
SQL Front-End for the JRelix
Relational-Programming System

Ibrahima KHAYA

School of Computer Science

McGill University, Montreal, Quebec, Canada

March 2008

A thesis submitted to McGill University in partial fulfilment of the
requirements of the degree of

Master of Science

T. H. Merrett, Advisor

Copyright c© Ibrahima KHAYA 2008

Abstract

This thesis discusses the design and implementation of an SQL front end for
a relational database programming system JRelix. The purpose of this thesis
is to lay a strong basis for the full SQL support by JRelix.

The SQL language is the de facto standard in Relational Databases which
motivates its integration into JRelix. Through the SQLSTMT and SQLEXP
commands the user can use SQL to perform operations on a JRelix database.
These operations are translated into Aldat (the native programming language
of JRelix) and can interactively perform updates, deletions and selections on
the distinct relations of the database. The SQLSTMT command allows us to
execute full SQL commands on the system whereas the SQLEXP command
returns a relational expression to the system that can interact with other
elements of the commands written in Aldat in the same statement.

1

Résumé

La présente thèse traite de la conception et de la mise en œuvre d’une in-
terface SQL pour le système de programmation de bases de données rela-
tionnelles JRelix. Cette thèse a pour but de poser les fondements d’une
couverture exhaustive de SQL par JRelix.

Le Language SQL est le standard en bases de données relationnelles ce
qui est à l’origine de son intégration dans JRelix. A l’aide des commandes
SQLSTMT et SQLEXP l’utilisateur peut effectuer des requêtes sur la base
de données JRelix en SQL. Ces requêtes sont traduites en Aldat (le language
natif de programmation de JRelix) et peut, de façon interactive, effectuer
mises à jour, suppressions et sélections sur les différentes relations. La com-
mande SQLSTMT permet d’exécuter des requêtes entièrement exprimées en
SQL alors que la commande SQLEXP retourne au système une expression
relationnelle qui peut interagir avec d’autres expressions relationnelles ex-
primées en Aldat dans la même requête.

i

Acknowledgments

First and foremost, I would really like to thank my thesis supervisor Professor
Tim MERRETT. First for giving me a whole different point of view on
relational databases, then for giving me the opportunity to go further on
this subject by having my research in this domain of interest and finally for
being always present to motivate my work, to give me a noticeable financial
support, to give valuable insight during the implementation and to carefully
read my thesis.

All this work and all my education would not have been if it would not
have been my parents, Modou KHAYA and Aminata NDOYE. Their love,
support and confidence in me and my ambitions just were everything. I
cannot be more grateful to the man that was, is and will always be my hero
and role model and to the woman that sacrificed her body, her time and her
carreer for me without any hesitation.

I wish to thank my sister, Amy KHAYA, who has always been there for
me and who has always driven me in becoming a better student and a better
person. I also wish to thank my brother-in-law, Oumar DIA, for being the
older brother that I have always dreamed of. His support was crucial.

Last but not least, I owe a special thought to my grand-mother, Sabelle
NIANG, for showing me that there are few things stronger than your will
when you are really decided to do something and to my whole family, back
in Senegal who have always been very supportive of my education.

ii

Contents

1 Introduction 1
1.1 SQL Generalities . 1

1.1.1 History . 1
1.1.2 Data Modification . 1
1.1.3 Selections . 3
1.1.4 Aggregations . 6
1.1.5 Relation creation and deletion 8
1.1.6 Triggers . 9

1.2 Aldat Generalities . 9
1.2.1 History . 9
1.2.2 Data Modification . 10
1.2.3 Selections . 11
1.2.4 Aggregations through Domain Algebra 14
1.2.5 Relation creation and deletion 16
1.2.6 Triggers . 17

1.3 Motivation and notions used in our research 17
1.3.1 Motivation . 17
1.3.2 Context-free grammars and LL parsers 19
1.3.3 Boolean Logic . 19
1.3.4 Abstract Syntax Trees 20

1.4 General discussion about SQL and Aldat 21
1.4.1 Quick overview of the main versions of SQL 21
1.4.2 Quick overview of some of the RDBMS most used cur-

rently . 23
1.4.3 SQL-Aldat Comparison 25

iii

CONTENTS iv

2 User’s Manual 28
2.1 SQLSTMT command . 28

2.1.1 Selects . 28
2.1.2 Joins . 31
2.1.3 Aggregations . 34
2.1.4 Delete . 36
2.1.5 Update . 36
2.1.6 Multiple statements . 36
2.1.7 Omissions . 37

2.2 SQLEXP keyword . 37
2.2.1 Selects . 37
2.2.2 Joins . 38
2.2.3 Aggregations . 39
2.2.4 Multiple statements . 39

2.3 FILE Keyword . 40

3 Implementation details 42
3.1 SQLSTMT Command . 42

3.1.1 Selections . 42
3.1.2 Joins . 47
3.1.3 Aggregations . 54
3.1.4 Delete . 57
3.1.5 Update . 58
3.1.6 Insert . 59
3.1.7 General algorithm . 59

3.2 SQLEXP Keyword . 63
3.2.1 Selections . 63
3.2.2 General algorithm . 65

3.3 FILE Keyword . 66
3.3.1 General algorithms . 68

3.4 Commands grammar used which ANTLR cannot parse 68
3.5 JRelix Configuration . 69
3.6 Tools . 69

3.6.1 ANTLR v2.7.7 and how it operates 69
3.6.2 Files generated . 71
3.6.3 Oracle 7 SQL grammar from ANTLR website 72
3.6.4 Boolean Parser . 72

CONTENTS v

4 Conclusion 76
4.1 Recapitulation . 76
4.2 Future work . 77

A SQL Grammar 81

B Sql Token Types 94

Chapter 1

Introduction

1.1 SQL Generalities

We will narrow our overview of SQL to the areas we covered in our research.
We will also use the SQL conventions of Oracle 7.

1.1.1 History

Based on the model defined by Dr. E.F. Codd in his paper [4], IBM de-
veloped in the 1970’s, the Relational Database Project System R and the
Structured English QUEry Language (SEQUEL)[2] used to perform queries
on that database. SEQUEL became the Structured Query Language (SQL)
after standardization. It has been extended by each Relational DataBase
Management System (RDBMS) vendor. Oracle was the first to introduce
SQL commercial implementation, in 1979.

1.1.2 Data Modification

Manipulating the data to reflect changes in the database is as important as
viewing it, if not more important. So we will begin by the manipulation. This
is mainly achieved through the three following commands in SQL : Insert,
Update and Delete.

1

CHAPTER 1. INTRODUCTION 2

Update

Updates are expressed in SQL using an optional condition in the Where clause
to "flag" the tuples that should be updated otherwise all tuples are updated.
The syntax is the following :

UPDATE relation SET att = value|exp1 WHERE condition-list
;

The definitions of the terms used are as follows :

• relation : The name of the relation from which tuples will be updated.

• att : The name of the attribute to update in the relation cited above.

• value|exp1 : The new value of the attribute. It can be a constant, an
attribute or an arithmetic expression involving the attributes of the
relation.

• condition-list : The boolean expression corresponding to the conditions
that need to be satisfied to have tuples flagged for the update. This
boolean expression is expressed in the boolean algebra using the classic
(and, or, not) sufficient set of operators.

Delete

Deletions are expressed in SQL using an optional condition in the Where
clause to "flag" the tuples that should be deleted otherwise all tuples are
deleted. That may be useful in order to keep the structure of the relation
without the data. The syntax is the following :

DELETE FROM relation WHERE condition-list ;

The definitions of the terms used are as follows :

• relation : The name of the relation from which tuples will be deleted.

• condition-list : The boolean expression corresponding to the conditions
that need to be satisfied to have tuples flagged for the delete.

CHAPTER 1. INTRODUCTION 3

Insert

In SQL inserting tuples in an existing relation can be done using the Insert
Into command. A single tuple can be inserted using the keyword Values
or another relation using a subquery. Nevertheless the subquery is not in-
serted as a relation but rather as a set of tuples. The syntax is the following :

INSERT INTO relation(att1, ..., attn) VALUES (value1, ..., valuen)
;
or
INSERT INTO relation(att1, ..., attn) (subquery) ;

The definitions of the terms used are as follows :

• relation(att1, ..., attn) : The name of the relation in which tuples will
be inserted. The attributes cited will be filled with the corresponding
values. The other attributes of the relation, if any, are filled by nulls.

• (value1, ..., valuen) : The constants to insert in the relation. Their
count should be the same as the cited attributes count from the relation.

• subquery : The subquery that will produce the set of tuples to insert.
The count of attributes of that set should be the same as the cited
attributes count from the relation.

1.1.3 Selections

The selectors in their different variants allow us to extract and view the
elements of data that the user wants to see from the database. They are the
commands that probably are the most used in a first approach to SQL.

Selects

Concerning the syntax of selections they accept one of these two options:

• Distinct : This option causes a selection to consider only distinct tuples.

• All : This option causes a selection to consider all tuples including
duplicates. This is the default option in SQL.

CHAPTER 1. INTRODUCTION 4

The syntax is the following :

SELECT [DISTINCT|ALL] exp1 [[AS]Alias1], ..., expn [[AS]Aliasn]
FROM relation-list WHERE condition-list ;

The definitions of the terms used are as follows :

• exp1 [[AS]Alias1], ..., expn [[AS]Aliasn] : The expressions returned by
the selection with their corresponding alias, which are optional. They
can be a constant, an attribute or an arithmetic expression involving
the attributes of the relation.

• relation-list : The name of the relations involved in the query.

• condition-list : The boolean expression corresponding to the conditions
that need to be satisfied to have tuples returned in the selection.

It is possible to select all available fields from the relation using the "*" spe-
cial character. The syntax is the following :

SELECT [DISTINCT|ALL] * FROM relation-list WHERE condition-
list ;

It is also possible to create a relation having the same structure as the source
relation and insert the tuples at the same time using the Select Into com-
mand. It acts as the Insert Into command with a subquery. The syntax is
the following :

SELECT [DISTINCT|ALL] exp1 [AS] [Alias1], ..., expn [AS]
[Aliasn] INTO relation FROM relation-list WHERE condition-
list ;

The definitions of the terms used are as follows :

• relation : The name of the relation that will be created and in which
tuples will be inserted.

CHAPTER 1. INTRODUCTION 5

Selections with Joins

The join conditions are specified in the condition-list of the Where clause.
The relations involved are in the relation-list in the from clause. If no join
condition is specified a cartesian product is made. The different joins that
can be made are :

• INNER JOIN
Specify the attribute from each relation on which you want to perform
the join.

SELECT X, Y, Z FROM R, S WHERE R.Y = S.Y ;

• LEFT OUTER JOIN
To allow nulls on the right side of the join use (+) on that side.

SELECT X, Y, Z FROM R, S WHERE R.Y = S.Y (+);

• RIGHT OUTER JOIN
To allow nulls on the left side of the join use (+) on that side.

SELECT X, Y, Z FROM R, S WHERE R.Y (+) = S.Y ;

• FULL OUTER JOIN
You are obliged as mentioned below to make the union of the right and
the left outer join to get the nulls on both side. The following is not
allowed :

SELECT X, Y, Z FROM R, S WHERE R.Y (+) = S.Y (+);

• CARTESIAN PRODUCT
No condition is specified to perform directly the cartesian product.

SELECT X, Y, Z FROM R, S;

Note that selection conditions as well as join conditions can be expressed at
the same time in the condition-list as in the following :

SELECT X, Y, Z FROM R, S WHERE R.Y = S.Y AND W = 1;

CHAPTER 1. INTRODUCTION 6

Selections with Set Operators

Oracle allows the use of the following set operators:

• UNION

• UNION ALL (allows duplication in the union)

• INTERSECT

• MINUS

Nevertheless these are only set operators and may need to be combined with
join operators to express complex joins.
For example, if we take the case of the full outer join:

(SELECT X, Y, Z FROM R, S WHERE R.Y (+) = S.Y)
UNION
(SELECT X, Y, Z FROM R, S WHERE R.Y = S.Y (+));

These set operators can only be used on selections and not directly on rela-
tions because there is a syntactic restriction. So the following is not allowed :

SELECT X, Y, Z FROM R UNION S;

1.1.4 Aggregations

Aggregation is performed in SQL through the aggregation functions such
as Sum or Max. The optional presence of the Group By clause allows us
to aggregate regarding certain criteria. For aggregated data an eventual
condition will be expressed by a Having clause. So there is a clear distinction
between the Where keyword reserved for individual tuples and the Having
keyword reserved for aggregated tuples.

Concerning the syntax of these aggregation functions they accept one of
these two options:

• Distinct : This option causes an aggregation function to consider only
distinct values of the argument throughout all the tuples returned.

• All : This option causes an aggregation function to consider all values
including all duplicates. This is the default option in SQL.

CHAPTER 1. INTRODUCTION 7

The syntax of the main aggregation functions is the following :

• SUM([DISTINCT|ALL] att) returns the sum of att.

• AVG([DISTINCT|ALL] att) returns the average of att.

• MIN([DISTINCT|ALL] att) returns the min of att.

• MAX([DISTINCT|ALL] att) returns the max of att.

• COUNT(*|[DISTINCT|ALL] att) returns the numbers of tuples. If * is
specified all tuples will be counted otherwise tuples containing non-null
values in att will be counted.

All aggregation functions except COUNT(*) ignore nulls.
In a complete query it will be in the following form :

SELECT [DISTINCT|ALL] aggregate-function([DISTINCT|ALL]exp1)
[AS] [Alias1], ..., aggregate-function(expn) [AS] [Aliasn], exp1’
[AS] [Alias1’], ..., expn’ [AS] [Aliasn’] FROM relation-list WHERE
condition-list GROUP BY exp1’, ... , expn’ HAVING condition-
list’ ;

For example we could have the following :

SELECT SUM(salary) AS SumSal, MAX(salary), department
FROM employees WHERE seniority > 3 GROUP BY depart-
ment HAVING SUM(salary) > 100000;

This would give the total amount of salaries and the greatest salary by de-
partment for the employees having more than 3 years of seniority where
the total amount of salaries of the department is greater than 100000. The
Having condition applies to the total returned.

Note that when no alias is specified a system-generated name is used and
that the system does not allow us to reuse the alias SumSal in the Having
clause. That is allowed in MySQL only. The definitions of the terms used
are as follows :

• aggregate-function(exp1) [AS] [Alias1], ..., aggregate-function(expn) [AS]
[Aliasn] : The expressions on which the aggregation functions will be
performed and their corresponding aliases, if any.

CHAPTER 1. INTRODUCTION 8

• relation-list : The name of the relations involved in the query.

• condition-list : The boolean expression corresponding to the condi-
tions that need to be satisfied to have simple tuples considered for the
aggregation.

• condition-list’ : The boolean expression corresponding to the condi-
tions that need to be satisfied by the aggregated tuples to be returned
in the selection.

• exp1’ [AS] [Alias1’], ..., expn’ [AS] [Aliasn’] : The expressions on which
the aggregation will be based and their corresponding aliases, if any.

1.1.5 Relation creation and deletion

In SQL a relation and its attributes creations are linked. It is in the rela-
tion creation command that the the attributes datatypes and properties are
specified. The syntax is the following :

CREATE TABLE relation (col1 datatype1, ..., coln datatypen) ;

The definitions of the terms used are as follows :

• relation : The name of the relation that will be created.

• col1 datatype1, ..., coln datatypen : The name of the attributes included
in this relation and their corresponding datatypes.

To delete a relation you just use the following syntax :

DROP TABLE relation ;

The definitions of the terms used are as follows :

• relation : The name of the relation that will be deleted.

CHAPTER 1. INTRODUCTION 9

1.1.6 Triggers

Triggers can be used in Oracle 7. They can be triggered by Update, Delete
or Insert statements. The trigger body can be executed Before or After
the data manipulation. The old and new configuration of the relation are
referenced as OLD and NEW. The trigger can be started only once for the
statement or for each tuple affected by the statement using the FOR EACH
ROW command.

We could have as an example :

CREATE TRIGGER trig
AFTER UPDATE ON Employees
FOR EACH ROW
WHEN NEW.hierarchy = 'Manager'
BEGIN
INSERT INTO Managers VALUES (New.fName, New.lName)
END

Recursive Triggers can be implemented but there is a hard coded limit of 50
recursive calls before raising an error to prevent infinite loops. This limit will
be configurable after Oracle 8 which allows a mechanism to prevent infinite
loops and have the flexibility of choosing the limit to reach.

1.2 Aldat Generalities

We will restrict our overview of Aldat to the areas we covered in our research.
We will use a similar breakdown for this section to the breakdown in the
previous one.

1.2.1 History

Based on the same paper from Codd [4] McGill began the Algebraic approach
to data (Aldat) Project in the 1970’s and extended Codd’s Relational Algebra
to the Domain Algebra proposed by Merrett [12]. This extension toward the
Domain Algebra allowed Aldat to directly deal with Programming aspects
in its core from a relational point of view.

The latest implementation of Aldat as a RDBMS is the Java implementa-
tion of a Relational database programming language in Unix (JRelix). This

CHAPTER 1. INTRODUCTION 10

implementation is principally based on the contributions made by Baker[1],
Yuan[28] and Hao[9], through their M.Sc. theses and projects at McGill.

1.2.2 Data Modification

Update

Updates are expressed in Aldat using a join to "flag" the tuples that should
be updated otherwise all tuples are updated. The syntax is the following :

UPDATE relation CHANGE att <- value|exp1 USING relational
expression ;

The definitions of the terms used are as follows :

• relation : The name of the relation from which tuples will be updated.

• att : The name of the attribute to update in the relation cited above.

• value|exp1 : The new value of the attribute. It can be a constant, an
attribute or an arithmetic expression involving the attributes of the
relation.

• relational expression : The relational expression that is joined with
relation to flag its tuples for the update.

Another alternative is to use conditions rather than a join to update. In that
case there is no join to "flag" the tuples that should be updated so all of
them are considered for the update and it is the conditional expression that
changes only the tuples that need to. Of course this is not optimal because
even though only one tuple may have to be updated all of them will be se-
lected for the update. The syntax is the following :

UPDATE relation CHANGE att <- IF condition-list THEN value|exp1
ELSE att ;

The definitions of the terms used are as follows :

• condition-list : The boolean expression corresponding to the conditions
that need to be satisfied to do the update.

CHAPTER 1. INTRODUCTION 11

Delete

Deletions are expressed in Aldat using a keyword to specify the tuples that
should be deleted. The syntax is the following :

UPDATE relation DELETE relational expression ;

The definitions of the terms used are as follows :

• relation : The name of the relation from which tuples will be deleted.

• relational expression : The relational expression that is used to specify
the deletion.

Insert

Insertions are performed in Aldat using the following syntax :

UPDATE relation ADD relational expression ;

The definitions of the terms used are as follows :

• relation : The name of the relation to which tuples will be added.

• relational expression : The relational expression whose tuples will be
inserted in relation.

1.2.3 Selections

Selects

In Aldat selections are divided into three categories :

• Projections consist of a selection of available attributes but with all
tuples returned. They use the following syntax :

[att1, ..., attn] IN relational expression ;

The definitions of the terms used are as follows :

– att1, ..., attn : The attributes returned by the selection.

CHAPTER 1. INTRODUCTION 12

– relational expression : The relational expression that is used as a
source for the selection.

– condition-list : The boolean expression corresponding to the con-
ditions that need to be satisfied to have tuples returned in the
selection.

• Selections consist of a selection of available tuples but with all at-
tributes returned. They use the following syntax :

WHERE condition-list IN relational expression ;

The definitions of the terms used are as follows :

– relational expression : The relational expression that is used as a
source for the selection.

– condition-list : The boolean expression corresponding to the con-
ditions that need to be satisfied to have tuples returned in the
selection.

• T-Selections consist first of a selection of available tuples and then of
available attributes. It is a fusion of the two preceding selections. They
use the following syntax :

[att1, ..., attn] WHERE condition-list IN relational expres-
sion ;

The definitions of the terms used are as follows :

– att1, ..., attn : The attributes returned by the selection.

– relational expression : The relational expression that is used as a
source for the selection.

– condition-list : The boolean expression corresponding to the con-
ditions that need to be satisfied to have tuples returned in the
selection.

From this point we will be considering T-Selections throughout this section
since they can express anything that can be expressed with the two others.
Also note that Aldat will always return distinct tuples, being fully relational.

CHAPTER 1. INTRODUCTION 13

Selections with Joins

Aldat being all relational by design there are no set operators but only join
operators. They are :

• INNER JOIN
You specify the attribute from each relation on which you want to
perform the join.

[X, Y, Z] IN (R[Y:IJOIN:Y]S) ;

If the attribute is the same on both relations then you are not obliged
to specify it and Aldat will perform the join on the common attribute
available :

[X, Y, Z] IN (R IJOIN S) ;

This can be performed for all joins. From now on we will be considering
the case where the join attributes are explicit.

• LEFT OUTER JOIN
You specify that you want to allow nulls on the right side of the join
using the ljoin operator.

[X, Y, Z] IN (R[Y:LJOIN:Y]S);

• RIGHT OUTER JOIN
You specify that you want to allow nulls on the left side of the join
using the rjoin operator.

[X, Y, Z] IN (R[Y:RJOIN:Y]S) ;

• FULL OUTER JOIN
You specify that you want to allow nulls on both sides of the join using
the ujoin operator.

[X, Y, Z] IN (R[Y:UJOIN:Y]S) ;

• DIFFERENCE JOIN
You specify that you do not want to allow the tuples matching on the
right side of the join using the djoin operator.

[X, Y, Z] IN (R[Y:DJOIN:Y]S) ;

CHAPTER 1. INTRODUCTION 14

• DIFFERENCE RIGHT JOIN
You specify that you do not want to allow the tuples matching on the
left side of the join using the drjoin operator.

[X, Y, Z] IN (R[Y:DRJOIN:Y]S) ;

• SYMMETRIC DIFFERENCE JOIN
You specify that you do not want to allow the tuples matching on both
sides of the join using the sjoin operator.

[X, Y, Z] IN (R[Y:SJOIN:Y]S) ;

• CARTESIAN PRODUCT
If there is no common attributes the cartesian product is directly per-
formed using the ijoin operator.

[X, Y, Z] IN (R IJOIN S) ;

Note that selection conditions could be used on the relational expression
resulting from the join as in the following :

[X, Y, Z] WHERE W = 1 IN (R[Y:IJOIN:Y]S) ;

1.2.4 Aggregations through Domain Algebra

We will limit our overview of the Domain Algebra to the elements relevant
to the aggregation. The domain algebra can be divided into two main types
of operations :

• The horizontal operations that cover arithmetic expressions including
attributes, the use of constants and the renaming (aliasing) of the at-
tributes.

• The vertical (aggregations) operations : reduction, equivalence reduc-
tion, functional mapping and partial functional mapping.

We will principally focus on the latter ones. The first operation relevant is
the reduction. The syntax is the following :

LET Alias BE RED Operator OF exp ;

CHAPTER 1. INTRODUCTION 15

The definitions of the terms used are as follows :

• Alias : The name of the aggregated expression.

• Operator : One of the operator that can be used in reduction operations
: "+", "*", "max", "min", "and", "or".

• exp : The expression on which the aggregation will be performed.

The reduction allows us to make aggregation but does not do it using a
grouping. For that we have to use the equivalence reduction whose syntax is
the following :

LET Alias BE EQUIV Operator OF exp BY att1, ..., attn;

The definitions of the terms used are as follows :

• Alias : The name of the aggregated expression.

• Operator : One of the operator that can be used in reduction operations
: "+", "*", "max", "min", "and", "or".

• exp : The expression on which the aggregation will be performed.

• att1, ..., attn : The attributes on which the grouping will be performed.

Aldat also allows us to perform operations in a cumulative manner. The
functional mapping is used for that with the following syntax :

LET Alias BE FUN Operator OF exp ORDER att1, ..., attn;

The definitions of the terms used are as follows :

• Alias : The name of the aggregated expression.

• Operator : One of the operator that can be used in functional mapping
operations : "+", "*", "-", "", "max", "min", "||", "pred", "succ",
"and", "or".

• exp : The expression on which the aggregation will be performed.

• att1, ..., attn : The attributes that are the basis of the accumulation.

CHAPTER 1. INTRODUCTION 16

The accumulation can also be performed under a grouping with the following
syntax :

LET Alias BE PAR Operator OF exp ORDER att1, ..., attn BY
att1’, ..., attn’ ;

The definitions of the terms used are as follows :

• Alias : The name of the aggregated expression.

• Operator : One of the operator that can be used in functional mapping
operations : "+", "*", "-", "", "max", "min", "||", "pred", "succ",
"and", "or".

• exp : The expression on which the aggregation will be performed.

• att1, ..., attn : The attributes that are the basis of the accumulation.

• att1’, ..., attn’ : The attributes on which the grouping will be per-
formed.

1.2.5 Relation creation and deletion

In Aldat a relation and its attributes creations are totally independent. The
attributes and their datatypes have to be created first and then the relation
can be created. The syntax is the following :

DOMAIN col1 datatype1 ;
...
DOMAIN col1 datatype1 ;
RELATION relation (col1, ..., coln) ;

The definitions of the terms used are as follows :

• relation : The name of the relation that will be deleted.

• col1 datatype1, ..., coln datatypen : The name of the attributes included
in this relation and their corresponding datatypes.

CHAPTER 1. INTRODUCTION 17

To delete a relation and the attributes composing it you just use the follow-
ing syntax :

DR relation ;
DD col1, ..., coln;

The definitions of the terms used are as follows :

• relation : The name of the relation that will be deleted.

• col1, ..., coln : The name of the attributes that will be deleted.

1.2.6 Triggers

Triggers called event handlers are also part of Aldat. They can be triggered
by Change, Delete or Add statements. The trigger body can be executed
before (Pre) or after (Post) the data manipulation. In the case of a Pre The
old configuration of the relation is referenced as the relation itself and the
new configuration as TRIGGER. In the case of a Post it is the other way
around. A simple example would be :

Comp:Post:Change:Employees() is
Update Managers Add ([fName, lName] where hierarchy = "Manager"
in Employees);

Recursive Triggers are allowed without any limit of recursion. It is the re-
sponsibility of the programmer to avoid infinite loops. This is another char-
acteristic of Aldat: there are no restrictions to give the programmer the full
control of the tools Aldat provides but it is its responsibility to make sure
that he uses them right.

1.3 Motivation and notions used in our re-

search

1.3.1 Motivation

SQL being the de facto standard query language for databases, an SQL
interface was obviously missing from the Aldat and JRelix Project at McGill

CHAPTER 1. INTRODUCTION 18

which have deep insights in the Relational and Domain Algebras. Pretty
much any existing system supporting queries would provide an SQL interface
to it and the absence of an SQL front-end to this system would definitely
lower its popularity despite the advanced capabilities of Aldat.

The best way to show that Aldat subsumes SQL is by providing an SQL-
Aldat translation. Therefore the interface would then just be the translator
that would feed the system with the translated statements to execute them.
There would be no need to make an interface that would directly deal with
the internals of the system as it would be the case if Aldat did not subsumes
SQL.

Even an incomplete translator at first, that could be completed in future
research, is a proof of concept that Aldat does subsume SQL and can provide
a translator as an interface. This challenge was so appealing that the decision
was made to start a research focusing on the design and the implementation
of an extension to JRelix that would provide an SQL interface to it. It
would allow JRelix to be available for several purposes that would not involve
directly the learning of Aldat, e.g. being plugged to existing systems with
an SQL interface, while being still available for more complex purposes that
could be achieved through Aldat.

This research will not cover the whole scope of SQL but would provide a
strong basis of the translation between SQL and Aldat that can be extended
to have a full coverage of the SQL language in a future work. It has been
principally based on the the following key notions described with more details
in the following sections and which usage is very common in the Computer
Science environment:

• Context-free grammars and LL parsers

• Boolean Logic

• Abstract Syntax Trees

These three sections correspond to the three main steps of the translation :

• The SQL statements are parsed by the LL parser generated from the
SQL context-free grammar

• They are further parsed by our own boolean parser using the Boolean
Logic

CHAPTER 1. INTRODUCTION 19

• Abstract Syntax Trees are then generated from these statements to
translate them in Aldat

1.3.2 Context-free grammars and LL parsers

Context-free grammars, which have been first formalized by N. Chomsky
[3], play a major role in Computer Science because they can describe the
design of most of the currently used programming languages and compilers.
They can almost always be described by a context free grammar because
it allows us to capture the block structure inherent to most programming
languages nowadays. The main other advantage of context-free grammars
is that parsing algorithms can generally be found or generated rather easily
from them.

LL parsers cannot parse all the context-free grammars but the subset
of them whose rules can be applied from left to right i.e. using a leftmost
derivation from the root of the grammar. This is often the case in Computer
Science because the programming languages are often written by people used
to read and write from left to right. Therefore they can be described by the
LL grammars and parsed by the corresponding parsers.

In the case of our research we used a context-free grammar[26] expressed
using the Extended BackusNaur Form notation (EBNF)[27] to generate a
parser with a meta parser, ANTLR [24], which is LL. We choose the ANTLR
Metaparser because we could easily find an SQL grammar for it and the
parser it generates can also generate ASTs1 after the parsing. JavaCC[15] is
another widely used Meta Parser and actually is the one used in JRelix to
generate its parser. Nevertheless we could not find a simple SQL grammar
for it so we chose ANTLR.

1.3.3 Boolean Logic

Boolean Logic is one of the most used notions in Computer Science because
it allows us to describe computational logic. Its scope goes beyond comput-
ers and Boolean Logic is also used in electrical engineering to describe the
electronic circuits using the gates as operators.

It is Boolean Logic which is used in both SQL and Aldat to express the
conditions, e.g. to "flag" tuples for a selection. This was a critical notion

1See Section 1.3.4

CHAPTER 1. INTRODUCTION 20

for us because SQL expresses selection conditions and join conditions in the
same clause which is not the case in Aldat and we had to separate them by
breaking down the clause into simple elements and recombining each boolean
subexpression to express the same statement. This would not have been
possible without Boolean Logic.

Specially considering that the parser simply copies the content of the
Where clause in the AST, we had to design and implement our own Boolean
Parser 2 that would further process the ASTs generated by the parser to have
the Where clause broken down using Boolean Logic to simple boolean ex-
pressions. We consider the sufficient set {AND, OR, NOT} of operators and
used the parentheses to disambiguate the boolean expressions by imposing
the evaluation order of the different clauses composing it.

1.3.4 Abstract Syntax Trees

A powerful intermediate form

Abstract Syntax Trees (AST) are a very powerful intermediate form between
a source code written in a programming language, in our case the SQL state-
ments, and generally the binary code or any other language corresponding
to the result of the grammar, in our case the translated Aldat statements.
It is often used for optimization purposes because it allows us to keep the
structure of the program without being sensitive to the the grammar used
to parse it as in the case of a Parse Tree. This is made possible by the Ab-
stract Syntax that specifies the range of possible structures of the language.
This Abstract Syntax may be defined using the Abstract Syntax Notation
One (ASN.1) [20]. The usefulness of the ASTs have already been recog-
nized [25][7][11]. The JRelix implementation actually utilize the ASTs as an
intermediate form after the parsing for the interpreter.

Tree structure of an AST

An AST consists of a finite tree where interior nodes are operators of the
language and their children the operands. The leaves are then variables
or constants used in that statement. So the statement which will be broken
down from the root to the leaves capturing its structure in the tree structure.

2See Section 3.6.4

CHAPTER 1. INTRODUCTION 21

The translation of the statement is then eased by the fact that its structure
is already known.

ASTs in the context of our translator

• Ordered Trees
In the case of our implementation, as it is often the case with ASTs
actually, the ASTs generated are ordered. The ordering of these ASTs
is important in the sense that the order of the clauses of a statement
has to be kept in its intermediate form and is an integral part of the
structure of that statement.Therefore it would not have been logical to
generate unordered trees.

• Boolean Parser
In the case of the Where clause the AST generated is flat. So we had
to develop our own Boolean Parser and we would then generate ASTs
with the same structure as the ones generated by the ANTLR parser
and replace the flat one by our own. From there we can translate the
whole SQL statements using the ASTs.

1.4 General discussion about SQL and Aldat

1.4.1 Quick overview of the main versions of SQL

• SQL-86 [19]
This is the first standardization of SQL adopted by the American Na-
tional Standards Institute (ANSI) in 1986 and the International Stan-
dards Organization (ISO) in 1987. It has been slightly revised and
adopted by the U.S. National Institute of Standards and Technology
(NIST) in 1989 to become SQL-89 (also known as SQL1 or FIPS 127-1).
A conformance testing suite [17] to the standard has been provided by
NIST to improve the standardization process for the RDBMS vendors.

• SQL-92 (SQL2) [21]
This is the first major revision of the SQL-86 standard. There was
a clear effort made to go from SQL-86 with a quite incomplete stan-
dardization of the language with an important part of the scope left as

CHAPTER 1. INTRODUCTION 22

"implementor-defined" to a full coverage of the standard. It standard-
ized the ANSI JOIN notation, between many other standardizations,
and introduced the levels of compliance to the standard notion. There
were three levels of compliance defined in SQL-92 :

– Entry-level conformance (only the barest improvements to SQL-
89)

– Intermediate-level conformance (a generally achievable set of ma-
jor advancements)

– Full conformance (total compliance with the SQL-92 features)

The entry level is also known as FIPS 127-2 and has a conformance
testing suite available provided by NIST.

• SQL-99 (SQL3) [22]
This is the second major revision of the SQL-86 standard. It mainly
added the following features in the standardization : regular expres-
sion matching, recursive queries and triggers. It also standardized the
support for procedural and control-of-flow statements with the defini-
tion of a standard procedural programming language extension which
has been called SQL/Persistent Stored Module (SQL/PSM). The new
level of compliance defined are : Core SQL99 and Enhanced SQL99.
They are no longer certified by NIST since 1996 but by the vendors
themselves.

• SQL-2003 [23]
This revision mainly introduced XML and more generally semi-structured
data support in SQL. This has been a major awaited improvement [5]
with the emergence of XML, and other forms of semi-structured data,
in the late 1990’s as one of the most reliable ways to transfer large
amount of data. SQL-2003 standardized [6] the mapping between the
two languages.

CHAPTER 1. INTRODUCTION 23

1.4.2 Quick overview of some of the RDBMS most
used currently

Oracle

Oracle [18] is a leader among RDBMS vendors. That is one of the reason
we chose an Oracle SQL grammar for our research. The main characteristics
specific to this vendor that we will deal with in our research are :

• The default column expression name
The expression itself is used as a name. That can be done using quoted
identifiers which allows all characters in their composition.

• The column aliases references
The column aliases can not be referred to in the Where and having
clause.

• Old outer join notation
The outer join notation prior to SQL-92 is the following :

SELECT X, Y, Z FROM R, S WHERE R.Y = S.Y (+);

• Procedural programming language extension : Procedural Lan-
guage/SQL (PL/SQL)

MS SQL Server

Microsoft [14] has also an important share of the RDBMS world because
of its high compatibility with other Microsoft software that are well spread,
e.g. its operating system Windows. The main characteristics specific to this
vendor that are relevant to our research are :

• The default column expression name
"No Name" is used as a name.

• The column aliases references
The column aliases can not be referred to in the Where and having
clause.

• Old outer join notation
The outer join notation prior to SQL-92 is the following :

CHAPTER 1. INTRODUCTION 24

SELECT X, Y, Z FROM R, S WHERE R.Y *= S.Y ;

• Procedural programming language extension : Transact-SQL(T-
SQL)

IBM DB2

IBM [10] was the precursor in the research on SQL but has been overtaken by
Oracle in its commercial implementation. The main characteristics specific
to this vendor that are relevant to our research are :

• The default column expression name
The column number is used as a name.

• The column aliases references
The column aliases can not be referred to in the Where and having
clause.

• Old outer join notation
The outer join was not available prior to SQL-92 so it is the only
notation available.

• Procedural programming language extension : SQL Procedural
Language (SQL PL)

MySQL

MySQL [16] is one of the most known Open Source RDBMS. The main
characteristics specific to this vendor that are relevant to our research are :

• The default column expression name
The expression itself is used as a name.

• The column aliases references
The column aliases can not be referred to in the Where but can be used
in the having clause.

• Old outer join notation
The outer join was not available prior to SQL-92 so it is the only
notation available.

CHAPTER 1. INTRODUCTION 25

• Procedural programming language extension : MySQL

1.4.3 SQL-Aldat Comparison

Joins

SQL unlike Aldat can be very ambiguous with joins. It begins the ambigu-
ity directly by using the where keyword which is also the same to express
a condition. Furthermore some database systems have adopted the ANSI
(American National Standards Institute) join keywords ("INNER JOIN",
"OUTER JOIN", ...), included in SQL-92, only very recently which leaves a
certain amount of older systems still running without the ANSI joins. Oracle
only adopted the ANSI joins with the version 9. Since our translator is based
on Oracle 7 [18] grammar we will not be able to use the ANSI joins.

Aggregations

The aggregations performed in SQL through the aggregation functions are a
subset of the domain algebra defined in Aldat which allows us to do as much
and even more being more generic. Also the distinction between the Where
keyword reserved for individual tuples and the Having keyword reserved for
aggregated tuples in SQL is nonexistent in Aldat in which the condition for
aggregated data as much as individual data will be expressed by the Where
keyword.

Furthermore the domain algebra allows us to use alias as for aggregated
expressions in any part of a statement whereas in SQL for example column
aliases can not be used in the Having clause because of the evaluation order
of the clauses, in particular the Having clause is evaluated before the Select
clause, apart from in MySQL where there is a different evaluation order which
allows us to use column aliases in the Having clause.

Aldat, having a totally relational design, considers only distinct values. So
the default option is the DISTINCT in the aggregation functions. Once again
the difference in the design of the the two languages resurfaces. Nevertheless
it is possible to express aggregations on duplicates.

CHAPTER 1. INTRODUCTION 26

Data Modification

• Inserts
In SQL inserting tuples is done considering the set of rows to insert
whereas in Aldat the relation to insert itself is considered as a whole
and added directly.

• Updates and Deletions
Updates and Deletions are expressed in SQL with a condition in the
Where clause to "flag" the tuples that should be updated or deleted.
Updates are expressed in Aldat with a join on the relation specified in
the Using clause to "flag" the tuples that should be updated. Relations
in Aldat are considered as a whole whereas in SQL it will rather be
individual tuples. This is another design decision which emphasizes
this difference between Aldat and SQL.

Relation creation and deletion

In SQL the attributes are bound to the relation incorporating them and so
their creation and deletion are linked to those of the relation. Whereas in
Aldat the relation only incorporates the attributes in its declaration. The
attributes were created before the relation even existed and will continue to
exist even after the deletion of the relation. The only restriction that exists is
the deletion of an attribute that is still used in a relation which is forbidden
because it would break the structure of that relation.

A further difference is due once again to the Domain Algebra notion which
is absent in SQL and an important part of Aldat conception. SQL only incor-
porates the Relational Algebra notion and uses functions, e.g. aggregation
functions, to deal with operations on attributes that should be performed
using the Domain Algebra.

These differences are part of the overall difference between Aldat and SQL
concerning the principles of abstraction and closure [13]. Aldat respects them
whereas SQL does not. The principle of closure stipulates that operations
result should conserve the type of the operands, e.g. operations on relations
produce relations. And the principle of abstraction stipulates that operations
should be independent of the structure of the operands and of their context.
Another example of the application of this latter principle is the case of the
virtual attribute notion that Aldat integrates and which is absent from SQL.

CHAPTER 1. INTRODUCTION 27

A straight-forward example of the first is the boundless recursive definition
of a view that can be done in Aldat and can not in SQL.

Triggers

Triggers body have to be written in PL/SQL, Begin ... End block, to deal
with the programming aspect of triggers which embodies one of the main
advantages of Aldat. The language itself have been designed to include both
relational and programming aspects of databases. Whereas here we have a
difference between the SQL which is intended for and only for the relational
aspect and the PL/SQL which adds the programming aspect. One of the
main problems of this differentiation apart from the obvious efficiency one
and the lack of uniformity is that PL/SQL is an extension to SQL made by
Oracle and so it can not be used with other databases such as MS SQL Server
for example which uses its own extension T-SQL. So the portability of the
code, which was not totally assured because of the differences noted before
in the notations, is definitely lost when you introduce the programming side.

Chapter 2

User’s Manual

To get started let’s first start JRelix in which our translator is integrated
eventually. First of all let’s open a terminal with a command line. Let’s type
in the command line relix to launch it :

$ relix

Which will output :

Starting stand alone JRelix.

+——————————————————+
| Relix Java version 0.96 |
| Copyright (c) 1997 – 2007 Aldat Lab |
| School of Computer Science |
| McGill University |
+——————————————————+
>

2.1 SQLSTMT command

2.1.1 Selects

Let’s now consider consider simple selects :

• 1 First selecting an attribute from a relation :

28

CHAPTER 2. USER’S MANUAL 29

Type in the command line the SQL query that we want to
translate:
> sqlstmt "select a into destRel from b;";
Which will execute the corresponding Aldat query :
destRel<- [a] in b;

We specified the target relation because this is a command so it cannot
have a void action. In the section 2.2 we will see how to have selections
without it.

• 2 Then selecting a qualified attribute from a relation :

> sqlstmt "select b.a into destRel from b;";
destRel<- [a] in b;

• 3 Then selecting distinct elements of a attribute from a relation :

> sqlstmt "select distinct a into destRel from b;";
destRel<- [a] in b;

Aldat is totally relational so the tuples returned are always distinct.

• 4 Then selecting all attributes from a relation :

> sqlstmt "select * into destRel from b;";
destRel<- b;

• 5 Now selecting attributes from a subquery with a where condition :

> sqlstmt "select a, b into destRel from (select a,b,c from d
where (e=1 and f='a') or g=2);";
destRel<- [a,b] in ([a,b,c] where (e=1 and f="a") or

g=2 in d);

• 6 Then selecting expression from a relation :

CHAPTER 2. USER’S MANUAL 30

> sqlstmt "select a + b into destRel from c;";
let No Name be a+b;

destRel<- [No Name] in c;

We took the same naming convention as MS SQL Server concerning
expressions without alias i.e. using No Name. Oracle and MySQL uses
the expression itself, DB2 uses the column number.

• 7 Then selecting attribute with an alias from a relation :

> sqlstmt "select a as b into destRel from c;";
let b be a;

destRel<- [b] in c;

• 8 Then selecting attribute with an alias without the keyword as from
a relation :

> sqlstmt "select a b into destRel from c;";
let b be a;

destRel<- [b] in c;

• 9 Then selecting attributes from a query with a LIKE condition :

> sqlstmt "select a into destRel from b where c like '%OMPUTE%';";
destRel<- [a] where att = "c" in (grep(att) "ompute"

in b);

• 10 Then selecting attributes from a query with a condition involving
an expression:

> sqlstmt "select a into destRel from b where c + d = 1;";
destRel<- [a] where c+d=1 in b;

CHAPTER 2. USER’S MANUAL 31

2.1.2 Joins

Inner Joins and Difference Join

Now we can get to more complex selects implying joins :

• 11 First the most straightforward select with join on one attribute :

> sqlstmt "select b into destRel from c, d where c.a = d.a;";
destRel<- [b] in (c[a:ijoin:a]d);

• 12 Now select with join on several attributes :

> sqlstmt "select b into destRel from c, d where c.a = d.a
and c.e = d.e and c.f = d.g;";
destRel<- [b] in (c[a,e,f:ijoin:a,e,g]d);

• 13 Now select with a difference join on several attributes :

> sqlstmt "select b into destRel from c, d where c.a = d.a
and not(c.e = d.e and c.f = d.g);";
destRel<- [b] in (c[a:ijoin:a]d) djoin (c[e,f:ijoin:e,g]d);

• 14 Now select with a join and a condition on several attributes :

> sqlstmt "select b into destRel from c, d where c.a = d.a
and e=1 and f='a';";
destRel<- [b] where e=1 and f="a" in (c[a:ijoin:a]d);

Left Outer Join, Right Outer Join and Full Outer Join

We can then get to more subtle joins :

• 15 First a simple right outer join :

> sqlstmt "select b into destRel from c, d where c.a (+) =
d.a;";
destRel<- [b] in (c[a:rjoin:a]d);

CHAPTER 2. USER’S MANUAL 32

The "(+)" allows nulls on the left side of the join so that makes it a
right outer join.

• 16 The corresponding left outer join :

> sqlstmt "select b into destRel from c, d where c.a = d.a
(+);";
destRel<- [b] in (c[a:ljoin:a]d);

• 17 Now a little variant not allowed in Oracle SQL but that we allow to
ease full outer joins expression :

> sqlstmt "select b into destRel from c, d where c.a (+) =
d.a (+);";
destRel<- [b] in (c[a:ujoin:a]d);

• 18 Now a left outer join on several attributes :

> sqlstmt "select b into destRel from c, d where c.a = d.a
(+) and c.e = d.e (+);";
destRel<- [b] in (c[a,e:ljoin:a,e]d);

• 19 Now select with 2 different joins on several attributes :

> sqlstmt "select b into destRel from c, d where c.a = d.a
(+) and c.e = d.e;";
destRel<- [b] in (c[a:ljoin:a]d) ijoin (c[e:ijoin:e]d);

• 20 Now select with the 3 different joins on several attributes :

> sqlstmt "select b into destRel from c, d where c.a = d.a
(+) and c.e = d.e and c.f (+) = d.g;";
destRel<- [b] in (c[a:ljoin:a]d) ijoin (c[e:ijoin:e]d)

ijoin (c[f:rjoin:g]d);

• 21 Now select with 1 inner join and 2 left outer joins on several at-
tributes :

CHAPTER 2. USER’S MANUAL 33

> sqlstmt "select b into destRel from c, d where c.a = d.a
and c.e = d.e (+) and c.f = d.g (+);";
destRel<- [b] in (c[a:ijoin:a]d) ijoin (c[e,f:ljoin:e,g]d);

• 22 Now select with 1 inner join or 2 left outer joins on several attributes
:

> sqlstmt "select b into destRel from c, d where c.a = d.a or
c.e = d.e (+) and c.f = d.g (+);";
destRel<- [b] in (c[a:ijoin:a]d) ujoin (c[e,f:ljoin:e,g]d);

Joins with unqualified attributes or none

It is possible to use joins using the unqualified names of the attributes. The
system will be able to differentiate them. For example if we consider a
relation c with the attributes a,b and f and a relation d with the attribute e
and no shared attributes between the 2 relations. We will have the following:

23 > sqlstmt "select b into destRel from c, d where c.a = c.f;";
destRel<- [b] where a=f in (c ijoin d);

With the same output as :

24 > sqlstmt "select b into destRel from c, d where a = f;";
destRel<- [b] where a=f in (c ijoin d);

and :

25 > sqlstmt "select b into destRel from c, d where c.a = d.e;";
destRel<- [b] in (c[a:ijoin:e]d);

With the same output as :

26 > sqlstmt "select b into destRel from c, d where a = e;";
destRel<- [b] in (c[a:ijoin:e]d);

CHAPTER 2. USER’S MANUAL 34

and if no attribute is specified we have the cartesian product :

27 > sqlstmt "select b into destRel from c, d;";
destRel<- [b] in (c ijoin d);

2.1.3 Aggregations

Aggregations are an important way to summarize data. They can be used
the following way :

• 28 First a simple sum without alias :

> sqlstmt "select sum(salary) into destRel from employees;";
let No Name be red + of salary;

destRel<- [No Name] in employees);

• 29 Then a simple distinct sum without alias :

> sqlstmt "select sum(distinct salary) into destRel from em-
ployees;";
let No Name be red max of (fun + of salary order salary);

destRel<- [No Name] in employees);

• 30 Then a simple avg without alias :

> sqlstmt "select avg(salary) into destRel from employees;";
let No Name be red + of salary / red + of 1;

destRel<- [No Name] in employees);

• 31 Then a simple max without alias :

> sqlstmt "select max(salary) into destRel from employees;";
let No Name be red max of salary;

destRel<- [No Name] in employees);

• 32 Then a simple min without alias :

CHAPTER 2. USER’S MANUAL 35

> sqlstmt "select min(salary) into destRel from employees;";
let No Name be red min of salary;

destRel<- [No Name] in employees);

• 33 Then a simple count without alias :

> sqlstmt "select count(*) into destRel from employees;";
let No Name be red + of 1;

destRel<- [No Name] in employees);

• 34 Then another simple count without alias :

> sqlstmt "select count(salary) into destRel from employ-
ees;";
let No Name be red + of (if isnull(salary) then 0 else

1);

destRel<- [No Name] in employees);

As usual in SQL the number of tuples having a non NULL value of the
column.

• 35 Now a simple distinct count without alias :

> sqlstmt "select count(distinct salary) into destRel from
employees;";
let No Name be red max of fun + of 1 order (salary);

destRel<- [No Name] in employees);

• 36 Now a more complex sum involving an alias, a group by and a having
condition :

> sqlstmt "select sum(salary) S into destRel from employees
group by dept having S > 10;";
let S be equiv + of salary by dept;

destRel<- [S] where S > 10 in salary;

CHAPTER 2. USER’S MANUAL 36

As in MySQL we allow the column aliases to be used in the GROUP
BY clause.

2.1.4 Delete

Deletions can be expressed the following way :

• 37 A delete without a condition :

> sqlstmt "delete from b;";
update b delete b;

• 38 A delete with a condition :

> sqlstmt "delete from b where a = 1;";
update b delete where a = 1 in b;

2.1.5 Update

Updates are also supported :

• 39 Updating a attribute with a condition on another :

> sqlstmt "update a set b = 10 where c = 2;";
update a change b <- if c = 2 then 10 else b;

2.1.6 Multiple statements

It is also possible to write several statements at once :

> sqlstmt "delete from b where a = 1;
select b into destRel from c, d where c.a = d.a or c.e = d.e (+)
and c.f = d.g (+);
update a set b = 10 where c = 2;";

update b delete where a = 1 in b;

destRel<- [b] in (c[a:ijoin:a]d) ujoin (c[e,f:ljoin:e,g]d);

update a change b <- if c = 2 then 10 else b;

CHAPTER 2. USER’S MANUAL 37

2.1.7 Omissions

In the current version of the tool we do not support all the commands of
SQL because the parser we chose does not support the full SQL grammar.
The most important omissions are listed below:

• The create command : table, view, trigger, ... etc

• The drop command

• The insert command

2.2 SQLEXP keyword

We added the SQLEXP keyword to be able to use SQL relational expres-
sion in enclosing Aldat statements. Any Aldat statement using relational
expression can use it.

2.2.1 Selects

Let’s now consider Aldat statements involving the SQLEXP keyword:

• 1 printing a SQL relational expression:

> pr sqlexp "select a from b;";
Which will execute Aldat query :
pr ([a] in b);

• 1’ Assigning a join between an existing relation and a SQL relational
expression:

> d<- c ijoin sqlexp "select a from b;";
Which will execute Aldat query :
d<- c ijoin ([a] in b);

• 1” Printing a projection of a SQL relational expression:

CHAPTER 2. USER’S MANUAL 38

> pr [a] in (sqlexp "select a, c from b;");
Which will execute Aldat query :
pr [a] in ([a, c] in b);

For the ease of examples we will consider printing statements from now on.
All the SQL selection statements from section 2.1 are supported. We will
limit our examples to the most important ones. The examples follow the
same numbering as in the section before.

• 5 Now selecting attribute from a subquery with a where condition :

> pr sqlexp "select a, b from (select a,b,c from d where (e=1
and f='a') or g=2);";
pr [a,b] in ([a,b,c] where (e=1 and f="a") or g=2 in

d);

2.2.2 Joins

Inner Joins and Difference Join

Now we can get to more complex selects implying joins :

• 14 Now select with a join and a condition on several attributes :

> pr sqlexp "select b from c, d where c.a = d.a and e=1 and
f='a';";
pr [b] where e=1 and f="a" in (c[a:ijoin:a]d);

Left Outer Join, Right Outer Join and Full Outer Join

We can then get to more subtle joins :

• 20 Now select with the 3 different joins on several attributes :

> pr sqlexp "select b from c, d where c.a = d.a (+) and c.e
= d.e and c.f (+) = d.g;";
pr [b] in (c[a:ljoin:a]d) ijoin (c[e:ijoin:e]d) ijoin

(c[f:rjoin:g]d);

CHAPTER 2. USER’S MANUAL 39

Joins with unqualified attributes or none

It is possible to use joins using the unqualified names of the attributes. The
system will be able to differentiate them. For example if we consider a
relation c with the attributes a,b and f and a relation d with the attribute e
we will have the following:

25 > pr sqlexp "select b into destRel from c, d where c.a = d.e;";
pr [b] in (c[a:ijoin:e]d);

With the same output as :

26 > pr sqlexp "select b into destRel from c, d where a = e;";
pr [b] in (c[a:ijoin:e]d);

2.2.3 Aggregations

Aggregations are an important way to summarize data. They can be used
the following way :

• 36 Now a more complex sum involving an alias, a group by and a having
condition :

> pr sqlexp "select sum(salary) S from employees group by
dept having S > 10;";
let S be equiv + of salary by dept;

pr [S] where S > 10 in salary;

2.2.4 Multiple statements

It is also possible to write several statements at once :

> pr sqlexp "delete from b where a = 1;
select b from c, d where c.a = d.a and e=1 and f='a';
select b from c, d where c.a = d.a or c.e = d.e (+) and c.f = d.g
(+);
update a set b = 10 where c = 2;";

CHAPTER 2. USER’S MANUAL 40

update b delete where a = 1 in b;

update a change b <- if c = 2 then 10 else b;

pr [b] in (c[a:ijoin:a]d) ujoin (c[e,f:ljoin:e,g]d);

The first select will be ignored because only the last one will be returned.

2.3 FILE Keyword

In both previous sections the SQL statements were directly written as the
string parameter of the command. It is possible as with the input keyword in
JRelix to specify a location on the disk to a file containing several statements
to execute. The extra parameter using the file keyword allows the translator
to know that the string transferred by the interpreter is not directly the SQL
to translate but the path to the file where the SQL statements are. So the
file is read from disk and from there the mechanism is the same as before
for both SQLEXP and SQLSTMT. let consider a file named 'example.sql'
containing the following text in the current directory:

select a into destRel from b;

We will have for the following run using the the SQLSTMT command
with the FILE extra parameter :

1 > sqlstmt file "example.sql";

The output corresponding :

destRel<- [a] in b;

And if we consider a file named 'example2.sql' containing the following
text in the current directory:

select a from b;

We will have for the following run using the the SQLEXP keyword with
the FILE extra parameter :

CHAPTER 2. USER’S MANUAL 41

2 > pr sqlexp file "example2.sql";

The output corresponding :

pr [a] in b;

Chapter 3

Implementation details

3.1 SQLSTMT Command

3.1.1 Selections

Selects

Let’s consider the first of the series of runs in the previous chapter to have
an idea of what is occurring in the implementation :

1 > sqlstmt "select a into destRel from b;";

The output will be :

destRel<- [a] in b;

To achieve this output we can succinctly describe what is occurring in the
following way :

• First of all the input stream is redirected from the String transmitted
to the translator by the JRelix system, then the lexer and the parser are
invoked. The rules of the grammar are processed, the tokens recognized
and finally we obtain the Abstract Syntax Tree (AST) corresponding
to our SQL statement.

• Then we visit recursively each of the subtrees corresponding to a state-
ment and store the result in a String before returning it to the JRelix
system for further processing.

42

CHAPTER 3. IMPLEMENTATION DETAILS 43

To be more detailed for this run we have the following execution :

• 1 > sqlstmt "select a into destRel from b;";
destRel<- [a] in b;
Algorithm :

b

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

From

sql id

table reference list

a

���������

Figure 3.1: AST select a into destRel from b;

(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes[a]
(3) : Recognize from and check presence of where
(4) : Include relations b
(5) : Add target relation name [destRel] to the final translated state-
ment
(6) : End of statement

In the step 1 above the target relation name is removed from the SQL to
translate, stored aside and gets pasted only at step 6. This is because the
into keyword is absent from our current grammar. Nevertheless we managed
to find a workaround to be able to use it in this case (what we have not
been able to do in a reasonable timeframe for the other omissions). So we
intercept the SQL to translate before sending it to the parser to retrieve the
target relation name, remove the into clause from the SQL and paste at the
end to the translated SQL the target relation name.

Using the same logic we have for the following runs :

• 2 > sqlstmt "select b.a into destRel from b;";
destRel<- [a] in b;
Algorithm :

(1) : Recognize into and store target relation name [destRel]
(2) : Recognize qualified name [b.a] and erase the relational part [b.]
(3) : Recognize select and include attributes[a]

CHAPTER 3. IMPLEMENTATION DETAILS 44

sql id

�
�

�
�

��

�
�

�
�

��
.

sql statement

select select
list

From

sql id

table reference list

b

sql id

b a

���������

Figure 3.2: AST select b.a into destRel from b;

(4) : Recognize from and check presence of where
(5) : Include relations b
(6) : Add target relation name [destRel] to the final translated state-
ment
(7) : End of statement

• 5 > sqlstmt "select a, b into destRel from (select a,b,c from d (where
e=1 and f='a') or g=2);";
destRel<- [a,b] in ([a,b,c] where (e=1 and f="a") or g=2 in

d);

Algorithm :

or

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

���������

where where condition

and

;

== sql id =

e f g

sql id sql id sql litteral

1 2‘a’

sql statement

select select
list

sql id

From

a b c

table reference list

sql id sql id, sql id,

d

sql statement

select select
list

sql id

From

a b

table reference list

, sql id subquery

(sql id sql litteral)

���������

Figure 3.3: AST select a, b into destRel from (select a,b,c from d where (e=1
and f='a') or g=2);

(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [a,b]
(3) : Recognize from and check presence of where
(4) : Recognize subquery
(5) : Recognize select and include attributes [a,b,c]

CHAPTER 3. IMPLEMENTATION DETAILS 45

(6) : Recognize from and check presence of where
(7) : Process where before from and check presence of join
(8) : Include conditions (e=1 and f='a' or g=2)
(9) : Include relations d
(10) : End of subquery
(11) : Add target relation name [destRel] to the final translated state-
ment
(12) : End of statement

• 6 > sqlstmt "select a + b into destRel from c;";
let No Name be a+b;

destRel<- [No Name] in c;

Algorithm :

c

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

From

sql id

table reference list

sql id sql id+

a b

���������

Figure 3.4: AST select a + b into destRel from c;

(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select
(3) : Recognize expression [a + b] without an alias
(4) : Recognize from and check presence of where
(5) : Include relations c
(6) : Add domain algebra corresponding to the expression with the
default alias
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

• 7 > sqlstmt "select a as b into destRel from c;";
let b be a;

destRel<- [b] in c;

Algorithm :

CHAPTER 3. IMPLEMENTATION DETAILS 46

as

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

From

sql id

table reference list

sql id sql id

a b c

���������

Figure 3.5: AST select a as b into destRel from c;

(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select
(3) : Recognize aliasing [a as b]
(4) : Recognize from and check presence of where
(5) : Include relations c
(6) : Add renaming for the alias
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

• 9 > sqlstmt "select a into destRel from b where c like '%OMPUTE%';";
destRel<- [a] where att = "c" in (grep(att) "ompute" in b);

Algorithm :

‘%OMPUTE%’

�
�

�
�

��

���������
�

�
�

�
��

where where condition

sql id

sql statement

select select
list

sql id

From table reference list

= sql litteral

;

a b c

likesql id

�
�

�
�

��

Figure 3.6: AST select a into destRel from b where c like '%OMPUTE%';

(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [a]
(3) : Recognize from and check presence of where
(4) : Process where before from and check presence of join
(2) : Recognize like condition (c like '%OMPUTE%') and generate
corresponding grep condition
(6) : Include grep condition

CHAPTER 3. IMPLEMENTATION DETAILS 47

(7) : Include relations b
(8) : Add target relation name [destRel] to the final translated state-
ment
(9) : End of statement

• 10 > sqlstmt "select a into destRel from b where c + d = 1;";
destRel<- [a] where c+d=1 in b;

Algorithm :

1

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

where where condition

sql id

sql statement

select select
list

sql id

From table reference list

sql id sql id = sql litteral

;

a b c d

+

���������

Figure 3.7: AST select a into destRel from b where c + d = 1;

(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [a,b,c]
(3) : Recognize from and check presence of where
(4) : Process where before from and check presence of join
(5) : Include conditions (c + d = 1)
(6) : Include relations b
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

3.1.2 Joins

IJoins

Let’s continue with a runs involving a join :

• 11 > sqlstmt "select b into destRel from c, d where c.a = d.a;";
destRel<- [b] in (c[a:ijoin:a]d);

CHAPTER 3. IMPLEMENTATION DETAILS 48

;
�

�
�

�
��

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

b

From

c

sql id , sql id

d

table reference list where where condition

sql id . sql id= sql id

d

.

aac

sql id

���������

Figure 3.8: AST select b into destRel from c, d where c.a = d.a;

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [b]
(3) : Recognize from and check presence of where
(Discarded) : Discard from processing because of the join
(5) : Process where before from and check presence of join
(6) : Process join and determine type of join on [a] attribute
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

To detect the presence of a join (step 5 above) we first try to detect a
selection in the where and if it is not a selection then we have a join. To do
that we make it in 5 steps:

• 1 First we count the number of relations involved in the from clause.
If we have only one relation no need to go any further. There will be
no join. This is done only once.

• 2 Then we break down the where clause to each single condition.

• 3 For each of these condition we look for the presence of a literal which
means that it is a selection because joins involve only identifiers.

• 4 Finally on each of these conditions we test to see if the condition does
not involve the same relation in which case it will again be a selection.

• 5 If any of these steps turns out to prove that it is not a selection then
we have a join.

CHAPTER 3. IMPLEMENTATION DETAILS 49

• 6 If we have a join we determine the type of the join and if we can
compress it with the joins already processed, e.g. join on several at-
tributes. We keep looping from 3 to 6 until the where clause is totally
checked.

The following runs follow the same logic :

• 12 > sqlstmt "select b into destRel from c, d where c.a = d.a and c.e
= d.e and c.f = d.g;";
destRel<- [b] in (c[a,e,f:ijoin:a,e,g]d);

g

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

b

From

c

sql id , sql id

d

table reference list where where condition

and and

;

sql id . sql id= sql id

d

.

c

sql idsql id . sql id= sql id

d

.

aac

sql id sql id . sql id= sql id

d

.

c

sql id

e e f

���������

Figure 3.9: AST select b into destRel from c, d where c.a = d.a and c.e =
d.e and c.f = d.g;

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [b]
(3) : Recognize from and check presence of where
(Discarded) : Discard from processing because of the join
(5) : Process where before from and check presence of join
(6) : Process join and determine type of join on [a, e, f, g] attributes
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

LJoin, RJoin and UJoin

• 15 > sqlstmt "select b into destRel from c, d where c.a (+) = d.a;";
destRel<- [b] in (c[a:rjoin:a]d);

Algorithm :
(1) : Recognize into and store target relation name [destRel]

CHAPTER 3. IMPLEMENTATION DETAILS 50

a

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

From

sql id

b

table reference list

sql id sql id,

c d

where where condition

sql id sql id sql id sql id

;

. .(+) =

c a d

���������

Figure 3.10: AST select b into destRel from c, d where c.a (+) = d.a;

(2) : Recognize select and include attributes [b]
(3) : Recognize from and check presence of where
(Discarded) : Discard from processing because of the join
(5) : Process where before from and check presence of join
(6) : Process join and determine type of join on [a] attribute
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

• 20 > sqlstmt "select b into destRel from c, d where c.a = d.a and c.e
(+) = d.e and c.f = d.g (+);";
destRel<- [b] in (c[a:ijoin:a]d) ijoin (c[e:rjoin:e]d) ijoin

(c[f:ljoin:g]d);

sql id)

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

b

From

c

sql id , sql id

d

table reference list where where condition

and

;

sql id . sql id= sql id

d

.

c

sql idsql id . sql id=

dac

sql id . sql id= sql id

d

.

ce e f g

sql id. sql id

a

and not (

���������

Figure 3.11: AST select b into destRel from c, d where c.a = d.a and c.e (+)
= d.e and c.f = d.g (+);

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [b]
(3) : Recognize from and check presence of where

CHAPTER 3. IMPLEMENTATION DETAILS 51

(Discarded) : Discard from processing because of the join
(5) : Process where before from and check presence of join
(6) : Process joins and determine type of different joins on [a, e, f, g]
attributes
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

Joins with unqualified attributes or none

It is possible to use joins using the unqualified names of the attributes. The
system will be able to differentiate them. In order to achieve that we have to
retrieve a reference to the RD relation currently in RAM for JRelix system
any time a call to our translator is made. With that reference we will be able
to disambiguate each attribute with an unqualified name.

For example let’s consider a relation c with the attributes a,b and f and
a relation d with the attribute e and let’s make the following runs:

• 23 > sqlstmt "select b into destRel from c, d where c.a = c.f;";
destRel<- [b] where a=f in (c ujoin d);

f

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

b

From

c

sql id , sql id

d

table reference list where where condition

sql id . sql id= sql id .

ac

sql id

;

c

���������

Figure 3.12: AST select b into destRel from c, d where c.a = c.f;

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [b]
(3) : Recognize from and check presence of where
(Discarded) : Discard from processing because of the join
(5) : Process where before from and check presence of join
(6) : Include conditions (a=f)

CHAPTER 3. IMPLEMENTATION DETAILS 52

(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

• 24 > sqlstmt "select b into destRel from c, d where a = f;";
destRel<- [b] where a=f in (c ujoin d);

f

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

b

From

c

sql id , sql id

d

table reference list where where condition

sql id

;

= sql id

a

���������

Figure 3.13: AST select b into destRel from c, d where a = f;

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [b]
(3) : Recognize from and check presence of where
(Discarded) : Discard from processing because of the join
(5) : Process where before from and check presence of join using the
RD relation
(6) : Include conditions (a=f)
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

• 25 > sqlstmt "select b into destRel from c, d where c.a = d.e;";
destRel<- [b] in (c[a:ijoin:e]d);

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [b]
(3) : Recognize from and check presence of where
(Discarded) : Discard from processing because of the join

CHAPTER 3. IMPLEMENTATION DETAILS 53

e

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

b

From

c

sql id , sql id

d

table reference list where where condition

sql id . sql id= sql id .

ac

sql id

;

d

���������

Figure 3.14: AST select b into destRel from c, d where c.a = d.e;

(5) : Process where before from and check presence of join
(6) : Process join and determine type of join on [a] attribute
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

• 26 > sqlstmt "select b into destRel from c, d where a = e;";
destRel<- [b] in (c[a:ijoin:e]d);

e

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

b

From

c

sql id , sql id

d

table reference list where where condition

sql id

;

= sql id

a

���������

Figure 3.15: AST select b into destRel from c, d where a = e;

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [b]
(3) : Recognize from and check presence of where
(Discarded) : Discard from processing because of the join
(5) : Process where before from and check presence of join using the
RD relation
(6) : Process join and determine type of join on [a] attribute
(7) : Add target relation name [destRel] to the final translated state-
ment

CHAPTER 3. IMPLEMENTATION DETAILS 54

(8) : End of statement

• 27 > sqlstmt "select b into destRel from c, d;";
destRel<- [b] in (c ujoin d);

table reference list
�

�
�

�
��

�
�

�
�

��

sql statement

select select
list

sql id

b

From

c

sql id , sql id

d

���������

Figure 3.16: AST select b into destRel from c, d;

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes [b]
(3) : Recognize from and check presence of where
(4) : Process from and determine the cartesian product
(5) : Add target relation name [destRel] to the final translated state-
ment
(6) : End of statement

3.1.3 Aggregations

• 28 > sqlstmt "select sum(salary) into destRel from employees;";
let No Name be red + of salary;

destRel<- [No Name] in employees);

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and recognize aggregation function
(3) : Check presence of alias and group by
(4) : Process aggregation function and include attributes [salary]
(5) : Recognize from and check presence of where
(6) : Process from and include relation employees

CHAPTER 3. IMPLEMENTATION DETAILS 55

;
�

�
�

�
��

�
�

�
�

��

sql statement

select
list

Fromselect

group function

sql id()sum

salary

sql id

employees

table reference list

���������

Figure 3.17: AST select sum(salary) into destRel from employees;

(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

• 29 > sqlstmt "select sum(distinct salary) into destRel from employ-
ees;";
let No Name be red max of (fun + of salary order salary);

destRel<- [No Name] in employees);

distinct

�
�

�
�

��

�
�

�
�

��

sql statement

select
list

Fromselect

group function

sql id)

salary

sql id

employees

table reference list ;

sum (

���������

Figure 3.18: AST select sum(distinct salary) into destRel from employees;

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and recognize aggregation function
(3) : Check presence of alias and group by
(4) : Process aggregation function and include attributes [salary]
(5) : Recognize from and check presence of where
(6) : Process from and include relation employees

CHAPTER 3. IMPLEMENTATION DETAILS 56

(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

• 33 > sqlstmt "select count(*) into destRel from employees;";
let No Name be red + of 1;

destRel<- [No Name] in employees);

asterisk

�
�

�
�

��

�
�

�
�

��

sql statement

select
list

Fromselect

group function

()

sql id

employees

table reference list ;

count

���������

Figure 3.19: AST select count(*) into destRel from employees;

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and recognize aggregation function
(3) : Check presence of alias and group by
(4) : Process aggregation function
(5) : Recognize from and check presence of where
(6) : Process from and include relation employees
(7) : Add target relation name [destRel] to the final translated state-
ment
(8) : End of statement

• 36 > sqlstmt "select sum(salary) S into destRel from employees group
by dept having S > 10;";
let S be equiv + of salary by dept;

destRel<- [S] where S > 10 in salary;

Algorithm :
(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and recognize aggregation function

CHAPTER 3. IMPLEMENTATION DETAILS 57

$¿$
�

�
�

�
��

�
�

�
�

��

,
,

,
,

,

,
,

,
,

,

,
,

,
,

,

sql statement

select
list

Fromselect

group function

sql id sql id()sum

salary S

sql id

employees

table reference list sql idbygroup ;having sql litteral

dept S 10

sql id

���������

Figure 3.20: AST select sum(salary) S into destRel from employees group by
dept having S > 10;

(3) : Check presence of alias and group by
(4) : Process aggregation function and include attributes [salary]
(5) : Recognize from and check presence of where
(6) : Process from and include relation employees
(7) : Process having and include conditions
(8) : Add target relation name [destRel] to the final translated state-
ment
(9) : End of statement

3.1.4 Delete

• 37 > sqlstmt "delete from b;";
update b delete b;

;

���������

sql statement

delete From sql id

b

�
�

�
��

Figure 3.21: AST delete from b;

Algorithm :
(1) : Recognize delete and include relation b
(2) : Process delete
(3) : End of statement

CHAPTER 3. IMPLEMENTATION DETAILS 58

• 38 > sqlstmt "delete from b where a = 1;";
update b delete where a = 1 in b;

a

,
,

,
,

,,

,
,

,
,

,,

,
,

,
,

,,

sql statement

;delete From sql id

b

where sql id sql litteral

1

=

���������

Figure 3.22: AST delete from b where a = 1;

Algorithm :
(1) : Recognize delete and include relation b
(2) : Recognize where and the condition
(3) : Process delete
(4) : End of statement

3.1.5 Update

• 39 > sqlstmt "update a set b = 10 where c = 2;";
update a change b <- if c = 2 then 10 else b end;

2

,
,

,
,

,,

,
,

,
,

,,

,
,

,
,

,,

,
,

,
,

,,

,
,

,
,

,,

sql statement

update where sql id = sql litteral ;

b

sql litteral=set sql idsql id

a
10 c

���������

Figure 3.23: AST update a set b = 10 where c = 2;

Algorithm :
(1) : Recognize update and include relation a
(2) : Recognize set and include attribute [b]
(3) : Recognize where and the condition
(4) : Process update
(5) : End of statement

CHAPTER 3. IMPLEMENTATION DETAILS 59

3.1.6 Insert

The insert command has not been added to the grammar we are using. It
then can not be parsed and so it is not supported in the current version of
the software. Nevertheless we can easily write the translator.

• 40 > sqlstmt "insert into employees values('Gerard', 'Tremblay', 30,
'Analyst');";
update employees add {("Gerard", "Tremblay", 30, "Analyst")};

),
,

,
,

,,

,
,

,
,

,,

,
,

,
,

,,

,
,

,
,

,,

,
,

,
,

,,

sql statement

sql litteralsql litteralsql idInsert values

employees

sql litteral

‘Gerard’ ‘Tremblay’

(, , , ;sql litteral

30 ‘Analyst’

���������

Figure 3.24: AST insert into employees values('Gerard', 'Tremblay', 30,
'Analyst');

Algorithm :
(1) : Recognize insert and include relation employees
(2) : Recognize values and the data to input
(3) : Process values
(4) : End of statement

3.1.7 General algorithm

Let’s consider these 5 algorithms cited in the section above :
Algorithm :

(1) : Recognize into and store target relation name [destRel]
(2) : Recognize select and include attributes[a]
(3) : Recognize from and check presence of where
(4) : Include relations b
(5) : Add target relation name [destRel] to the final translated statement
(6) : End of statement

Algorithm :
(1’) : Recognize into and store target relation name [destRel]

CHAPTER 3. IMPLEMENTATION DETAILS 60

(2’) : Recognize select and include attributes [b]
(3’) : Recognize from and check presence of where
(4’ Discarded) : Discard from processing because of the join
(5’) : Process where before from and check presence of join
(6’) : Process join and determine type of join on [a] attribute
(7’) : Include conditions (e=1 and f='a')
(8’) : Add target relation name [destRel] to the final translated statement
(9’) : End of statement

Algorithm :
(1”) : Recognize into and store target relation name [destRel]
(2”) : Recognize select and recognize aggregation function
(3”) : Check presence of alias and group by
(4”) : Process aggregation function and include attributes [salary]
(5”) : Recognize from and check presence of where
(6”) : Process from and include relation employees
(7”) : Process having and include conditions
(8”) : Add target relation name [destRel] to the final translated statement
(9”) : End of statement

Algorithm :
(1”’) : Recognize update and include relation a
(2”’) : Recognize set and include attribute [b]
(3”’) : Recognize where and the condition
(4”’) : Process update
(5”’) : End of statement

Algorithm :
(1””) : Recognize delete and include relation b
(2””) : Recognize where and the condition
(3””) : Process delete
(4””) : End of statement

They will be mapped in the following general algorithm :

• The JRelix Runtime recognize the SQLSTMT command which has
been added to its grammar. This addition has been done modifying
the Parser.jjt to add SQLSTMT as a new token, <INSQL>, in the

CHAPTER 3. IMPLEMENTATION DETAILS 61

Commands Tokens section and modifying the Command() Method so
that it awaits the <INSQL> token with its <STRING> parameter
and its optional <FILE> 1 parameter. Depending on the presence or
not of the <FILE> parameter the OP INSQL or the OP INSQLFILE
command will be transmitted to the interpreter with the <STRING>
parameter.

• In the interpreter the executeCommand() Method has been modified:
two cases have been added to expect the OP INSQL or the OP INSQLFILE
command. The Translator, which consist of one class, Main, including
all its elements, is invoked through its translate() Method supplying it
with the String parameter, whether to consider it as a path or not, a
reference to the RD relation in RAM.

• In the translator itself if the String parameter is not a filename path2

it is divided into statements using the separator ";". (1, 1’, 1”) At
the same time the into Clause is extracted and removed from Selection
statements and the target relation is stored in the intoDest array.

• Still in the translate Method the statements are then concatenated into
an InputStream which is supplied to the ANTLR parser 3 which will
parse it and generate the ASTs corresponding to each statement.

• The visit() Method, which is the core method of the Translator, is then
recursively invoked on each AST to produce the translated statement.
This method generally translates sequentially unless some information
is needed at the beginning, e.g. group by Clause.

• (2, 2’, 2”) First of all the visit() recognizes the select and includes the
corresponding attributes.

In the case of expression, determined using the isExpression() method,
it adds them using the AddExpression() method.

(3”) In the case of aliases, determined using the isAlias() method, it
adds them using the AddAliases() method.

(4”) In the case of aggregate function it processes the aggregate function
using the group by in the visitGroup() Method.

1See Section 3.3
2See Section 3.3
3See Section 3.6

CHAPTER 3. IMPLEMENTATION DETAILS 62

(1”’, 2”’, 3”’, 4”’, 1””, 2””, 3””) If it recognizes update or delete rather
than select the whole statement is processed including the relation, the
condition and the column to update in the case of an update.

• (3, 3’, 5”) In the case of a select statement it then recognizes the from
and checks the presence of a where.

• (4, 6”) In the case of a where it delays the from processing because of
the join presence possibility and processes the where using the further
parsed where condition, through our Boolean Parser 4 with the parse-
WhereCondition() Method before the from and checks the presence of
a join with the isJoinGlobal() Method. If there is no join it processes
the from.

• (4’, 5’, 6’, 7’) In the case of a join it processes the join and determine the
type of the join on the selected attributes using the visitWhereJoin()
Method that also includes the conditions of the statement if necessary.

When unspecified the join attributes scan through the RD relation to
find to which relation they belong to disambiguate the join. In the case
of the stand alone translator there is no RD reference to disambiguate
so all joins must be completely specified.

• (7”)In the case of a where without a join or a having it includes condi-
tions using the visitWhere() Method.

• (5, 8’, 8”)It then adds the target relation name to the final translated
statement using the intoDest array.

• (6, 9’, 9”, 5”’, 4””) The final translated statement is returned to the
JRelix Runtime

• Once the translator returns the SQL translated into Aldat to the sys-
tem, it is then pushed onto the Parser Stack to be executed in the next
loop of the interpreter.Then the control is given back to the interpreter
that can loop for the next statement to execute which is the one we
just put in the Stack.

4See Section 3.6.4

CHAPTER 3. IMPLEMENTATION DETAILS 63

3.2 SQLEXP Keyword

We added the SQLEXP keyword to be able to use SQL relational expression
in enclosing Aldat statements. Any Aldat statement using relational expres-
sion can use it. The reason we could not use the SQLSTMT command is
because as other Aldat commands it is supposed to end by an action and
return to the system whereas in the case of relational expression we want to
return to the system the corresponding Selection. For the ease of examples
we will mostly consider printing statements.

3.2.1 Selections

Selects

Let’s consider the first of the series of runs in the previous chapter to have
an idea of what is occurring in the implementation :

1 > d<- c ijoin sqlexp "select a from b;";

The output will be :

d<- c ijoin ([a] in b);

To achieve this output we can succinctly describe what is occurring in the
following way :

• First of all the input stream is redirected from the String transmitted
to the translator by the JRelix system, then the lexer and the parser are
invoked. The rules of the grammar are processed, the tokens recognized
and finally we obtain the Abstract Syntax Tree (AST) corresponding
to our SQL statement.

• Then we visit recursively each of the subtrees corresponding to a state-
ment and store the result in a String before returning it to the JRelix
system for further processing.

To be more detailed for this run we have the following execution :

CHAPTER 3. IMPLEMENTATION DETAILS 64

b

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

From

sql id

table reference list

a

���������

Figure 3.25: AST select a from b;

• 1 > d<- c ijoin sqlexp "select a from b;";
d<- c ijoin ([a] in b);

Algorithm :
(1) : Recognize into absence and store system-generated intermediate
relation name
(2) : Recognize select and include attributes[a]
(3) : Recognize from and check presence of where
(4) : Include relations b
(5) : Add system-generated intermediate relation name to the final
translated statement
(6) : End of statement

As in the previous section, it is the into mechanism which is also used to
keep track of the intermediate relation name in the SQLEXP case. The name
generated by JRelix is just transferred by the interpreter to the translator
that adds it to the last Selection statement of the SQL String. That allows
us to have other statements to be executed in the same SQL String while
returning the result of the last Selection in the SQL translated.

Nevertheless it is worth mentioning that retrieving that correct system
generated intermediate name was not straightforward. A pretty clear com-
prehension on JRelix internal mechanism has to be acquired first.

• 5 > pr sqlexp "select a, b from (select a,b,c from d where (e=1 and
f='a') or g=2);";
pr [a,b] in ([a,b,c] where (e=1 and f="a") or g=2 in d);

Algorithm :
(1) : Recognize into absence and store system-generated intermediate
relation name
(2) : Recognize select and include attributes [a,b]

CHAPTER 3. IMPLEMENTATION DETAILS 65

or

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

���������

where where condition

and

;

== sql id =

e f g

sql id sql id sql litteral

1 2‘a’

sql statement

select select
list

sql id

From

a b c

table reference list

sql id sql id, sql id,

d

sql statement

select select
list

sql id

From

a b

table reference list

, sql id subquery

(sql id sql litteral)

���������

Figure 3.26: AST select a, b from (select a,b,c from d where (e=1 and f='a')
or g=2);

(3) : Recognize from and check presence of where
(4) : Recognize subquery
(5) : Recognize select and include attributes [a,b,c]
(6) : Recognize from and check presence of where
(7) : Process where before from and check presence of join
(8) : Include conditions (e=1 and f='a' or g=2)
(9) : Include relations d
(10) : End of subquery
(11) : Add system-generated intermediate relation name to the final
translated statement
(12) : End of statement

3.2.2 General algorithm

This general algorithm is a customized variation of the preceding one, for
the SQLSTMT command, to take care of SQLEXP specificities. Only the
differences are presented underneath :

• The JRelix Runtime recognize the SQLEXP command which has been
added to its grammar. This addition has been done modifying the
Parser.jjt to add SQLEXP as a new token, <EXPSQL>, in the Re-
served Words Tokens section and modifying the Primary() Method
so that it invokes the SQLExpression() Method which itself awaits
the <EXPSQL> token with its <STRING> parameter and its op-

CHAPTER 3. IMPLEMENTATION DETAILS 66

tional <FILE> 5 parameter. Depending on the presence or not of
the <FILE> parameter the OP EXPSQL or the OP EXPSQLFILE
command will be transmitted to the interpreter with the <STRING>
parameter.

• In the interpreter the evaluateTLExpression() Method has been mod-
ified: two cases have been added to detect the OP EXPSQL or the
OP EXPSQLFILE command. The Translator, which consist of one
class, Main, including all its elements, is invoked through its translate()
Method supplying it with the String parameter, whether to consider
it as a path or not, a reference to the RD relation in RAM and the
system-generated intermediate relation name. This system-generated
intermediate relation name is provided as one of the arguments of the
evaluateTLExpression() by the executeStatement() through a call to
the nextTempName() Method.

• The last selection without an into is assigned the intermediate relation
name in its intoDest index. All the other selections without into are
ignored. From there it works exactly as having an into for that relation.

• Once the translator returns the SQL translated into Aldat to the sys-
tem, it is then pushed onto the Parser Stack to be executed in the next
loop of the interpreter. Then the control is given back to the interpreter
that can loop for the next statement to execute which is the one we
just put in the Stack.

3.3 FILE Keyword

In both previous sections the SQL statements were directly written in the
String parameter. The extra parameter using the file keyword allows the
translator to know that the string transferred by the interpreter is not directly
the SQL to translate but the path to the file where the SQL statements are.
Let’s consider a file named 'example.sql' containing the following text in
the current directory:

select a into destRel from b;

5See Section 3.3

CHAPTER 3. IMPLEMENTATION DETAILS 67

We will have for the following run using the the SQLSTMT command
with the FILE extra parameter :

1 > sqlstmt file "example.sql";

The output corresponding :

destRel<- [a] in b;

b

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

From

sql id

table reference list

a

���������

Figure 3.27: AST select a into destRel from b;

Algorithm :
(1) : Recognize file extra parameter and read from file at specified path
(2) : Recognize into and store target relation name [destRel]
(3) : Recognize select and include attributes[a]
(4) : Recognize from and check presence of where
(5) : Include relations b
(6) : Add target relation name [destRel] to the final translated statement
(7) : End of statement

And if we consider a file named 'example2.sql' containing the following
text in the current directory:

select a from b;

We will have for the following run using the the SQLEXP keyword with
the FILE extra parameter :

2 > pr sqlexp file "example2.sql";

CHAPTER 3. IMPLEMENTATION DETAILS 68

b

�
�

�
�

��

�
�

�
�

��

sql statement

select select
list

sql id

From

sql id

table reference list

a

���������

Figure 3.28: AST select a from b;

The output corresponding :

pr [a] in b;

Algorithm :
(1) : Recognize file extra parameter and read from file at specified path
(2) : Recognize into absence and store system-generated intermediate rela-
tion name
(3) : Recognize select and include attributes[a]
(4) : Recognize from and check presence of where
(5) : Include relations b
(6) : Add system-generated intermediate relation name to the final trans-
lated statement
(7) : End of statement

3.3.1 General algorithms

The general algorithms are exactly the same as the ones described in the two
sections before. The only difference is rather dividing the String parameter
into statements in the translate() method, it is used as a path to a file whose
content is stored in a temporary String which will divided into statements.
From there the behavior is exactly the same for both algorithms.

3.4 Commands grammar used which ANTLR

cannot parse

Certain commands have not been added to the grammar we are using so
they can not be parsed and that is the reason why they are not supported in

CHAPTER 3. IMPLEMENTATION DETAILS 69

the current version of the software. Nevertheless we can easily support them
once they would have been integrated into the grammar because structures
are very close whether in Aldat or SQL. They are :

• The create command : table, view, trigger, ... etc

• The drop command

• The insert command

3.5 JRelix Configuration

Both the ANTLR and the SQL2RELIX Jar files should be included in the
classpath of JRelix to use the SQL front end interface in the JRelix Runtime.
The ANTLR jar is needed by the SQL2RELIX jar for the ASTs generation
and navigation. And the SQL2RELIX jar is obviously needed for the SQL
translation.

3.6 Tools

3.6.1 ANTLR v2.7.7 and how it operates

To generate the SQL parser we needed for our translator, we used this frame-
work and the SQL Grammar 6 provided on their website. This allows us to
think of the evolution of the parser. Through this "Meta-parser" we will be
able easily to use a new grammar including new SQL standards.

So the interest was double. First it allowed us to have a "Meta-parser"
that can generate the SQL parser we needed with all the AST that we could
navigate through easily for our translation. Second it allowed us to plan a
way to integrate the omissions in our current version of the translator from
the beginning knowing that we could update the grammar as soon as we find
a new one more conforming to the recent standards.

To have an idea of how the meta parser operates let’s go through the
steps that we did to generate our SQL Parser.

• First of all we download it from the ANTLR website[24]:

6See Section 3.6.3

CHAPTER 3. IMPLEMENTATION DETAILS 70

• Then what is needed is a grammar that defines the rules of the Parser
and the Lexer. In our case we directly took an SQL grammar[26] from
the ANTLR website but otherwise one could have defined it. The
grammar is principally composed of two parts :

– A subclass of the generic Parser class provided by ANTLR. This
subclass allows us to specify the specific rules of our SQL Parser.
The rules are written using the standard Extended Backus-Naur
Form.

– A subclass of the generic Lexer class provided by ANTLR. This
subclass allows us to specify the operators of our SQL Lexer. The
pattern is the same as above.

• Then from that grammar we can generate our specific Parser and Lexer
using the ANTLR engine. We just run it on the grammar :

java antlr.Tool sql.g;

It will run through the grammar and that is all that needed to be done
with the Meta Parser. The files have been generated from this point
on. They can now be used in the design of our translator.

Nevertheless we will need two other classes from the ANTLR Frame-
work :

– ANTLR.collections.AST
This class gives the methods to be able to navigate through the
ASTs, to identify the node type and to retrieve its value. The
methods that we principally use are :

∗ getFirstChild()
This methods allows us to get the first child of an AST.

∗ getNextSibling()
This methods allows us to get the next sibling of an AST.

∗ getType()
This methods allows us to get the type of a node of an AST.

∗ getText()
This methods allows us to get the the value of a node of an
AST.

CHAPTER 3. IMPLEMENTATION DETAILS 71

– ANTLR.ASTFactory
This class is a factory class for the AST. It then gives methods
to create ASTs that we used principally for the boolean parser
that we developed and that is described in this chapter in a few
sections.

3.6.2 Files generated

The generated files will be :

• 1 SQLLexer.java

• 2 SQLParser.Java

• 3 SQLTokenTypes.java

• 4 SQLParser.smap

• 5 SQLLexer.smap

• 6 SQLTokenTypes.txt

The files we will take a deeper look at are the Java files. The information in
the other three files are redundant with the one contained in the Java Files
from the point of view of our research. To use the parser easily from the
main elements of the program it will be necessary to navigate through the
AST generated with the parser. All this will be allowed by the Java files
generated by ANTLR. Among those files, some will allow us to make the
lexical analysis (1), the parsing itself (2) and the AST generation (2). We
then use the AST collection class provided by the ANTLR package to easily
navigate through the AST. A dictionary of the different tokens (3) , the token
types, is also generated which allows us to easily identify each node of the
AST and have the corresponding behavior.

Apart from the beginning where the lexing and parsing take place, we
do not use the lexer and parser classes. Whereas the token types class has
been used all over our translator because it allowed us to identify the clauses
and to match almost one by one the clauses with Aldat. We also use a lot
the AST collection class and the AST Factory class provided by the ANTLR
package.

CHAPTER 3. IMPLEMENTATION DETAILS 72

We also needed to have Java files because the current version of Aldat,
JRelix, is written in Java and to ease the integration of our translator in
JRelix it was much better to use the same programming language. We added
the two new commands, sqlstmt and sqlexp in JRelix, to be able to directly
type SQL statements in Aldat with these commands and have the output of
our translator redirected to JRelix and executed. This was the main idea of
our research: be able to use SQL in Aldat with the transparent SQL interface.

3.6.3 Oracle 7 SQL grammar from ANTLR website

From the ANTLR website grammar library we took this grammar [26] to
generate the corresponding java files that would be used to parse the SQL,
to generate the Abstract Syntax Tree and to navigate through it with our
translator. This grammar is a little bit old. It is based on SQL 1 from 1986
principally. Oracle did not include ANSI statements or other evolutions of
SQL until Oracle 9.

This grammar is not also totally complete. We realized this during the
course of our research. It does not cover the whole scope of the complete
Oracle 7. Nevertheless it still covers enough to be able to create a translator
that covers the basics of SQL which was our goal.

The main reason we chose this grammar is because we wanted a SQL
grammar that we can use to generate Java files. More recent grammars were
available but they either did not generate Java but rather C++ files which
was not what we needed or they would impose the PL/SQL Syntax which is
specific to Oracle and more complex than the simple SQL syntax. So even
if it was a little bit old this grammar was the most generic we could find
without having to rewrite one of our own.

3.6.4 Boolean Parser

Due to the absence of analysis in the parsing of the Where Condition due to
the grammar used in ANTLR we had to develop using the ANTLR Frame-
work and the AST classes a boolean parser. This is principally because the
AST generated for the Where Condition Clause is flat. At first we tried to
work around it and just translate it directly. Nevertheless with the joins we
finally noticed we needed to reparse it to have a real AST that we can use.
To do so we used the ASTFactory class to generate the ASTs correspond-
ing to the boolean conditions. We did not go beyond parsing the boolean

CHAPTER 3. IMPLEMENTATION DETAILS 73

expression because we did not need to. This part would be handled by the
JRelix parser the output of our translator would be fed directly to it.

The boolean parser is invoked through the parseWhereCondition() Method
in the translator. It takes as argument the flat AST corresponding to the
boolean expression and returns the reconstructed, layered AST correspond-
ing to it.

Having a true AST rather than a flat one allows us to keep using our
recursive approach to explore it. E.g. in the case of joins it allowed us to use
the isJoinGlobal() method recursively up to the leaves of the boolean AST
where the simple isJoin() method would be invoked. Whereas before creating
we had to sequentially check for joins and have a very complex approach in
the way we were processing Where Condition in particular with joins on
several attributes. Generally speaking dealing with flat ASTs was much
more error prone and complex than with real structured ASTs. Therefore
adding this further parsing was not a luxury but a real necessity.

To give an idea of how the boolean parser operates let’s consider the
following boolean condition :

e=1 and f='a' or g=2

In the context of the following select :

select a, b from (select a,b,c from d where (e=1 and f='a') or
g=2);

It will normally generate this corresponding flat AST:

And after a second parsing it will finally generate this AST :

The parser mainly recursively look for the boolean operators and and or
and constructs on the way the ASTs corresponding to the boolean expressions
on each side of the operator until it arrives to non boolean expression (not
involving and or or) and then consider them as leaves. Our Boolean parser
takes into account boolean expressions enclosed in brackets as one boolean
expression and breaks it down to the non boolean expression.

In the case of our example the boolean expression is first parsed in two
expressions connected with an or operator by calling the parseWhereCondi-
tion():

CHAPTER 3. IMPLEMENTATION DETAILS 74

or

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

���������

where where condition

and

;

== sql id =

e f g

sql id sql id sql litteral

1 2‘a’

sql statement

select select
list

sql id

From

a b c

table reference list

sql id sql id, sql id,

d

sql statement

select select
list

sql id

From

a b

table reference list

, sql id subquery

(sql id sql litteral)

���������

Figure 3.29: AST select a, b from (select a,b,c from d where (e=1 and f='a')
or g=2);

sql id

sql id =

g

sql litteral

2

Non Boolean Expression

���������
�

�
�

�
��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

���������

�
�

�
�

��

where where condition ;

sql statement

select select
list

sql id

From

a b c

table reference list

sql id sql id, sql id,

d

sql statement

select select
list

sql id

From

a b

table reference list

, sql id subquery

==

e f

sql id sql id sql litteral

1 ‘a’

Boolean Expression

Or

Boolean Expression

And

Non Boolean Expression Non Boolean Expression

Figure 3.30: AST select a, b from (select a,b,c from d where (e=1 and f='a')
or g=2);

CHAPTER 3. IMPLEMENTATION DETAILS 75

• A boolean expression : (e=1 and f='a')

• And a non boolean expression : g=2

The first operand will be further broken down in two leaves connected by an
and by recursively calling the parseWhereCondition():

• A non boolean expression : e=1

• A non boolean expression : f='a'

Which gives the AST mentioned above.

Chapter 4

Conclusion

4.1 Recapitulation

After a brief introduction to SQL and Aldat generalities and syntaxes their
resemblances and differences begin to be noticeable and some of the chal-
lenges that had to be overcome started to arises with their comparison. In
particular it becomes obvious that with the vast panoply of RDBMS vendors
(IBM, MySQL, SQL Server, Sybase, Oracle) and SQL versions (86, 92, 99,
2003) a choice had to be made for the SQL grammar that will be used in this
research. These challenges only strengthen the motivation for this research
that would use some key notions used through it (context-free grammars, LL
parsers, Boolean Logic, ASTs).

After the design and the implementation of the SQL front-end for JRelix
it became obvious that there will be two categories of users : the basic end-
users and those interested in its internals. From there the user’s manual
really allows somebody who will just use the system to catch on quickly on
how it operates and to see which translations he could expect from this JRelix
extension. The main keywords (SQLSTMT, SQLEXP, FILE) are introduced
and their behavior described through a series of examples to easily grasp
their meaning. It goes from simple statements to complex multi-statements
batches to translate and execute on the system.

The implementation manual then deepens into the architecture and the
algorithms of the systems. Each of the keywords and how it operates on
selections, updates, deletions, joins, aggregations and insertions is described
in detail with the corresponding ASTs generated along the algorithm for

76

CHAPTER 4. CONCLUSION 77

the same series of examples as the user’s manual. The configuration of the
JRelix system to incorporate the extension as well as the tools used to build
it (ANTLR, the Oracle SQL grammar, our own Boolean Parser) are also
described in this manual.

4.2 Future work

Several leads have been revealed by this research :

• One lead that needs to be followed would be to find a more recent
grammar or complete this grammar to make it compliant with the more
current SQL standard. The objective would be to make it compliant
with the 2003-SQL. Three possibilities are the most plausible:

– 1 A new grammar is posted in the ANTLR Grammar list that
corresponds to the 2003-SQL. In that case the parser would be
regenerated with that grammar and the backward compatibility
with the current translator would need to be checked before going
forward and completing the translation of the remaining grammar.

– 2 Modify and update the current grammar to make it compliant.
In this case no backward compatibilty check would need to be
performed since the research would build on the current grammar
and its corresponding generated parser. Nevertheless this possi-
bily requires a certain ease with the specifications of the rules of
the grammar to consistently add them.

– 3 Modify the PL/SQL Grammar available in the ANTLR Gram-
mar list to only keep the SQL part of the grammar. In that case
also the backward compatibility needs to be checked before going
forward. It is also important to make sure that with the removal
of the rules intended for the PL/SQL part no new ambiguity is
introduced.

• We appreciate the examiner’s suggestion that we modify the rules
to trigger AST-generation automatically instead of writing our own
Boolean Parser. Having the grammar deal directly with all aspects of
the parsing and the AST-generation without needing further program-
ming could be less error-prone.

CHAPTER 4. CONCLUSION 78

This has not been done this way in the first place because of a limited
knowledge of the ANTLR grammar syntax at the beginning of the
research.

• It is also important to support more of the SQL grammar in our trans-
lator. Our research goal was not to be extensive but to begin to show
that Aldat equivalents can be written for any code in SQL, which is the
de facto standard language concerning databases. To push it further it
would be logical to try to think about questions as :

– What can Aldat do that SQL can not do?
One strength of Aldat is that it supports recursion by design
whereas in SQL recursions are often not allowed or when they
are there is always a boundary in the depth of recusion allowed
(triggers, views, ...). Therefore some applications, e.g., an infer-
ence engine that derives the possible conclusions from the set of
rules and the known facts, can be done easily in Aldat and are just
currently impossible in SQL [13]. Since Aldat supports recursion
natively with the principles of closure and abstraction, there is no
limitation in the level of recursion.

Another great limitation of SQL is that the set of aggregation func-
tions available is limited and there can not be any functional ex-
pression that is not derived from them. Certain RDBMS gave the
opportunity to write in their own procedural extension a custom-
aggregated function but the syntax is complex and limited to the
corresponding RDBMS if they offer it. In Aldat with the Domain
Algebra there is no limitation to the functions that can be created
for the aggregations. For example a simple aggregated product
cannot be done easily in SQL whereas it is done in two lines for
Aldat :

> let prod be red * of possibilities;
> pr [prod] in permutations;

Matrix multiplication and more complex aggregations can be per-
formed by Aldat as easily [13], in just a few lines, whereas one
can imagine how complex the custom defined aggregation func-
tion may get for it. Furthermore there are no cumulative func-
tions supplied by SQL and any of them that would be needed

CHAPTER 4. CONCLUSION 79

would have to be defined if possible in the same schema for the
custom aggregate functions. In Aldat they are already integrated
in the system.

The recent support of XML in the SQL standard [23] could also be
compared to the semistructured data support [8] in Aldat. This
could lead to an exciting research toward the current interest in
XML-related subjects.

– Can Aldat do all that SQL can do even though Aldat is
much simpler than SQL?
To this point we have been able to support all of the SQL capa-
bilities that we intended to in our research, principally the more
commonly used. To prove that Aldat totally subsumes SQL, this
research would need to be pushed further and become extensive
on the capacities of SQL.

Nevertheless we need to keep in mind that Aldat does not pro-
vide constraint mechanisms such as the Primary Key to avoid
duplicates because of its relational approach that does not create
duplicates. In the same kind of idea, it does not provide Indexes
mechanisms because Aldat considers indexing to be an implemen-
tation issue outside of the scope of the langage. Unlike in SQL
any tuple is unique and is not identified by its row number. A
tuple with a row number X can not have the exact same data as
a tuple with the row number Y.

• Something else that needs to be looked at is the comparison between
the queries written in SQL and their translation into Aldat to compare
the syntactic complexity of these queries. For example if we look at
the selections:

> pr sqlexp "select * from b;";
pr b;

It is obvious that the syntaxic complexity of the query is lower in Aldat
than in SQL.

It might also be interesting to see if the same queries could have been
expressed more easily if they have been directly written in Aldat. The

CHAPTER 4. CONCLUSION 80

example that comes directly at mind is the ijoin ijoin ijoin example1

which is the brute force translation from the SQL query for a join on
several attributes than can collapse to the more simpler ijoin with the
corresponding attributes. Other occurrences of these simplifications
could constitute the pool of study.

1See Section 2.1.2

Appendix A

SQL Grammar

class SqlParser extends Parser;

options {
exportVocab = Sql;
k = 4;
buildAST = true;
}

tokens {
SQL STATEMENT;
SELECT LIST;
TABLE REFERENCE LIST;
WHERE CONDITION;
SUBQUERY;
SQL IDENTIFIER;
SQL LITERAL;
FUNCTION;
GROUP FUNCTION;
USER FUNCTION;
MULTIPLY;
}

start rule: (sql statement)* EOF;

sql statement: sql command (SEMI)?

81

APPENDIX A. SQL GRAMMAR 82

{ #sql statement = #([SQL STATEMENT, ”sql statement”], #sql statement);
}
;

sql command:
to modify data
;

to modify data:
select command
‖ update command
‖ delete command
;

select command
:
select statement (”union” select statement)*
;

select statement
:
(OPEN PAREN select command CLOSE PAREN) => OPEN PAREN
select command CLOSE PAREN
‖ select expression
;

select expression:
”select” (”all” ‖ ”distinct”)? select list
”from” table reference list
(”where” where condition)?
(connect clause)?
(group clause)?
((set clause) => set clause)?
((order clause) => order clause)?
((update clause) => update clause)?
;

APPENDIX A. SQL GRAMMAR 83

select list:
((displayed column) => displayed column (COMMA dis-
played column)*
‖ ASTERISK)
{ #select list = #([SELECT LIST, ”select list”], #select list); }
;

table reference list:
selected table (COMMA selected table)*
{ #table reference list = #([TABLE REFERENCE LIST, ”ta-
ble reference list”], #table reference list); }
;

where condition:
condition
{ #where condition = #([WHERE CONDITION, ”where condition”],
#where condition); }
;

displayed column
:
((schema name DOT)? table name DOT ASTERISK) => ((
schema name DOT)? table name DOT ASTERISK)
‖ (exp simple (alias)?)
;

schema name
: identifier
;

table name
: identifier
;

exp simple : expression ;

expression
: term ((PLUS ‖ MINUS) term)*

APPENDIX A. SQL GRAMMAR 84

;

alias
: (”as”)? identifier
;

term
: factor ((multiply ‖ DIVIDE) factor)*
;

multiply:
ASTERISK
{ #multiply = #([MULTIPLY, ”multiply”], #multiply); }
;

factor
: factor2 (VERTBAR VERTBAR factor2)*
;

factor2
: (sql literal) => sql literal
‖ ((PLUS ‖ MINUS) expression) => (PLUS ‖ MINUS) ex-
pression
‖ (function (OPEN PAREN expression (COMMA expression
)* CLOSE PAREN)) => function (OPEN PAREN expression
(COMMA expression)* CLOSE PAREN)
{ #factor2 = #([FUNCTION, ”function”], #factor2); }
‖ (group function OPEN PAREN (ASTERISK ‖ ”all” ‖ ”dis-
tinct”)? (expression)? CLOSE PAREN) => group function
OPEN PAREN (ASTERISK ‖ ”all” ‖ ”distinct”)? (expres-
sion)? CLOSE PAREN
{ #factor2 = #([GROUP FUNCTION, ”group function”], #fac-
tor2); }
‖ (user defined function (OPEN PAREN expression (COMMA
expression)* CLOSE PAREN)) => user defined function (
OPEN PAREN expression (COMMA expression)* CLOSE PAREN
)
{ #factor2 = #([USER FUNCTION, ”user function”], #factor2);

APPENDIX A. SQL GRAMMAR 85

}
‖ (OPEN PAREN expression CLOSE PAREN) => OPEN PAREN
expression CLOSE PAREN
‖ (variable) => variable
‖ expression list
;

expression list : OPEN PAREN expression (COMMA expres-
sion)+ CLOSE PAREN ;

sql literal:
(NUMBER ‖ QUOTED STRING ‖ ”null”)
{ #sql literal = #([SQL LITERAL, ”sql literal”], #sql literal);
}
;

variable
:
(column spec (OPEN PAREN PLUS CLOSE PAREN)) =>
column spec (OPEN PAREN PLUS CLOSE PAREN)
‖ column spec
;

column spec
:
((schema name DOT)? table name DOT)? column name
;

user defined function
: ((schema name DOT)? package name DOT)? identifier
;

package name : identifier ;

column name : identifier ;

function
:

APPENDIX A. SQL GRAMMAR 86

number function
‖ char function
‖ group function
‖ conversion function
‖ other function
;

number function
:
”abs” ‖ ”ceil” ‖ ”floor” ‖ ”mod” ‖ ”power” ‖ ”round”
‖ ”sign” ‖ ”sqrt” ‖ ”trunc”
;

char function
:
”chr” ‖ ”initcap” ‖ ”lower” ‖ ”lpad” ‖ ”ltrim” ‖ ”replace”
‖ ”rpad” ‖ ”rtrim” ‖ ”soundex” ‖ ”substr” ‖ ”translate” ‖ ”up-
per”
‖ ”ascii” ‖ ”instr” ‖ ”length”
‖ ”concat”
;

group function
:
”avg” ‖ ”count” ‖ ”max” ‖ ”min” ‖ ”stddev” ‖ ”sum”
‖ ”variance”
;

conversion function
:
”chartorowid” ‖ ”convert” ‖ ”hextoraw” ‖ ”rawtohex” ‖ ”rowid-
tochar”
‖ ”to char” ‖ ”to date” ‖ ”to number”
;

other function
:
”decode” ‖ ”dump” ‖ ”greatest” ‖ ”least” ‖ ”nvl”

APPENDIX A. SQL GRAMMAR 87

‖ ”uid” ‖ ”userenv” ‖ ”vsize”
;

pseudo column
:
”user” ‖ ”sysdate”
;

selected table
:
(table spec ‖ subquery) (alias)?
;

table spec
:
(schema name DOT)? table name (AT SIGN link name)?
;

table alias
:
(schema name DOT)? table name (AT SIGN link name)? (
alias)?
;

link name
: identifier
;

condition : logical term (”or” logical term)* ;

logical term
: logical factor (”and” logical factor)*
;

logical factor
:
((”prior”) ? exp simple comparison op (”prior”)? exp simple
) => ((”prior”) ? exp simple comparison op (”prior”)?

APPENDIX A. SQL GRAMMAR 88

exp simple)
‖ (exp simple (”not”)? ”in”) => exp simple (”not”)? ”in”
exp set
‖ (exp simple (”not”)? ”like”) => exp simple (”not”)? ”like”
expression (”escape” QUOTED STRING)?
‖ (exp simple (”not”)? ”between”) => exp simple (”not”)?
”between” exp simple ”and” exp simple
‖ (exp simple ”is” (”not”)? ”null”) => exp simple ”is” (”not”
)? ”null”
‖ (quantified factor) => quantified factor
‖ (”not” condition) => ”not” condition
‖ (OPEN PAREN condition CLOSE PAREN)
;

quantified factor
:
(exp simple comparison op (”all” ‖ ”any”)? subquery) =>
exp simple comparison op (”all” ‖ ”any”)? subquery
‖ ((”not”)? ”exists” subquery) => (”not”)? ”exists” sub-
query
‖ subquery
;

comparison op
:
EQ ‖ LT ‖ GT ‖ NOT EQ ‖ LE ‖ GE
;

exp set
: (exp simple) => exp simple
‖ subquery
;

subquery
:
OPEN PAREN select command CLOSE PAREN
{ #subquery = #([SUBQUERY, ”subquery”], #subquery); }
;

APPENDIX A. SQL GRAMMAR 89

connect clause
:
(”start” ”with” condition)? // the start can be before the con-
nect by
”connect” ”by”
condition
(”start” ”with” condition)?
;

group clause
:
”group” ”by” expression (COMMA expression)* (”having” con-
dition)?
;
set clause
:
((”union” ”all”) ‖ ”intersect” ‖ ”minus”) select command
;

order clause
:
”order” ”by” sorted def (COMMA sorted def)*
;

sorted def
:
((expression) => expression ‖ (NUMBER) => NUMBER) (
”asc” ‖ ”desc”)?
;

update clause
:
”for” ”update” (”of” column name (COMMA column name)*
)? (”nowait”)?
;

delete command

APPENDIX A. SQL GRAMMAR 90

:
”delete” (”from”)? table alias (”where” condition)?
;

update command
:
(subquery update) => subquery update
‖ simple update
;

simple update
:
”update” table alias
”set” column spec EQ ((expression) => expression ‖ subquery
)
(COMMA column spec EQ ((expression) => expression ‖
subquery))*
”where” condition
;

subquery update
:
”update” table alias
”set” OPEN PAREN column spec (COMMA column spec)*
CLOSE PAREN EQ subquery
”where” condition
;

identifier:
(IDENTIFIER ‖ QUOTED STRING ‖ keyword)
{ #identifier = #([SQL IDENTIFIER, ”sql identifier”], #identi-
fier); }

;

quoted string : QUOTED STRING ;

match string : QUOTED STRING ;

APPENDIX A. SQL GRAMMAR 91

keyword
:
”abs”
‖ ”ascii”
‖ ”ceil”
‖ ”chartorowid”
‖ ”chr”
‖ ”concat”
‖ ”convert”
‖ ”count”
‖ ”decode”
‖ ”dump”
‖ ”floor”
‖ ”greatest”
‖ ”hextoraw”
‖ ”initcap”
‖ ”instr”
‖ ”intersect”
‖ ”least”
‖ ”length”
‖ ”lower”
‖ ”lpad”
‖ ”ltrim”
‖ ”nvl”
‖ ”power”
‖ ”rawtohex”
‖ ”replace”
‖ ”round”
‖ ”rowidtochar”
‖ ”rpad”
‖ ”rtrim”
‖ ”sign”
‖ ”soundex”
‖ ”sqrt”
‖ ”substr”
‖ ”sysdate”
‖ ”to char”

APPENDIX A. SQL GRAMMAR 92

‖ ”to date”
‖ ”to number”
‖ ”translate”
‖ ”trunc”
‖ ”upper”
‖ ”user”
‖ ”userenv”
‖ ”vsize”
;

class SqlLexer extends Lexer;

options {
exportVocab = Sql;
testLiterals = false;
k = 2;
caseSensitive = false;
caseSensitiveLiterals = false;
charVocabulary = ’\3’ .. ’\177’;
}

IDENTIFIER options { testLiterals=true; }
:
’a’ .. ’z’ (’a’ .. ’z’ ‖ ’0’ .. ’9’ ‖ ’ ’ ‖ ’$’ ‖ ’#’)*
;

QUOTED STRING
: ’\” (˜’\”)* ’\”
;

SEMI : ’;’;
DOT : ’.’ ;
COMMA : ’,’ ;
ASTERISK : ’*’ ;
AT SIGN : ’’ ;
OPEN PAREN : ’(’ ;
CLOSE PAREN : ’)’ ;
PLUS : ’+’ ;

APPENDIX A. SQL GRAMMAR 93

MINUS : ’-’ ;
DIVIDE : ’/’ ;
VERTBAR : ’‖’ ;
EQ : ’=’ ;
NOT EQ :
’<’ { ttype = LT; }
((’>’ { ttype = NOT EQ; })
‖ (’=’ { ttype = LE; }))?
‖ ”!=” ‖ ”ˆ=”
;
GT : ’>’ (’=’ { ttype = GE; })? ;
NUMBER
:
(PLUS ‖ MINUS)?
((N DOT N) => N DOT N ‖ DOT N ‖ N)
(”e” (PLUS ‖ MINUS)? N)?
;

protected
N : ’0’ .. ’9’ (’0’ .. ’9’)* ;

DOUBLE QUOTE : ’”’ { $setType(Token.SKIP); } ;

WS : (’ ’
‖ ’\t’
‖ ’\r’ ’\n’ { newline(); }
‖ ’\n’ { newline(); }
‖ ’\r’ { newline(); }
)
{$setType(Token.SKIP);}
;

Appendix B

Sql Token Types

public interface SqlTokenTypes {
int EOF = 1;
int NULL TREE LOOKAHEAD = 3;
int SQL STATEMENT = 4;
int SELECT LIST = 5;
int TABLE REFERENCE LIST = 6;
int WHERE CONDITION = 7;
int SUBQUERY = 8;
int SQL IDENTIFIER = 9;
int SQL LITERAL = 10;
int FUNCTION = 11;
int GROUP FUNCTION = 12;
int USER FUNCTION = 13;
int MULTIPLY = 14;
int SEMI = 15;
int LITERAL union = 16;
int OPEN PAREN = 17;
int CLOSE PAREN = 18;
int LITERAL select = 19;
int LITERAL all = 20;
int LITERAL distinct = 21;
int LITERAL from = 22;
int LITERAL where = 23;
int COMMA = 24;
int ASTERISK = 25;

94

APPENDIX B. SQL TOKEN TYPES 95

int DOT = 26;
int PLUS = 27;
int MINUS = 28;
int LITERAL as = 29;
int DIVIDE = 30;
int VERTBAR = 31;
int NUMBER = 32;
int QUOTED STRING = 33;
int LITERAL null = 34;
int LITERAL abs = 35;
int LITERAL ceil = 36;
int LITERAL floor = 37;
int LITERAL mod = 38;
int LITERAL power = 39;
int LITERAL round = 40;
int LITERAL sign = 41;
int LITERAL sqrt = 42;
int LITERAL trunc = 43;
int LITERAL chr = 44;
int LITERAL initcap = 45;
int LITERAL lower = 46;
int LITERAL lpad = 47;
int LITERAL ltrim = 48;
int LITERAL replace = 49;
int LITERAL rpad = 50;
int LITERAL rtrim = 51;
int LITERAL soundex = 52;
int LITERAL substr = 53;
int LITERAL translate = 54;
int LITERAL upper = 55;
int LITERAL ascii = 56;
int LITERAL instr = 57;
int LITERAL length = 58;
int LITERAL concat = 59;
int LITERAL avg = 60;
int LITERAL count = 61;
int LITERAL max = 62;
int LITERAL min = 63;

APPENDIX B. SQL TOKEN TYPES 96

int LITERAL stddev = 64;
int LITERAL sum = 65;
int LITERAL variance = 66;
int LITERAL chartorowid = 67;
int LITERAL convert = 68;
int LITERAL hextoraw = 69;
int LITERAL rawtohex = 70;
int LITERAL rowidtochar = 71;
int LITERAL to char = 72;
int LITERAL to date = 73;
int LITERAL to number = 74;
int LITERAL decode = 75;
int LITERAL dump = 76;
int LITERAL greatest = 77;
int LITERAL least = 78;
int LITERAL nvl = 79;
int LITERAL uid = 80;
int LITERAL userenv = 81;
int LITERAL vsize = 82;
int LITERAL user = 83;
int LITERAL sysdate = 84;
int AT SIGN = 85;
int LITERAL or = 86;
int LITERAL and = 87;
int LITERAL prior = 88;
int LITERAL not = 89;
int LITERAL in = 90;
int LITERAL like = 91;
int LITERAL escape = 92;
int LITERAL between = 93;
int LITERAL is = 94;
int LITERAL any = 95;
int LITERAL exists = 96;
int EQ = 97;
int LT = 98;
int GT = 99;
int NOT EQ = 100;
int LE = 101;

APPENDIX B. SQL TOKEN TYPES 97

int GE = 102;
int LITERAL start = 103;
int LITERAL with = 104;
int LITERAL connect = 105;
int LITERAL by = 106;
int LITERAL group = 107;
int LITERAL having = 108;
int LITERAL intersect = 109;
int LITERAL minus = 110;
int LITERAL order = 111;
int LITERAL asc = 112;
int LITERAL desc = 113;
int LITERAL for = 114;
int LITERAL update = 115;
int LITERAL of = 116;
int LITERAL nowait = 117;
int LITERAL delete = 118;
int LITERAL set = 119;
int IDENTIFIER = 120;
int N = 121;
int DOUBLE QUOTE = 122;
int WS = 123;
int ML COMMENT = 124;
}

Bibliography

[1] Patrick Baker. Design and implementation of database computations in
Java. Master’s thesis, McGill University, 1998.

[2] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A structured
english query language. In Proceedings of the ACM SIGFIDET Work-
shop on Data Description, Access and Control, pages 249–264, 1974.

[3] N. Chomsky. Three models for the description of language. Information
Theory, IEEE Transactions on, 2(3):113–124, 1956.

[4] E. F. Codd. A relational model for large shared data banks. Communi-
cations of ACM, 13(6):377–387, 1970.

[5] Andrew Eisenberg and Jim Melton. SQL/XML is making good progress.
ACM SIGMOD Record, 31(2):101–108, 2002.

[6] Andrew Eisenberg and Jim Melton. Advancements in SQL/XML. ACM
SIGMOD Record, 33(3):79–86, 2004.

[7] G. Fischer, J. Lusiardi, and J. Wolff von Gudenberg. Abstract syntax
trees - and their role in model driven software development. In Software
Engineering Advances, 2007. ICSEA 2007. International Conference on,
pages 38–38, 2007.

[8] Yu Gu. Basic operators for semistructured data in a relational program-
ming language. Master’s thesis, McGill University, 2005.

[9] Biao Hao. Implementation of the nested relational algebra in Java.
Master’s thesis, McGill University, 1998.

[10] IBM. IBM DB2 9 server SQL reference. Volume 1 & 2, September 2006.

98

BIBLIOGRAPHY 99

[11] Thomas Kuhn and Olivier Thomann. Abstract syntax tree. Eclipse
Corner Articles, 2006.

[12] T. H. Merrett. Relational Information Systems. Reston Publishing Co.,
1984.

[13] T. H. Merrett. Aldat: A retrospective on a work in progress. Information
Systems, 32(4):505–544, 2007.

[14] Microsoft. Microsoft SQL server 2005 books online. September 2007.

[15] Sun Microsystems. Javacc 4.0. WEBSITE : https://javacc.dev.java.net/,
January 2 2006.

[16] MySQL. MySQL 5.1 reference manual. WEBSITE :
http://dev.mysql.com/doc/refman/5.0/en/, December 2007.

[17] National Institute of Standards and Technology. SQL comformance test
suite. WEBSITE : http://www.itl.nist.gov/div897/ctg/sql form.htm,
1996.

[18] Oracle. Oracle 7 server SQL reference. Release 7.3, February 1996.

[19] International Standards Organization. ANSI/ISO/IEC 9075:1986
database language SQL. Technical report, ISO, 1986.

[20] International Standards Organization. ISO/IEC 8824 abstract syntax
notation one. Technical report, ISO, 1990.

[21] International Standards Organization. ANSI/ISO/IEC 9075:1992
database language SQL. Technical report, ISO, 1992.

[22] International Standards Organization. ANSI/ISO/IEC 9075:1999
database language SQL. Technical report, ISO, 1999.

[23] International Standards Organization. ANSI/ISO/IEC 9075:2003
database language SQL. Technical report, ISO, 2003.

[24] Terence Parr. Antlr v2.7.7. WEBSITE : http://www.antlr.org/, Novem-
ber 1 2006.

BIBLIOGRAPHY 100

[25] M. van den Brand, P.-E. Moreau, and J. Vinju. Generator of efficient
strongly typed abstract syntax trees in Java. Software, IEE Proceedings,
152(2):170–78, 2005.

[26] Brent Wiese. Oracle 7 SQL grammar. WEBSITE:
http://www.antlr.org/grammar/list, June 14 2003.

[27] Niklaus Wirth. What can we do about the unnecessary diversity of nota-
tion for syntactic definitions? Communications of the ACM, 20(11):822–
823, 1977.

[28] Zhongxia Yuan. Java implementation of the domain algebra for nested
relations. Master’s thesis, McGill University, 1998.

