTER 2. OVERVIEW OF JRELIX

>domain x1, y1, x2, y2 intg;
>relation Points1(x1, y1) <- {(1000, 2000), (1000, 4000)};
>NewPoints <- Points1;
>pr NewPoints;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 1000 | 2000 |
| 1000 | 4000 |
+-------------+-------------+
relation NewPoints has 2 tuples
>relation Points2(x1, y1)<-{(5000, 6000)};
>NewPoints <+ Points2;
>pr NewPoints;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 1000 | 2000 |
| 1000 | 4000 |
| 5000 | 6000 |
+-------------+-------------+
relation NewPoints has 3 tuples
>Points2 [y1, x1 <+ x1, y1] NewPoints;
>pr Points2;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 2000 | 1000 |
| 4000 | 1000 |
| 5000 | 6000 |
| 6000 | 5000 |
+-------------+-------------+
relation Points2 has 4 tuples

Figure 2.8: Assignment operations

2.2. RELATIONAL ALGEBRA 21

The syntax for the projection operation is the following:

[<dom name1, dom name2, ...>] in <source rel>;

The projection operation extracts a subset of a source relation (source rel)

based on a list of specified attributes (dom name1, dom name2, ...). Dupli-

cate tuples are removed from the result relation. An example of a projection

operation is shown in Figure 2.9.

>pr Points1;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 1000 | 2000 |
| 1000 | 4000 |
+-------------+-------------+
relation Points1 has 2 tuples
>pr [x1] in Points1;
+-------------+
| x1 |
+-------------+
| 1000 |
+-------------+
expression has 1 tuple

Figure 2.9: Example of a projection operation

• Selection

The syntax for the selection operation is the following:

where <selection condition> in <source rel>;

This operation selects a set of tuples from a source relation (source rel) accord-

ing to a boolean condition (selection condition). Each tuple in the source

relation is evaluated by the boolean condition. Only those tuples that evaluate

to true will be selected. The resulting relation has the same attributes as the

source relation. An example of the selection operation is shown in Figure 2.10.

22 CHAPTER 2. OVERVIEW OF JRELIX

>pr Points1;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 1000 | 2000 |
| 1000 | 4000 |
+-------------+-------------+
relation Points1 has 2 tuples
>pr where y1>2005 in Points1;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 1000 | 4000 |
+-------------+-------------+
expression has 1 tuple

Figure 2.10: Example of a selection operation

• T-selection

The syntax for the T-selection operation is the following:

[<dom name1, dom name2, ...>]where <selection condition> in <source rel>;

T-selection is a combination of projection and selection. The selection is done

first, then the projection. Figure 2.11 gives an example of T-selection operation.

2.2.3 Binary Operations

The binary operations of relational algebra are extensions of the binary operations

on sets [Mer84]. Binary operations take two relations as input and generate a new

relation as output. jRelix provides two categories of binary operations, µ-join and

σ-join. The syntax for join operations is as follows:

<expression> JoinOperator <expression>;

or:

<expression> [<attr list> : JoinOperator : <attr list>] <expression>;

2.2. RELATIONAL ALGEBRA 23

>pr Points1;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 1000 | 2000 |
| 1000 | 4000 |
+-------------+-------------+
relation Points1 has 2 tuples
>pr [x1] where y1>2005 in Points1;
+-------------+
| x1 |
+-------------+
| 1000 |
+-------------+
expression has 1 tuple

Figure 2.11: Example of a T-selection operation

In the first syntax, the two operands join on their common attributes. If the two

operands do not have any common attributes, the second syntax should be used to

specify the joining attributes (attr list).

• µ-joins

µ-joins correspond to the binary set operations including union, intersection

and difference. In general, µ-joins consist of three parts, left, center and right.

Given two relations R(X, Y) and S(Y, Z) sharing a common attribute set, Y,

we have:

center = {(x, y, z) | (x, y) ∈ R and (y, z) ∈ S}

left = {(x, y, DC) | (x, y) ∈ R and ∀ z (y, z) 6∈ S}

right = {(DC, y, z) | (y, z) ∈ S and ∀ x (x, y) 6∈ R}

Given two relations R(W, X) and S(Y, Z) sharing no common attribute set, we

have:

center = {(w, x, y, z) | (w, x) ∈ R and (y, z) ∈ S and x = y }

left = {(w, x, y, DC) | (w, x) ∈ R and x = y ⇒ ∀ z (y, z) 6∈ S}

24 CHAPTER 2. OVERVIEW OF JRELIX

right = {(DC, x, y, z) | (y, z) ∈ S and x = y ⇒ ∀ x (w, x) 6∈ R}

Note that the symbol DC stands for don’t care, a null value defined in jRelix.

The complete list of µ-join operators is shown in Table 2.2. Figure 2.12 gives

an example of a µ-join operation.

Name Operator Definition

Intersection join ijoin center

Union join ujoin left ∪ center ∪ right

Left join ljoin left ∪ center

Right join rjoin center ∪ right

Left difference join djoin left

Right difference join drjoin right

Symmetric difference join sjoin left ∪ right

Table 2.2: µ-join operators

• σ-joins

The σ-joins extend the truth-valued comparison operations on sets to relations

by applying them to each set of values of the join attribute for each of the

other values in the two relations [Mer84]. We define the σ-joins using the

following notations. In relation R(W, X) and S(Y, Z), Rw is the set of values

of X associated by R with a given value, w, of W, and Sz is the set of values of

Y associated by S with a given value , z, of Z. If W and X are disjoint sets of

attributes of R, and Y and Z are disjoint sets of attributes of S, the following

definitions shown in Table 2.3 are held. Note that X and Y could be the same

set of attributes, but at the very least they must be compatible attribute sets.

Figure 2.13 gives an example of σ-join operations.

2.2. RELATIONAL ALGEBRA 25

>pr Points1;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 1000 | 2000 |
| 1000 | 4000 |
+-------------+-------------+
relation Points1 has 2 tuples
>pr Points2;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 1000 | 2000 |
| 3000 | 1000 |
+-------------+-------------+
relation Points2 has 2 tuples
>pr Points1 djoin Points2;
+-------------+-------------+
| x1 | y1 |
+-------------+-------------+
| 1000 | 4000 |
+-------------+-------------+
expression has 1 tuple

Figure 2.12: Example of a µ-join operation

Name Operator Definition

Natural join R icomp S {(w, z) | Rw ∩ Sz 6= ∅ }
Empty intersection join R sep S {(w, z) | Rw ∩ Sz = ∅ }

Superset join R sup S {(w, z) | Rw ⊇ Sz }
Proper Superset join R gtjoin S {(w, z) | Rw ⊃ Sz }

Equal join R eqjoin S {(w, z) | Rw = Sz }
Subset join R lejoin S {(w, z) | Rw ⊆ Sz }

Proper subset join R ltjoin S {(w, z) | Rw ⊂ Sz }
Non-proper superset join R !gtjoin S {(w, z) | Rw 6⊃ Sz }

Non-equal join R !eqjoin S {(w, z) | Rw 6= Sz }
Non-subset join R !lejoin S {(w, z) | Rw 6⊆ Sz }

Non-proper subset join R !ltjoin S {(w, z) |Rw 6⊂ Sz }
Non-superset join R !gejoin S {(w, z) | Rw 6⊇ Sz }

Table 2.3: σ-join operators

26 CHAPTER 2. OVERVIEW OF JRELIX

>domain x, y, code intg;
>domain label, colour strg;
>relation Text(x, y, label, colour) <-{(1000, 2000, "text1", "blue"),

(1000, 4000, "text2", "red")};
>relation ColourCode (code, colour) <- {(1, "blue"), (2, "green"),

(3, "cyan"), (4, "red")};
>pr Text;
+-------------+-------------+----------------------+---------------+
| x | y | label | colour |
+-------------+-------------+----------------------+---------------+
| 1000 | 2000 | text1 | blue |
| 1000 | 4000 | text2 | red |
+-------------+-------------+----------------------+---------------+
relation Text has 2 tuples
>pr ColourCode;
+-------------+----------------------+
| code | colour |
+-------------+----------------------+
| 1 | blue |
| 2 | green |
| 3 | cyan |
| 4 | red |
+-------------+----------------------+
relation ColourCode has 4 tuples
>pr Text icomp ColourCode;
+-------------+-------------+----------------------+-------------+
| x | y | label | code |
+-------------+-------------+----------------------+-------------+
| 1000 | 2000 | text1 | 1 |
| 1000 | 4000 | text2 | 4 |
+-------------+-------------+----------------------+-------------+
expression has 2 tuples

Figure 2.13: Example of a σ-join operation

Chapter 3

Overview of Xfig

In this chapter, we give a brief introduction to the Xfig system and the Xfig file format.

We will only focus on the parts of Xfig that are related to the implementation of the

display2D operation.

3.1 Introduction

Xfig is an open source vector graphics editor. It runs on the X Window System on

most UNIX compatible platforms. In Xfig, figures can be drawn using basic objects

such as circles, arcs, polygons, lines, spline curves, text, etc. Images in formats such

as GIF, JPEG, and EPSF (PostScript), can be imported into the graph. The objects

can be created, deleted, moved or modified. Attributes such as colours or line styles

can be selected in various ways. Xfig saves figures in its native text-only Fig format,

but they may be converted into various formats such as PostScript, GIF, JPEG, etc

[SS02]. A screen shot of the current Xfig system (Version 3.2.4) [SS02] is shown in

Figure 3.1.

To start Xfig, we use the command “xfig”. To open an existing Xfig file, we use

the following command:

xfig [options] [filename]

The command line options are used to specify the settings of the Xfig window, such

27

28 CHAPTER 3. OVERVIEW OF XFIG

Figure 3.1: Xfig display window

as, window size, the font of the menu, the display background colour, etc. Refer to

the Xfig user manual at http://xfig.org/userman/options.html#options for a detailed

list of options.

3.2 Native Fig Format

The native Fig format is stored in a text file, where the filename ends with “.fig”.

The file contains two parts, a header and objects.

3.2. NATIVE FIG FORMAT 29

3.2.1 Header

The first nine lines of an Xfig file are its header. The contents of each line in the

header are listed in Table 3.1. A sample Xfig file header, which will be used in the

later chapters, is shown in Figure 3.2

Line # Type Name Description

1 comment #Fig 3.2 contains the name and version of the

line current Xfig system. A line beginning

with a ‘#’ is a comment line.

2 string orientation “Landscape” or “ Portrait”

3 string justification “Center” or “ Flush Left”

4 string units “Metric” or “ Inches”

5 string papersize “Letter” , “ Legal” , “Ledger” , “Tabloid” ,

“A” , “B” , “ C” , “D” , “E” , “ A4” ,

“A3” , “A2” , “ A1” , “A0” and “B5”

6 float magnification export and print magnification, in %

7 string multiple-page “Single” or “ Multiple” pages

8 int transparent Colour number for transparent colour for

colour GIF export: -3=background, -2=None,

-1=Default, 0-31 for standard colours

or 32+ for user colours

9 int resolution coord system resolution is always 1200 ppi.

Fig units/inches and coordinate system:

1: origin at lower left corner (not used)

2: origin at upper left

Table 3.1: Xfig file header

30 CHAPTER 3. OVERVIEW OF XFIG

#FIG 3.2
Landscape
Center
Metric
Letter
100.00
Single
-2
1200 2

Figure 3.2: A sample Xfig file header

3.2.2 Objects

As defined in the official Xfig documentation [SS02], an Xfig object can be one of

the following seven types.

Type 0 Colour pseudo-object.

Type 1 Ellipse which is a generalization of circle.

Type 2 Polyline which includes polygon and box.

Type 3 Spline (including closed/open approximated/interpolated/xspline spline).

Type 4 Text.

Type 5 Arc.

Type 6 Compound object which is composed of one or more objects.

Type 2, 4 and 6 Xfig objects are relevant to our implementation of the display2D

operation, therefore, we will introduce only these three types.

Type 2 Xfig Object

Type 2 Xfig objects include points, lines, boxes and polylines (open/closed). To

describe a type 2 Xfig object, according to the official Xfig documentation [SS02], we

need two lines of Xfig code. The first line contains the values of all the parameters

from Table 3.2, in order, with each value separated by a blank character. The second

line, beginning with a tab character (‘\t’), gives the coordinates of each point in the

graph, in the order that they are drawn. For example, to display a solid red line, with

a thickness of 2 screen pixels, and with start point (4000, 1500) and end point (3000,

3500), the Xfig code for this line should have the format shown in Figure 3.3.

3.2. NATIVE FIG FORMAT 31

Type Parameter Description Default

Name Value

int object code always 2 2

int sub type 1: polyline 1

int line style enumeration type, line style 0

int thickness unit: 1/80 inch or 1 screen pixel 1

int pen colour enumeration type, pen colour 0

int fill colour enumeration type, fill colour 7

int depth enumeration type, layer depth 50

int pen style always -1: not used -1

int area fill enumeration type, -1

fill colour/pattern, -1 = no fill

float style val distance between the dots for 0.000

dash line, unit: 1/80 inch.

If solid line, style val = 0.000

int join style enumeration type, 0 = Miter join 0

int cap style enumeration type, 0 = Butt cap style 0

int radius unit: 1/80 inch, radius of arc-boxes -1

-1 = not used

int forward arrow 0: off, 1: on 0

int backward arrow 0: off, 1: on 0

int npoints number of points N/A

Table 3.2: Type 2 Xfig Object Format

2 1 0 2 4 7 50 -1 -1 0.000 0 0 -1 0 0 2

4000 1500 3000 3500

Figure 3.3: Sample Xfig code for a line

32 CHAPTER 3. OVERVIEW OF XFIG

The first number in Figure 3.3 is 2, which is object code that is always 2 for type

2 Xfig objects. It is listed in the first row of Table 3.2. The third number in Figure

3.3 is 0, which corresponds to line style. A value 0 for line style indicates a solid

line. The fourth number, 2, gives the thickness of the line. The fifth number, 4, is

pen colour. A value of 4 for pen colour indicates red. Next we have fill colour which

is 7. A value of 7 for fill colour indicates white. Using the same idea, we can match

the remaining parameters in Table 3.2 to the remaining numbers in the first line in

Figure 3.3. For additional parameter values, refer to Appendix A, Table A.1.

Type 4 Xfig Object

Type 4 Xfig objects are used for text. Only one line of Xfig code is used. Table 3.3

lists the parameters for type 4 Xfig objects. For example, we want to display a text

string “display2D operation” in blue, at coordinates (1975, 2000), at the layer with

depth 49. The Xfig code for this text string is shown in Figure 3.4.

4 0 1 49 -1 0 12 0.000 4 180 1515 1975 2000 display2D operation\001

Figure 3.4: Sample Xfig code for a text string

The first number in Figure 3.4 is 4, which is object code. The third number is 1,

which is text colour. A value of 1 indicates the colour blue . The next number, 49,

gives the depth of the text. The sixth number, 0, gives the font of the text, which

is the default font, Times-Roman. The seventh number, 12, is font size. The eighth

number, 0.000, is angle. Using the same idea, we can match the remaining parameters

in Table 3.3 to the remaining values in Figure 3.4. For additional parameter values,

refer to Appendix A, Table A.1.

Type 6 Xfig Object

Type 6 Xfig objects are used to glue several objects together into one compound

object unit, in a virtual box. The format for the type 6 Xfig object is shown in Table

3.2. NATIVE FIG FORMAT 33

Type Parameter Description Default

Name Value

int object always 4 4

int sub type 0: Left justified 0

int text colour enumeration type, text colour 0

int depth enumeration type, layer depth 50

int pen style always -1: not used -1

int font enumeration type 0

float font size font size in points 12

float angle radians, the angle of the text 0.000

int font flags bit vector 4

float height in fig units, text height N/A

float length in fig units, text length N/A

int x, y coordinate of the origin in fig units N/A

(the lower left corner of the string)

char string[] ASCII characters; starts after a blank N/A

character and ends before the sequence

‘\001’, which is not part of the string.

Table 3.3: Type 4 Xfig Object Format

3.4. The Xfig code for a compound object, that is a combination of the line in Figure

3.3 and the text string in Figure 3.4, is shown in Figure 3.5.

The first number in Figure 3.5 is 6, which is object code. The next four numbers

1935, 1485, 4050 and 3555 give the coordinates of the upper left corner (1935, 1485)

and the lower right corner (4050, 3555) of the box, in which the line and the text

string reside. These box coordinates are calculated by Xfig. The next two lines

represent the line, and are the same as the code appearing in Figure 3.3. The fifth

line is the text string from Figure 3.4. The last number, on its own separate line, is

-6, indicating the end of the compound object.

34 CHAPTER 3. OVERVIEW OF XFIG

Line Number Type Parameter Name Description

int object code always 6

int upperleft corner x Fig units

1 int upperleft corner y Fig units

int lowerright corner x Fig units

int lowerright corner y Fig units

2 - the 2nd last line objects

last line -6

Table 3.4: Type 6 Xfig Object Format

6 1935 1485 4050 3555
2 1 0 2 4 7 50 -1 -1 0.000 0 0 -1 0 0 2

4000 1500 3000 3500
4 0 1 49 -1 0 12 0.0000 4 180 1515 1975 2000 display2D operation\001
-6

Figure 3.5: Sample Xfig code for a compound object

#FIG 3.2
Landscape
Center
Metric
Letter
100.00
Single
-2
1200 2
6 1935 1485 4050 3555
2 1 0 2 4 7 50 -1 -1 0.000 0 0 -1 0 0 2

4000 1500 3000 3500
4 0 1 49 -1 0 12 0.0000 4 180 1515 1975 2000 display2D operation\001
-6

Figure 3.6: A complete Xfig file (including the header from Figure 3.2 and the
object part from Figure 3.5)

Chapter 4

User’s Manual on display2D

In this chapter, we give a tutorial about how to use the display2D operator to

draw a relation. Section 4.1 describes the system requirements for running the

two-dimensional display editor. Sections 4.2 and 4.3 give several detailed examples

showing how to declare a flat relation or a nested relation containing graphical in-

formation for displaying text, point, line, triangle, polyline or a combination of these

objects. Section 4.4 explains the syntax of display2D and how to declare a relation

containing vocabulary information. Section 4.5 presents the rules for valid updating

and a series of examples on updating the display.

4.1 Getting Started

The two-dimensional display editor is invoked in jRelix through the display2D opera-

tor. The display2D operation displays a relation representing two-dimensional graphs

in a software application called Xfig, which runs on the X Window platform. There-

fore before calling the two-dimensional display editor, we must successfully install

Xfig and start the jRelix system. This manual will not elaborate on the installation

process for Xfig, however this information can be found amongst the official Xfig doc-

umentation at http://xfig.org/userman/frm installation.html. To start jRelix, go to

the directory where jRelix is installed and type “java JRelix”.

35

36 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

[mimi] [~/JRelix] java JRelix
Starting stand alone JRelix.
+---+
| Relix Java version 0.93 |
| Copyright (c) 1997 -- 2005 Aldat Lab |
| School of Computer Science |
| McGill University |
+---+
>

Figure 4.1: Starting jRelix

4.2 Examples of Displaying 2D Graphs Using Flat

Relations

4.2.1 Displaying Text

To display text, a text string and the coordinates of its first letter must be provided.

The text will be shown in a white box with a black border. For example, we want

to print three strings “(5000, 4000)”, “(2000, 4000)” and “(5000, 3000)” at the same

coordinates that appear in each string respectively. We have to declare a relation

containing the strings and then call display2D operator to display the text.

Text

x y textstring

5000 4000 (5000, 4000)

2000 4000 (2000, 4000)

5000 3000 (5000, 3000)

Table 4.1: Relation Text

4.2. EXAMPLES OF DISPLAYING 2D GRAPHS USING FLAT RELATIONS 37

domain x intg;
domain y intg;
domain textstring strg;
relation Text(x, y, textstring) <-{
(5000, 4000, "(5000, 4000)"),
(2000, 4000, "(2000, 4000)"),
(5000, 3000, "(5000, 3000)")};

NewText <- display2D () Text;

Figure 4.2: jRelix input for displaying text

After the system has processed the statements from Figure 4.2 as input, an Xfig

window displaying the text strings appears as shown in Figure 4.3. If the user closes

the Xfig window without changing the picture, Text will be assigned to NewText.

Note that a user can customize display properties by defining attributes in a re-

lation, such as: text colour, text font, text font size, line colour, filling colour, etc.

Default values are used where custom properties are not declared. The default colour

is black, the default font is Times-Roman and the default font size is 12.0.

Figure 4.3: Displaying text

38 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

4.2.2 Displaying a Set of Points

To display a set of points, the coordinates of each point must be provided. For

example, if we want to draw three points with coordinates (5000, 4000), (2000, 4000)

and (5000, 3000), the relation containing them is shown in Table 4.2.

Points

x y

5000 4000

2000 4000

5000 3000

Table 4.2: Relation Points

domain x intg;

domain y intg;

relation Points (x, y) <-{

(5000, 4000),

(2000, 4000),

(5000, 3000)};

NewPoints <- display2D () Points;

Figure 4.4: jRelix input for displaying points

After the system has processed the input from Figure 4.4, an Xfig window dis-

playing three black points appears as shown in Figure 4.5.

4.2.3 Displaying a Set of Labelled Points

To draw the three points from the last example, and with labels containing their

coordinates, we need to add a string type attribute to the relation, which stores

the content for each label. We realize that, after doing this, we end up with a

relation having the exact same form as the relation Text from Table 4.1. In order to

distinguish between these two cases, we require that at least one attribute describing

4.2. EXAMPLES OF DISPLAYING 2D GRAPHS USING FLAT RELATIONS 39

Figure 4.5: Displaying points

the property of the point must be provided. This is necessary when drawing any

labelled shape including point, line, triangle and polyline. In this example, we add

the integer type attribute lc providing the colour of the point, and assign lc to be 0,

which indicates black. Other properties include line width, line style, filling colour,

and filling pattern. Note that display2D provides the opportunity to link certain

attribute names to certain graphical roles, but there are defaults which you’ll be

using until section 4.4.

LabelledPoints

x y lc label

5000 4000 0 (5000, 4000)

2000 4000 0 (2000, 4000)

5000 3000 0 (5000, 3000)

Table 4.3: Relation LabelledPoints

40 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

domain label strg;

domain lc intg;

relation LabelledPoints (x, y, lc, label) <-{

(5000, 4000, 0, "(5000,4000)"),

(2000, 4000, 0, "(2000, 4000)"),

(5000, 3000, 0, "(5000, 3000)")};

NewLabelledPoints <- display2D() LabelledPoints;

Figure 4.6: jRelix input for displaying labelled points

Figure 4.7: Displaying labelled points

4.2. EXAMPLES OF DISPLAYING 2D GRAPHS USING FLAT RELATIONS 41

4.2.4 Displaying a Set of Lines

To display a set of lines, the coordinates of the start point and the end point must

be provided.

Lines

x1 y1 x2 y2

1363 3013 2942 3010

2942 3010 3426 1508

3426 1508 2148 583

2148 583 873 1514

873 1514 1363 3013

Table 4.4: Relation Lines

domain x1 intg;

domain y1 intg;

domain x2 intg;

domain y2 intg;

relation Lines(x1, y1, x2, y2) <- {

(1363, 3013, 2942, 3010),

(2942, 3010, 3426, 1508),

(3426, 1508, 2148, 583),

(2148, 583, 873, 1514),

(873,1514, 1363, 3013)};

NewLines <- display2D () Lines;

Figure 4.8: jRelix input for displaying a set of lines

42 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

Figure 4.9: Displaying a set of lines

4.2.5 Displaying a Set of Labelled Lines

Say, we want to draw the lines from the last example, and label each line with a

name. Similar to the example of labelling points, we add a string type attribute label

and an integer type attribute lc.

LabelledLines

x1 y1 x2 y2 lc label

1363 3013 2942 3010 0 line1

2942 3010 3426 1508 0 line2

3426 1508 2148 583 0 line3

2148 583 873 1514 0 line4

873 1514 1363 3013 0 line5

Table 4.5: Relation LabelledLines

4.2. EXAMPLES OF DISPLAYING 2D GRAPHS USING FLAT RELATIONS 43

relation LabelledLines(x1, y1, x2, y2, lc, label) <-{

(1363, 3013, 2942, 3010, 0,"line1"),

(2942, 3010, 3426, 1508, 0, "line2"),

(3426, 1508, 2148, 583, 0, "line3"),

(2148, 583, 873, 1514, 0, "line4"),

(873,1514,1363,3013, 0, "line5")};

NewLabelledLines <- display2D () LabelledLines;

Figure 4.10: jRelix input for displaying a set of labelled lines

Figure 4.11: Displaying a set of labelled lines

44 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

4.2.6 Displaying a Set of Triangles

To display a set of triangles, the coordinates of the three points of each triangle must

be provided. For example, say we want to draw two triangles. The first triangle

is drawn with a blue border, a yellow filling colour and vertical lines as the filling

pattern. The other triangle is drawn with a yellow border, a blue filling colour and

vertical lines as the filling pattern. Other than the attributes x1, y1, x2, y2, x3, y3

which give the coordinates of the three vertices, we must create three more integer

type attributes: lc, fc and fp. lc stores the border colour. fc stores the filling colour

and fp stores the filling pattern. Note that in Xfig, colours are represented by integers.

A value of 1 indicates blue whereas a value of 6 indicates yellow. The filling pattern

is also associated with integer values. In this case, a value of 50 indicates vertical

lines. Refer to Appendix A, Table A.1 for more information.

Triangle

x1 y1 x2 y2 x3 y3 lc fc fp

5000 4000 2000 4000 5000 3000 1 6 50

3000 1000 5000 1000 5000 2500 6 1 50

Table 4.6: Relation Triangle

domain x1, y1, x2, y2, x3, y3, lc, fc, fp intg;

relation Triangle(x1, y1, x2, y2, x3, y3, lc, fc, fp)<-{

(5000, 4000, 2000, 4000, 5000, 3000, 1, 6, 50),

(3000, 1000, 5000, 1000, 5000, 2500, 6, 1, 50)};

NewTriangle <- display2D () Triangle;

Figure 4.12: jRelix input for displaying a set of triangles

4.2. EXAMPLES OF DISPLAYING 2D GRAPHS USING FLAT RELATIONS 45

Figure 4.13: Displaying a set of triangles

4.2.7 Displaying a Set of Labelled Triangles

To draw the triangles from the last example with labels in their centroids, we only need

to add a string type attribute label, since lc, fc and fp are the attributes describing

the properties of a triangle.

LabelledTriangle

x1 y1 x2 y2 x3 y3 lc fc fp label

5000 4000 2000 4000 5000 3000 1 6 50 Tri1

3000 1000 5000 1000 5000 2500 6 1 50 Tri2

Table 4.7: Relation LabelledTriangle

46 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

relation LabelledTriangle(x1, y1, x2, y2, x3, y3, lc, fc, fp, label)<- {

(5000, 4000, 2000, 4000, 5000, 3000, 1, 6, 50, "Tri1"),

(3000, 1000, 5000, 1000, 5000, 2500, 6, 1, 50, "Tri2")};

NewLabelledTriangle <- display2D () LabelledTriangle;

Figure 4.14: jRelix input for displaying a set of labelled triangles

Figure 4.15: Displaying a set of labelled triangles

4.2. EXAMPLES OF DISPLAYING 2D GRAPHS USING FLAT RELATIONS 47

4.2.8 Displaying a Sequenced Polyline

To display a sequenced polyline, the coordinates and sequence number of each vertex

must be provided. In section 4.2.4, we had drawn a pentagon from five lines. Now

we will use a relation called Polyline to get the same result.

Polyline

x y sq

1363 3013 1

2942 3010 2

3426 1508 3

2148 583 4

873 1514 5

1363 3013 6

Table 4.8: Relation Polyline

Note that in the relation Polyline, the x and y values of the last tuple are the

same as those in the first tuple. (This is a requirement enforced by data structures

in Xfig). It guarantees that the polyline is a closed shape.

If each vertex has a different pen colour or a different filling colour, the first colour

seen will be used and a warning message will be printed in the console.

relation Polyline(x, y, sq) <-{

(1363, 3013, 1),

(2942, 3010, 2),

(3426, 1508, 3),

(2148, 583, 4),

(873, 1514, 5),

(1363, 3013, 6)};

NewPolyline <- display2D () Polyline;

Figure 4.16: jRelix input for displaying a sequenced polyline

48 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

Figure 4.17: Displaying a sequenced polyline

4.2.9 Displaying a Sequenced Polyline with Labelled Vertices

To add a label to each vertex of a polyline, we use the same method as that of labelling

a point, line or triangle. We simply add a string type attribute label and an integer

type attribute lc.

LabelledVertexPolyline

x y sq lc label

1363 3013 1 0 (1363, 3013)

2942 3010 2 0 (2942, 3010)

3426 1508 3 0 (3426, 1508)

2148 583 4 0 (2148, 583)

873 1514 5 0 (873, 1514)

1363 3013 6 0 (1363, 3013)

Table 4.9: Relation LabelledVertexPolyline

4.2. EXAMPLES OF DISPLAYING 2D GRAPHS USING FLAT RELATIONS 49

relation LabelledVertexPolyline(x, y, sq, lc, label) <-{

(1363, 3013, 1, 0, "(1363, 3013)"),

(2942, 3010, 2, 0, "(2942, 3010)"),

(3426, 1508, 3, 0, "(3426, 1508)"),

(2148, 583, 4, 0, "(2148, 583)"),

(873, 1514, 5, 0, "(873, 1514)"),

(1363, 3013, 6, 0, "(1363, 3013)")};

NewLabelledVertexPolyline <- display2D () LabelledVertexPolyline;

Figure 4.18: jRelix input for displaying a sequenced polyline with labelled vertices

Figure 4.19: Displaying a sequenced polyline with labelled vertices

50 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

4.3 Examples of Displaying 2D Graphs Using Nested

Relations

4.3.1 Displaying a Sequenced Polyline with a Label

If a polyline is closed and it has no self intersection, a label can be displayed in the

centroid of this polyline. To do so, a nested relation is required.

NestedPolyline

label lc Polyline

x y sq

1363 3013 1

2942 3010 2

P1 0 3426 1508 3

2148 583 4

873 1514 5

1363 3013 6

Table 4.10: Relation NestedPolyline

domain lc intg;

domain Polyline (x, y, sq);

relation NestedPolyline (label, lc, Polyline)<- {

("P1", 0, {(1363, 3013, 1), (2942, 3010, 2),

(3426, 1508, 3), (2148, 583, 4),

(873, 1514, 5), (1363, 3013, 6)})};

NewNestedPolyline <- display2D () NestedPolyline;

Figure 4.20: jRelix input for displaying a sequenced polyline with a label in its cen-

troid

4.3. EXAMPLES OF DISPLAYING 2D GRAPHS USING NESTED RELATIONS51

Figure 4.21: Displaying a sequenced polyline with a label in its centroid

4.3.2 Displaying Several Polylines or a Combination of Dif-

ferent Shapes

To display several polylines or a combination of different shapes, we have to use a

nested relation. For example, we want to draw the labelled polyline from the previous

section and the labelled triangles from section 4.2.7. We would create a 3-level nested

relation called Graph.

52 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

Graph

NestedPolyline LabelledTriangle

label lc Polyline x1 y1 x2 y2 x3 y3 lc fc fp label

x y sq

1363 3013 1

2942 3010 2 5000 4000 2000 4000 5000 3000 1 6 50 Tri1

P1 0 3426 1508 3

2148 583 4

873 1514 5 3000 1000 5000 1000 5000 2500 6 1 50 Tri2

1363 3013 6

Table 4.11: Nested relation Graph

domain Polyline (x, y, sq);

domain NestedPolyline (label, lc, Polyline);

domain LabelledTriangle (x1, y1, x2, y2, x3, y3, lc, fc, fp, label);

relation Graph (NestedPolyline, LabelledTriangle)<-{

({("P1", 0, {(1363, 3013, 1), (2942, 3010, 2), (3426, 1508, 3),

(2148, 583, 4), (873, 1514, 5), (1363, 3013, 6)})},

{(5000, 4000, 2000, 4000, 5000, 3000, 1, 6, 50, "Tri1"),

(3000, 1000, 5000, 1000, 5000, 2500, 6, 1, 50, "Tri2")})};

NewGraph<-display2D () Graph;

Figure 4.22: jRelix input for displaying a combination of different shapes

4.4. DISPLAYING A GRAPH WITH A VOCABULARY RELATION 53

Figure 4.23: Displaying a combination of different shapes

4.4 Displaying a Graph with a Vocabulary Rela-

tion

The formal syntax for the display2D expression is the following:

display2D“(”(V ocabularyExpression)?“)”GraphExpression︸ ︷︷ ︸
A relational expression

Notice that the VocabularyExpression is optional. In fact, it is a relational expression

which stores the meaning of the attributes in the GraphExpression, which is usu-

ally the relational expression that stores the graphical information and needs to be

displayed.

In the previous examples, we left the VocabularyExpression empty. In fact, a

system built-in relation named .vocabulary is used automatically. By printing this

relation shown in Figure 4.24, you will realize that the attributes used in all of the

54 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

previous examples (e.g. x, y, sq, lc, fc, fp, etc) are listed in the relation .vocabulary.

>pr .vocabulary;
+----------------------+----------------------+
| .attribute | .meaning |
+----------------------+----------------------+
| x | cart1 |
| x1 | cart1 |
| x2 | cart1 |
| x3 | cart1 |
| x4 | cart1 |
| y | cart2 |
| y1 | cart2 |
| y2 | cart2 |
| y3 | cart2 |
| y4 | cart2 |
| sq | sequence |
| lc | line_colour |
| fc | fill_colour |
| tc | text_colour |
| fp | fill_pattern |
| ls | line_style |
| lt | line_thickness |
| dl | dash_length |
| ft | font |
| fs | font_size |
| dp | depth |
| js | join_style |
| cs | cap_style |
| fa | forward_arrow |
| ba | backward_arrow |
+----------------------+----------------------+
relation .vocabulary has 25 tuples

Figure 4.24: Print relation .vocabulary

Note that in the relation .vocabulary, all of the values for the attribute .meaning

are system keywords. For example, “cart1” always means Cartesian coordinate x,

and “cart2” always means Cartesian coordinate y. For more information about the

meaning of other keywords, refer to Appendix A Table A.1.

Now let us look at an example that uses our own defined vocabulary relation. To

display the exact same picture as in section 4.2.1, we begin by defining a relation

Text2, as shown in Table 4.12.

4.4. DISPLAYING A GRAPH WITH A VOCABULARY RELATION 55

Text2

a b textstring

5000 4000 (5000, 4000)

2000 4000 (2000, 4000)

5000 3000 (5000, 3000)

Table 4.12: Relation Text2

Comparing this to our example from section 4.2.1, notice that we named the first

two attributes a and b instead of x and y. To let the system know that a actually

means Cartesian coordinate x, and that b actually means Cartesian coordinate y, we

must declare a vocabulary relation which stores such information.

A relation that represents a vocabulary relation must have two attributes. One

attribute is named .attribute with type attribute and the other is named .meaning

with type string. The attribute .meaning is not allowed to have any value other than

those values used by the attribute .meaning in the relation .vocabulary.

TextVocabulary

.attribute .meaning

a cart1

b cart2

Table 4.13: Relation TextVocabulary

Note that the values for the attributes which have meanings “cart1” or “cart2”

can be numeric or string. Now notice that in Table 4.13, we have given meanings to

attributes a and b, but not to attribute textstring. The reason is that any attribute

not shown either in the user defined vocabulary relation or in the relation .vocabulary,

but is shown in the relation that stores graphical information will be treated as a text

string. This text string will be shown in the Xfig window as part of the display.

Finally, to display the relation Texts2, we require both the relations Texts2 and

TextVocabulary.

56 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

Note that in the display2D expression syntax, display2D “(” (Vocabulary-

Expression)? “)” GraphExpression is a relational expression (that has the

same value as GraphExpression only if users do not make changes to the display of

GraphExpression). Because of this, it can be used in assignment (<-), such as in the

input shown in Figure 4.25. In addition to assignment, we can also do all of the

unary operations, including projection, selection and T-selection; or all of the binary

operations, including µ-join and σ-join. For example, in Figure 4.26, we project the

values of attribute textstring from expression display2D (TextVocabulary) Text2.

After the input from Figure 4.26 is processed by the system, an Xfig window ap-

pears, showing the same picture as in Figure 4.3. After we close the Xfig window,

the projection result appears on the screen as shown in Figure 4.27.

NewText2 <- display2D (TextVocabulary) Text2;

Figure 4.25: jRelix input for displaying relation Text2 (using Assignment)

pr [textstring] in display2D (TextVocabulary) Text2;

Figure 4.26: jRelix input for displaying relation Text2 (using Projection)

+--------------------+
| textstring |
+--------------------+
| (5000, 4000) |
| (2000, 4000) |
| (5000, 3000) |
+--------------------+

Figure 4.27: Projection result

4.5 Examples of Updating the Display

Recall that from section 4.2.6, we draw two triangles. We do this first by declaring

a relation named Triangle (shown in Table 4.6). We then input NewTriangle <-

4.5. EXAMPLES OF UPDATING THE DISPLAY 57

display2D () Triangle; into jRelix causing an Xfig window displaying two tri-

angles to appear, as shown in Figure 4.13. Now without doing any modification to

this graph, we close the Xfig window. A new relation NewTriangle as shown in Table

4.14 is created and is assigned to have the same tuples as relation Triangle.

NewTriangle

x1 y1 x2 y2 x3 y3 lc fc fp

5000 4000 2000 4000 5000 3000 1 6 50

3000 1000 5000 1000 5000 2500 6 1 50

Table 4.14: Relation NewTriangle

Now we will make updates to the picture. Before we get started, let us understand

some rules for updating.

Rule #1 Updating does not support changing a flat relation to a nested relation. In

another words, introducing a new shape (including point, line, triangle, polyline

and text) into the original graph, or introducing a new polyline into the original

graph which contains a polyline, are not supported by the current system.

Rule #2 Updating must be done without introducing any new attribute into the

relation, when adding, deleting or modifying points, lines, or triangles, or mod-

ifying a polyline.

Rule #3 Updating does not support any changes to nested relations or any relations

containing Text.

4.5.1 Valid Updates

1. Flip the top triangle in Figure 4.13 horizontally by using from the Xfig

toolbar. Then save the figure shown in Figure 4.28.

2. Draw a triangle with a black border, no fill colour and no filling pattern. Then

save the figure shown in Figure 4.29.

58 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

Figure 4.28: After flipping the top triangle

Figure 4.29: After drawing a new triangle

4.5. EXAMPLES OF UPDATING THE DISPLAY 59

3. Edit the bottom triangle by using to change the filling pattern from

vertical lines to horizontal lines. Then save the figure shown in Figure 4.30.

Figure 4.30: After changing the filling pattern of the bottom triangle

4.5.2 Invalid Updates

4. To increase the width of the border, first click . Changing the width

from 1 to 4, we get Figure 4.31. Now we go to the Xfig File menu and save the

current figure. An error message window, as shown in Figure 4.32, appears.

The error occurs because the default value for the width is changed from 1 to 4.

Doing this requires a new attribute for the border width/thickness to be added

to the original relation. This violates Rule #2. To fix the problem, we change

the border width back to 1, save the figure, and click “Ok. I fixed it”. The

error message window disappears.

60 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

Figure 4.31: After changing the border width of the bottom triangle

Figure 4.32: Popup error message 1

Figure 4.33: Popup error message 2

4.5. EXAMPLES OF UPDATING THE DISPLAY 61

5. Adding a straight line to the graph, we get Figure 4.34. We are violating

Rule #1, so another error message shown in Figure 4.33 pops up. After fixing

the error and saving the file, we are back again at Figure 4.30. Now we will

exit Xfig. Because of the modification, the relation NewTriangle is no longer

the same as the relation Triangle. Instead the relation NewTriangle, which

represents the new graph shown in Figure 4.30, has a new value showing in

Table 4.15.

Figure 4.34: Adding a line to the graph

NewTriangle

x1 y1 x2 y2 x3 y3 lc fc fp

5000 4000 2000 4000 5000 3000 1 6 49

3000 1000 1000 1000 1000 2500 6 1 50

4455 2070 3417 751 2793 2309 0 7 -1

Table 4.15: Relation NewTriangle (after update)

62 CHAPTER 4. USER’S MANUAL ON DISPLAY2D

Here is an example showing a violation of Rule #3. Recall that in section 4.3.2,

we draw two labelled triangles and a labelled polyline from a nested relation named

Graph by calling NewGraph <- display2D () Graph;. Now after adding a rectan-

gular shaped polyline to the graph, and saving the changes, the warning message

shown in Figure 4.36 appears. Note that if the user ignores the error message and

closes the Xfig window, the relation NewGraph will be equal to the unmodified rela-

tion Graph.

Figure 4.35: Adding a box to the graph

Figure 4.36: Popup warning message

Chapter 5

Implementation of display2D

In this chapter, we will describe the implementation of the display2D operation.

Section 5.1 gives an overview of the whole implementation, including the overall

architecture of the current jRelix system, the implementation of the display2D syntax,

the display2D syntax tree, the evaluateDisplay2D algorithm and the XfigObj class.

Sections 5.2 and 5.3 describe the detailed implementation of displaying flat and

nested relations. The implementation of updating the display is given in section 5.4.

5.1 Overview

5.1.1 System Architecture

The system used to run display2D contains four parts, the Parser, the Interpreter,

the Execution Engine and the Xfig application. The Parser, the Interpreter and

the Execution Engine are built into the jRelix system. The Xfig application is not

included in jRelix, but is required by the display2D operation to display a relation.

As shown in Figure 5.1, jRelix input from the user is first accepted by the parser,

which parses it and generates a syntax tree. This parser is created by Java Compiler

Compiler (Java CC) [SDV04] , which reads, compiles grammar specifications and

generates a parser. JJTree [SDV04] is a preprocessor for JavaCC. The output of

JJTree is run through JavaCC to create the parser.

63

64 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

Execution Engine

Interpreter

Parser

User Input

Syntax Tree

Method Call

Xfig

Figure 5.1: System Architecture

The interpreter, implemented as Interprer.java, repeatedly calls the parser, receives

the syntax tree generated by the parser, traverses the syntax tree and decomposes

it into a set of method calls executed by the execution engine. The interpreter also

interacts with the system tables to retrieve and update information about attributes,

relations, views, and computations in the database. For display2D, the interpreter

must generate an Xfig recognizable file and invoke Xfig to display it. If there are any

changes made by the user to the original graph, the interpreter has to analyze the

update and create a new relation presenting the new graph.

In the jRelix system, the execution engine contains the Relation Processor [Hao98],

the Virtual Domain Actualizer [Yua98], the Computation Processor [Bak98], the

Events and Active Database [He97], and the Nested Relation Processor [Hao98].

5.1.2 Building the Display2D Syntax

In section 4.4 we introduced the formal syntax for the display2D expression. The im-

plementation of the display2D syntax is completed with the addition of the following

to the grammar specification file, Parser.jjt.

5.1. OVERVIEW 65

• TOKEN : { < DISP2D : "display2D" > }
We create a token DISP2D using the matched string display2D. The token

DISP2D will be sent to the parser.

• void Display2D () #disp2D : {}
{
<DISP2D> "(" [Expression()] ")" Expression()

{ jjtThis.set(OP DISP2D, OP DISP2D); }
}
We define Display2D as a nonterminal. The grammar is <DISP2D> "(" [

Expression()] ")" Expression() . The root node in the parser tree is

named disp2D.

• void Primary() #void :

{Token t;}
{ Display2D() }
We add the nonterminal Display2D into the specification of Primary(). This

guarantees that <DISP2D> "(" [Expression()] ")" Expression() is an

expression.

5.1.3 Examples of the Display2D Syntax Tree

Recall that from section 4.2.1, we draw three text strings by calling NewText <-

display2D () Text;. The syntax tree for this input is shown in Figure 5.2. In

section 4.4, we draw the same three text strings by calling NewText2 <- display2D

(TextVocabulary) Text2;, where TextVocabulary is a vocabulary relation defined

by the user. The syntax tree is shown in Figure 5.3.

5.1.4 evaluateDisplay2D Algorithm

EvaluateDisplay2D is a function included in the Interpreter.java file. It evaluates the

following relation expression (defined as the display2D syntax in section 4.4):

66 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

NewText

<−

disp2D

Text

Figure 5.2: Syntax Tree for “NewText <- display2D () Text; ”

NewText2

<−

disp2D

TextVocabulary Text2

Figure 5.3: Syntax Tree for “NewText2 <- display2D (TextVocabulary) Text2; ”

5.1. OVERVIEW 67

display2D “(” (VocabularyExpression)? “)” GraphExpression

The evaluateDisplay2D function returns a new relation. If the original display is not

updated by the user, the returned relation has the same value as GraphExpression.

Otherwise, the returned relation represents the updated GraphExpression.

To evaluate the display2D expression, the evaluateDisplay2D algorithm first an-

alyzes the syntax tree from display2D. It detects the number of children of node

disp2D. If there is only one child, VocabularyExpression must be empty. Therefore,

only the GraphExpression is loaded. If node disp2D has two children, both Vocabu-

laryExpression and GraphExpression are loaded.

After syntax tree analysis, the evaluateDisplay2D algorithm picks an Xfig file

name for the current display. The file name has two parts, the first part is a global

integer which starts at 1, and increases by 1 if the display2D operator is being called

successfully. The other part of the file name is the suffix “.fig”, which indicates an

Xfig file.

In the current directory, the evaluateDisplay2D algorithm creates a file with the

newly picked name, and calls Java I/O facilities to write the Xfig file header, shown

in Figure 3.2, to the current “.fig” file.

The evaluateDisplay2D algorithm is also used to analyze GraphExpression. It

goes through the type of each attribute in GraphExpression. If there is an attribute

with type IDLIST, it indicates that GraphExpression is a nested relation. Then a

global boolean variable nested, with an initial value false, is assigned to be true.

Function dispNestedRel is called to display this nested relation. We will present the

detailed algorithm in section 5.3. If there are no IDLIST type attributes, then

GraphExpression is a flat relation. Function drawRel is called to display this flat

relation. We will explain this in section 5.2.

In addition, the evaluateDisplay2D algorithm uses the Java Runtime.exec() to

invoke Xfig to run the current “.fig” file externally. Also, the algorithm makes a copy

of the current “.fig” file and creates a thread, monitoring whether the user makes any

68 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

changes to the current display and whether the update is valid. In section 5.4, we

will describe the algorithm for updating the display.

5.1.5 Class XfigObj

Currently, the display2D operation is implemented to display points, lines, triangles,

polylines (open/closed) or text. Therefore, to fulfill the needs of display2D, Xfig

objects with type 2, type 4, and type 6 have been implemented in XfigObj.java.

For display2D, type 2 Xfig objects are used for points, lines, triangles and polylines

(open/closed). In section 4.2.1, we mentioned that any text must appear in a white

box with a black border. This implies that to display text, we need two parts. One

part is a text string and the other is a box with a white filling colour and a black

border colour, which is represented by a type 2 Xfig object. We use type 4 Xfig

objects for the text string, and type 6 Xfig objects to glue the text string and the box

into a compound object.

The file XfigObj.java, which is used to describe an Xfig object, contains the fol-

lowing six parts.

• A group of instances, which are a union of the parameters required by type 2,

4 and 6 Xfig Objects.

• A general constructor XfigObj().

• A constructor XfigObj(int obj type), which can be used to specify the object

type.

• Function findLength(double font size). For a given font size, the function

returns an integer value for the length of a text string in Times-Roman, which

is the default font in Xfig.

• Function outFigFile Objs(). It returns a string containing all the parame-

ters required by type 2 Xfig objects. For display2D, we use this function for

5.2. DISPLAYING 2D GRAPHS USING FLAT RELATIONS 69

points, lines, triangles and polylines. An example of the return value of function

outFigFile Objs() is shown in Figure 3.3.

• Function outFigFile Text(). It returns a string which is the Xfig code for

a compound object containing text strings and a white box with black bor-

der. The coordinates of the upper left corner and the lower right corner of the

box are calculated in this function. An example of the return value of func-

tion outFigFile Text() is shown in Figure 3.5. Note that in display2D, this

function is only used for text.

5.2 Displaying 2D Graphs Using Flat Relations

In this section, we will use the following example to illustrate how display2D is im-

plemented for displaying a flat relation.

Example: A dummy flat relation named Picture, which stores graphical informa-

tion needs to be displayed. A dummy flat relation named Vocab will be the

vocabulary relation used for our display operation. To display the relation Pic-

ture, we input NewPicture <- display2D(Vocab) Picture;.

5.2.1 Non-Text

In this section, 5.2.1, we assume that the relation Picture does not contain any text

strings. In the next section, 5.2.2, we will introduce text strings to the relation

Picture and show how to deal with them.

As mentioned in section 5.1.4, the evaluateDisplay2D algorithm analyzes the

attributes of the relation Picture and determines that it is a flat relation. Then

function drawRel, which is included in Interpreter.java file is invoked. Before the

relation Picture is displayed in an Xfig window, we need to do the following:

70 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

Determine the Type of the Graph Represented by the Relation Picture

In the relation Vocab, we go through the values of the attribute .attribute, tuple

by tuple, trying to find matches to the attribute names of the relation Picture.

It there is a match, we get the value of the attribute .meaning from the current

tuple in the relation Vocab. If the value is “cart1”, c1, which is a corresponding

integer variable with an initial value 0, increases by 1. If it is “cart2”, c2, which

is also a corresponding integer variable with an initial value 0, increases by 1.

If it is “sequence”, polyline flag, a global integer variable with a initial value 0,

is assigned to be 1.

After finishing all of the tuples of the relation Vocab, we then compare the

values of c1 and c2.

• If c1 is not equal to c2, throw an exception.

• If c1 = c2 = 2, then the relation Picture is a set of lines.

• If c1 = c2 = 3, then the relation Picture is a set of triangles.

• If c1 = c2 = 1,

* If polyline flag = 1, then the relation Picture represents a polyline.

* If polyline flag = 0, then the relation Picture represents a set of points.

Determine the Number of Objects

From the last step, if a polyline type is detected, it would guarantee that there

is only one polyline from the relation Picture, since it is a flat relation. If

the relation Picture contains a set of points/lines/triangles, the number of

points/lines/triangles is the number of the tuples from the relation Picture.

With the number of objects determined, we declare an array of XfigObj ob-

jects.

Extract Information from the Relation Picture

• Non-polyline

5.2. DISPLAYING 2D GRAPHS USING FLAT RELATIONS 71

For each tuple, say tuple i, in the relation Picture, we do the following:

In the relation Vocab, we go through the values of the attribute .attribute,

tuple by tuple, trying to find matches to attribute names of the relation

Picture. It there is a match, we record the column number, v idx, of the

matched attribute in the relation Picture. Then we retrieve the value,

x, from the cell, which is located at row i, column v idx in the relation

Picture.

To reveal the meaning of the value, x, we obtain the value of the attribute

.meaning from the current tuple in the relation Vocab. If the value is

“line colour”, it indicates that the parameter, pen colour, from Table 3.2

has the value x. Please refer to Table A.2 in Appendix A for more cases.

Each time, after we get a new value x and its meaning (cart1, cart2,

line colour, etc), we assign it to the corresponding instance of the XfigObj

object(s) declared earlier. Note that we must keep track of the number of

appearances of “cart1” and “cart2”, because points, lines or triangles have

different pairs of “cart1” and “cart2”.

Note that the values for the attributes which have meanings “cart1” or

“cart2” can be numeric or string. If the values are numerical, the system

will treat the values as the actual coordinates. If the values are strings, the

system will automatically assign positions 1000, 2000, 3000, etc., according

to the sort order of the strings.

• Polyline

To get the graphical information from a relation which is a polyline, we

first determine the total number of vertices, max seq, which equals the to-

tal number of tuples in the relation. Then for each integer, starting from

1 to max seq, we find the corresponding tuple, using the same method, de-

scribed for non-polyline, to get the values for Cartesian coordinate x and

Cartesian coordinate y. Then we store the value in the XfigObj object de-

clared earlier. As mentioned in section 4.2.8, if each vertex has a different

72 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

pen colour or a different filling colour, the first colour seen will be used

and a warning message will be printed in the console.

Output the XfigObj Objects

First of all, an XfigObj object calls the function outFigFile Objs(), which is

included in the XfigObj.java file, to get a string containing all the parameters

of the object. Then by using Java I/O, we write the return string to the cur-

rent “.fig” file. Finally, as mentioned in section 5.1.4, the evaluateDisplay2D

algorithm invokes Xfig to run the current “.fig” file externally.

5.2.2 Text

If an attribute of the relation Picture is not shown as a value of the attribute .attribute

in the relation Vocab, the values of this attribute in the relation Picture will be

treated as text strings when displayed in the Xfig window. For now, we call this type

of attribute “text string attribute”. Note that a text string attribute could have any

type, including integer, float, double, short, long and string.

To detect whether text string attributes exist in the relation Picture, we call func-

tion isStringin() to check each attribute of the relation Picture. If the current

attribute is in any tuple of the attribute .attribute in the relation Vocab, a true value

is returned. If the opposite occurs, text count, which is an integer variable with an

initial value 0, increases by 1, and as well, we record the current column index number

in an array texts idx.

While checking each attribute of the relation Picture, we also have to be aware

of whether there are any attributes, in the corresponding tuple in the relation Vo-

cab, that have the meaning “line thickness”, “line style”, “line colour” “fill colour”

or “fill pattern”. If there are any such attributes, draw, an integer variable with a

initial value 0, is assigned to be 1. This step is necessary, because to distinguish a

relation representing text from a relation representing text and a shape (including

points/lines/triangles/polyline), we need at least one attribute describing the prop-

5.2. DISPLAYING 2D GRAPHS USING FLAT RELATIONS 73

erty of the shape. We had mentioned this in section 4.2.3.

We could end up with multiple text strings. For example, the relation Picture

could have the form shown in Figure 5.4, where the attributes x and y are the

coordinates and s1, s2 and s3 represent text strings. However, since s1, s2 and s3

share the coordinates (x, y), an overlap of three text strings in a white box with a

black border will be shown.

To avoid overlaps, we must make use of the parameter, depth, from Table 3.2

to make the text appear at different layers in the display. We require that the first

text string attribute in the relation Picture has the depth value 49, and the nth text

string attribute has the depth value 50 −n, where n is less than or equal to 49. i.e.

s1 has depth 49, s2 has depth 48 and s3 has depth 47. Note that larger depth value

indicates that the object is deeper than (under) objects with smaller depth values.

Also, we should move each text string away from each other, since they completely

overlap. If the first text string has coordinates (X, Y), then we assign the nth text

string with coordinates (X+27×(n-1), Y+27×(n-1)). Therefore, if s1 has coordinates

(x, y), then s2 has coordinates (x+27, y+27), and s3 has coordinates (x+54, y+54).

By using the constant 27, which represents 27 Fig units, a very small distance in

Xfig and display independent (the length is the same regardless of the display screen

dimensions), we get the visual effect in Figure 5.5.

Picture (x, y, s1, s2, s3)

Figure 5.4: Multiple text strings in the relation Picture

s1 s2 s3

Figure 5.5: Displaying multiple text

In the flat relation Picture, the number of text strings, is equal to the number

of tuples of the relation Picture times text count. We create an array of XfigObj

objects, text, to store these text strings. We examine each tuple of the relation

74 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

Picture, by using the same method described for non-text, to get the content of the

text strings, and the values for “text colour”, “font” and “font size”. Then we store

the value in the XfigObj object array text. A text string must have coordinates for

display. According to the type of the graph represented by the relation Picture, the

coordinates for the text string are calculated differently.

Text and Point: Picture (x, y, colour, s1)

In the relation Picture, the attributes x and y are the coordinates. The attribute

colour is the “line colour” and s1 is a text string attribute.

Recall that in Table 3.3, the coordinate location (x, y) for text is the lower

left corner of the text string. Therefore there is an overlap between the point

and the text string. To avoid this, we require that, if the point has coordinates

(X, Y), the corresponding text string must have coordinates (X+180, Y+180),

where the constant 180 represents 180 Fig units and is display independent.

Text and Line: Picture (x1, y1, x2, y2, colour, s1)

In this case, the text string will have the same direction as the slope of the

corresponding line. Also, the text string will be centered at the center of the

line. To do this, we need to find the slope and the coordinates of the middle

point of the corresponding line, and also the length of each text string. Then

we calculate the coordinates for the text string.

Text and Triangle: Picture (x1, y1, x2, y2, x3, y3, colour, s1)

To display a text string with a triangle, we require that the coordinates of the

beginning of a text string are the coordinates of the centroid of the correspond-

ing triangle.

Text and Polyline: Picture (x, y, sq, colour, s1)

Since the relation Picture is a flat relation, we are only able to display text

strings next to each vertex of a polyline. By using the method for locating text

5.3. DISPLAYING 2D GRAPHS USING NESTED RELATIONS 75

strings next to a point, we require that, if a vertex has coordinates (X, Y), the

corresponding text string have coordinates (X+180, Y+180).

In the next section 5.3, we will deal with a text string displayed in the centroid

of a polyline that is closed and has no self intersection.

5.3 Displaying 2D Graphs Using Nested Relations

In this section, we will use the example from section 4.3.2 to illustrate how display2D

is implemented for displaying a nested relation.

Recall that in section 4.3.2, we displayed two labelled triangles along with a

polyline, labelled in its centroid, from the nested relation Graph, as shown in table

4.11. In Figure 5.6, the contents of the relation Graph and its underlying dot relations

.LabelledTriangle, .NestedPolyline and .Polyline are shown. From this, we see that

we can use a tree structure to represent a nested relation. The top level relation is

the root of the tree. Depending on its level in the nested relation, an underlying dot

relation is an intermediate or leaf node of the tree. The tree structure for the nested

relation Graph is shown in Figure 5.7.

As mentioned in section 5.1.4, the evaluateDisplay2D algorithm analyzes the

attributes of the relation Graph and determines that it is a nested relation. Then the

function dispNestedRel which is included in Interpreter.java file is invoked. Before

explaining the algorithm for the function dispNestedRel, we need to also understand

a function named rel Type, which gets called by dispNestedRel.

function rel Type(Relation r)

The function rel Type is used to determine the hierarchy of a node in its cor-

responding tree structure. The node, which is actually a relation, is passed

to the function which returns an integer value of 1, 2 or 3. A return value 1

indicates that it is the root of the tree. A return value 2 indicates that it is an

intermediate node of the tree. A return value 3 indicates that it is a leaf node

76 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

Graph

NestedPolyline LabelledTriangle

1 3

.LabelledTriangle

.id x1 y1 x2 y2 x3 y3 lc fc fp label

3 3000 1000 5000 1000 5000 2500 6 1 50 Tri2

3 5000 4000 2000 4000 5000 3000 1 6 50 Tri1

.NestedPolyline

.id label lc Polyline

1 P1 0 2

.Polyline

.id x y sq

2 873 1514 5

2 1363 3013 1

2 1363 3013 6

2 2148 583 4

2 2942 3010 2

2 3426 1508 3

Figure 5.6: Nested relation Graph and its underlying dot relations

Graph

.LabelledTriangle .NestedPolyline

.Polyline

Figure 5.7: A tree structure representation for the nested relation Graph

5.3. DISPLAYING 2D GRAPHS USING NESTED RELATIONS 77

of the tree. To determine the type of Relation r, the function rel Type uses the

following concepts:

Root:

must have no attributes with name “.id”.

Intermediate node:

must have an attribute with name “.id” and at least one attribute, other

than the attribute named “.id”, with type IDLIST.

Leaf node:

must have an attribute with name “.id” and must have no other attributes

with type IDLIST.

Figure 5.8 gives the detailed algorithm for the function dispNestedRel. There are

three parameters passed to the function. String s, is the name of the nested relation,

r, which stores the graphical information and will be displayed. Relation Vocab is the

relation that stores the vocabulary information. Long id is for the surrogate number,

or the values of the attribute .id in the relation r. Note that since the top level (root

node) relation has no attribute named “.id” and the minimum surrogate number for

a nested relation is 1, we use a value 0 for the long id field. In our example, after the

relation Graph is detected as a nested relation, dispNestedRel(“Graph”, .vocabulary,

0) is called. (.vocabulary is the system built-in vocabulary relation.)

In the dispNestedRel algorithm, we first determine that the relation Graph is a

root node by using the function rel Type. Then we examine its first attribute Nested-

Polyline, which has a type IDLIST. Therefore, we recursively call the function disp-

NestedRel(“.NestedPolyline”, .vocabulary, 1), where 1 is the value of the cell located

at row 1, column 1 in the relation Graph, as shown in the Figure 5.6.

Now we use the dispNestedRel algorithm to analyze the relation .NestedPolyline.

First we find out that relation .NestedPolyline is an intermediate node. For each

tuple, the algorithm then does a comparison of the value of the attribute .id in the

relation .NestedPolyline to the current id. In this case, the current id is 1. If they

78 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

—————————————————————————————————–

dispNestedRel (String s, Relation Vocab, long id)

Find a relation, r, which has the same name as the value of string s.

reltype = rel Type (r);

If reltype == 1 //r is root

For each attribute i of r

If attribute i has type IDLIST

For each tuple j of r

dispNestedRel (“.”+attribute i ’s name, Vocab, data in cell [i][j])

If reltype == 2 //r is an intermediate node

For each tuple j of r

If data in cell [0][j] equal to id

For each attribute i of r

If attibute i has type IDLIST and attribute i’s name is not “.id”

dispNestedRel (“.”+attribute i ’s name, Vocab, data in cell [i][j])

If reltype == 3 //r is a leaf node

drawRel (r, Vocab, id)

—————————————————————————————————–

Figure 5.8: Algorithm for the function dispNestedRel

5.3. DISPLAYING 2D GRAPHS USING NESTED RELATIONS 79

are not equal, it indicates that the current tuple does not belong to the current

nested relation tree. If they are equal, we examine the attributes of the relation

.NestedPolyline, until we find that the attribute Polyline has type IDLIST and is

not named “.id”. Then, we recursively call the function dispNestedRel(“.Polyline”,

.vocabulary, 2), where 2 is the value of the cell located at row 1, column 4 in the

relation .NestedPolyline, as shown in the Figure 5.6.

Now we use the dispNestedRel algorithm to analyze the relation .Polyline. After

we detect that it is a leaf node, we simply call drawRel(.Polyline, .vocabulary, 2) for

drawing a flat relation. Note that even though .Polyline is a flat relation, it is still

part of a nested relation tree and therefore, we require the surrogate to be passed to

the function drawRel. In this case, the surrogate is 2. This guarantees that only the

tuples belonging to the current nested relation tree are selected. If a flat relation is

not part of a nested relation tree (i.e. has no attribute .id), we will pass -1 instead

of the surrogate to the function drawRel.

Following the same idea illustrated above, the function dispNestedRel will traverse

the remaining branches of the tree, calling the function drawRel when leaf nodes are

detected.

The function drawRel will use the exact same method described in section 5.2 to

display the leaf node relation. However, there are four special cases.

1. Text and Polyline

In section 4.3.1, we had shown an example of a text string displayed in the

centroid of a closed polyline having no self intersection. To find the coordinates

of the centroid of such a polyline, we first calculate the area of the polyline from

Formula 1 shown below. Then we use Formulas 2 and 3 to get the centroid

coordinate x and centroid coordinate y. The coordinates of the beginning of

the text string are (xc, yc).

Formula 1: Area = 1
2

∑n
i=1(xiyi+1 − xi+1yi)

Formula 2: xc = 1
6×Area

∑n
i=1(xi + xi+1)(xiyi+1 − xi+1yi)

80 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

Formula 3: yc = 1
6×Area

∑n
i=1(yi + yi+1)(xiyi+1 − xi+1yi)

If the polyline has no self intersection and is open, as shown in Figure 5.9, we

just simply connect vertex V1 and V6 by an imaginary line. Therefore, we can

apply Formula 1 to calculate the area, and get the coordinates of the centroid

from Formula 2 and 3.

V1

V2

V3

V4

V5

V6

Figure 5.9: An open polyline

2. Text and Points

Table 5.1 presents a nested relation, NestedPoints, which contains three black

points and a text string “Three Points”. We need to determine the coordinates

of the text string. In this case, we require that for the text string, the x coordi-

nate is the average of the x coordinates of all the corresponding points, and the

y coordinate is the average of the y coordinate of all the corresponding points.

Therefore, the text string “Three Points” has coordinates (3000, 2000).

NestedPoints

label Points

x y lc

1000 1000 0

Three Points 2000 1500 0

6000 3500 0

Table 5.1: Relation NestedPoints

5.3. DISPLAYING 2D GRAPHS USING NESTED RELATIONS 81

3. Text and Lines

Table 5.2 presents a nested relation, NestedLines, which contains three black

lines and a text string “Three Lines”. We need to determine the coordinates of

the text string. In this case, we require that the coordinates of the text string

are the average of the coordinates of the middle points of all the corresponding

lines. For the relation NestedLines, the middle points for the three lines are

(2000, 2000), (3000, 2000) and (4000, 2000). Therefore, by taking the average,

the text string “Three Lines” has coordinates (3000, 2000).

NestedLines

label Lines

x1 y1 x2 y2 lc

1000 2000 3000 2000 0

Three Lines 2000 3000 4000 1000 0

3000 1000 5000 3000 0

Table 5.2: Relation NestedLines

4. Text and Triangles

Table 5.3 presents a nested relation, NestedTriangles, which contains a text

string “Three Triangles” and three triangles with a black border colour and a

white filling colour. We need to determine the coordinates of the text string.

In this case, we require that the coordinates of the text string are the average

of the coordinates of the centroids of all the corresponding triangles. For the

relation NestedTriangles, the centroid points for the three triangles are (2000,

3000), (3000, 2000) and (1000, 4000). Therefore, by taking the average, the

text string “Three Triangles” has coordinates (2000, 3000).

82 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

NestedTriangles

label Triangles

x1 y1 x2 y2 x3 y3 lc fc

1000 2000 3000 1000 2000 6000 0 7

Three Triangles 2000 3000 4000 1000 3000 2000 0 7

1000 1000 1000 3000 1000 8000 0 7

Table 5.3: Relation NestedTriangles

5.4 Updating the Display

The updating algorithm is implemented in detectFileDiffThread.java file. The class

detectFileDiffThread implements the Java Runnable interface and rewrites the method

run() contained in the Runnable interface.

As mentioned in section 5.1.4, the evaluateDisplay2D algorithm creates a copy of

the current “.fig” file. For example, if the current file is named with “1.fig”, then the

copied file is named “ 1.fig”. In the method run(), by comparing the current and the

copied files, we can detect whether there are any updates made by the user.

In Figure 5.10, we give the algorithm for the function run(). Most of the steps

listed in the function run() are self explanatory, however we will pay special attention

to lines 7, 10 and 19 in the algorithm.

• Line 7: How to check if the updates violate the three updating rules

The three updating rules have been introduced in section 4.5. Now after listing

each rule again, we will explain how to check for violations.

Note that according to Rule #3, the relation for the current graph must be a

flat relation. This implies that the Xfig file must only contain a single shape of

either points, lines, triangles or a polyline. All of these shapes are type 2 Xfig

objects, as mentioned in section 5.1.5.

Rule #1 Updating does not support changing a flat relation to a nested relation.

In another words, introducing a new shape (including point, line, triangle,

5.4. UPDATING THE DISPLAY 83

—————————————————————————————————–

run ()

{
1 while (Xfig display window is not closed by the user)

2 {
3 Compare the current file “ file.fig” and the copied file “ file.fig” by

4 comparing 2 strings that contain the contents of the 2 files

5 if (2 strings are not equal) // there is an update

6 {
7 if (The update does not violate the 3 updating rules in section 4.5)

8 {
9 Call Java Runtime.exec() to run “ cp file.fig file.fig” externally.

10 Create a new relation from the file “ file.fig” .

11 A temporary empty file is created in the current directory.

12 Java I/O outputs the data of the new relation into the file.

13 }
14 if (Violation is detected)

15 {
16 Java Swing is used to create a pop up error message window.

17 }
18 }
19 sleep (3000) // thread is put to sleep for 3 seconds

}
}

—————————————————————————————————–

Figure 5.10: Algorithm for the function run() in detectFileDiffThread.java

84 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

polyline and text) into the original graph, or introducing a new polyline

into the original graph which contains a polyline, are not supported by the

current system.

Polyline

To determine that the original graph is a polyline, we examine the

value of the global integer variable polyline flag, mentioned in section

5.2. If it is 1, it indicates a polyline. Recall that in section 4.2.8, we

had drawn a pentagon from the relation Polyline. The Xfig code for

the pentagon is shown in Figure 5.11.

To determine whether the user adds more objects (points, lines, tri-

angles and polylines) to the original graph, we skip the first nine lines

of the Xfig header and the two lines of code for the pentagon. If we

find that there are additional lines, it indicates there are other objects.

Therefore, these updates would violate Rule #1.

#FIG 3.2
Landscape
Center
Metric
Letter
100.00
Single
-2
1200 2
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 6

1363 3013 2942 3010 3426 1508 2148 583 873 1514 1363 3013

Figure 5.11: Xfig file for a polyline

Non-polyline

If polyline flag is not equal to 1, the current graph is non-polyline.

First, we need to figure out the shape represented by the Xfig file.

The number of points in an Xfig object indicates the shape of the

object. Table 3.2 shows the number of points, npoints, of a type 2

Xfig object in its last parameter listed. If npoints is 1, it represents a

5.4. UPDATING THE DISPLAY 85

point. If npoints is 2, it represents a line. If npoints is 4, it represents

a triangle. (4 is used instead of 3, because a triangle is a closed shape.

This is a requirement enforced by Xfig.) If npoints is greater than 4,

it represents a polyline. In the Xfig code of a type 2 Xfig object, the

value of the last number in the first line represents npoints.

To determine whether there are new shapes introduced to the original

graph, we skip the first nine lines of the Xfig header. Then in the

updated Xfig file, shown in Figure 5.13, we compare the last number

in each line starting with a character ‘2’ (object type code for type 2

Xfig objects, which is always the first character in the first line of a

type 2 Xfig object code), to the last number in the first line starting

with a character ‘2’ in the original Xfig file, shown in Figure 5.12. If

there is a difference, it indicates there are other objects. Therefore,

these updates would violate Rule #1. In our example, the updated

graph represented by the Xfig code in Figure 5.13, violates Rule #1,

since a new shape with a value of 1 for npoints appears.

#FIG 3.2
Landscape
Center
Metric
Letter
100.00
Single
-2
1200 2
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2

2000 3000 2000 1000
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2

1000 4000 5000 3000

Figure 5.12: A sample original Xfig file representing non-polylines

Rule #2 Updating must be done without introducing any new attribute into the

relation, when adding, deleting or modifying points, lines, or triangles, or

modifying a polyline.

86 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

#FIG 3.2
Landscape
Center
Metric
Letter
100.00
Single
-2
1200 2
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2

2000 3000 2000 1000
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 1

500 2000

Figure 5.13: A sample updated Xfig file representing non-polylines

To determine the existence of additional attributes that violate Rule #2,

we compare the first 15 numbers in the first line of each Xfig object to the

corresponding default values of a type 2 Xfig object, shown in Table 3.2.

An algorithm for this step is given in Figure 5.14.

Rule #3 Updating does not support any changes to nested relations or any

relations containing Text.

To determine that the original graph is from a nested relation, we examine

the value of the global boolean variable nested, mentioned in section 5.1.4.

If it is true, it indicates a nested relation.

To determine if the original graph contains text objects (i.e. non type 2

Xfig objects), we invoke a function called isPolyline. The function isPoly-

line reads an Xfig file as input, and returns a boolean value that indicates

whether the Xfig file contains objects other than type 2 Xfig objects. The

algorithm for the function isPolyline is simple. We skip the first nine lines

of the Xfig file header. Then we check the first character in each following

line, if it is not equal to ‘2’ (object type code for type 2 Xfig objects), and

it is not equal to ‘\t’, (a tab character is always the first character in the

second line of a type 2 Xfig object code, as mentioned in section 5.1.5),

the function isPolyline returns false.

5.4. UPDATING THE DISPLAY 87

—————————————————————————————————–

In the original Xfig file:

If all the Xfig objects have default values for all of the 15 parameters

{
In the updated Xfig file:

If there exists one Xfig object having one parameter with a different

value from its corresponding default value.

Then it is a violation to Rule #2.

}
Else, say we find parameter p does not have its corresponding default value.

{
In the updated Xfig file:

If there exists one Xfig object having one parameter, other than

parameter p, with a different value from its corresponding default value.

Then it is a violation to Rule #2.

}
—————————————————————————————————–

Figure 5.14: An algorithm for detecting violations to Rule #2

88 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

After we detect a nested relation or the function isPolyline returns false,

if the user saves any updates, there is a violation to Rule #3.

• Line 10: How to create a relation from an Xfig file

To create a relation from an Xfig file, we need to do the following 4 steps:

1. Determine the number of objects represented by an Xfig file

In Figure 5.15, we show an Xfig file which represents three points. To

determine that there are indeed three objects in the Xfig file, we skip the

first nine lines which are the Xfig file header. Then we count the number

of blocks. A type 2 Xfig object is represented by one block (two lines).

In this example, we detect the three blocks shown below. It indicates that

there are three objects and the new relation should have three tuples.

Block 1:

2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 1

2000 4000

Block 2:

2 1 0 1 4 7 50 -1 -1 0.000 0 0 -1 0 0 1

5000 3000

Block 3:

2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 1

5000 4000

2. Determine the type of the shape represented by an Xfig file

As mentioned earlier, in an Xfig file, to determine the type of the shape it

represents, we examine the number of points, npoints, in any Xfig object.

In a block, the value of the last number in the first line represents npoints.

In this example, it is 1, which implies that the relation represents points.

Therefore, the relation should have at least two integer attributes, x and y.

5.4. UPDATING THE DISPLAY 89

If a line is detected, we create four integer type attributes, x1, y1, x2, y2.

If a triangle is detected, we create six integer type attributes, x1, y1, x2,

y2, x3, y3. If a polyline is detected, we create three integer type attributes,

x, y, sq.

#FIG 3.2
Landscape
Center
Metric
Letter
100.00
Single
-2 1200
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 1

2000 4000
2 1 0 1 4 7 50 -1 -1 0.000 0 0 -1 0 0 1

5000 3000
2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 1

5000 4000

Figure 5.15: An Xfig file representing three points

3. Determine the attributes of the relation

Besides the attributes for the coordinates, the relation may have other

attributes that are used to describe the properties of a shape. To determine

the existence of such attributes, we compare the first 15 numbers in the

first line of each block to the corresponding default values of a type 2 Xfig

object, shown in Table 3.2. If there is a difference, the relation needs an

additional attribute to store it.

For example, in block 2, the fifth number, 4, is not equal to the correspond-

ing default value, 0. Therefore, we must create an integer type attribute to

store the pen colour, which is the fifth parameter shown in Table 3.2. Us-

ing the corresponding display2D system keyword for pen colour, we name

this attribute “lc”.

4. Determine the content of each tuple of the relation

Now that the number of tuples and the attributes of the relation are deter-

90 CHAPTER 5. IMPLEMENTATION OF DISPLAY2D

mined, we can fill in the values of our relation tuples. The second line of

each block gives the coordinates of the npoints in order. We simply retrieve

the numbers in the second line and put them in the coordinate attributes

of the corresponding tuple. Next, we obtain the values for the other at-

tributes which store the properties of a shape, if we find non-default values

in the first line of a block. Then we store them in the corresponding tuple.

A relation representing the three points in our example is shown in Table

5.4.

• Line 19: The purpose of putting the thread to sleep

It is not necessary that the first statement in line 3 of the while loop is executed

right after one while loop cycle is done. The reason is that the user needs a

short period of time to manipulate the graph before he/she saves the updated

graph. Three seconds is picked as the inactive time for the thread, because it

is a short period of time. Also it is not a relatively long period for the thread

to sleep, so we will not miss an execution of the while loop if the user saves the

updates while the thread is sleeping.

x y lc

2000 4000 0

5000 3000 4

5000 4000 0

Table 5.4: A relation represented by the Xfig file from Figure 5.15

Chapter 6

Conclusions

This chapter summarizes the work accomplished in this thesis and provides sugges-

tions for future research and development.

6.1 Summary

In this thesis, we presented the design and implementation of a two-dimensional

display editor for relations (display2D).

The implementation of the display2D operation has several achievements:

• A new syntax is introduced into the jRelix system. This syntax allows users

to invoke the display2D operator on a declared relation which needs to be dis-

played.

• The display2D operation provides the jRelix system users with a graphical pre-

sentation of the information stored in either flat or nested relations.

• The display2D operation allows users to visually interact with the displayed

data and will generate a new relation from an updated display.

• The display2D operation becomes flexible from the addition of user defined

vocabulary relations, which allow users to provide alternate names for attributes

so that they better describe the graph they represent.

91

92 CHAPTER 6. CONCLUSIONS

By using Xfig as the display tool, the implementation of a graphical user interface

(GUI) for the display2D operation is not necessary. Therefore, to display a relation,

the work is reduced to analyzing a relation and producing its corresponding Xfig file.

As mentioned in chapter 3, Xfig runs on the X Window System, which is not platform

independent. This may limit the use of the display2D operation on other platforms

such as Microsoft Windows environments.

The implementation of display2D provides a flexible and extendable framework. In

chapter 3, we listed the types of graphical objects in Xfig, which include text, points,

straight lines, splines, polylines, polygons, arcs, ellipses, circles, etc. Display2D cap-

tures most of these shapes, and with a few modifications we could implement all of

them. In section 4.5, we introduced the three rules for updating the display. Cur-

rently, we have not found solutions for all of the updating cases. Therefore, further

research can be focused on this.

6.2 Future Work

6.2.1 Further Xfig Object Implementation

So far we have covered type 2, 4 and 6 Xfig objects, including points, lines, triangles,

open/closed polylines and text. But we could implement the remaining Xfig object

types, type 1, 3, and 5, with the following suggested formats.

Type 1: Ellipse which is a generalization of circle

A general format for the relation representing ellipses and circles can be the

following:

Ellipses (cx, cy, rx, ry)

The attributes cx, cy, rx and ry are integers. (cx, cy) are the coordinates of

the center of the ellipse. rx and ry are the horizontal and vertical radii. For

circles, rx and ry have the same value. We also need to declare the meaning

6.2. FUTURE WORK 93

of the attributes cx, cy, rx and ry in a vocabulary relation, as shown in Table

6.1. Like the keyword “cart1” mentioned in the earlier chapters, “cart1center”,

“cart2center”, “cart1radius” and “cart2radius” will be the system built-in key-

words .

.attribute .meaning

cx cart1center

cy cart2center

rx cart1radius

ry cart2radius

Table 6.1: A vocabulary relation for ellipses and circles

Type 3: Spline which includes closed/open approximated/interpolated/x-

spline spline

A general format for the relation representing one spline can be the following:

Spline(x, y, splsq, spltype)

Similar to the polylines from section 4.2.8, the coordinates and sequence number

of each control point in a spline must be provided. (x, y) are the coordinates

of the control point. splsq is the sequence number for the control points. We

need an additional attribute spltype to specify the type of a spline. A list of the

spline types is given in Table 6.2. We also need to declare the meaning of the

attributes splsq and spltype in a vocabulary relation, as shown in Table 6.3.

“spline sequence” and “spline type” will be the system built-in keywords.

Type 5: Arc

A general format for the relation representing arcs can be the following:

Arcs(x1, y1, x2, y2, x3, y3, arctype)

94 CHAPTER 6. CONCLUSIONS

spline type value

open approximated spline 0

closed approximated spline 1

open interpolated spline 2

closed interpolated spline 3

open x-spline 4

closed x-spline 5

Table 6.2: Spline types

.attribute .meaning

splsq spline sequence

spltype spline type

Table 6.3: A vocabulary relation for splines

(x1, y1) and (x3, y3) are the coordinates of the start and end points of the arc

respectively. (x2, y2) gives the coordinates of a point, other than the start or

end point, on the arc. We also need an additional attribute arctype to specify

the type of the arc. A value of 1 for arctype indicates open ended arcs. A value

of 2 for arctype indicates pie-wedge (closed) arcs. The following vocabulary

relation shown in Table 6.4 needs to be declared. “arc type” will become a

system built-in keyword.

.attribute .meaning

arctype arc type

Table 6.4: A vocabulary relation for arcs

6.2.2 Polar Coordinates

The polar coordinates consist of two parts, the radius, r, and the angle, a, and are

defined in terms of Cartesian coordinates by: x = r cos(a), y = r sin(a).

6.2. FUTURE WORK 95

Currently, our implementation of display2D uses the Cartesian coordinate system

to draw graphs from relations. Compared to the Cartesian coordinate system, the

polar coordinate system uses less complicated equations to represent some curves,

such as circle, arc, cardioid, rose curve, etc. Therefore, we could consider introducing

the polar coordinate system into display2D.

We can use the vocabulary relation in Table 6.5 to name the attributes and their

meaning for the polar coordinate system.

.attribute .meaning

r polar1

a polar2

Table 6.5: A vocabulary relation for the polar coordinate system

Now, a relation representing circles or open ended arcs would be simplified to the

following format: CircleArc (r, a).

6.2.3 Text Length

In section 5.1.5, we mentioned that the current implementation of the display2D

operation can approximately calculate, for any font size, the length of a text string

in Times-Roman, which is the default font in Xfig. However, there are 34 more fonts

available in Xfig. Therefore, we need to develop a mechanism which can find the

accurate length of a text string in any font and font size.

6.2.4 A Simpler Method to Label Points with Their Coordi-

nates

Recall that in section 4.2.3, we drew three points with their coordinates labelled next

to them. The relation has the following format: LabelledPoints (x, y, lc, label). Here,

(x, y) gives the coordinates of the points. The value of the attribute label contains

coordinates (x, y) as a text string. Though the current relation works properly, it

96 CHAPTER 6. CONCLUSIONS

is inefficient since the value of the attribute label repeats the information already

contained in the coordinate attributes x and y.

To simplify the approach, we would like to consider introducing two keywords

“cart1show” and “cart2show”. “cart1show” would be for showing the Cartesian co-

ordinate x and “cart2show” would be for showing the Cartesian coordinate y. A

vocabulary relation containing them is declared in Table 6.6.

.attribute .meaning

xs cart1show

ys cart2show

Table 6.6: A vocabulary relation for cart1show and cart2show

Therefore, the simplified relation LabelledPoints would appear as follows:

LabelledPoints2 (xs, ys)

Hence, the relation shown in Table 6.7 represents the same graph as the relation

from Table 4.3.

xs ys

5000 4000

2000 4000

5000 3000

Table 6.7: Relation LabelledPoints2

6.2.5 Extending Display Update

• Updating a graph containing text

Updating relations containing text, which violates the updating Rule #3 in

section 4.5, is not currently supported by display2D. To add this feature, we

could develop a method similar to that of updating type 2 Xfig objects, as

described in section 5.4.

6.2. FUTURE WORK 97

Currently, for type 2 Xfig objects, we analyze an Xfig code block, which repre-

sents one object.

Block:

2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 1

2000 4000

However, for type 4 Xfig objects that represent text, we will need to analyze

the following Xfig code block which contains one text string:

Block:

4 0 1 49 -1 0 12 0.000 4 180 1515 100 100 string\001

• Introducing new attributes into the relation

Any updating that introduces new attributes into the original relation, which

violates the updating Rule #2 in section 4.5, is not supported by the current

implementation. However, there are two possible solutions for this case.

Solution 1: Use DC= don’t care, a null value in jRelix.

As an example, we use Table 6.8, where the relation Points3 contains three

points. While updating the graph which is represented by the relation Points3,

we change the colour of the point with coordinates (100, 500) from its default

colour black to red. Now we are introducing a new attribute “lc”, which is the

system built-in attribute name for point colour. So our new relation could be

the one as shown in part (a) in Figure 6.1. In this case, since the colour of

the other two points remain in black, DC is equivalent to 0, which is the colour

code for black in Xfig.

98 CHAPTER 6. CONCLUSIONS

Points3

x y

100 500

200 700

400 300

Table 6.8: Relation Points3

UpdatedPoints3

x y lc

100 500 4

200 700 DC
400 300 DC

≡

UpdatedPoints3

x y lc

100 500 4

200 700 0

400 300 0

(a) (b)

Figure 6.1: Relation UpdatedPoints3

Solution 2: Use polymorphic relations.

Polymorphism allows the same definitions to be used with different types of

data, resulting in more general and abstract implementations.

By using the polymorphism concept, the updated relation UpdatedPoints3,

shown in Figure 6.2, consists of two relations, which combine polymorphi-

cally into one relation. One is a relation containing the point with updated

colour. The other relation contains the original points with the default colour.

UpdatedPoints3

x y lc

100 500 4
and

x y

200 700

400 300

Figure 6.2: Polymorphic relation UpdatedPoints3

6.3. CONCLUSIONS 99

• Updates changing a flat relation to a nested relation

Any updating that changes a flat relation to a nested relation, which violates

the updating Rule #1 in section 4.5, is not supported by the current imple-

mentation. For this case, there are several difficulties.

A nested relation contains a root relation and its underlying dot relations. They

are connected by the surrogate number. To create a nested relation based on

an updated flat relation, we would need to trace the system surrogate number,

and group the similar objects in the graph into dot relations.

Moreover, we would have to be concerned with the name of each newly created

dot relation. Recall that in section 2.1.2, we mentioned that the dot relations

are invisible (i.e not shown in the system relation table). However, we have to

pick up a name which is not being used in the current relation table. In addition

the user has to be notified about the name of all the dot relations. This is a

fairly complicated process.

Because of all these difficulties, further research is needed. All the unsolved

cases are open for discussion.

6.3 Conclusions

The display2D operation in jRelix provides an extensive ability for handling interac-

tive information visualization. The display2D operation also provides flexibility with

additional user defined vocabulary relations, which allow users to provide alternate

names for attributes so that they can better describe the graphs they represent. Users

can invoke display2D to visualize relations which contain basic geometric shapes, such

as points, lines, polylines, triangles and text. Moreover, display2D can be used to vi-

sualize many arbitrary relations. An example application of such is the visualization

of the matrix form of a Bill of Material (BOM) problem which follows.

To assemble a chair, we need a front part and a back part. The front part contains

a seat, two legs and two screws. The back part has a rest, two legs and two screws.

100 CHAPTER 6. CONCLUSIONS

The relation Chair, containing the assembly and subassembly information, is shown

in Table 6.9. We also declare a vocabulary relation VocabChair, which describes the

meaning of the attributes of the relation Chair, as shown in Table 6.10. Note that

the attribute Quantity of the relation Chair is not defined in the relation VocabChair.

Therefore, the values of the attribute Quantity will be treated as text strings when

displayed in the Xfig window. Although the attributes Assembly and Subassembly

contain string values, the system will automatically assign numerical coordinates to

each tuple as mentioned in section 5.2.1. The matrix form of the relation Chair is

shown in Figure 6.4.

Chair

Quantity Assembly Subassembly

1 Front Seat

2 Front Leg

2 Front Screw

1 Back Rest

2 Back Leg

2 Back Screw

Table 6.9: Relation Chair

ChairVocab

.attribute .meaning

Assembly cart1

Subassembly cart2

Table 6.10: Relation ChairVocab

6.3. CONCLUSIONS 101

domain Quantity intg;
domain Assembly strg;
domain Subassembly strg;

relation Chair(Quantity, Assembly, Subassembly)<- {
(1, "Front", "Seat"),
(2, "Front", "Leg"),
(2, "Front", "Screw"),
(1, "Back", "Rest"),
(2, "Back", "Leg"),
(2, "Back", "Screw")};

relation ChairVocab(.attribute, .meaning) <- {
("Assembly", "cart1"), ("Subassembly", "cart2")};

DispChair <- display2D (ChairVocab) Chair;

Figure 6.3: jRelix input for displaying the matrix form of the relation Chair

Back Front

Leg

Rest

Screw

Seat

Back Front

Leg

Rest

Screw

Seat

Back Front

Leg

Rest

Screw

Seat

Back Front

Leg

Rest

Screw

Seat

Back Front

Leg

Rest

Screw

Seat

Back Front

Leg

Rest

Screw

Seat

1

1

2

2

2

2

Figure 6.4: Matrix form of the relation Chair

Appendix A

Keywords in Display2D

This appendix presents the keywords used in the vocabulary relations for Display2D

and their corresponding meanings and values in Xfig.

Table A.1: Keywords in vocabulary relations for display2D

Keyword for Meaning Value

display2D

-1= Default = Black, 0= Black, 1= Blue

line colour Point/border colour 2= Green, 3= Cyan, 4= Red

5= Magenta, 6= Yellow, 7= White

8-11 = four shades of blue (dark to lighter)

12-14 = three shades of green (dark to lighter)

fill colour Filling colour 15-17 = three shades of cyan (dark to lighter)

18-20 = three shades of red (dark to lighter)

21-23 = three shades of magenta (dark to lighter)

24-26 = three shades of brown (dark to lighter)

text colour Text colour 27-30 = four shades of pink (dark to lighter)

31 = Gold

Continued on next page.

102

103

Keyword for Meaning Value

display2D

fill pattern Filling pattern -1 = not filled, 0 = black

1-19 = ”shades” of the colour, darker to lighter

Shade: defined as the colour mixed with black

20 = full saturation of the colour

21-39 = ”tints” of the colour, the colour to white

A tint is defined as the colour mixed with white

40 = white, 41 = 30 degree left diagonal pattern

42 = 30 degree right diagonal pattern

43 = 30 degree crosshatch

44 = 45 degree left diagonal pattern

45 = 45 degree right diagonal pattern

46 = 45 degree crosshatch

47 = horizontal bricks, 48 = vertical bricks

49 = horizontal lines, 50 = vertical lines

51 = crosshatch

52 = horizontal ”shingles” skewed to the right

53 = horizontal ”shingles” skewed to the left

54 = vertical ”shingles” skewed one way

55 = vertical ”shingles”skewed the other way

56 = fish scales, 57 = small fish scales

58 = circles, 59 = hexagons, 60 = octagons

61 = horizontal ”tire treads”

62 = vertical ”tire treads”

line style Line style -1 = Default, 0 = Solid, 1 = Dashed

2 = Dotted, 3 = Dash-dotted

4 = Dash-double-dotted

5 = Dash-triple-dotted

line thickness Line width Any int between 0 to 1000, inclusive.

Continued on next page.

104 APPENDIX A. KEYWORDS IN DISPLAY2D

Keyword for Meaning Value

display2D

depth layer depth Any int between 0 to 999, inclusive.

Larger value means object is deeper than

(under) objects with smaller depth

font Font -1 = Default font = 0 = Times Roman

1 = Times Italic, 2 = Times Bold

3 = Times Bold Italic, 4 = AvantGarde Book

5 = AvantGarde Book Oblique

6 = AvantGarde Demi

7 = AvantGarde Demi Oblique

8 = Bookman Light, 9 = Bookman Light Italic

10 = Bookman Demi, 11 = Bookman Demi Italic

12 = Courier, 13 = Courier Oblique

14 = Courier Bold, 15 = Courier Bold Oblique

16 = Helvetica, 17 = Helvetica Oblique

18 = Helvetica Bold, 19 = Helvetica Bold Oblique

20 = Helvetica Narrow

21 = Helvetica Narrow Oblique

22 = Helvetica Narrow Bold

23 = Helvetica Narrow Bold Oblique

24 = New Century Schoolbook Roman

25 = New Century Schoolbook Italic

26 = New Century Schoolbook Bold

27 = New Century Schoolbook Bold Italic

28 = Palatino Roman, 29 = Palatino Italic

30 = Palatino Bold, 31 = Palatino Bold Italic

32 = Symbol, 33 = Zapf Chancery Medium Italic

34 = Zapf Dingbats

Continued on next page.

105

Table A.1 – continued from previous page

Keyword for Meaning Value

display2D

font size Font size Any int between 1 to 500, inclusive.

dash length The distance between unit: in 1/80 inches

the dots for dash line

join style Join style 0 = Miter, 1 = Round, 2 = Bevel

cap style Cap style 0 = Butt, 1 = Round, 2 = Projecting

forward arrow Arrow type 0 = Stick-type, 1 = Closed triangle

backward arrow Arrow type 2 = Closed with ”indented” butt

3 = Closed with ”pointed” butt

cart1 Cartesian coordinate x -

cart2 Cartesian coordinate y -

sequence Polyline vertex Any integer >= 1

sequence number

Table A.1: Keywords in vocabulary relations for display2D

106 APPENDIX A. KEYWORDS IN DISPLAY2D

Xfig Object Keyword for

Parameter Name disply2D

line style line style

thickness line thickness

pen colour line colour

fill colour fill colour

depth depth

area fill fill pattern

style val dash length

join style join style

cap style cap style

forward arrow forward arrow

backward arrow backward arrow

font font

font size font size

text colour text colour

Table A.2: Xfig object parameter names and the keywords for display2D

Bibliography

[Ado06] Adobe. Adobe Premiere Pro. Computer Software, 2006.

[Ahl96] Christopher Ahlberg. Spotfire: An information exploration environment.

ACM SIGMOD Record, 25(4):25–29, December 1996.

[AWS92] Christopher Ahlberg, Christopher Williamson, and Ben Shneiderman. Dy-

namic queries for information exploration: an implementation and eval-

uation. In Proceedings of the SIGCHI conference on Human factors in

computing systems, 1992.

[Bak98] Patrick Baker. Design and implementation of database computations in

Java. Master’s thesis, McGill University, Montreal, Canada, 1998.

[BEW95] Richard Becker, Stephen Eick, and Allan Wilks. Visualizing network data.

IEEE Transactions on Visualization and Computer Graphics, 1(1):16 – 28,

March 1995.

[Bur86] P.A. Burrough. Principles of geographical information systems for land

resources assessment. Oxford: Clarendon Press, New York, 1986.

[CC96] Tiziana Catarci and Isabel F. Cruz. Information visualization. ACM

SIGMOD Record, 25(4):14 – 15, December 1996.

[Cha02] Andy Chang. Implementation of sigma-joins in a nested relational lan-

guage. Master’s thesis, McGill University, Montreal, Canada, 2002.

107

108 BIBLIOGRAPHY

[Che01] Yuling Chen. A GIS editor for a database programming language. Master’s

thesis, McGill University, Montreal, Canada, 2001.

[CMS99] Stuart K. Card, Jock Mackinlay, and Ben Shneiderman. Information

visualization. Using vision to think. Morgan Kaufmann, San Francisco,

CA, 1999.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387, June 1970.

[CRY96] Stuart Card, George Robertson, and William York. The WebBook and

the Web Forager: An information workspace for the world-wide web. In

Proceedings of the SIGCHI conference on Human factors in computing

systems: common ground, 1996.

[ER93] Max Egenhofer and James Richards. Exploratory access to geographic

data based on the map-overlay metaphor. Journal of Visual Languages

and Computing, 4(2):105–125, 1993.

[ESJ92] Stephen Eick, Joseph Steffen, and Eric Sumner Jr. Seesoft - a tool for vi-

sualizing line oriented software statistics. IEEE Transactions on Software

Engineering, 18(11):957 – 968, November 1992.

[Fur81] George Furnas. The fisheye view: a new look at structured files. Bell

Laboratories technical memorandum, 1981.

[GEC98] Nahum Gershon, Stephen G. Eick, and Stuart Card. Information visual-

ization. Interactions, 5(2):9 – 15, March/April 1998.

[Ger75] R. Gerritsen. The relational and network models of data bases: Bridging

the gap. 2nd USA-Japan Computer Conference, 1975.

[Hao98] Biao Hao. Implementation of the nested relational algebra in Java. Mas-

ter’s thesis, McGill University, Montreal, Canada, 1998.

BIBLIOGRAPHY 109

[He97] Hongbo He. Implementation of nested relations in a database program-

ming language. Master’s thesis, McGill University, Montreal, Canada,

1997.

[Ins81] Alfred Inselberg. N-dimensional graphics. Part I - Lines and Hyperplanes,

1981. in IBM LASC Tech.

[Ins90] Alfred Inselberg. Parallel coordinates: a tool for visualizing multi-

dimensional geometry. In Proceedings of the 1st conference on Visual-

ization ’90, pages 361 – 378, 1990.

[JS91] Brian Johnson and Ben Shneiderman. Tree-Maps: a space-filling approach

to the visualization of hierarchical information structures. In Proceedings

of the 2nd conference on Visualization ’91, pages 284 – 291, 1991.

[Kan01] Sung Soo Kang. Implementation of functional mapping in a nested domain

algebra. Master’s thesis, McGill University, Montreal, Canada, 2001.

[KPS97] Harsha Kumar, Catherine Plaisant, and Ben Shneiderman. Browsing hier-

archical data with multi-level dynamic queries and pruning. International

Journal of Human-Computer Studies, 41(1):103–124, 1997.

[Mac86] Jock Mackinlay. Automating the design of graphical presentations of re-

lational information. ACM Transactions on Graphics (TOG), 5(2):110 –

141, April 1986.

[Mac04] Macromedia. Macromedia Director. Computer Software, 2004.

[Mac05] Macromedia. Macromedia Flash. Computer Software, 2005.

[MB95] Tamara Munzner and Paul Burchard. Visualizing the structure of the

World Wide Web in 3D hyperbolic space. In Proceedings of the first

symposium on Virtual reality modeling language, pages 33–38, 1995.

[Mer84] T. H. Merrett. Relational Information Systems. Reston Publishing Co.,

1984.

110 BIBLIOGRAPHY

[Mer99] T. H. Merrett. Basics: About data. relational information systems.

http://www.cs.mcgill.ca/∼cs612/relationTxt.ps, September 1999.

[Mer01] T. H. Merrett. Attribute metadata for relational OLAP and data mining.

In Proceedings, Eighth Biennial Workshop on Data Bases and Program-

ming Languages, pages 65–76, Roma, Italy, 2001.

[NSP96] Chris North, Ben Shneiderman, and Catherine Plaisant. User controlled

overviews of an image library: a case study of the visible human. In

Proceedings of the first ACM international conference on Digital libraries,

pages 74–82, Bethesda, Maryland, United States, 1996.

[PMR+96] Catherine Plaisant, Brett Milash, Anne Rose, Seth Widoff, and Ben Shnei-

derman. Lifelines: visualizing personal histories. In Proceedings of the

SIGCHI conference on Human factors in computing systems: common

ground, 1996.

[RC94] Ramana Rao and Stuart Card. The Table Lens: merging graphical and

symbolic representations in an interactive focus + context visualization for

tabular information. In Proceedings of the SIGCHI conference on Human

factors in computing systems: celebrating interdependence, pages 318 –

322, 1994.

[RM93] George Robertson and Jock Mackinlay. The document lens. In Proceed-

ings of the 6th annual ACM symposium on User interface software and

technology, pages 101 – 108, Atlanta, Georgia, United States, 1993.

[RMC91] George Robertson, Jock Mackinlay, and Stuart Card. Cone Trees: ani-

mated 3D visualizations of hierarchical information. In Proceedings of the

SIGCHI conference on Human factors in computing systems: Reaching

through technology, pages 189 – 194, 1991.

BIBLIOGRAPHY 111

[SDV04] Sriram Sankar, Rob Duncan, and Sreenivasa Viswanadha. Java

Compiler Compiler (JavaCC) - the Java parser generator.

https://javacc.dev.java.net/, 2004.

[Shn92] Ben Shneiderman. Tree visualization with tree-maps: 2-D space-filling

approach. ACM Transactions on Graphics (TOG), 11(1):92 – 99, January

1992.

[Shn96] Ben Shneiderman. The eyes have it: a task by data type taxonomy for

information visualizations. In Proceedings of the 1996 IEEE Symposium

on Visual Languages, pages 336 – 343. IEEE Computer Society, September

1996.

[SM97] H. Shiozawa and Y. Matsushita. WWW visualization giving meanings

to interactive manipulations. In Proceedings of the Seventh Interna-

tional Conference on Human-Computer Interaction (HCI International

’97), 1997.

[SS02] Brian V. Smith and Tom Sato. Xfig user manual, version 3.2.4.

http://xfig.org/userman/, December 2002.

[Sun00] Weizhong Sun. Updates and events in a nested relational programming

language. Master’s thesis, McGill University, Montreal, Canada, 2000.

[Wan02] Zongyan Wang. Implementation of distributed data processing in a data-

base programming language. Master’s thesis, McGill University, Montreal,

Canada, 2002.

[WS92] Christopher Williamson and Ben Shneiderman. The dynamic Home-

Finder: evaluating dynamic queries in a real-estate information explo-

ration system. In Proceedings of the 15th annual international ACM SI-

GIR conference on Research and development in information retrieval,

pages 338 – 346, 1992.

112 BIBLIOGRAPHY

[Yua98] Zhongxia Yuan. Implementation of the domain algebra in Java. Master’s

thesis, McGill University, Montreal, Canada, 1998.

[Zhe02] Yi Zheng. Abstract data types and extended domain operations in a

nested relational algebra. Master’s thesis, McGill University, Montreal,

Canada, 2002.

