

Basic Operators for

Semistructured Data in a

Relational Programming Language

Yu Gu

School of Computer Science

McGill University, Montreal

December 2005

A thesis submitted to McGill University

in partial fulfilment of the requirements of the degree of

Master of Science in Computer Science.

Copyright © Yu Gu 2005

 i

Contents

Abstract……………………………………………………………………………… iv

Résumé ……………………………………………………………………………………………….v

Acknowledgement ………………………………………………………………………vi

Chapter 1 Introduction …………………………………………………………………1

1.1 Motivation ………………………………………………………………………….1

1.1.1 Grep Operator and Substring Function ………………………………………1

1.1.2 Union Type Domain …………………………………………………………2

1.1.3 Top Level Scalar ……………………………………………………………..4

1.2 Background and related work ……………………………………………………...5

1.2.1 Relational Database ………………………………………………………….5

1.2.2 Nested Relation ………………………………………………………………6

1.2.3 Semistructured data ………………………………………………………….7

1.2.4 Semistructured data in the Aldat Project …………………………………...10

1.2.5 String searching and grep operator …………………………………………12

1.3 Thesis outline ……………………………………………………………………..15

Chapter 2 JRelix Overview ……………………………………………………………16

2.1 Getting Started ……………………………………………………………………16

2.2 Commands ………………………………………………………………………..16

2.3 Declaration and Initialization ……………………………………………………..16

2.3.1 Domain Declaration ………………………………………………………...16

2.3.2 Relation Declaration and Initialization ……………………………………..17

2.4 Relational Algebra ………………………………………………………………..17

2.4.1 Unary Operators …………………………………………………………….17

2.4.2 Binary Operators ……………………………………………………………18

 2.5 Domain Algebra …………………………………………………………………..20

 2.6 Nested relation ……………………………………………………………………21

Chapter 3 Users’ manual ………………………………………………………………23

 3.1 Grep ……………………………………………………………………………….23

3.1.1 An Example ………………………………………………………….……...23

 ii

3.1.2 Parameter List 1 of Grep ……………………………………………………23

3.1.3 Regular expression of Grep ………………………………………………...24

3.1.4 Parameter List 2 of Grep ……………………………………………………30

3.1.5 Using relation or top level scalar as pattern …………………………..….....32

 3.2 Union Types ……………………………………………………….…..………….33

3.2.1 Definition of Union Types ……………………………………..…………33

3.2.2 Initialization of Relations with Union Types …………………..…………33

3.2.3 Querying Relations with Union Types ……………………….…………..35

3.2.4 More examples with Union Types ………………………….…………….36

 3.3 Top Level Scalar …………………………………………………….……………40

3.3.1 Declaration and initialize of top level scalar ……………….……………..40

3.3.2 Querying with top level scalar …………………………………………....41

 3.4 Substring function ………………………………………………………………...42

3.4.1 Define a substring ………………………………………………………...42

Chapter 4 Implementation ……………………………………………………...…….45

 4.1 JRelix system implementation overview ………………………………………..45

4.1.1 System structure …………………………………………………………….45

4.1.2 How the parser works (JJTree, JavaCC) …………………..………………..46

4.1.3 How the interpreter and the actualizer works ………………………………46

 4.2 Implementation of Grep …………………………………………………………..48

4.2.1 Syntax ………………………………………………………………………48

4.2.2 Implementation for parameter list 1 without wildcard in pattern …………..48

4.2.3 Dealing with the wildcard ……………………………………………...…...55

4.2.4 Implementation of parameter list 2 …………………………………………60

4.2.5 Other cases (no parameter list, use relation or top level scalar as pattern) …64

 4.3 Implementation of Union Type …………………………………………………...65

4.3.1 Syntax of union type domain declaration …………………………………..65

4.3.2 Implementation of union type domain declaration …………………………65

4.3.3 Initialization of relation without union type domains ………………………67

4.3.4 Initialization of relation with union type domains ………………………….73

 4.4 Implementation of the Top Level Scalar …………………………………...……..79

 iii

4.4.1 Syntax of the top level scalar declaration and initialization ……………..…79

4.4.2 Implementation of the top level scalar …………………...…………………79

 4.5 Implementation of the Substring function …………………………...……………82

4.5.1 Syntax of the substring function …………………………………………….82

4.5.2 Implementation of the substring function ………………………..…………83

Chapter 5 Conclusions …………………………………………………………………85

 5.1 Summary ………………………………………………………………………….85

 5.2 Future work ……………………………………………………………………….86

Bibliography ……………………………………………………………………………88

Appendix ……………………………………………………………………………95

 iv

Abstract

JRelix is a relational database implementation that supports not only traditional relational

algebra and domain algebra but also complex data type and recursive nesting with

powerful database programming language. This thesis documents some new features and

operators of JRelix. Among them, type polymorphism (union type domain) and the

relational pattern search (grep) operator are especially useful when dealing with

semistructured data in a relational database.

We use union type domains to increase the flexibility of rigid type definition in relational

databases. In addition, we implement the grep operator in the relational algebra to

facilitate queries on semistructured data. Grep returns a relation which could contain the

type and name of the attribute where it finds the match and the position in that attribute

and value of the match. Moreover, we also implement top-level scalar and substring

function which are also very useful in a relational database language.

 v

Résumé

JRelix est une implémentation de base de données relationnelle qui supporte non

seulement l’algèbre relationnelle traditionnelle et l’algèbre de domaine mais aussi les

types de donnée complexes et la récursivité avec un langage de programmation puissant.

Ce document de thèse liste quelques nouvelles fonctionnalités et opérateurs de JRelix.

Parmi eux, le polymorphisme (« union type domain ») et l’opérateur grep (« relational

pattern search ») sont très utiles afin de traiter des données semi structurées en base de

données relationnelle.

On utilise le polymorphisme pour augmenter la flexibilité des définitions rigides de type.

En addition, nous implémentons l’opérateur grep en algèbre relationnel pour faciliter les

requêtes sur des données semi structurées. Grep retourne une relation qui peut contenir le

type et le nom de l’attribut où a été trouve l’enregistrement et la position et la valeur de

celui-ci. En outre, nous avons aussi implémenté la fonction « top level scalar » et la

fonction « substring » qui sont aussi très utiles en base de données relationnelle.

 vi

Acknowledgements

My greatest gratitude belongs to my supervisor Professor Tim H. Merrett, for his

enthusiastic encouragement, inspiration and patience during my entire study and research

at McGill, especially when I was under stress struggling with the writing of this thesis and

challenges at work. I cannot imagine how I could have finished this thesis without his

guidance, advice, insight, and support.

My appreciation also goes to our Aldat lab coordinator, Zongyan Wang, who integrated

our code to JRelix and provided great help during the coding phase. I would also like to

thank Fan Guo, who provided her own implemented code so that I could test part of my

code which is closely related.

I would like to take this opportunity to thank the School of Computer Science of McGill

University for giving me the chance to study here and the faculty for providing the great

courses and administrative and technical staff for providing all kinds of help.

I also want to thank Frederick Sauvanet who translated abstract of this thesis into French,

and Tim Wai for proof reading my thesis.

Last but not the least, I would like to thank my family members for their support,

especially my father Keguang who has always had faith in me, my sister Wei who cares

about me, my husband Bin who has shown great patience and support during this entire

journey and my son Ziyu who makes me happy and reminds me how beautiful life can be.

Chapter 1 Introduction

 1

Chapter 1 Introduction
This thesis documents the enhancements of JRelix relational database language and

several basic operations for supporting semistructured data. In section 1.1, we will present

the motivation of having the union type domain and the grep command in JRelix. We will

introduce relevant background and related work in section 1.2. In the last section, we will

give the outline of this thesis.

1.1 Motivation

The relational data model introduced by E.F. Codd[Codd70] has become a core technique

for many commercial database systems. Relational algebra (See section 2.4), which is

fundamental to relational query languages, has been extensively investigated in the

database research world. Generally, relational algebra defines a set of operators that work

on relations. The operators in relational algebra are very similar to traditional set algebra.

There are several basic operators that we will introduce in Chapter 2 including projection,

selection, and join operators. The result of relational algebra operation is a relation.

Combined with the domain algebra (see section 2.5), which works with the domain,

relational algebra acts as a strong data manipulating and querying tool in the database

world. Yet traditional relational algebra lacks the regular expression search functionality.

Wouldn’t it be nice to have an operator to search a certain pattern in the whole relation

and return a relation as a result, which would contain not only the position where the

match found and the type and name of the attribute, but also the context of the match?

(See section 1.1.1) In addition, traditional relational algebra does not have polymorphism

on attribute type, which is particular useful when dealing with semistructured data. (See

section 1.1.2)

1.1.1 Grep Command and Substring Function

What we want to add to the relational algebra is a ‘grep’ operator which will return a

relation as the search result of all the matches on a particular regular expression pattern.

Pattern matching has been implemented in several commercial relational database

languages. For example, in Oracle10g, we can search a specified column with regular

expression. Regular expressions work with SQL REGEXP_LIKE operator and the

Chapter 1 Introduction

 2

REGEXP_INSTR, REGEXP_SUBSTR, and REGEXP_REPLACE functions. These are

similar to the existing operator and functions but now offer powerful pattern-matching

capabilities [Rischert03]. In MySql, REGEXP operator works the same way as the LIKE

operator except that it is followed by regular expression [MySql]. This regular expression

search functionality has been added to SQL1999 standard [SQL99]. There are obviously

limitations to this approach such as being incapable of searching the whole relation

without specifying a particular attribute. SQL works on the individual domain not the

whole relation, which is relatively simpler to implement. It is important to have a

relational algebra operator ‘grep’ that searches the regular expression pattern in the entire

relation and returns a relation as its result, which contains the attribute and type in which

the matches are found, their position and the value of the matches. This approach is

particular useful when dealing with semistructured data because of the nature of

semistructured data, where the schema of the tuples are variable or mutable. It is difficult

and ineffective to specify a search attribute in the “where” clause, as traditional SQL

does. Thus, the attribute and type of where the matches are found become even more

interesting than the match value itself. In addition, it is of particular interest to return the

position and value along with the attribute and type information as well.

In addition to the ‘grep’ operator, we would like to add a substring function in JRelix to

facilitate search functionality. The substring function is easier to implement than the

‘grep’ operator because it deals with only one attribute at a time. It is implemented in the

SQL and other relational database languages.

1.1.2 Union Type Domain

Union types [Merrett03, ACC+97, Buneman97], a form of type polymorphism, are absent

in relational algebra. In traditional relational algebra, attribute type is fixed. We want to

introduce union types to have type polymorphism in relational algebra to accommodate

semistructured data. “Generally, polymorphism refers to the ability to appear in many

forms. In object-oriented programming, polymorphism refers to a programming

language's ability to process objects differently depending on their data type or class.”

[Polymorphism05]. Polymorphism is one of the most important features of an object

oriented programming language, because it allows many different types of an item to be

treated with the same interface [Eckel00]. In the implementation part, the distinction of

Chapter 1 Introduction

 3

different type will be picked up and dealt with respectively. For example, if we want to

compute the area of a shape, which can be a circle, square or triangle, we can declare an

object to have the type of shape, and initialize it with any value of possible type of circle,

square or triangle. Polymorphism enables the programmer to define different area

methods for these derived classes, such as circles, square and triangles. No matter what

the shape of an object, the area method will return the correct result.

In relational algebra, we want to use union types for the similar purpose. This provides

the same interface in the relational algebra command no matter the underlying type

attribute value. For example, a phone number can be an integer or a string type. But with

traditional relational algebra, the attribute type of phoneNum has to be fixed before the

data can be populated. For the same reason, query on an attribute is type specified. The

following query “where phoneNum=8884357” assumes that attribute phoneNum has

integer type. What if phone number is expressed as ‘888-4357’ or ‘888help’ and we want

also to allow string type of phone number to be stored in the relation. This problem will

be solved if we define the type of attribute phoneNum to be either string or integer. In this

case “where phoneNum=8884357” and “where phoneNum=’888-4357’” are both valid

queries.

We allow union type to be defined not only on primitive types but also on previously

defined types. For example, we can declare zipcode as type of integer, and postcode as

type of string. Then we declare another domain with name postalcode and type of either

zipcode or postcode to cover the situation of where zipcode looks like 12345 and

postcode looks like ‘a1b2c3’. We use postalcode to search in the “where” clause. This

way the query will return the correct result no matter what the integer type or string type

is of the attribute value.

Since a union type domain can be defined on a previously defined domain, and the

domain can be a nested relation, then it should be allowed to define on nested domains.

For example, street address can be a bunch of strings or a bunch of combination of street

number and street name. So it can be defined as a union type of two nested domains,

namely street1 and street2. Domain street1 is defined as a relation that has an attribute

streetInfo and type of string. Domain street2 is defined as a relation that has two string

type attributes: streetNum and streetName (See [Merrett03] in detail).

Chapter 1 Introduction

 4

We want to add union types to relational algebra to cover the situation like we discussed

in the previous examples. No matter the integer or string type of phoneNum, and different

complex type of street address, the operation on union type domains will return the

correct result. Union type can be quite useful in relational algebra to manipulate

semistructured data. Since relational data is strictly typed, using union type domain will

loosen the constraints on attribute types, thereby accommodating semistructured data in

the relational database. In the underlying implementation, we need to deal with different

types of a union type domain to make sure the operation on union type will return the

correct result. This poses a challenge of schema matching when one initializes the relation

with semistructured data.

1.1.3 Top Level Scalar

In this thesis, we will also introduce the top level scalar which also works closely with

nested relation. Top level scalar is a relation level constant. It can be used in any

relational and domain algebra. For example, in relation R(x,y), x and y are two attributes

of R. We can have domain level scalar, say “let z be x+y”, then z is a virtual attribute

which is a domain level attribute. Similarly, we can have a scalar at relation level. Since it

is at the same level as a relation, it can be particular useful when dealing with nested

relations. In JRelix, relational algebra is subsumed by domain algebra. We allow

relational operations in domain algebra [Merrett84].

Chapter 1 Introduction

 5

1.2 Background and Related Work

In this section, we will review the history of the relational data model and give an

introduction to semistructured data research. In addition, we will survey regular

expression search tools, namely the UNIX grep family, and other tools for regular

expression searching.

1.2.1 Relational Database

After E.F. Codd first introduced relational data model [Codd70] 35 years ago, it has

become the core technique of most database management systems. The earliest relational

algebra language is PRTV (Peterlee Relational Test Vehicle [Todd76]). The earliest

relational database system projects were IBM System R [ABC+76] and Ingres

(INteractive Graphics REtrieval System[SHWK76]). The structured query language

(SQL), which was first developed at IBM, won out Ingres’s QUEL and finally became the

industry standard with ANSI (American National Standards Institute) in 1986 and ISO

(International Standards Organization) in 1987. Eventually System R evolved into

SQL/DS, which later became DB2. Many other commercial database systems such as

Informix, Sybase, and Microsoft SQL Server have been developed based on the source

code of Ingres.

The relational data model is thought of as two-dimensional tables, known as a relation.

Columns of the table are labeled and the names of the column are called attributes. The

values of the attributes are called domains. A row in the table is called a tuple. The

properties of a relation were first given by E.F.Codd in [Codd70]; where no restrictions

were made on relation to be flat. He introduced normal forms later [Codd71] [Codd72],

and this significantly affected the research direction and the development of commercial

relational databases. The following are the basic properties of a flat relation or first

normal form.

1) All rows are distinct.

2) The ordering of rows is immaterial.

3) Each column is labeled, making the ordering of columns insignificant.

4) The value in each row under a given column is “simple”. [Merrett84]

Chapter 1 Introduction

 6

 “Simple” in the last property means that the type of the column can only be of a primitive

type such as String, Integer, Boolean, etc. This excludes the possibility of nested relation

in which a value of a column can be a relation.

1.2.2 Nested Relation

By removing the last property of a flat relation, a relation can become nested. This idea

was first brought up by Codd with the relational data model. He wrote “Nonatomic values

can be discussed within the relational framework. Thus, some domains may have

relations as elements. These relations may, in turn, be defined on nonsimple domains, and

so on.” [Codd70]. In this paper, he refers to relations with nonsimple domains as

unnormalized set and proposed an approach to eliminate nonsimple domains. He called

this normalization.

The nested relation was formally proposed by Makinouchi [Mak77]. It provides a natural

presentsation of hierarchical data. Fisher and Van Gucht first discussed the one level

nested relation [FG85]. This was generalized to arbitrary depth by Thomas and Fisher

later [TF86]. There are two operators which transform between flat relations and nested

relations, namely, nest and unnest which were first introduced by Jaeschke and Schek

[JS82]. These operators are superfluous if we include relational operator in domain

algebra. The nested relation is implemented in JRelix (see section 2.6). In JRelix,

relational algebra is subsumed by domain algebra. Domain algebra operators can be used

on a nested domain, which is a relation.

Chapter 1 Introduction

 7

1.2.3 Semistructured data

In between the strictly structured data that a relational database dealt with and the non

structured data such as raw data (e.g., image and sound) there are a lot of data that have

some extent of structure, either explicit or implicit in the data. We call these data

semistructured data. Most of the data that reside on the World-Wide Web especially XML

[BPM+04] fall into this category. The need to integrate wide a variety of data formats and

data found on the Web has brought the topic of semistructured data to the forefront of

research [Abiteboul97].

“Roughly speaking, semistructured data are data that are neither raw data, nor very

strictly typed as in conventional database systems” [Abiteboul97]. Abiteboul discussed

several main aspects of semistructured data in this paper. The following is a list of some

basic features.

1) The structure is irregular

As in the previous phone number example, the type can be integer or string. The same

information can be expressed either as a simple element or in a complex structure. For

example, street information can be a string type element for one tuple, or a set of tuples of

street number and street name, etc.

2) The structure is implicit

Some semistructured data have structure implicit to the data. For example, XML text has

tags to indicate the structure, therefore we need tools like parser to extract it from the

data.

3) The structure is indicative not constraining

The structure in semistructured data is usually for the purpose of describing the data, not

to set type constraints on the data. So strict type is not necessary and proper for

semistructured data.

4) Schema is not pre-defined

Unlike traditional relational database, the schema of semistructured data is not well

defined before the data are populated. Rather, it is extracted or discovered from the data.

5) The schema could be very large and queried as data

Semistructured data may come from different sources and may have quite large schema

and relatively small data. For example, one may get a list of local restaurants from the

Chapter 1 Introduction

 8

Web, each restaurants may have quite different information from others. So the schema

may get very large and querying on schema will be as important querying on data.

6) The schema is ignored

Sometimes it is very useful to ignore the schema. For example, we just want to browse

the data or search a particular string in the entire data. Although this is not normally

possible with traditional relational query languages, it is necessary to have string

searching tools to be added to the query languages.

7) The schema evolves rapidly

Unlike traditional relational database, in which the schema is almost immutable, with

semistructured data, the schema can change repidly. A good example is ACeDB (A C.

elegans Database) which was originally developed as a database to store genetic data

relating to the worm [TMD92]. Schema and data in ACeDB can be seen as edge-labeled

trees. This format was preferable to a relational or object database system due to the fact

that it is not easy to deal with the dynamic changing schema in traditional database

systems.

8) The distinction between schema and data is blurred

In relational database, the schema captures the structure of the data. In semistructured

data, this distinction may not make much sense. For example, the sex of a person can be

used as schema in one source: Male or Female, and the possible value are ‘Y’ or ‘N’; or it

can be data in another source: Sex, with the values ‘male’ or ‘female’.

Research on manipulating semistructured data

A lot of database research has been done on manipulating and querying semistructured

data. Due to the above nature of semistructured data, it is often considered and

constructed as a directed graph or tree structure with arbitrary depth. For example,

ACeDB data, XML data, Lore data. There is no effective way or almost impossible to

query this data structure by traditional relational or object oriented query languages. A

new flavor query language is needed.

Briefly, there are two ways to build query languages for semistructured data. The first one

is to start from SQL (or OQL[CD92, ODMG 3.0]) and add enough “features” to be able

to query semistructured data. The second approach is to start from a formal language on

Chapter 1 Introduction

 9

semistructured data then to massage that language into an acceptable syntax. These two

approaches end up with very similar languages [Buneman97].

Lore and Lorel

Lore is a database management system designed particularly for semistructured

data[MAG+97] . Data in Lore is thought of as a directed graph. Notes are objects and can

be identified by a unique object identifier. Leaf nodes contain values of primitive types of

database and other nodes contain pointers to other objects. The edges are labeled with the

name of the object to which they point. Lorel is a SQL/OQL style language for querying

semistructured data and can be viewed as an extension of OQL of ODMG data model

[AQMWW97]. Lorel provides simple path expression in each part of its “select-from-

where” form of language. Using Path expressions provides a way to the user to query the

data without even knowing the schema of the database. This is a desired feature for

querying semistructured data because the schema is not fixed for each record and may be

dynamically changing. Lorel can bring information to the surface, but it is not capable of

performing complex restructuring of the data, such as “deleting/collapsing edges with a

certain property, relabeling edges, or performing local interchanges [Buneman97]”.

UnQL

In contrast, UnQL (Unstructured Query Langauge) is capable of various forms of

restructuring as mentioned above. For example, a traverse construct [BDHS96] allows

one to transform a database graph while traversing it, for instance, to replace all labels A

by the label B. “This powerful operation combines tree rewriting techniques with some

control obtained by a guided traversal of the graph. For instance, one could specify that

the replacement occurs only if particular edge, say B, is encountered on the way from the

root” [Abiteboul97]. UnQL starts from structural recursion [BBW92, BLS+94, BNTW95].

Its data model consists of a rooted, labeled graph, or alternatively, it can be thought of as

a tree. The leaves represent atomic values and the non-leaf nodes represent objects.

Objects do not have identifiers as in Lore. Non-atomic values are represented as sets of

label/value pairs. This model can be used to represent relational database. The fixed depth

structure of UnQL has the expressive power of nested relational algebra. It can also

Chapter 1 Introduction

 10

traverse arbitrary depth by using regular expression on the path [BDS95, BDHS96,

BFS00].

XML

“XML is a new standard adopted by the World Wide Web Consortium (W3C) to

complement HTML for data exchange on the Web” [ABS00]. Like HTML, XML also

uses tags to enclose an element, but the tags of XML are user defined and represent the

structure of the data. We can see them as attribute names in a relation. All the tags must

appear in pairs, and the start tag and the end tag have identical names except that the end

tag starts with a “/”. The content in between the start tag and end tag can be a string and

other elements that quoted with tags, thus we can view this structure as a nested relation.

Many query languages have been proposed for XML, for example, XML-QL [DFFS98]

uses path expression and patterns to extract data from XML data. The query result is

constructed as XML data as well. Another example is XQuery [BCF+04], it has been

proposed as the W3C standard query language for XML data. Other XML query

languages are: Quilt [RCF00], XQL[DFH+99].

Besides the work on building database and query language particular for semistructured

data, considerable effort towards adding semistructured data manipulating features to

existing relational databases have been made. For example, Oracle adds XML data and

query language to its database by providing a new data type, XMLType, and XPath

[CD99] query language [GSS04]. The users need to know both SQL and XPath in order

to query XML in Oracle, but if we have a relational implementation on semistructured

data, then we do not need to add separate things and the user can use a single language for

everything. That is what we are trying to do in JRelix. Currently JRelix has some features

to support semistructured data, like path expression [Yu04], metadata operators [Guo05],

etc. We will take a quick look at JRelix in the following section.

1.2.4 Semistructured data in the Aldat Project

JRelix is a relational language that can work on nested relations [Hao98]. It is quite

natural to take advantage of this ability and add some new features like path expressions

[Yu04], metadata operators [Guo05], grep commands on test data [Xie05] and union

Chapter 1 Introduction

 11

types to accommodate and query semistructured data, which itself is nested in nature. WE

will briefly review what has already been done so far in JRelix to support semistructured

data in this section and then will give an overview of JRelix in Chapter 2 and explain its

implementation in Chapter 4.

JRelix has been extended to support semistructured data coherently due to its native

ability to deal with nested structures of data. In Zhan’s project [Yu04], he implemented

several new features in JRelix to support semistructured data, including semi-structured

data loading, improved queries to support recursive nesting, path expression and regular

expression operators. “After allowing JRelix to accept recursive nesting, the regular

expression operators (“*”, “+”, “.”, “?”) have been implemented to query the relations

with a recursively nesting domain. In addition, a path operator, which may be frequently

used in querying nested relations, has been implemented as a short-cut by using the /

operator. ”

In Fan’s thesis [Guo05], she describes the implementation of several new features of

attribute metadata in JRelix for supporting semistructured data. These operators help to

manipulate the metadata of a relation. With wild card in path expression together, they

provide ways to query in arbitrary levels of nested relations and facilitate schema

discovery in a nested relation. The operators include quote, eval, transpose, typeof ,

relation and self.

In Jiantao’s thesis [Xie05], he proposed an Aldat extension within which text can be

described and manipulated meaningfully as an equivalent of a relation. The flat text or

nested text can be loaded in and queried as a realtion. The extended operations are simple,

intuitive and supported by the inherent capability of semi-structured data manipulation in

JRelix. “They are able to perform simple text mining in plain text, discover schema in

implicit structured text, convert between relations and texts, and execute search and

extraction in structured/unstructured text.” In addition to the extension of existing

operators to manipulate text, several new operators has been added, such as binary grep

operators like igrep, ugrep, dgrep, sgrep (diff), lgrep and rgrep, which are used to provide

searching in text and text2attr and mu2nest and to convert between texts and relations.

Chapter 1 Introduction

 12

In this thesis, we extend JRelix operations to further support semistructured data. Union

type domain which supports type polymorphism makes it easier to process semistructured

data in relational database. The Grep operator, which searchs the entire relation and

returns the attribute and type along with the position and value of where the pattern is

found, becomes particular useful when dealing with semistructured data. We will show

more of the details in the following chapters.

1.2.5 String searching and grep command

String searching has been a very important subject in text processing. There are many

string searching algorithms implemented in all kinds of software under most operating

systems. There are two catagories of searching algorithm, exact string matching and

regular expression string matching. For example, the “grep” operator in UNIX is a regular

expression searching tool, and the “find” command in Microsoft Office is an exact string

matching tool. Many of the algorithms need preprocessing phase. Some create tables for

the pattern, some build automata for the pattern, some use hash tables. Many of the

regular expression algorithms use similar ideas as those for exact string matching plus a

preprocessing phase to build automaton for the pattern. We will give a short overview on

some well-known exact string searching algorithms and regular expression matching

algorithms.

The simplest and earliest string searching algorithm is the brute force algorithm. Suppose

the length of string that need to be found or the pattern has length of m, and the text to

search against has length of n. The brute force algorithm checks at all positions in the text

between 0 to n-m, whether the pattern starts from there or not. Then, after each attempt, it

shifts the pattern one position to the right. The time complexity of this searching phase is

O(mn). This algorithm has been studied carefully and has been enhanced in various ways

by different researchers.

Knuth, Morris and Pratt discovered first linear time string-matching algorithm [KMP77].

This retains the information that the brute force approach wasted by gathering it during

the scan of the text. It uses this information to reduce the number of times it compares

each character in the text to a character in the pattern. It only looks at each character in

the text. It achieves a running time of O(n + m), which is optimal in the worst case

Chapter 1 Introduction

 13

scenario. In the worst case Knuth-Morris-Pratt algorithm has to examine all the characters

in the text and pattern at least once. Unlike the brute force algorithm, Knuth-Morris-Pratt

algorithm needs to preprocess the pattern. It creates a table based on the pattern and uses

the table during the matching process.

Another efficient string searching algorithm was developed by Bob Boyer and J Strother

Moore in 1977 [BM77]. The algorithm preprocesses the pattern that is being searched for.

“It doesn't need to actually check every character of the pattern but rather skips over some

of them. Its efficiency derives from the fact that, with each unsuccessful attempt to find a

match between the pattern and the text it's searching in, it uses the information gained

from that attempt to rule out as many positions of the text as possible where the string

could not match” [Wikipedia05]. “This kind of skip is the goal of the Boyer-Moore

algorithm. Unlike the Knuth-Morris-Pratt algorithm, which strives to look at each

character in the text only once, the Boyer-Moore algorithm strives to completely ignore as

many characters in the text as possible” [Ellard97]. The worst case behavior of the

algorithm is linear in i + m, where i is the first position of a match found in search string.

There are many other algorithms derived from the above algorithms. To name a few, the

Reverse Factor algorithm [Leeroq92] and the Turbo Reverse Factor algorithm [Lecroq95]

were derived from Boyer-Moore algorithm and they both need to build an automaton in

the preprocessing phase. Horspool-BM algorithm is a simplification of Boyer-Moore

algorithm[Horspool80] and Turbo-BM is an amelioration of Boyer-Moore

algorithm[CCGJ+92].

One of the most broadly used regular expression search tool is the grep command in

UNIX. Grep originates from the UNIX command ed (written by Kenneth Thompson

[KD71]). UNIX users often use the ed command to search a string. For example, in the

following command: s/old/new/g, s stands for substitution, g stand for globally, and /

follows by the string or pattern that is searched. So this command will replace all “old”

with “new” in the file. Another frequently used one is to globally search a pattern and

print the result. For example :g/car/p, it prints all the line which contains string “car” .

According to Douglas McIlroy [HH96], grep was invented by Kenneth Thompson, who

provided regular expression search functionality as a independent command from UNIX

text editor ed. Since in between g and p, there can be a regular expression, it was then

Chapter 1 Introduction

 14

called grep. It represents “global regular expression print”. Grep is listed in the Manual

for Version 4 UNIX which is dated November, 1973 [HH96]. The first algorithm for

seaching regular expression was published in 1968 by Kenneth Thompson

[Thompson68]. In this paper, Thompson introduces a fast regular expression recognition

technique and algorithm. “Each character in the text to be searched is examined in

sequence against a list of all possible current characters. During this examination a new

list of all possible next characters is built. When the end of the current list is reached, the

new list becomes the current list, the next character is obtained, and the process

continues. In the terms of Brzozowski [Brzozowski64], this algorithm continually takes

the left derivative of the given regular expression with respect to the text to be searched.

The parallel nature of this algorithm makes it extremely fast.”

Thompson was the first to implement grep. Before that, Glantz did some of the earliest

work on automated pattern matching [Glantz57]. Thompson’s implementation of grep

was based on building a nondeterministic finite automaton (NFA) for the regular

expression. In 1975, Alfred Aho and Margaret Corasick made a new version of grep

called egrep (enhanced grep) [AC75]. Hume later showed that egrep was faster than grep

for simpler patterns because it used a deterministic finite automata (DFA) but was slower

for longer patterns because of the setup time required to build a complete DFA

[Hume88]. Egrep was later enhanced by using a lazy evaluation, which took zero setup

time and just one additional test in the inner loop [AA04]. Currently, egrep stands for

extended grep because it supports extended regular expressions, as opposed to the default

grep patterns which are basic regular expressions [IEEE03a].

There are also other variants of regular expression search tools, such as awk [AWK88],

GNU awk [Robbins98]. The following is a table of some of such tools.

Some Tools and Their Regex Engines (based on [Friedl97])
Program (Original) Author Reference Regex Engine
awk Aho, Weinberger, Kernighan [Awk88] DFA
new awk Brian Kernighan [Awk88] DFA
GNU awk Arnold Robbins [Robbins98] Mostly DFA, some NFA
MKS awk Mortice Kern Systems [MKSawk] POSIX NFA
mawk Mike Brennan [Brennan91] POSIX NFA
egrep Alfred Aho [Aho90] DFA
MKS egrep Mortice Kern Systems [MKSegrep] POSIX NFA

Chapter 1 Introduction

 15

GNU Emacs Richard Stallman [CR91] Trad. NFA (POSIX NFA available)
Expect Don Libes [Libes95] Traditional NFA
expr Dick Haight [Friedl97] Traditional NFA
grep Ken Thompson [Thompson68] Traditional NFA
GNU grep Mike Haertel [GNUgrep05] Mostly DFA, but some NFA
GNU find GNU [Findutils05] Traditional NFA
flex Vern Paxson [Paxson00] DFA
lex Mortice Kern Systems [MB90] POSIX NFA
more Eric Schienbrood [Shienbrood92] Traditional NFA
less Mark Nudelman [Nudelman05] Variable (usually Trad. NFA)
Perl Larry Wall [Wall00] Traditional NFA
Python Guido van Rossum [Rossum] Traditional NFA
sed Lee McMahon [DR97] Traditional NFA
Tcl John Ousterhout [Ousterhout94] Traditional NFA
Vi Bill Joy [LR98] Traditional NFA

1.3 Thesis outline

This thesis introduces several new features and operators that added to JRelix system

including the grep command in relational algebra, substring functions, union type

domains and top level scalar. In chapter 1, we describe our research motivation on union

type domains and regular expression search algorithms and how they relate to traditional

relational database and semistructured data. In chapter 2, we will give an overview of

JRelix. Instead of a detailed review of the system;, we will provide a fundamental

description of JRelix operations, in order for the reader to understand the discussions in

the following chapters. In chapter 3, we will introduce the new features and operators that

we proposed in JRelix in the form of a user’s manual for database programmers. In

chapter 4, we will present implementation details of those new features and operators and

finally in last chapter we will summarize this thesis and discuss future directions. We will

also include an appendix which contains all pertinent JRelix syntax (about 80% of all) as

improved by this thesis.

Chapter 2 JRelix Overview

 16

Chapter 2 JRelix Overview
In this chapter, we will briefly introduce the JRelix database system. In section 2.1, we

will introduce how to start the JRelix system, where section 2.2 outlines some of the most

frequently used commands. In section 2.3 we will introduce how we declare a domain and

a relation. In section 2.4 and 2.5 we will discuss relational algebra and domain algebra

respectively. In section 2.6, we will introduce the nested relation. A review of other

commands can be found on the web at CS612 course website [Merrett00]. We will not

give expanded syntax for each command that we discuss. We will put detailed syntax in

the Appendix. For many examples, we will reference the user’s manual in Chapter 3,

rather than give them here.

2.1 Getting Started

JRelix is implemented in Java. It can be started under the Java run time environment. To

start, type the following command under the command line of either Windows or UNIX

system.

 java JRelix

The screen will show a prompt “>” after JRelix started. User can input JRelix command

after “>”.

2.2 Commands

Command Function Example
pr <relational expression> Print the result of relational expression Figure 3.1.1
sd (<Identifier>)? Show domain definition Figure 3.3.1
sr (<Identifier>)? Show relation definition Figure 3.3.1
quit Quit JRelix system

2.3 Declaration and Initialization

2.3.1 Domain Declaration
domain <IDList> <Type>

‘domain’ is the key word to indicate that this is a domain declaration command. IDList is

a list of identifiers to represent the names of domains. Type can be simple type like string

Chapter 2 JRelix Overview

 17

or integer or complex type like nested relation. We have examples in Figure 3.2.1 for both

simple type and nested domain declaration. We will expand this definition further to

include union types in section 3.2.

2.3.2 Relation Declaration and Initialization
relation <IDList> “(“<IDList> “)” (<Initialization>)?

The first IDList represents the names of relations that have been declared. The second

IDList contains the domain list of the relation. Initialization is optional, we can initialize

the relation now or do it later using assignment operator “<-”. Basically, we can initialize

a relation with another relation or from a file in addition to assigning values to each

attribute in each tuple. The following is the syntax for initialization:
<Initialization> :
 <ASSIGN>
 ("{" <TupleList> "}" | <Identifier> | <FilePath>)

<TupleList> : (<Tuple> ("," <Tuple>)*)?

We have examples in Figure 3.1.1. We can easily apply this syntax to relation declaration

and initialization to relations which have union type domains. We will introduce

examples in section 3.2. It is important to note that in the syntax, we assign a TupleList to

the relation. TupleList is a set of Tuples. A Tuple can be a set of literals or TupleList. In

case of TupleList, it represents a nested relation. We will introduce it in section 2.6.

2.4 Relational Algebra

Relational algebra is one of the most essential parts of relational databases. It provides

operators to manipulate relations. The operators are functional, i.e., they take relations as

inputs and produce a relation as a result. We can categorize them into unary and binary

operators.

2.4.1 Unary Operators

The unary operator takes one operand of relation. Here we have the three most commonly

used unary operators:

Projection

Chapter 2 JRelix Overview

 18

Projection produces a new relation on a subset of the attributes of the operand. Duplicates

are eliminated during projection. We will use projection in an example shown in Figure

3.4.1.

Syntax:
<Projection>: “[”(<ExpressionList>)?“]” in <Projection>|<Selection>)
 |
 <Selection>

Selection

Selection produces a new relation with tuples that satisfy a specific condition. We will

use selection in an example shown in Figure 3.2.6.

Syntax:
<Selection>: where <Expression> in <Projection>
 |...| <Term>
(Term can be expanded to be Identifier, see Appendix for detail)

T-Selection

Projection and selection can be combined in a single operation, called T-selection. We

will use T-selection in an example shown in Figure 3.4.5.

Syntax:
“[”(<ExpressionList>)?“]”where < Expression > in
(< Projection >|<Selection>)

2.4.2 Binary Operators
Binary operators take two relations as input, and join them together to produce a result

relation. There are two types of join operator, i.e. µ-joins and σ-joins. They both have the

following syntax.

Syntax:
<JoinExpression>: <Projection>
(<JoinOperator> <Projection>
|
“[” <ExpressionList> “:” <JoinOperator> “:” < ExpressionList > “]”
<Projection>
)*

µ-joins

The µ-join operators are extended from set operators, which include intersection, union

and difference. We will use ijoin (intersection) in examples in section 3.2.3. This

Chapter 2 JRelix Overview

 19

produces a set of tuples which join together the tuples from two relations that have same

values on the join attributes. Union and difference operators are similar to their respective

set operators. To illustrate the definitions of these joins, suppose we want to join two

relations R(A,B) and S(C,D) on attribute set B and C. B and C can be a set of attributes to

which two relations are joined. They must have the same number of attributes, but the

name and type need not be the same. In the case that they are the same, the attribute set of

the result relation will be (A,B,D). We first define left, center and right as the following.

Then we will define these µ-joins in the below table.

center(R, S) ≡ {(a,b,c,d)|(a, b) ∈R ∧ (c, d) ∈ S ∧ b = c}

left(R, S) ≡ {(a, b, c, DC)|(a, b) ∈ R ∧ b = c ∧ ∀d, (c, d) ∉ S}

right(R, S) ≡ {(DC, b, c, d)|(c, d) ∈ S ∧ b = c ∧ ∀a, (a, b) ∉ R}

The symbol DC stands for don’t care, which is a null value defined in JRelix.

µ-joins Operator Definition
inner join(intersection)
union join
left join
right join
difference join
right difference join
symmetric difference join

R ijoin S
R ujoin S
R ljoin S
R rjoin S
R djoin S
R drjoin S
R sjoin S

center(R,S)
left(R, S) ∪ center(R, S) ∪ right(R, S)
left(R, S) ∪ center(R, S)
center(R, S) ∪ right(R, S)
left(R, S)
right(R, S)
left(R, S) ∪ right(R, S)

σ-joins

The σ-join extends the truth-valued comparison operations on sets to relation. The

comparison happened between the sets of values of the join attributes grouped on each

other attributes. For example, we have two tables: SC(students take courses) and

CP(courses instructed by professor) and we want to join these tables on attributes course.

We will get a result relation that has two attributes: student and professor. We will group

SC on student and CP on professor and compare for each group the set of courses. For

operation icomp, we will get the following result for the given SC and CP.

Chapter 2 JRelix Overview

 20

 Figure 2.4.1 σ-joins example

We can define the σ-joins using the following notation. In relations R(A, B) and S(C, D),

Rais the set of values B associated by R with a given value, a, of A, and Sz
is the set of

values of C associated by S with a given value, d, of D. If A and B are disjoint sets of the

attributes of R, and C and D are disjoint sets of the attributes of S, we can give the

definitions as below.

σ-joins Operator Name Definition
overlap R icomp S natural composition {(a, d)|Ra

∩ Sd
≠ Ø}

not overlap R sep S empty intersection join {(a, d)| Ra
∩ Sd

= Ø}
superset R sup S greater than or equal join {(a, d)| Ra

⊇ Sd
}

proper superset R gtjoin S greater than join {(a, d)| Ra
⊃ Sd

}
subset R lejoin S less than or equal join {(a, d)| Ra

⊆ Sd
}

proper subset R ltjoin S less than join {(a, d)| Ra
⊂ Sd

}
equal R eqjoin S equal join {(a, d)| Ra

= Sd
}

2.5 Domain Algebra

Unlike relational algebra, domain algebra works on attributes, not on relations. There are

two types of operations: one is the scalar operation, which works within a tuple, while the

other is the aggregate operation, which works across tuples. They both use virtual

domains to define the operations. The syntax is the follwing. (See Appendix for the full

description on Expression).
<let> <identifier> be <Expression>
<Expression>: ...<substr> (for example: Expression can be substr)

We will have several opportunities to use virtual domains to define scalar operations in

section 3.4 when we introduce substring function. Aggregation operators work with a

group of tuples. For example we can get the min, max or sum of an attribute for a group

of tuples or for all tuples in the table. We will have an example of “red +” in Figure 2.6.3.

SC : CP : SC icomp CP :
+----------+---------+ +---------+----------+ +----------+---------+
| student | course | | course |professor | | student |professor|
+----------+---------+ +---------+----------+ +----------+---------+
a	x1		x1	p1		a	p1
a	x2		x2	p1		a	p2
b	x1		x2	p2		b	p1
b	x3		x3	p3		b	p3
+----------+---------+ +---------+----------+ +----------+---------+

Chapter 2 JRelix Overview

 21

2.6 Nested relation

Another very important feature is the concept and implementation of nested relations and

recursive nesting. We will have examples when we introduce union type domains in

section 3.2. The main idea of a nested relation is to treat a relation as a domain, that is, a

domain can be a relation. So we extend the type of a domain from a primitive type to a

complex type, namely a nested relation.

The syntax of declaring a nested domain is to simply change the “relation” to the

“domain” as the following:
domain <IDList> “(“ <IDList> “)”

The initialization of nested relation use the same syntax as a flat relation except here in a

Tuple we can have a TupleList as its attribute. Let’s take a look at the expanded syntax on

Tuple.
<Tuple> : "(" <Constant> ("," <Constant>)* ")"

<Constant> : <Literal> | "{" <TupleList> "}"

This example is quite similar to the example we will give in Figure 3.2.4 except that a

union type domain is not used.

 Figure 2.6.1 nested relation example

The way the nested relation is actually stored in the belonging table is by using a

surrogate key. This surrogate key will be stored together with other attributes of a tuple.

The actual content of the nested relation is stored in a relation with a name such as “.”

plus the name of the nested domain. In our example, the name will be “.n1”. In relation

“.n1” there is an .id attribute which will be used to store surrogate key so that the relative

>domain a integer;
>domain b string;
>domain n1(a,b);
 Tc:
 a n1

 1

2

 a b
 1 1
 2 2

 a b
 2 2

Chapter 2 JRelix Overview

 22

tuples can be linked to the relation that contain this nested relation as its attribute. The

following figure shows the way nested relation is stored.

Figure 2.6.2 nested relation storage

Unnesting can be done by two ways: by raising the level through anonymity or by uniting

tuples through reduction. The following figure gives two examples of level raising. Please

find more examples from course notes of cs612 on nested relations [Merrett00].

Figure 2.6.3 level raising in nested relation

relation Tc(a,n1)<-{(1,{(1,"1"),(2,"2")}),(2,{(2,"2")})};
pr Tc;
+-------------+----------------------+
| a | n1 |
+-------------+----------------------+
| 1 | 1 |
| 2 | 2 |
+-------------+----------------------+
relation Tc has 2 tuples
>pr .n1;
+----------------------+-------------+----------------------+
| .id | a | b |
+----------------------+-------------+----------------------+
| 1 | 1 | 1 |
| 1 | 2 | 2 |
| 2 | 2 | 2 |
+----------------------+-------------+----------------------+
relation .n1 has 3 tuples

>let redA be [red + of a] in n1;
>pr [a,redA] in Tc;
+-------------+-------------+
| a | redA |
+-------------+-------------+
| 1 | 3 |
| 2 | 2 |
+-------------+-------------+
expression has 2 tuples

Chapter 3 Users’ Manual

 23

Chapter 3 Users’ Manual

3.1 Grep

As described in [Merrett03], the “grep” is a new operator in JRelix for textual pattern

matching. The purpose of it is to find a substring or a match with a particular pattern in

databases. This pattern can be any regular expression. In this thesis, we will use the

regular expression that is compatible with the unix egrep convention.

3.1.1 An Example

The following example shows what grep can do to find string “hello” in relation R.

Figure 3.1.1 A simple example of grep

3.1.2 Parameter List 1 of Grep

The grep command can have two parameter lists: in parameter List 1, one can specify up

to 4 parameters. They can have the types of integer, type, attribute or universal. The

purpose of using parameter List 1 is to determine attribute, type, position, the grep finds

the matching value. Since the grep searches all the attributes of a relation, the value can

come from all possible types, so the value that contains the pattern is of universal type.

For example, the following grep operation will return the attribute where the grep finds

the string “hello”, the type of the attribute, the position at which it finds the string and the

value that matches the pattern. In general, the value that matches a string is exactly the

same as the string.

>domain x intg;
>domain y,z strg;
>relation R(x,y,z)<-{(10,"x1","y1"),(20,"x2","y2"),(30,"x3 hello", "y3 hi,hello
there"),(40,".*+?\[]^$|","hello sam")};
>pr R;
+-------------+----------------------+----------------------+
| x | y | z |
+-------------+----------------------+----------------------+
| 10 | x1 | y1 | |
| 20 | x2 | y2 |
| 30 | x3 hello | y3 hi,hello there |
| 40 | .*+?\[]^$| | hello sam |
+-------------+----------------------+----------------------+
expression has 4 tuples
>pr grep "hello" in R;
+-------------+----------------------+----------------------+
| x | y | z |
+-------------+----------------------+----------------------+
| 30 | x3 hello | y3 hi,hello there |
| 40 | .*+?\[]^$| | hello sam |
+-------------+----------------------+----------------------+
expression has 2 tuples

Chapter 3 Users’ Manual

 24

Figure 3.1.2 An example of grep with parameter List 1

3.1.3 Regular expression of Grep

In our implementation, we use the same regular expression as egrep. The following table

is a summary of what we can use in our grep.

. Represent any single character grep “h.” in R;
* Zero or more times grep “h.*” in R;
| Or grep “0|h” in R;
[] One of a set of characters grep “[xh]” in R;
() Characters as a whole grep “(xh)” in R;
^ The beginning of an attribute grep “^h” in R;
$ The end of an attribute grep “h.*o$” in R;
? Zero or once grep “he?o” in R;
+ One or more times grep “h.+” in R;
\ Escape character for .*+?\[]()^$| grep “\.” in R;

Figure 3.1.3 Regular expression in pattern

Here are some examples:

Example 1: Search anything that has an “h” and is followed by a character in relation R.

Figure 3.1.4 Example 1

Example 2: Search anything that has an “h” and is followed by zero or more characters in

R.

>domain Type type;
>domain Attr attribute;
>domain Pos integer;
>domain Val universal;
>pr grep(Attr,Type,Pos,Val) "hello" in R;
+--------------------+----------------------+------+--------+-------------+--------------+
| x | y | z | Attr | Type | Pos | Val |
+-----+--------------+----------------------+------+--------+-------------+--------------+
| 30 | x3 hello | y3 hi,hello there | y | string | 3 | string:hello | |
| 30 | x3 hello | y3 hi,hello there | z | string | 6 | string:hello |
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:hello |
+-----+--------------+----------------------+------+--------+-------------+--------------+
expression has 3 tuples

>pr grep(Attr,Type,Pos,Val) "h." in R;
+----+----------------------+----------------------+------+--------+-----+----------------------+
| x | y | z | Attr | Type | Pos | Val |
+----+----------------------+----------------------+------+--------+-----+----------------------+
| 30 | x3 hello | y3 hi,hello there | y | string | 3 | string:he | |
| 30 | x3 hello | y3 hi,hello there | z | string | 3 | string:hi |
| 30 | x3 hello | y3 hi,hello there | z | string | 6 | string:he |
| 30 | x3 hello | y3 hi,hello there | z | string | 13 | string:he |
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:he |
+----+----------------------+----------------------+------+--------+-----+----------------------+
expression has 5 tuples

Chapter 3 Users’ Manual

 25

Figure 3.1.5 Example 2

Example 3: Search anything that has an “h” or an “x” and is followed by zero or more

characters in R.

Figure 3.1.6 Example 3

Example 4: Search anything that has an “h”, followed by zero or more characters and

ends with “o” in R.

Figure 3.1.7 Example 4

Example 5: Search anything that starts with an “x”, followed by zero or more characters

and ends with a “2” in R.

Figure 3.1.8 Example 5

Example 6: Search anything that has an “h” and is followed by zero or one “e” in R.

>pr grep(Attr,Type,Val,Pos) "h.*o$" in R;
+-----+----------------------+----------------------+------+---------+---------------+-------+
| x | y | z | Attr | Type | Val | Pos |
+-----+----------------------+----------------------+------+---------+---------------+-------+
| 30 | x3 hello | y3 hi,hello there | y | string | string:hello | 3 |
+-----+----------------------+----------------------+------+---------+---------------+-------+
expression has 2 tuple

>pr grep(Attr,Type,Pos,Val) "h.*" in R;
+-----+----------------------+----------------------+------+--------+-----+----------------------+
| x | y | z | Attr | Type | Pos | Val |
+-----+----------------------+----------------------+------+--------+-----+----------------------+
| 30 | x3 hello | y3 hi,hello there | y | string | 3 | string:hello | |
| 30 | x3 hello | y3 hi,hello there | z | string | 3 | string:hi,hello there|
| 30 | x3 hello | y3 hi,hello there | z | string | 6 | string:hello there |
| 30 | x3 hello | y3 hi,hello there | z | string | 13 | string:here |
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:hello |
+-----+----------------------+----------------------+------+--------+-----+----------------------+
expression has 5 tuples

>pr grep(Attr,Type,Val,Pos) "[hx].*" in R;
+-----+-----------------+----------------------+------+---------+----------------------+-------+
| x | y | z | Attr | Type | Val | Pos |
+-----+-----------------+----------------------+------+---------+----------------------+-------+
| 10 | x1 | y1 | y | string | string:x1 | 0 | |
| 20 | x2 | y2 | y | string | string:x2 | 0 |
| 30 | x3 hello | y3 hi,hello there | y | string | string:hello | 3 |
| 30 | x3 hello | y3 hi,hello there | y | string | string:x3 hello | 0 |
| 30 | x3 hello | y3 hi,hello there | z | string | string:hello there | 6 |
| 30 | x3 hello | y3 hi,hello there | z | string | string:here | 13 |
| 30 | x3 hello | y3 hi,hello there | z | string | string:hi,hello there| 3 |
| 40 | .*+?\[]^$| | hello sam | z | string | string:hello sam | 0 |
+-----+-----------------+----------------------+------+---------+----------------------+-------+
expression has 8 tuples

>pr grep(Attr,Type,Pos,Val) "^x.*2$" in R;
+-----+----------------------+----------------------+------+---------+-------+---------------+
| x | y | z | Attr | Type | Pos | Val |
+-----+----------------------+----------------------+------+---------+-------+---------------+
| 20 | x2 | y2 | y | string | 0 | string:x2 |
+-----+----------------------+----------------------+------+---------+-------+---------------+
expression has 1 tuple

Chapter 3 Users’ Manual

 26

Figure 3.1.9 Example 6

Example 7: Search anything that has an “e” or “r” and is followed by zero or one

character in R.

Figure 3.1.10 Example 7

Example 8: Search anything that has an “e” or “r” and is followed by zero or one

character and ends with an “e” in R.

Figure 3.1.11 Example 8

Example 9: Search anything that has an “e” or “r” and is followed by zero or one

character and it reaches the end of the attribute in R.

Figure 3.1.12 Example 9

Example 10: Search anything that has an “e” or “h” and has zero or one character before

it in R.

>pr grep(Attr,Type,Pos,Val) "he?" in R;
+--------+----------------------+----------------------+------+--------+-----+----------------+
| x | y | z | Attr | Type | Pos | Val |
+--------+----------------------+----------------------+------+--------+-----+----------------+
| 30 | x3 hello | y3 hi,hello there | y | string | 3 | string:he | |
| 30 | x3 hello | y3 hi,hello there | z | string | 3 | string:h |
| 30 | x3 hello | y3 hi,hello there | z | string | 6 | string:he |
| 30 | x3 hello | y3 hi,hello there | z | string | 13 | string:he |
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:he |
+--------+----------------------+----------------------+------+--------+-----+----------------+
expression has 5 tuples

pr grep(Attr,Type,Pos,Val) "[er].?" in R;
+------+----------------------+----------------------+-----+--------+-----+----------------------+
| x | y | z | Attr| Type | Pos | Val |
+------+----------------------+----------------------+-----+--------+-----+----------------------+
30	x3 hello	y3 hi,hello there	y	string	4	string:el	
30	x3 hello	y3 hi,hello there	z	string	7	string:el	
30	x3 hello	y3 hi,hello there	z	string	14	string:er	
30	x3 hello	y3 hi,hello there	z	string	15	string:re	
30	x3 hello	y3 hi,hello there	z	string	16	string:e	
40	.*+?\[]^$		hello sam	z	string	1	string:el
+------+----------------------+----------------------+-----+--------+-----+----------------------+
expression has 6 tuples

pr grep(Attr,Type,Pos,Val) "[er].?$" in R;
+------+----------------------+----------------------+-----+--------+-----+----------------------+
| x | y | z | Attr| Type | Pos | Val |
+------+----------------------+----------------------+-----+--------+-----+----------------------+
| 30 | x3 hello | y3 hi,hello there | z | string | 15 | string:re |
| 30 | x3 hello | y3 hi,hello there | z | string | 16 | string:e |
+------+----------------------+----------------------+-----+--------+-----+----------------------+
expression has 2 tuples

pr grep(Attr,Type,Pos,Val) "[er].?e$" in R;
+------+----------------------+----------------------+-----+--------+-----+----------------------+
| x | y | z | Attr| Type | Pos | Val |
+------+----------------------+----------------------+-----+--------+-----+----------------------+
| 30 | x3 hello | y3 hi,hello there | z | string | 14 | string:ere |
| 30 | x3 hello | y3 hi,hello there | z | string | 15 | string:re |
+------+----------------------+----------------------+-----+--------+-----+----------------------+
expression has 2 tuples

Chapter 3 Users’ Manual

 27

Figure 3.1.13 Example 10

Example 11: Search anything that has an “h” and is followed by one or more characters in

R.

Figure 3.1.14 Example 11

Example 12: Search anything that has an “h” and has at least one character before “h” in

R.

Figure 3.1.15 Example 12

Example 13: Search anything that has an “h”, followed by zero or more characters and

then an “o” and has at least one character after this “o” in R.

Figure 3.1.16 Example 13

Example 14: Search anything that has an “h” and is followed by zero or more “e”s and

then

>pr grep(Attr,Type,Pos,Val) "h.+" in R;
+-------------+------------+----------------------+------+--------+-----+----------------------+
| x | y | z | Attr | Type | Pos | Val |
+-------------+------------+----------------------+------+--------+-----+----------------------+
| 30 | x3 hello | y3 hi,hello there | y | string | 3 | string:hello | |
| 30 | x3 hello | y3 hi,hello there | z | string | 3 | string:hi,hello there|
| 30 | x3 hello | y3 hi,hello there | z | string | 6 | string:hello there |
| 30 | x3 hello | y3 hi,hello there | z | string | 13 | string:here |
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:hello sam |
+-------------+------------+----------------------+------+--------+-----+----------------------+
expression has 5 tuples

>pr grep(Attr,Type,Pos,Val) "h.*o.+" in R;
+-------------+------------+----------------------+------+-------+----+----------------------+
| x | y | z | Attr | Type | Pos| Val |
+-------------+------------+----------------------+------+-------+----+----------------------+
| 30 | x3 hello | y3 hi,hello there | z | string| 3 | string:hi,hello there| |
| 30 | x3 hello | y3 hi,hello there | z | string| 6 | string:hello there |
| 40 | .*+?\[]^$| | hello sam | z | string| 0 | string:hello sam |
+-------------+------------+----------------------+------+-------+----+----------------------+
expression has 3 tuples

pr grep(Attr,Type,Pos,Val) ".+h" in R;
+-------------+----------+----------------------+------+--------+-----+----------------------+
| x | y | z | Attr | Type | Pos | Val |
+-------------+----------+----------------------+------+--------+-----+----------------------+
30	x3 hello	y3 hi,hello there	y	string	0	string:x3 h
30	x3 hello	y3 hi,hello there	z	string	0	string:y3 h
30	x3 hello	y3 hi,hello there	z	string	0	string:y3 hi,h
30	x3 hello	y3 hi,hello there	z	string	0	string:y3 hi,hello th
+-------------+----------+----------------------+------+--------+-----+----------------------+
expression has 4 tuples

pr grep(Attr,Type,Pos,Val) ".?[eh]" in R;
+-------------+----------------------+-----------+------+--------+-----+----------------------+
| x | y | z | Attr | Type | Pos | Val |
+-------------+----------------------+-----------+------+--------+-----+----------------------+
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:h |
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:he |
+-------------+----------------------+-----------+------+--------+-----+----------------------+
expression has 2 tuples

Chapter 3 Users’ Manual

 28

followed by an “i” or a “l” in R.

Figure 3.1.17 Example 14

Example 15: Search anything that has an “h” and is followed by one or more “e”s and

then followed by a “r” or a “l” in R.

Figure 3.1.18 Example 15

Example 16: Search anything that has an “he” and is followed by zero or more “l”s and

then followed by an “o” and then zero of more any characters and an “e” or a “m” in R.

Figure 3.1.19 Example 16

Example 17: Search anything that has an “*” and is followed by zero or more characters

and then followed by a “^” in R. Please note that some characters such as * and ^ in the

following example need a “\” to escape their original meaning. Other characters which

need a “\” to escape its meaning include ., +, ?, \, [,], $, and |.

>pr grep(Attr,Type,Pos,Val) "he*[il]" in R;
+-------------+--------------+----------------------+-----+--------+----+----------------------+
| x | y | z | Attr| Type | Pos| Val |
+-------------+--------------+----------------------+-----+--------+----+----------------------+
| 30 | x3 hello | y3 hi,hello there | y | string | 3 | string:hel | |
| 30 | x3 hello | y3 hi,hello there | z | string | 3 | string:hi |
| 30 | x3 hello | y3 hi,hello there | z | string | 6 | string:hel |
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:hel |
+-------------+--------------+----------------------+-----+--------+----+----------------------+
expression has 4 tuples

>pr grep(Attr,Type,Pos,Val) "he+[rl]" in R;
+-------------+------------+----------------------+------+-------+----+----------------------+
| x | y | z | Attr | Type | Pos| Val |
+-------------+------------+----------------------+------+-------+----+----------------------+
| 30 | x3 hello | y3 hi,hello there | y | string| 3 | string:hel | |
| 30 | x3 hello | y3 hi,hello there | z | string| 6 | string:hel |
| 30 | x3 hello | y3 hi,hello there | z | string| 13 | string:her |
| 40 | .*+?\[]^$| | hello sam | z | string| 0 | string:hel |
+-------------+------------+----------------------+------+-------+----+----------------------+
expression has 4 tuples

>pr grep(Attr,Type,Pos,Val) "hel*o.*[em]" in R;
+-------------+-------------+----------------------+------+-------+----+----------------------+
| x | y | z | Attr | Type | Pos| Val |
+-------------+-------------+----------------------+------+-------+----+----------------------+
| 30 | x3 hello | y3 hi,hello there | z | string| 6 | string:hello the | |
| 30 | x3 hello | y3 hi,hello there | z | string| 6 | string:hello there |
| 40 | .*+?\[]^$| | hello sam | z | string| 0 | string:hello sam |
+-------------+-------------+----------------------+------+-------+----+----------------------+
expression has 3 tuples

>pr grep(Attr,Type,Val,Pos) "*.*\^" in R;
+-------------+-------------+----------+------+--------+----------------------+-------------+
| x | y | z | Attr | Type | Val | Pos |
+-------------+-------------+----------+------+--------+----------------------+-------------+
| 40 | .*+?\[]^$| | hello | y | string | string:*+?\[]^ | 1 |
+-------------+-------------+----------+------+--------+----------------------+-------------+
expression has 1 tuple

Chapter 3 Users’ Manual

 29

Figure 3.1.20 Example 17

Example 18: Search anything that has “he” and is followed by zero or one “l” and then

followed by an “o” in R. So this will find heo, helo, since we don’t have these in R, it will

return an empty relation.

Figure 3.1.21 Example 18

Example 19: Search anything that has an “h” and is followed by zero or more characters

and then followed by an “e” in R.

Figure 3.1.22 Example 19

Example 20: Since *, + and ? specify how many times a pattern occurs, it makes no sense

to put them at the very beginning of a pattern. So we do not allow this kind of situation,

for example:

Figure 3.1.23 Example 20

>pr grep(Attr,Type,Pos,Val) "hel?o" in R;
+-------------+---------------+----------------------+------+-----+----+----------------------+
| x | y | z | Attr | Type| Pos| Val |
+-------------+---------------+----------------------+------+-----+----+----------------------+
+-------------+---------------+----------------------+------+-----+----+----------------------+
expression has 0 tuple

>pr grep(Attr,Type,Pos,Val) "h.*e" in R;
+-------------+-----------+----------------------+-----+-------+----+-----------------------+
| x | y | z | Attr| Type | Pos| Val |
+-------------+-----------+----------------------+-----+-------+----+-----------------------+
| 30 | x3 hello | y3 hi,hello there | y | string| 3 | string:he | |
| 30 | x3 hello | y3 hi,hello there | z | string| 3 | string:hi,he |
| 30 | x3 hello | y3 hi,hello there | z | string| 3 | string:hi,hello the |
| 30 | x3 hello | y3 hi,hello there | z | string| 3 | string:hi,hello there |
| 30 | x3 hello | y3 hi,hello there | z | string| 6 | string:he |
| 30 | x3 hello | y3 hi,hello there | z | string| 6 | string:hello the |
| 30 | x3 hello | y3 hi,hello there | z | string| 6 | string:hello there |
| 30 | x3 hello | y3 hi,hello there | z | string| 13 | string:he |
| 30 | x3 hello | y3 hi,hello there | z | string| 13 | string:here |
| 40 | .*+?\[]^$|| hello sam | z | string| 0 | string:he |
+-------------+-----------+----------------------+-----+-------+----+-----------------------+
expression has 10 tuples

>pr grep(Attr,Type,Pos,Val) "*m" in R;
invalid syntax of pattern:* cannot be at the beginning of a pattern

Chapter 3 Users’ Manual

 30

3.1.4 Parameter List 2 of Grep
In parameter List 2, we can specify several parameters of type string. They can be used to

output parts of the string that matches the pattern. Given following example, in the

“before” attribute of the first tuple, there is a blank after x3. For this tuple, the “end” is an

empty string. For the second tuple, in the “end” attribute, there is a blank before “there”.

For the third tuple, there is a empty string in the “before” attribute, and a blank before

“sam” in the “end” attribute. In order to show this clearly, we attach a “B” and an “E” at

the beginning of the string and at the end of the string, respectively.

Figure 3.1.24 An example of grep with only parameter List 2

We can also use both the parameter List 1 and parameter List 2 as the following example.

This example has the same as the former one with blank and empty string.

Figure 3.1.25 An example of grep with both parameter lists

>domain before string;
>domain end string;
>pr grep(Attr,Type,Pos,Val;before,end) "\beforehello\end" in R;
+------+-----------+----------------------+-----+--------+-----+--------------------------+---------+--------+
| x | y | z | Attr| Type | Pos | Val | before | end |
+------+-----------+----------------------+-----+--------+-----+--------------------------+---------+--------+
| 30 | x3 hello | y3 hi,hello there | y | string | 0 | string:x3 hello | x3 | | |
| 30 | x3 hello | y3 hi,hello there | z | string | 0 | string:y3 hi,hello there | y3 hi, | there |
| 40 | .*+?\[]^$|| hello sam | z | string | 0 | string:hello | | sam |
+------+-----------+----------------------+-----+--------+-----+--------------------------+---------+--------+
expression has 3 tuples
>pr [x,y,z,Attr,Type,Pos,Val,bb,eb] in grep(Attr,Type,Pos,Val;before,end) "\beforehello\end" in R;
+----+-------------+----------------------+-----+--------+----+----------------------+-----------+------------+
| x | y | z | Attr| Type | Pos| Val | bb | eb |
+----+-------------+----------------------+-----+--------+----+----------------------+-----------+------------+
| 30 | x3 hello | y3 hi,hello there | y | string | 0 | string:x3 hello | Bx3 E | BE | |
| 30 | x3 hello | y3 hi,hello there | z | string | 0 | string:y3 hi,hello t | By3 hi,E | B thereE |
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:hello sam | BE | B samE |
+----+-------------+----------------------+-----+--------+----+----------------------+-----------+------------+
expression has 3 tuples

>pr grep(;before,end) "\beforehello\end" in R;
+-------------+----------------------+----------------------+----------------------+----------+
| x | y | z | before | end |
+-------------+----------------------+----------------------+----------------------+----------+
| 30 | x3 hello | y3 hi,hello there | x3 | | |
| 30 | x3 hello | y3 hi,hello there | y3 hi, | there |
| 40 | .*+?\[]^$| | hello sam | | sam |
+-------------+----------------------+----------------------+----------------------+----------+
expression has 3 tuples
let b be "B";
let e be "E";
let bb be b cat before cat e;
let eb be b cat end cat e;

>pr [x,y,z,bb,eb] in grep(;before,end) "\beforehello\end" in R;
+-------+----------------------+----------------------+----------------------+----------------------+
| x | y | z | bb | eb |
+-------+----------------------+----------------------+----------------------+----------------------+
| 30 | x3 hello | y3 hi,hello there | Bx3 E | BE | |
| 30 | x3 hello | y3 hi,hello there | By3 hi,E | B thereE |
| 40 | .*+?\[]^$| | hello sam | BE | B samE |
+-------+----------------------+----------------------+----------------------+----------------------+

Chapter 3 Users’ Manual

 31

Furthermore, we can specify the parameters in between the pattern as in the following

example. Here p2 represents anything in between “he” and “l”. For example, in the first

tuple, we have Val as “hel”, hence there is nothing in between “he” and “l”, and p2 is an

empty string. We have the same situation with third and fifth tuple. For the second, fourth

and sixth tuple, we have Val as “hell”, there is an “l” in between “he” and “l”, so p2 is l

for these tuples.

Figure 3.1.26 An example of grep with parameter in between the pattern

Examples with more parameters:

>domain p2 string;
>pr grep(Attr,Type,Pos,Val;p2) "he\p2l" in R;
+-------------+-----------+----------------------+---------+--------+------+----------------------+-----+
| x | y | z | Attr | Type | Pos | Val | p2 |
+-------------+-----------+----------------------+---------+--------+------+----------------------+-----+
| 30 | x3 hello | y3 hi,hello there | y | string | 3 | string:hel | | |
| 30 | x3 hello | y3 hi,hello there | y | string | 3 | string:hell | l |
| 30 | x3 hello | y3 hi,hello there | z | string | 6 | string:hel | |
| 30 | x3 hello | y3 hi,hello there | z | string | 6 | string:hell | l |
| 40 | .*+?\[]^$|| hello sam | z | string | 0 | string:hel | |
| 40 | .*+?\[]^$|| hello sam | z | string | 0 | string:hell | l |
+-------------+-----------+----------------------+---------+--------+------+----------------------+-----+
expression has 6 tuples

>pr grep(Attr,Type,Pos,Val;before,after,end) "\beforeh.\aftero\end" in R;
+---+-----------+----------------------+-----+--------+----+--------------------------+--------+-------+---------+
| x | y | z | Attr| Type | Pos| Val | before | after | end |
+---+-----------+----------------------+-----+--------+----+--------------------------+--------+-------+---------+
| 30| x3 hello | y3 hi,hello there | y | string | 0 | string:x3 hello | x3 | ll | | |
| 30| x3 hello | y3 hi,hello there | z | string | 0 | string:y3 hi,hello there | y3 | ,hell | there |
| 30| x3 hello | y3 hi,hello there | z | string | 0 | string:y3 hi,hello there | y3 hi, | ll | there |
| 40| .*+?\[]^$|| hello sam | z | string | 0 | string:hello sam | | ll | sam |
+---+-----------+----------------------+-----+--------+----+--------------------------+--------+-------+---------+
expression has 4 tuples

>pr grep(Attr,Type,Pos,Val;before,after,end) "\beforeh.\afterl\end" in R;
+---+-----------+----------------------+------+-------+-----+--------------------------+--------+-------+---------+
| x | y | z | Attr | Type | Pos | Val | before | after | end |
+---+-----------+----------------------+------+-------+-----+--------------------------+--------+-------+---------+
| 30| x3 hello | y3 hi,hello there | y | string| 0 | string:x3 hello | x3 | | lo | |
| 30| x3 hello | y3 hi,hello there | y | string| 0 | string:x3 hello | x3 | l | o |
| 30| x3 hello | y3 hi,hello there | z | string| 0 | string:y3 hi,hello there | y3 | ,he | lo there|
| 30| x3 hello | y3 hi,hello there | z | string| 0 | string:y3 hi,hello there | y3 | ,hel | o there |
| 30| x3 hello | y3 hi,hello there | z | string| 0 | string:y3 hi,hello there | y3 hi, | | lo there|
| 30| x3 hello | y3 hi,hello there | z | string| 0 | string:y3 hi,hello there | y3 hi, | l | o there |
| 40| .*+?\[]^$|| hello sam | z | string| 0 | string:hello sam | | | lo sam |
| 40| .*+?\[]^$|| hello sam | z | string| 0 | string:hello sam | | l | o sam |
+---+-----------+----------------------+------+-------+-----+--------------------------+--------+-------+---------+
expression has 6 tuples

>domain p1,p2 strg;
>pr grep(Attr,Type,Pos,Val;before,p1,p2,end) "\before3\p1h.\p2l\end" in R;
+---+-----------+----------------------+------+-------+-----+--------------------------+--------+-----+-----+---------+
| x | y | z | Attr | Type | Pos | Val | before | p1 | p2 | end |
+---+-----------+----------------------+------+-------+-----+--------------------------+--------+-----+-----+---------+
| 30| x3 hello | y3 hi,hello there | y | string| 0 | string:x3 hello | x | | | lo |
| 30| x3 hello | y3 hi,hello there | y | string| 0 | string:x3 hello | x | | l | o |
| 30| x3 hello | y3 hi,hello there | z | string| 0 | string:y3 hi,hello there | y | | ,he | lo there|
| 30| x3 hello | y3 hi,hello there | z | string| 0 | string:y3 hi,hello there | y | | ,hel| o there |
| 30| x3 hello | y3 hi,hello there | z | string| 0 | string:y3 hi,hello there | y | hi,| | lo there|
| 30| x3 hello | y3 hi,hello there | z | string| 0 | string:y3 hi,hello there | y | hi,| l | o there |
+---+-----------+----------------------+------+-------+-----+--------------------------+--------+-----+-----+---------+
expression has 6 tuples

Chapter 3 Users’ Manual

 32

Figure 3.1.27 An example of grep with more parameters

3.1.5 Using relation or top level scalar as a pattern
The grep command can take a relation or a top level scalar as the pattern. Using a top

level scalar as a pattern is straightforward, as it can represent a search string. The

meaning of using a relation as the search pattern is to take the advantage of the set

property of a relation to represent multiple search strings.

For example, relation g9 has two tuples, so the pattern is basically the union of “l” and

“h”.

Figure 3.1.5.1 An example of grep using relation as pattern

The following is a an example of grep using top level scalar as its pattern.

Figure 3.1.28 An example of grep using top level scalar as pattern

>relation g9(z)<-{("1"),("h")};
>pr g9;
+----------------------+
| z |
+----------------------+
| 1 |
| h |
+----------------------+
relation g9 has 2 tuples

>pr grep(Attr,Type,Pos,Val) g9 in R;
+-------------+----------------------+----------------------+------+---------+-------+---------------+
| x | y | z | Attr | Type | Pos | Val |
+-------------+----------------------+----------------------+------+---------+-------+---------------+
| 10 | x1 | y1 | x | integer | 0 | integer:1 | |
| 10 | x1 | y1 | y | string | 1 | string:1 |
| 10 | x1 | y1 | z | string | 1 | string:1 |
| 30 | x3 hello | y3 hi,hello there | y | string | 3 | string:h |
| 30 | x3 hello | y3 hi,hello there | z | string | 3 | string:h |
| 30 | x3 hello | y3 hi,hello there | z | string | 6 | string:h |
| 30 | x3 hello | y3 hi,hello there | z | string | 13 | string:h |
| 40 | .*+?\[]^$| | hello sam | z | string | 0 | string:h |
+-------------+----------------------+----------------------+------+---------+-------+---------------+
expression has 8 tuples

>declare s1 string<-"hello";
>pr grep(Attr,Type,Pos,Val) s1 in R;
+-------------+----------------------+----------------------+------+-------+----+----------------------+
| x | y | z | Attr | Type | Pos| Val |
+-------------+----------------------+----------------------+------+-------+----+----------------------+
| 30 | x3 hello | y3 hi,hello there | y | string| 3 | string:hello | |
| 30 | x3 hello | y3 hi,hello there | z | string| 6 | string:hello |
| 40 | .*+?\[]^$| | hello sam | z | string| 0 | string:hello |
+-------------+----------------------+----------------------+------+-------+----+----------------------+
expression has 3 tuples

Chapter 3 Users’ Manual

 33

3.2 Union Types
In traditional relational database approach, types are always fixed prior to populating the

database. Once the data is populated, its binary storage cannot be interpreted without

having knowledge of the schema. With semi-structured data we may specify the type after

the database has been populated. This type may only partially describe the structure and

often does so imprecisely. An important consequence is that the data instance may have

more than one type [ABS00]. In JRelix, we will use union types to handle this situation.

3.2.1 Definition of Union Types
For example, we define c2 to have type of integer or string; we use “|” to separate each

type. We can also define an attribute to have a nested relation or other primitive types. In

the example shown below, we define n1 to be a nested relation on a and b, then we define

c1 to have type n1 or string. We can define relation R2 on a and c2.

Figure 3.2.1 Examples of definition of union types

3.2.2 Initialization of Relations with Union Types
When initializing a relation with union types, you do not need to specify which type you

are using. The system will automatically check the definition of the union type to find a

matched type according to the data input. For example, we want to initialize R2, since c2

can be a integer or a string, we can do the following:

Figure 3.2.2 Example 1 of initialization of union types

>domain c2 integer|string;
>domain a integer;
>domain b string;
>domain n1(a,b);
>domain c1 n1|string;
>relation R2(a,c2);
>sd;
------------------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List
--
n1 idlist 1 false .id, a, b,
c2 union 1 false integer|string
c1 union 0 false n1|string
b string 1 false
a integer 2 false
--

>relation R2(a,c2)<-{(1,1),(2,"1")};
>pr R2;
+-------------+----------------------+
| a | c2 |
+-------------+----------------------+
| 1 | integer:1 |
| 2 | string:1 |
+-------------+----------------------+
relation R2 has 2 tuples

Chapter 3 Users’ Manual

 34

If we define c3 as of type a or b, then when initializing, the system will automatically find

its base type and store it. Only scalar types will be resolved in this way. For union types

which have nested relation attributes, we need to store the nested attributes information.

Figure 3.2.3 Example 2 of initialization of union types

The way you initialize the relation with nested attributes as one of its union types is

similar to the way you initialize a nested relation. For example:

Figure 3.2.4 Example 1 of initialization of union types with nested relation

In this example, c1 can be a string or a nested relation n1(a,b). Since in the initialization

statement the system sees “{” at the position for c1, it determines that this must be a

nested relation. If the data are a type of n1, the system will store this n1 information in

each cell along with the surrogate key (see 2.6 for detail). For example: n1:1, and 1 is the

surrogate key for the nested relation. We can use the command “pr .n1;” to see the data of

n1;

The type of an attribute is not fixed for all tuples. It may vary according to the input. The

following example shows a mixing type on c1. The first tuple has a nested relation n1 as

its type, and the second tuple has a string as its type on c1. Please note that the surrogate

is monotonely increasing for each nested relation.

domain c3 a|b;
relation R3(a,c3)<-{(1,1),(3,"b")};
>pr R3;
+-------------+----------------------+
| a | c3 |
+-------------+----------------------+
| 1 | integer:1 |
| 3 | string:b |
+-------------+----------------------+
relation R3 has 2 tuples

relation Tc(a,c1)<-{(1,{(1,"1"),(2,"2")}),(2,{(2,"2")})};
pr Tc;
+-------------+----------------------+
| a | c1 |
+-------------+----------------------+
| 1 | n1:1 |
| 2 | n1:2 |
+-------------+----------------------+
relation Tc has 2 tuples
>pr .n1;
+----------------------+-------------+----------------------+
| .id | a | b |
+----------------------+-------------+----------------------+
| 1 | 1 | 1 |
| 1 | 2 | 2 |
| 2 | 2 | 2 |
+----------------------+-------------+----------------------+
relation .n1 has 3 tuples

Chapter 3 Users’ Manual

 35

Figure 3.2.5 Example 2 of initialization of union types with nested relation

3.2.3 Querying Relations with Union Types
It is not necessary to specify the type when querying, the system will figure out what type

your input query is and return the right result. For example, when you write c2=1, it

means that this query is looking for the tuples which has c2 as type of integer and value of

1. However, if the query condition statement is c2=”1”, then the query will look for the

tuples which has c2 as type of string and value of “1”.

See the following result:

Figure 3.2.6 Query of relations with union types

The joining of relations with union types is the same as the joining of relations without

union types. In the following example, R2 and R3 will join the common attribute a and c2

from R2 and it will join c3 from R3. Since c2 and c3 are union types, when joined, the

system will check on both types and values.

>pr where c2=1 in R2;
+-------------+----------------------+
| a | c2 |
+-------------+----------------------+
| 1 | integer:1 |
+-------------+----------------------+
expression has 1 tuple

>pr where c2="1" in R2;
+-------------+----------------------+
| a | c2 |
+-------------+----------------------+
| 2 | string:1 |
+-------------+----------------------+
expression has 1 tuple

relation Tc10(a,c1)<-{(1,{(1,"1"),(2,"2")}),(2,"2")};
pr Tc10;
+-------------+----------------------+
| a | c1 |
+-------------+----------------------+
| 1 | n1:3 |
| 2 | string:2 |
+-------------+----------------------+
relation Tc10 has 2 tuples
>pr .n1;
+----------------------+-------------+----------------------+
| .id | a | b |
+----------------------+-------------+----------------------+
| 1 | 1 | 1 |
| 1 | 2 | 2 |
| 2 | 2 | 2 |
| 3 | 1 | 1 |
| 3 | 2 | 2 |
+----------------------+-------------+----------------------+
relation .n1 has 5 tuples

Chapter 3 Users’ Manual

 36

Figure 3.2.7 Join of relations with union types

A primitive type can join with union type also. In the following example, a from R2 will

join with c3 from R31. c3 can have a type of integer or string, but only the tuple with type

integer of attribute c3 and having the same value as a can be joined with R2.

Figure 3.2.8 Join of relations with union types

3.2.4 More examples with Union Types
Union types can be defined on other union types. In the following example, c4 is defined

on union types c1 or b.

Figure 3.2.9 Union types defined on other union types

In the following example, the third tuple has an entry{} for the second attribute c4, the

system will figure out that this is a nested relation, and since it is empty, we will see a 0

as its surrogate. It uses the same mechanism as when we initialize a relation with an

empty set for a nested attribute.

>pr R2 [a,c2 :ijoin: a,c3] R3;
+-------------+----------------------+----------------------+
| a | c2 | c3 |
+-------------+----------------------+----------------------+
| 1 | integer:1 | integer:1 |
+-------------+----------------------+----------------------+
expression has 1 tuple

R31<-[c3] in R3;
pr R2 [a:ijoin:c3] R31;
+-------------+----------------------+----------------------+
| a | c2 | c3 |
+-------------+----------------------+----------------------+
| 1 | integer:1 | integer:1 |
+-------------+----------------------+----------------------+
expression has 1 tuple

domain c4 c1|b;
relation Tc21(a,c4)<-{(1,{(1,"1"),(2,"2")})};
pr Tc21;
+-------------+----------------------+
| a | c4 |
+-------------+----------------------+
| 1 | c1:n1:5 |
+-------------+----------------------+
relation Tc21 has 1 tuple
>pr .n1;
+----------------------+-------------+----------------------+
| .id | a | b |
+----------------------+-------------+----------------------+
| 5 | 1 | 1 |
| 5 | 2 | 2 |
//others omited

Chapter 3 Users’ Manual

 37

Figure 3.2.10 An example with empty nested relation

The following example shows duplicates when initializing a relation with union types.

The duplicate will be eliminated since they have the same types and values.

Figure 3.2.11 Duplicate elimination with union types

Nested domain types can be defined on the union types, in the following example, n5 is

defined on two union types c6 and b.

relation Tc31(a,c4)<-{(1,{(1,"1"),(2,"2")}),(2,"hello"),(3,{})};
pr Tc31;
+-------------+----------------------+
| a | c4 |
+-------------+----------------------+
1	c1:n1:7
2	string:hello
3	c1:n1:0
+-------------+----------------------+
relation Tc31 has 3 tuples
>pr .n1;
+----------------------+-------------+----------------------+
| .id | a | b |
+----------------------+-------------+----------------------+
| 7 | 1 | 1 |
| 7 | 2 | 2 |
//others omitted

>relation Tc31(a,c4)<-{(1,{(1,"1"),(2,"2")}),(1,{(1,"1"),(2,"2")})};//duplicate
eliminated
+-------------+----------------------+
| a | c4 |
+-------------+----------------------+
| 1 | c1:n1:9 |
+-------------+----------------------+
relation Tc31 has 1 tuple
>pr .n1;
+----------------------+-------------+----------------------+
| .id | a | b |
+----------------------+-------------+----------------------+
| 9 | 1 | 1 |
| 9 | 2 | 2 |
//others omitted

Chapter 3 Users’ Manual

 38

Figure 3.2.12 Nested domain defined onunion types

In the following example, c7 is defined as n1 or n5 or c1. The system will figure out

which nested attribute to use according to the input data.

domain c6 integer|string|n1;
domain n5(c6,b);
relation Tc5(a,n5)<-
{(1,{(1,"b1"),("2","b2"),({(1,"first"),(2,"second")},"b3")})};
>pr Tc5;
+-------------+----------------------+
| a | n5 |
+-------------+----------------------+
| 1 | 10 |
+-------------+----------------------+
relation Tc5 has 1 tuple
pr .n5;
+----------------------+----------------------+----------------------+
| .id | c6 | b |
+----------------------+----------------------+----------------------+
| 10 | integer:1 | b1 |
| 10 | n1:11 | b3 |
| 10 | string:2 | b2 |
+----------------------+----------------------+----------------------+
relation .n5 has 3 tuples
pr .n1;
+----------------------+-------------+----------------------+
| .id | a | b |
+----------------------+-------------+----------------------+
| 11 | 1 | first |
| 11 | 2 | second |

//others omitted

Chapter 3 Users’ Manual

 39

Figure 3.2.13 Union type defined on more than one nested domain

domain c7 n1|n5|c1;

relation Tc6(a,c7)<-{(1,{(1,"a"),("2","b"),({(1,"1")},"c")}),
(2,{(10,"a"),("20","b"),({(100,"hello")},"c")}),(3,{(1,"first")})};
pr Tc6;
+-------------+----------------------+
| a | c7 |
+-------------+----------------------+
1	n5:1
2	n5:3
3	n1:5
+-------------+----------------------+	
relation Tc6 has 3 tuples	
pr .n5;	
+----------------------+----------------------+----------------------+	
.id	c6
+----------------------+----------------------+----------------------+	
1	integer:1
1	n1:2
1	string:2
3	integer:10
3	n1:4
3	string:20
+----------------------+----------------------+----------------------+
relation .n5 has 6 tuples

pr .n1;
+----------------------+-------------+----------------------+
| .id | a | b |
+----------------------+-------------+----------------------+
2	1	1
4	100	hello
5	1	first

//others omitted

Chapter 3 Users’ Manual

 40

3.3 Top Level Scalar

3.3.1 Declaration and initialization of top level scalar
A top level scalar has the same scope as a relation. A top level scalar is defined as any

primitive type and can be used anywhere like a virtual attribute.

The following example shows how we define a top level scalar. s1 is defined to be an

integer. We can use the “sd” (show domain) and the “sr” (show relation) commands to

see its definition. Since it has the same scope as a relation, we put it in a relation table

with other relations and in the meanwhile, we store it in the domain table so that we can

remember its definition by storing it as a tree.

Figure 3.3.1 top level scalar declaration

To initialize a top level scalar, we use it in a similar way as we initialize a relation. For

example:

Figure 3.3.2 initialization of top level scalar

We can also initialize it when we define a top level scalar, like we do with a relation.

>declare s1 integer;
>sd s1;
------------------------------- Domain Entry -------------------------------
Name Type NumRef IsState Dom_List
--
s1 integer 0 false

Literal:470:453:null:0

--
>sr s1;
------------------------------ Relation Entry ------------------------------
Name Type Arity NTuples Sort Active
--
s1 scalar 0 0 0 0
--

>s1<-1;
>pr s1;
+-------------+
| s1 |
+-------------+
| 1 |
+-------------+
relation s1 has 1 tuple

>declare s2 string<-"hello";
>pr [s1,s2] in R;
+-------------+----------------------+
| s1 | s2 |
+-------------+----------------------+
| 1 | hello |
+-------------+----------------------+
expression has 1 tuple

Chapter 3 Users’ Manual

 41

Figure 3.3.3 initialization and declaration of top level scalar

We can also define a top level scalar on other top level scalars. For example:

Figure 3.3.4 declare a top level scalar on other top level scalars

3.3.2 Querying with top level scalar
• Examples with a flat relation.

Figure 3.3.5 using top level scalars in flat relations

• Examples with a nested relation.
We can use top level scalar to query the nested relation shown in Figure 2.6.1

>declare s3 integer<-3;
>declare s4 integer;
>s4<-s1+s3;

>pr [s1,s2,s3,s4] in R;
+-------------+----------------------+-------------+-------------+
| s1 | s2 | s3 | s4 |
+-------------+----------------------+-------------+-------------+
| 1 | hello | 3 | 4 |
+-------------+----------------------+-------------+-------------+
expression has 1 tuple

>pr where x=s1*10 in R;
+-------------+----------------------+----------------------+
| x | y | z |
+-------------+----------------------+----------------------+
| 10 | x1 | y1 |
+-------------+----------------------+----------------------+
expression has 1 tuple

>pr [s2,Attr,Pos,y,z] in grep (Attr,Pos) s2 in R;
+----------------------+------+-----+----------------------+----------------------+
| s2 | Attr | Pos | y | z |
+----------------------+------+-----+----------------------+----------------------+
| hello | y | 3 | x3 hello | y3 hi,hello there | |
| hello | z | 0 | .*+?\[]^$| | hello sam |
| hello | z | 6 | x3 hello | y3 hi,hello there |
+----------------------+------+-----+----------------------+----------------------+
expression has 3 tuples

>let sub1 be substr(z,s1);
>pr [z,sub1] in R;
+----------------------+----------------------+
| z | sub1 |
+----------------------+----------------------+
| hello sam | ello sam |
| y1 | 1 |
| y2 | 2 |
| y3 hi,hello there | 3 hi,hello there |
+----------------------+----------------------+
expression has 4 tuples

>declare x integer;
>x<-red + of a in n1;
>pr [a,x] in Tc;
+-------------+-------------+
| a | x |
+-------------+-------------+
| 1 | 3 |
| 2 | 2 |
+-------------+-------------+
expression has 2 tuples

Figure 3.3.6 using top level scalars in nested relations

Chapter 3 Users’ Manual

 42

3.4 Substring function

3.4.1 Define a substring
We can use the substring function with a string type domain. The substring function can

take 2 or 3 parameters. The first parameter is the domain identifier that the substring will

work on; the second and third parameters have types of integers and are similar to

parameters of the Java substr function. That is, the first integer indicates the start position

of the substring and the second integer indicates the position after the end of the

substring. So the length of the substring equals to the second integer minus the first

integer. The second integer can be omitted just like Java does with substr function, which

means that the substring will start at the position given by the first parameter and continue

to the end of the string.

The syntax is the following:
<SUBSTRING> "(" <Identifier> "," <ILITERAL> ("," <ILITERAL>)? ")"

<SUBSTRING> : "substr" | "substring"

<ILITERAL>:

<INTEGER_LITERAL> | <IDENTIFIER>

Let’s see some examples.

Case 1: both integer parameters are provided

Figure 3.4.1 substr with both integer parameters provided

Case 2: the second integer parameter is omitted. In this case, the second “,” can also be

omitted. The function will interpret this as get sub string start from the position specified

by the first integer and get the rest of the string.

>let sub1 be substr(z,0,1);
>pr [z,sub1] in R;
+----------------------+----------------------+
| z | sub1 |
+----------------------+----------------------+
| hello sam | h |
| y1 | y |
| y2 | y |
| y3 hi,hello there | y |
+----------------------+----------------------+
expression has 4 tuples

Chapter 3 Users’ Manual

 43

Figure 3.4.2 substr without the second integer parameter

Case 3: the first integer parameter is omitted. This case will be interpreted as start from

position 0 of the string, get the sub string till the position before the one specified by the

second integer parameter.

Figure 3.4.3 substr without the first integer parameter

We can also use other integer type identifiers to define the integer parameter. For

example we can use an integer top level scalar or an integer domain to specify the two

integer parameters in a substring function.

Figure 3.4.4 substr using identifier to specify the two integer parameters

The substring function is useful when we perform an update on a relation. In the

following example, we first find those tuples that have “hello” in them and store the result

in g1. Then we select those where the attribute is “z” in g1 and store the result in g2. Now

>let sub4 be substr(z,1,); //or let sub4 be substr(z,1);
>pr [z,sub4] in R;
+----------------------+----------------------+
| z | sub4 |
+----------------------+----------------------+
| hello sam | ello sam |
| y1 | 1 |
| y2 | 2 |
| y3 hi,hello there | 3 hi,hello there |
+----------------------+----------------------+
expression has 4 tuples

>let sub3 be substr(z,,1);
>pr [z,sub3] in R;
+----------------------+----------------------+
| z | sub1 |
+----------------------+----------------------+
| hello sam | h |
| y1 | y |
| y2 | y |
| y3 hi,hello there | y |
+----------------------+----------------------+
expression has 4 tuples

>let start be 1;
>let end be start+1;
>let subs be substr(z,start,end);
>pr [z,subs] in R;
+----------------------+----------------------+
| z | subs |
+----------------------+----------------------+
| hello sam | e |
| y1 | 1 |
| y2 | 2 |
| y3 hi,hello there | 3 |
+----------------------+----------------------+
expression has 4 tuples

Chapter 3 Users’ Manual

 44

we want to change “hello” to “aloha” in g2. We need Pos, it is the start position of “hello”

in attribute z of g2. We define sub1 as a substring of z starting from 0 and ending just

before “hello”. We then define sub2 as a substring of z starting from Pos and ending at

the end of z. We know that the substring in between sub1 and sub2 is “hello”, now we

only need to concatenate sub1 with “aloha” and then with sub2 so that we can change

“hello” to “aloha” in z.

Figure 3.4.5 perform update on relation using substring function

>pr R;
+-------------+----------------------+----------------------+
| x | y | z |
+-------------+----------------------+----------------------+
| 10 | x1 | y1 | |
| 20 | x2 | y2 |
| 30 | x3 hello | y3 hi,hello there |
| 40 | .*+?\[]^$| | hello sam |
+-------------+----------------------+----------------------+
expression has 4 tuples
>g1<-grep(Attr,Type,Pos,Val) "hello" in R;
>g2<-[x,y,z,Pos] where Attr=quote z in g1;
>pr g2;
+-------------+----------------------+----------------------+-------------+
| x | y | z | Pos |
+-------------+----------------------+----------------------+-------------+
| 30 | x3 hello | y3 hi,hello there | 6 |
| 40 | .*+?\[]^$| | hello sam | 0 |
+-------------+----------------------+----------------------+-------------+
relation g2 has 2 tuples

>let sub1 be substr(z,0,Pos);
>let Pos1 be Pos+5;
>let sub2 be substr(z,Pos1);
>update g2 change z<-sub1 cat "aloha" cat sub2;
>pr g2;
+-------------+----------------------+----------------------+-------------+
| x | y | z | Pos |
+-------------+----------------------+----------------------+-------------+
| 30 | x3 hello | y3 hi,aloha there | 6 |
| 40 | .*+?\[]^$| | aloha sam | 0 |
+-------------+----------------------+----------------------+-------------+
relation g2 has 2 tuples

Chapter 4 Implementation

 45

Chapter 4 Implementation
In this chapter, we will discuss the implementations of those new features that we

introduced in Chapter 3. In section 4.1, we will give an overview of JRelix system

implementation. Then we will discuss implementation of grep in section 4.2. In section

4.3 we will discuss how we implement union types in JRelix. In section 4.4 we will

discuss the implementation of top level scalar and in section 4.5 we will show how we

implement the substring function in JRelix.

4.1 JRelix system implementation overview
In this section, we will give an overview of JRelix system, including its system structure,

how JRelix commands are recognized by the parser and how they are interpreted by the

interpreter.

4.1.1 System structure
The end user types in a JRelix command from the user interface. The command will be

parsed by the parser and the generated parse tree will be interpreted by the interpreter.

The interpreter acts like the brain of a human. It performs the essential functionality of

analyzing and interpreting the command and achieves the functionality by cooperating

with other functions. The following figure 4.1.1 gives the system structure of JRelix.

Function calls from interpreter are performed in Database Engine. It has all the functions

of relational and domain algebra and extended functionality, such as nested relations,

computation, distributed computing and text operations. Both system data and user

defined data will be stored in the disk storage in the form of files, which can be obtained

by the user as a printout from the user interface.

 Database Engine Database Storage
User interface
 JRelix parse
 Command tree function data

 call

 data

Parser
Interpreter

Relational
Algebra
Domain
Algebar
Computation
…

System Data
&
User defined
Data

Chapter 4 Implementation

 46

Figure 4.1.1 JRelix system structure

4.1.2 How the parser works (JJTree, JavaCC)
User input is parsed by the parser and it is important to define the syntax of the command

in the parser properly so that the command can be recognized by the parser and parsed to

the interpreter. Any incorrect syntax will be rejected by the parser. To build the parser in

JRelix implementation, we use jjtree and javaCC. JavaCC is a parser generator, and jjtree

is a preprocess for javaCC that is useful for building the parser tree. (Please find complete

JavaCC document at https://javacc.dev.java.net/). The following is a simple example of

how the parser parses the user input and builds a parse tree for the interpreter. We will

explain this command in section 4.4. There are also other examples of syntax definition in

section 4.2.1, 4.3.1, 4.4.1 and 4.5.1.
>declare s1 integer<-1;

In the parser, we define the syntax in the following way:
declare <IDList> <DType> [<TInitialization>]

<TInitialization> :<ASSIGN> <Literal>|<Expression>

Declare is a key word which will be recognized by the parser and it expects a list of

identifiers after it. DType is a set of primitive types; it is also defined in the parser. This

declaration can be followed by an initialization (<TInitialization>), which is also defined

in the parser. Please find the detailed syntax in the Appendix. While the parser parses the

input, each part of the command will be put into a parse tree in the predefined way that

the interpreter expects. Figure 4.4.1 shows the parse tree of the above example. Any

unexpected input will be thrown out as a syntax error by the parser.

4.1.3 How the interpreter and the actualizer works
The interpreter will take the root of the parse tree and read the information from the node

to decide which action to take. The following figure shows the basic fields of a node. This

information is entered at the parsing stage.

Chapter 4 Implementation

 47

 SimpleNode:

Take category Declaration as an example:

Operaton type of OP_DECLARATION has following kinds of operation code:

OP_RELATION for relation declaration
OP_DECLARE for top level scalar declaration
OP_VIEW for view declaration
OP_DOMAIN for domain declaration
OP_LET for virtual domain declaration
OP_COMPUTATION for computation declaration

The interpreter will call different functions based on the operation code. Field name and

info are where the name of the identifier and the value of the literal are stored.

We have the Interpreter class in JRelix implementation, a major class of the interpreter.

We have another very important class, Actualizer, which takes care of all the domain

algebra, for example virtual domain actualization. For detailed document, please see

[Yuan98] and [Hao98] for relational and domain algebra in JRelix.

identifer:category name
opcode: operation code
type: operation type
name: node name(can be identifier name)
info: node info(can be literal value)

Chapter 4 Implementation

 48

4.2 Implementation of Grep
In our implementation, the syntax of the grep command will be different from UNIX

egrep. We will add two parameter lists in the grep command and place parameters that are

in parameter list 2 in the search string of grep. The major difference of our grep from

Unix grep is to return the position and value of a match of a pattern. The major

complication to achieve this is caused by the uncertainty of the length of the matching

value of a pattern which has either ‘?’, ‘*’, or ‘+’ in it. We will explain how we get the

value in parameter lists without these wildcard characters in section 4.2.2 and we will

deal with these wildcard in section 4.2.3. In section 4.2.4, we will explain how we deal

with the second parameter list by using the method introduced in section 4.2.2 and 4.2.3.

We will start by introducing the syntax of grep and conclude in section 4.2.5 by giving

some special cases of grep implementation.

4.2.1 syntax
In grep command, we can specify up to 2 parameter lists: search pattern and a relation

expression. Figure 3.1.6 shows an example with both parameter lists. The following is the

syntax of grep. Please refer to appendix for syntax of Selection and Identifier.

 <GREP> ("("<GIDList>")")? (<Literal>|<Identifier>) <IN> <Selection>
 <GIDList> : <LIDList>(";" <IDList>)?
 <LIDList> :(<Identifier> ("," <Identifier>)*)?
 <IDList> : <Identifier> ("," <Identifier>)*

4.2.2 Implementation for parameter list 1 without a wildcard in the
pattern
Once the command is parsed by the parser, the parse tree is generated and parsed to the

function evaluateGrep. This function will call other functions based on the number of

parameter lists in the grep command. As shown in figure 3.1.1, the simplest case of grep,

there is no parameter list in the grep command. We just need to call the UNIX egrep to

see whether or not a particular pattern match exists in a string. We will give our algorithm

in section 4.2.5.

Now, let’s take a look at the parameter list 1 and to see how we can implement it to get

the result. In figure 3.1.2, it shows an example with parameter list 1. Looking at the result

table, we can think of a straightforward way to get the value of these parameters. We just

Chapter 4 Implementation

 49

need to take each attribute in each tuple to see whether or not there are matches of a

pattern and to output for each match the attribute name and the type where it is found and

the position and the value of the match.

There could be multiple matches of the pattern in one string. We create the Grep class to

save the position and value for each match. Figure 4.2.1 is the Grep class. It has three

fields, the first two are straightforward, they are the value and position of the match

found. The third one is string arrry paraValue, it stores all the user defined parameter

values in the match string. We will need to use this array in the implementation for

parameter list 2. In addition to these fields, The Grep also has two constructors. The first

constructor will be used in the case where there is no parameter list 2; the second one will

be used for the parameter list 2. We will discuss the parameter list 2 in section 4.2.4.

Class Grep:

public class Grep
{
 public String value; //val
 public int position; //pos
 public String [] paraValue; //store values for parameter list 2

 public Grep(String v, int p)
 {
 value = v;
 position = p;
 }

 public Grep(String v,int p, String [] pv)
 {
 value = v;
 position = p;
 paraValue = new String[pv.length];
 for (int i= 0; i<pv.length; i++)
 {
 if (pv[i]!=null)
 paraValue[i] = new String(pv[i]);
 }
 }
}

Figure 4.2.1 class Grep

Since the essential part of the implementation is to find the position and value of a match

of a pattern in a string, we will focus on the function positionValue in this section.

Before we introduce the implementation of this function, let’s first take a look at the main

function of the grep commnad: evaluateGrep(in class Interpreter that calls

positionValue) of finding matches of a pattern in a relation. We will introduce two other

related functions positionValueS for pattern that has wild card “*”, “+” or “?” and

positionValueP for parameter list 2 repectively in section 4.2.3 and section 4.2.4.

 position

Value
position
ValueS

position
ValueP

value √ √ √
position √ √ √
paraValue √

 Class fields are used in functions with “√”

Chapter 4 Implementation

 50

The function positionValue will return an array of Grep object which will contain the

position and value pairs that find in a string. The function evaluateGrep will call it for

each matching cell in the relation. For the whole relation, we deal with each column one

by one. For each column, we will call the UNIX egrep to get the cells that contain the

match. For each such cell, we call the function positionValue to get the position and

value pairs. Then we can construct a relation that has the value of that cell in that column

and multiple pairs of position and value. Finally, we unite all these relations together to

get the result relation. Let’s illustrate the idea from the same example that we will use for

the function positionValue.
grep(Attr,Type,Pos,Val) "h." in R;

Figure 4.2.2 shows the result relation that we constructed for column z and cell “y3

hi,hello there". We do this also for cell “hello” of z and cell “x3 hello” of x. The final

result relation is the one that unites all of these relations. Please find the whole result

relation of this example in Figure 3.1.4

Figure 4.2.2 example of building the result relaiton

The following is the pseudo code of the above implementation of evaluateGrep:

>pr R;
+-------------+----------------------+----------------------+
| x | y | z |
+-------------+----------------------+----------------------+
| 10 | x1 | y1 | |
| 20 | x2 | y2 |
| 30 | x3 hello | y3 hi,hello there |
| 40 | .*+?\[]^$| | hello |
+-------------+----------------------+----------------------+

build result relation for cell ‘y3 hi,hello there’
+----+----------------------+----------------------+------+--------+-----+----------------------+
| x | y | z | Attr | Type | Pos | Val |
+----+----------------------+----------------------+------+--------+-----+----------------------+
30	x3 hello	y3 hi,hello there	z	string	3	string:hi
30	x3 hello	y3 hi,hello there	z	string	6	string:he
30	x3 hello	y3 hi,hello there	z	string	13	string:he
+----+----------------------+----------------------+------+--------+-----+----------------------+

Chapter 4 Implementation

 51

Figure 4.2.3 grep implementation

Now let’s find out how the function positionValue works to get position and value of a

match of a pattern in a string.

The Function positionValue:
public Grep[] positionValue(String line, String pattern)

It returns an array of Grep objects that contain position and value pairs of the matches of

pattern in string line.

Idea:
The function builds up the array of Grep objects in a loop by calling the UNIX egrep with

a piece of string starting from the every beginning of the string line with the initial length

of 1 and the pattern. The UNIX egrep returns the string that it searches if it finds a match

in it. Otherwise it will return null. The function positionValue will increase the length of

search string by 1 and call the UNIX egrep until it finds a match or reaches the end of the

string. When it finds a match, it calls the function backwards with this piece of string s

and the pattern to get the starting position of the match value. The function backwards

will call the UNIX egrep with a piece of s starting from the end, with initial length of 1

and the pattern to see if it finds a match. It will increase the length of search string by

moving backwards from the starting position of the piece of s and calling the egrep until it

finds a match. That piece of string will be the value of the match and the starting position

of that piece of string will be the start position of that match. This position and value pair

will be stored in a Grep object and added to the result array. The fuction positionValue

then will set starting position to the next position and length to 1 and will start over again

Construct an empty relation result with column of search relation R and parameter list 1
For each column col in search relation R
 Call Unix egrep with the pattern and get the returning String array A[]
 For each string line in A
 posVal<- an array of Grep objects from function positionValue(line, pattern)
 Build a relation r that satisfy the condition: value of col=value of line
 For each tuple in r,duplicate it to the same number as length of posVal

For tuple k of them,
 put Attr as name of col, Type as type of col
 and Pos as posVal[k].pos, Val as posVal[k].val
Union r with result

Return result

If grep has parameter list 2 call
positionValueP(Discuss in
section 4.2.4) instead and build
the result relation with
attributes from parameter list 2

Chapter 4 Implementation

 52

to find the next match in line. The following two figures are flowcharts of these two

functions.

The following is the flowchart of the function positionValue:

Figure 4.2.4 flowchart of function positionValue

The function backwards:
public int backwards(String s, String pattern)

It returns the start position where a pattern matche is found in a string s.

The following is the flowchart of the backwards function:

*,+,? In
pattern? Return Grep arrry <-

positionValueS(line,pattern)
(section 4.2.3)

start<-0
length<-1

start+length
<=line.length

s<-substr(start,start+length)
call Unix egrep with (s,pattern)

Find match

p<-backwards(s,pattern)
val<-s.substring(p)

g<-new Grep(val,start+p)
start<-p+1
length<-1

add g to grep array

length++

Return Grep array

pattern=”” Return grep array which has
one grep object(pos:0, val:
“”)

N

Y

N

Y

N

Y

N

Y

Chapter 4 Implementation

 53

Figure 4.2.5 flowchart of function backwards
Let’s use the same relation R in section 3.1.1 and use the following grep command:
grep(Attr,Type,Pos,Val) "h." in R;

Now we pass “y3 hi, hello there” as the value of line. And “h.” as the value of pattern

to the function positionValue. The following figure shows how the function works on

this example.

start<-s.length()-1
length<-1

start>0

ss<-substr(start,start+length)
call egrep with (s,pattern)

Find match

start--
length++

Return start

N

Y

N

Y

Chapter 4 Implementation

 54

Figure 4.2.6 example of executing the function positionValue with
the pattern “.h” and a search string “y3 hi, hello there”

 Round 1
 1. Start=0, length=1

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2. Start=0, length=2

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 3. Start=0, length=3

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 4. Start=0, length=4

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 5. Start=0, length=5

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Find a match, call backwards to determine the start position of that match. In this case backwards returns 3
 Construct a grep object(3,’hi’) and store it to output array.
 Set start to start+1, in this case, 4, and set length to 1

Round 2
 1. Start=4, length=1

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2. Start=4, length=2

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 3. Start=4, length=3

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 4. Start=4, length=4

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Find a match, call backwards to determine the start position of that match. In this case backwards return 6
 Construct a grep object(6,’he’) and store it to output array.
 Set start to start+1, in this case, 7, and set length to 1
 Round 3
 1. Start=7, length=1

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2. Start=7, length=2

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 …
 8. Start=7, length=8

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Find a match, call backwards to determine the start position of that match. In this case backwards return 13
 Construct a grep object(13,’he’) and store it to output array.
 Set start to start+1, in this case, 14. set length to 1
 Round 4
 Haven’t find any match before reach the end of string

Chapter 4 Implementation

 55

The function positionValue has limitations, because it can not return a correct value

wherever there a “?”, “+”, or “*” in it. The reason is that the uncertainty of the length of

the match string. The following section will deal with the case when there is wild card.

4.2.3 Dealing with the wildcard
Before we discuss the implementation, let’s see why the function positionValue can not

get the correct result. We use the same search string and the pattern “h.*e” to illustrate the

problem.

Figure 4.2.7 problem of positionValue when a pattern has *, + or ?

So, we make another function positionValueS when there is a *, + or ? in the pattern.

The function positionValueS takes the same parameters and return the same type as the

function positionValue does.

The function positionValueS:

public Grep[] positionValueS(String line,String pattern)
It takes two parameters:
line: search string
pattern: search pattern

It returns an array of Grep objects that contain the position and value pairs of the matches

of pattern in line

 Round 1
 1. Start=0, length=1

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 …

 8. Start=0, length=8

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Find a match, call backwards to determine the start position of that match. In this case backwards return 6
The match is (6,’he’) But here what we want is (3,’hi,he’).

 Round 2
 1. Start=7, length=1

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 …

 8. Start=7, length=8

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Find a match, call backwards to determine the start position of that match. In this case backwards return 13
The match is (13,’he’) But here what we want is (3,’hi,hello the’).

 Round 3
 1. Start=15,length=1
 Haven’t find any match before reach the end of string
 But want we want also include the following: (3,’hi,he’) ,(3,’hi,hello the’), (3,’hi,hello there’), (6,’hello the’) and (6,’hello there’)

Chapter 4 Implementation

 56

Idea:

The idea is to break the pattern before and after the aforementioned wild card to two

pattern and call the positionValue respectively, then merge the result.

A typical pattern example is: patternBefore.*patternAfter

The idea of merging is simple, since the match of pattern before the wild card always has

the smaller position value than the match of pattern after the wild card. We just need to

combine those that satisfy this condition.

Let’s go through the same example to show how this function works when dealing with

“.*”

Chapter 4 Implementation

 57

Figure 4.2.19 example when pattern has .*

The following is the algorithm which dealing the above case

Figure 4.2.8 example of positionValueS dealing with “.*”

We can see from Round 3, (7, ‘e’) can not combine with (13, ‘h’), since 13 is greater than

7.

We need a slightly different code to deal with “.+” and “.?”, because they have a different

meaning from “.*”.For example, if we use the same search string as the previous example

by just changing the pattern to “h.+e” , we do not get “he” at round 2 and round 3. We

need to make sure there is at least one character in between the values of patternBefore

 pattern = ‘h.*e’
 patternBefore=’h’
 patternAfter=’e’
 call positionValue with search string and patternBefore and get array of grep object. They are (3,’h’), (6,’h’), (13,’h’).
 call positionValue with search string and patternAfter and get array of grep object. They are (7,’e’), (14,’e’), (16,’e’).

 Round 1 for the first grep object (3,’h’)
 1.

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Create (3,’hi,he’)

 2.

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Create (3,’hi,hello the’)
 3.

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Create (3,’hi,hello there’)

Round 2 for the second grep object (6,’h’)
 1.

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Create (6,’he’)

 2.

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Create (6,’hello the’)
 3.

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Create (6,’hello there’)

 Round 3 for the second grep object (13,’h’)
 1.

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Create (13,’he’)

 2.

Y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Create (13,’here’)

Chapter 4 Implementation

 58

and patternAfter. So in the code, we just need to change one line: “if (begin<=end)” to “if

(begin<end)”.

Similarly for “.?”, we need to make sure there will be no more than one character between

the values of patternBefore and patternAfter. In the previous example, if we change

pattern to “h.?e”, we will get only two results: “he” in round 2 and round 3. In the code,

we need to change the condition to begin=end or begin=end-1.

The following is the pseudo code of the positionValueS when dealing with wild card

“.*”.We need first to check if they appear at the beginning or at the end of the pattern,

then we deal with other situation. The code is changed slightly for “.+” and “.?”. For “.+”,

we need to get rid of the result where there is no character in between the value of pattern

before and pattern after. For “.?” , we need to get rid of the result where there is more

than one character in between the two value.

Chapter 4 Implementation

 59

dotStar<-position of “.*”
if (dotStar==0) //at the beginning of the pattern, for example: .*l
 patternAfter = pattern.substring(2);
 Grep[] posV = positionValue(line,patternAfter);
 for (int i = 0;i<posV.length;i++)

 int pos = posV[i].position;
 int valL = posV[i].value.length();
 posV[i].value = line.substring(0,pos+valL);
 posV[i].position = 0;

 return posV;
if (lastDotStar==pattern.length()-2) //at the end of the pattern, like l.*
 patternBefore = pattern.substring(0,pattern.length()-2);
 Grep[] posV = positionValue(line,patternBefore);
 for (int i = 0;i<posV.length;i++)

 int pos = posV[i].position;
 int valL = posV[i].value.length();
 posV[i].value = line.substring(pos);

 return posV;

patternBefore <- pattern.substring(0,dotStar);
patternAfter <- pattern.substring(dotStar+2);
Grep[] posVB <- positionValue(line,patternBefore);
Grep[] posVA <- positionValue(line,patternAfter);

 for (int i = 0; i<posVB.length; i++)
 for (int j = 0; j<posVA.length; j++)
 int begin = posVB[i].position+posVB[i].value.length();
 int end = posVA[j].position;
 if (begin<=end)
 create a new Grep object

 set its value to line.substring(posVB[i].position,posVA[j].position +
 (posVA[j].value).length()

 set its position to posVB[i].position;
 add this Grep object to output array posV;

 return posV;

Figure 4.2.9 example of the function positionValueS dealing with “.*”

Things get a bit more complicated when there is no “.” before “*”, “+” or “?”. Now we

need to get the character or set of character that can be repeated in the match. There are

three cases: Suppose beforeChar is a character or characters in the second and third case.

* could be + or ?.

patternBeforebeforeChar*patternAfter

patternBefore[beforeChar]*patternAfter

patternBefore(beforeChar)*patternAfter

The first case, there is a character before the wild card. In this case, we need to ensure

that in between the matches of patternBefore and patternAfter are repetitions of that

Checking the repetition in between when there
is no “.” before *, + or ? (figure 4.2.10)

Chapter 4 Implementation

 60

character. In the second case, there is a set of characters in []. In this case, we must ensure

that the characters that are in between the matches are repetitions of any one from this set.

In the third case, () is before the wild card, which means that, we treat everything inside ()

as a single atomic item. So in between the matches there may be repetitions of this item.

The number of repetitions depends on which one of “*”, “+” or “?” is used. In the

implementation, we need to keep the value of a repeating item for each of the three cases,

and we need to add this verrification after the “if (begin<=end)” statement in code in

figure 4.2.9. The following is the pseudo code for this checking.

Figure 4.2.10 positionValueS dealing with “*”,“+”,“?” without preceding

“.”

4.2.4 Implementation of parameter list 2
Once we understand the implementation of grep with parameter list 1, it is not hard for us

to understand how we implement grep for the parameter list 2. Since the parameter list 2

contains user defined parameters, and they are also in the pattern, which means they are

part of the value of the match. So we still can use most of our code when dealing with the

parameter list 1. We will make some changes to the code, and we need to add a parameter

array for each pair of (position, value), since now each match value can contain several

user defined parameters in between, and we need to store their value. We use a paraValue

in the Grep class to do that as shown in Figure 4.2.1.

As shown in Figure 4.2.6, function evaluteGrep will call positionValueP when grep has

parameter list 2. Before doing that, there is some preliminary work that is required. Let’s

use an example from figure 3.1.27 to show how we implement grep with parameter list 2,

grep(Attr,Type,Pos,Val;before,after,end) "\beforeh.\aftero\end" in R;

We still use the search string:

“y3 hi,hello there”

We will get two grep objects:

(position:0, value: “y3 hi,hello there”, before: “y3 ”, after: “,hell”, end: “ there”)

 beforeChar<-value of the repetition item
 …
 in between the begin and end
 check if they are the repetitions of beforeChar
 if not skip else create a new Grep object

Chapter 4 Implementation

 61

(position:0, value: “y3 hi,hello there”, before: “y3 hi,”, after: “ll”, end: “ there”)

From the above example we can see that the user defined parameter represents part of the

value. It can be treated as “.*”, since it can be anything at that position in between the

pattern. Remember we have the function positionValueS that deals with “.*”. We just

need to make slight modifications such that it can work for the user defined parameters.

What we need here is an array of domain from the parameter list 2. Before we call the

function positionValueP, we need to check the pattern to make sure all these user defined

parameters are in the parameter list 2 and store all these parameters that appeared in the

pattern in Domain array domN. The following is the pseudo code of the function

positionValueP, Which finds the first parameter in domN, and takes everything before it

as patternBefore and everything after it as patternAfter, get the Grep array for each of

them and merge the result.

The function positionValueP:
public Grep[] positionValueP(String line,String pattern,String[] domN,
Domain[] param)
It takes four parameters:
line: search string
pattern: search pattern
domN: domain name array, which includes all the user defined parameters in pattern
Param: domain array of the parameter list 2

It returns array of the Grep objects which contains position and value pairs, and array of

values of all user defined parameters of the matches of pattern in line

Chapter 4 Implementation

 62

Figure 4.2.11 the function positionValueP dealing with parameter list 2

 if (domN.length==0) return positionValue(line,pattern);
 String paV[] = new String[param.length];
 ind<-position of domN[0] in array param
 para<-“\”+ domN[0]
 dotStar <- position of para in pattern
 patternBefore = pattern.substring(0,dotStar);
 patternAfter = pattern.substring(dotStar+para.length());
 Grep[] posVB = positionValue(line,patternBefore);
 String paraN[] = new String[domN.length-1];
 for (int i = 1; i<domN.length; i++)
 paraN[i-1]=domN[i];
 if patternAfter is empty
 Grep g<- a new grep object with

 position: line.length()
 value:’’
 paraValue[ind]<-substr(line.position of para in line)
put it in posVA

 else
Grep[] posVA = positionValueP(line,patternAfter,paraN,param);

 for (int i = 0; i<posVB.length; i++)
 for (int j = 0; j<posVA.length; j++)
 {
 int begin = posVB[i].position+posVB[i].value.length();
 int end = posVA[j].position;
 if (begin<=end)
 {
 String paraV = line.substring(begin,end);
 if (domN.length==1)
 for(int k=0;k<posVA[j].paraValue.length;k++)
 if (posVA[j].paraValue[k]!=null)
 paV[k]=posVA[j].paraValue[k];
 paV[ind]= new String(paraV);
 Grep g <-create a Grep object with

 value : line.substring(posVB[i].position,end+posVA[j].value.length())
 position : posVB[i].position
 and user defined parameter array paV

 add g to Grep array posV
 }
 }
 return posV;

Chapter 4 Implementation

 63

The following is a walk through example of calling positionValueP with
line: ‘y3 hi,hello there’
pattern: ‘"\beforeh.\aftero\end’
domN: [‘before’,’after’,’end’]
param:[before,after,end]

Figure 4.2.12 example of calling positionValueP

Call 1: ind=0; para=’\before’; dotStar=0; patternBefore=’’; patternAfter=’h.\aftero\end’
 posVB: [(0,’’)]; paraN: [‘after’,’end’]

 Call 2 posVA<-call positionValueP with line; patternAfter: ’h.\aftero\end’; paraN: [‘after’,’end’]; param
 ind=1; para=’\after’; dotstart=2; patternBefore=’h.’; patternAfter=’o\end’
 posVB: [(3,’hi’),(6,’he’),(13,’he’)]; paraN: [’end’]

Call 3 posVA<-call positionValueP with line; patternAfter: ’o\end’; paraN: [’end’]; param

 ind=2; para=’\end’; dotstart=1; patternBefore=’o’; patternAfter=’’
 posVB: [(10,’o’)]; posVA:[(17,’’)]
 inside the for loop:

 1. begin=11; end=17; paraV=’ there’; g<-(‘o there’, 10, paV[2]=’ there’); put g in posV, return posV
y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 1. begin=5; end=10; paraV=’,hell’; g<-(‘hi, hello there’, 3, paV[2]=’ there’; paV[1]=’,hell’); put g in posV

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2. begin=8; end=10; paraV=’ll’; g<-(‘hello there’, 6, paV[2]=’ there’; paV[1]=’ll’); put g in posV

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 3. begin=13; end=10 not satisfy the condition: begin<=end
 return posV with 2 Grep object

1. begin=0; end=3; paraV=’y3 ‘; g<-(‘y3 hi,hello there’,0, paV[2]=’ there’; paV[1]=’,hell’; paV[0]=’y3 ‘); put g in posV

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2. begin=0; end=6; paraV=’y3 hi,‘; g<-(‘y3 hi,hello there’,0, paV[2]=’ there’; paV[1]=’,hell’; paV[0]=’y3 hi,‘); put g in posV

y 3 h i , h e l l o t h e r e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Chapter 4 Implementation

 64

4.2.5 Other cases (no parameter list, use relation or top level scalar as
pattern)
There are some special cases of the grep command. The simplest case where there is no

parameter list in the grep command is illustrated in example in Figure 3.1.1. The

following is the pseudo code. It is similar to the code in Figure 4.2.6, except here we

don’t need to worry about the parameter list 1 in the result relation.

Figure 4.2.13 grep implementation without parameter list

Besides regular expression pattern, in our grep command, we can use top level scalar and

relation as pattern. In the case of top level scalar, we treat it as a string that we want to

find in the search relation. It is unnecessary to call the UNIX egrep to get the match; this

can be performed by a Java function used to find the position if there is parameter list 1 in

the grep command. And the value is just the same as the pattern. It is useful when we

want to search a large number of strings in the search relation. We can use relation as

pattern to achieve that where we treat relation as a set of search string; we will get a

match when either one value in the pattern relation is found in the search relation. What

we need here in the code is to add a loop. No pseudo code is provided as this operation is

rather straightforward. Please find the code in the function evalGrepScalarPV and

evalGrepRelPV when there is parameter list 1 and evalGrepRel, evalGrepScalar for

the case without parameter list 1.

Construct an empty relation result with column of search relation R
For each column col in search relation R
 Call Unix egrep with the pattern and get the returning String array A[]
 For each string line in A
 Build a relation r that satisfy the condition: value of col=value of line

Union r with result
Return result

Chapter 4 Implementation

 65

4.3 Implementation of Union Type

Hitherto, types have been primitive such as integer, string, nested relation, but now we

wish to implement types with previously declared domains and unions of types. To parse

these extended types we must support after the list of identifiers whose types are being

declared, not just one of the primitive type names but any expression made of primitive

type names and identifiers(previously declared domains), by one or more union

operator(‘|’). To determine which particular domain in the declaration of a union type is

referred to by the string initializing the value on the relation we must first ensure there is

a mechenism to expand the declaration so that we can determince the primitive types or

nested domains that these union types are declared upon. In addition, we must find the

match for the initialization string by comparing the expanded types with the parse tree of

the initialization string. The first, union type domain declaration will be discussed in

section 4.3.2. The second, relation initialization will be discussed in section 4.3.3(which

gives as backgroud, the way we implement relation initialization before we introduce

union types) and section 4.3.4. But first, let’s look at the parsing issue in section 4.3.1.

4.3.1 Syntax of union type domain declaration

First, let’s take a look at the old parser for domain declaration.
<DOMAIN> <IDList> <Type>

For example, you can declare x and y to be string in the following way:
Domain x,y string;

Now, in order to accommodate union type, we need to add “|” to express the meaning of

“or” and we need to use * to say a union type can have more then one type. We also need

to expand type so that it can be an identifier in addition to all the primitive types and

nested relation. The following is the new parser for domain declaration:
<DOMAIN> <IDList> <Type> (| <Type>)*
Please see appendix for syntax detail.

4.3.2 Implementation of union type domain declaration

We need to have the definition of union type in Domain class and store it in a disk file

“.union”, so that each time when JRelix is loaded, the definition of union type is also

Chapter 4 Implementation

 66

loaded into memory, and each time when JRelix is quit, the definition of union type is

dumped into this file.

In Domain class, we add the following field to represent union type. This is simply the

type array copied from the domain declaration parse tree.
public SimpleNode[] union;

And we also need a new constructor for union type domain.

Now, let’s take a look at a declaration parse tree example. We use the same example as

shown in Figure 3.2.1.

In figure 4.3.1, the root node indicates that this is a domain declaration parse tree. It has at

least two type of nodes. The first one is always an IDList node, which will have all the

identifiers of domains that being declared. Second type of node is Type node. For a

normal domain, it has only one Type node, and the type of node can not be identifier,

which is indicated in opcode field of the node(shown in bold in the figure). For a union

type domain, it can have one or more Type node, and the Type node can be an identifier.

That’s how we distinguish a normal domain from a union type domain. Once a union type

domain is declared, the Type nodes will be assigned to union array of that domain, and

saved in .union file.

>domain c1 n1|string;

Figure 4.3.1 An example of union type domain definition tree

identifer:Declaration
opcode: OP_DOMAIN
type: OP_DECLARATION

identifer: IDList
opcode: OP_IDList
type: OP_IDList

identifer: Identifier
opcode: OP_IDENTIFIER
type: OP_IDENTIFIER
name: c1

identifer: Type
opcode: OP_IDENTIFIER
type: OP_TYPE

identifer: Identifier
opcode: OP_IDENTIFIER
type: OP_IDENTIFIER
name: n1

identifer: Type
opcode: OP_STRING
type: OP_TYPE

Type nodes

Chapter 4 Implementation

 67

4.3.3 Initialization of relation without union type domains

In order to minimize the impact on the existing system, we do not change the syntax of

relation initialization. So the syntax of initializing a relation with union type domains is

the same as initializing a relation without a union type domain. We don’t need to specify

which particular type we use when we provide the initialization sting. This causes some

difficulties when we implement. First of all, the system needs to decide which particular

type is actually used by comparing the union type domain declaration with the

initialization string. Second, once the real type is determined, it needs to be stored with

the input data value. Otherwise, when we retrieve the data later on, we can not tell which

type it really is.

Before implementing relation initialization for union type domains, we need to

understand the existing function RelationalInitialization so that we will understand the

modifications that need to be done to this function. Let’s take a look at a simple example.
>domain a integer;
>domain b string;
>domain n1(a,b);
>relation R1(a,n1)<-{(1,{(1,"1"),(2,"2")}),(2,{(2,"2")})};

The values will be stored in relation R1 and .n1 in the following way:
pr R1;
+-------------+----------------------+
| a | n1 |
+-------------+----------------------+
| 1 | 1 |
| 2 | 2 |
+-------------+----------------------+
relation R1 has 2 tuples

In relation R1, n1 stores surrogate of the nested relation.
>pr .n1;
+----------------------+-------------+----------------------+
| .id | a | b |
+----------------------+-------------+----------------------+
| 1 | 1 | 1 |
| 1 | 2 | 2 |
| 2 | 2 | 2 |
+----------------------+-------------+----------------------+
relation .n1 has 3 tuples

In relation .n, .id stores surrogate of the nested relation.

Now let’s take a closer look at the initialization string. In figure 4.3.2, it shows the parse

tree of the initialization string. To implement the initialization, the function traverses this

tree and compares the node with the domain declaration of that relation. Please ignore the

part in dotted circle until section 4.3.4.

Chapter 4 Implementation

 68

Figure 4.3.2 An example of initialization string parse tree

From the above tree we can see that the root node is always a TupleList, which makes

sense, since a relation is a set of tuples. So the type of children of TupleList can only be

Tuple. A tuple consists domains, thus the type of childern of Tuple can be a primitive

type literal or nested relation that is represented as a TupleList. Please note that this parse

tree has nothing to do with the relation declaration or domain declaration, which is the

purpose of the function RelationalInitialization. It takes the parse tree and the relation as

its parameters and checks for each tuple if its node types match with the domain

declarations. Upon a positive match, it assigns a value to the data array of the relation.

This function will be called recursively once it meets the TupleList type node of a Tuple.

The following is the signature of RelationalInitialization.

Long RelationalInitialization(SimpleNode node,Hashtable relsHT, String name, long

surr, int tupleNum)

Parameter node is the root node of the parse tree. Parameter relsHT is the hashtable that

contains all the definition of relations. Parameter name is the name of relation. Parameter

surr is the surrogate of the nested relation. Parameter tupleNum is current tuple number of

the relation.

The first call is in RelationDeclaration: RelationalInitialization(node, relsHT, name, 0,

0)

 TupleList

 Tuple Tuple Tuple

Literal TupleList Literal TupleList Literal Literal
integer integer integer string
 1 2 3 Hi
 Tuple Tuple Tuple

Literal Literal Literal Literal Literal Literal
integer string integer string integer string
 1 1 2 2 2 2

A

C D

E

F G

H

I J

B

L

K

M

N

O P

Q

R S

Chapter 4 Implementation

 69

The main flowchart of this function is shown in figure 4.3.3. Henceforth in the flowchart,

anything related to the node in the initialization string parse tree will be illustrated using

dashed lines in order to distinguish them from domain declaration.

Figure 4.3.3 Function RelationalInitialization

The following flowchart is the expanding of case TupleList. It calls the function

RelationalInitialization again with each tuple node. When implementing the union type

domain, there is nothing changed in this part of the code. Please note, here the type of

node is TupleList, all its children are Tuple type nodes.

Figure 4.3.4 Case TupleList

node type

Tuple

Case Tuple

Case TupleList

TupleList

case TupleList

Relation name
starts with .

Y

S<-Get next surrogate

i<-0

i<node.num
of children

Y

N

Child<-get ith child node of node

S<-0

Return s

Call RelationalInitialization(child,
relsHT,name,s,i+1)
i<-i+1

Initialization string

Domain Declaration

Key

Key
 Initialization string

Domain Declaration

Chapter 4 Implementation

 70

Now, let’s take a look at case Tuple. In figure 4.3.5, the dotted circle is where we need to

deal with union type domain. We can ignore it for now. Also, we need to deal with union

type in the function assignLiteral, we will explain it later in this section. Please note,

here, node type is Tuple, its child node type can be Literal or TupleList. When the child

node type is TupleList, it means this domain input is a nested relation.

Figure 4.3.5 Case Tuple

Case Tuple
 rel<-name

rel.capacity<-0
Domain[] dom=rel.domains
offset=0

i<-0

i<node.num
of children

child<-get ith child node of node

child type

Literal
assignLiteral(rel,i,offset,child)
Figure 4.3.6

TupleList(nested relation)

newrel<-‘.’+dom[i+offset].name
result<-
RelationalInitialization(child,relsHT,newrel,0,0)
rel.data[i+offset][rel.capacity]=result

i<-i+1

Rel.capacity++

name starts
with ‘.’

(rel.data[0])[rel.c
apacity]<-surr
offset=1

Y

N

Y

N

Return 0

dom[i+offset]
.type=union

N

Y

U
Figure 4.3.8

Key
 Initialization string

Domain Declaration

Chapter 4 Implementation

 71

The function assignLiteral is very simple. The following is the flowchart of

assignLiteral, please ignore for now the part in dotted circle until section 4.3.4, where the

union type is dealt with.

assignLiteral (Relation rel, int i, int offset, SimpleNode node)

Figure 4.3.6 the function assignLiteral

Now, let take the example initialization string parse tree shown in figure 4.3.2, we can

walk through the function flowchart to see how the initialization of relation R1 is

performed. We can ignore the parts in dotted square until section 4.3.4 after we finishing

the discussion with union type domain initialization.

Domain[] dom=rel.domains

switch(doms[i + offset].type)

Check type of node

Match
domain type

Throw error

rel.data[i+offset])[rel.capa
city]<- node literal value

end

N

Y

union

Y

N

Case union
Figure 4.3.11

Initialization string

Domain Declaration

Key

Chapter 4 Implementation

 72

Figure 4.3.7 an example call of the function RelationalInitializtion

call 1: RelationalInitialization(A, relsHT, R1, 0, 0)
 Type of A: TupleList
 First child of A: B
 call 2: RelationalInitialization(B, relsHT, R1, 0, 1)

Type of B: Tuple
First child of B: C
Type of C: Literal

 Call assignLiteral(R1,0,0,C)
 (R1.data[0])[0]<-1

Second child of B: D
Type of D: TupleList

 newrel<-.n1
 call 3 result<- RelationalInitialization(D,relsHT,.n1,0,0)
 Type of D: TupleList
 S<-1
 First child of D: E
 Call 4 RelationalInitialization(E, relsHT,.n1,1,1)
 Type of E: Tuple
 (.n1.data[0])[0]<-1
 offset<-1
 Call assignLiteral(.n1,0,1,F)
 (.n1.data[1])[0]<-1
 Call assignLiteral(.n1,1,1,G)
 (.n1.data[2])[0]<-‘1’
 .n1.capacity<-1
 Second child of D: H
 Call 5 RelationalInitialization(H, relsHT, .n1, 1, 2)
 Type of H: Tuple
 (.n1.data[0])[1]<-1
 offset<-1
 Call assignLiteral(.n1,0,1,I)
 (.n1.data[1])[1]<-2
 Call assignLiteral(.n1,1,1,J)
 (.n1.data[2])[1]<-‘2’
 .n1.capacity<-2
 return 1
 (R1.data[1])[0]<-1
 R1.capacity<-1
Second child of A: K
call 6: RelationalInitialization(K, relsHT, R1, 0, 2)

 Type of K: Tuple
 First child of K: L
 Type of L: Literal

 Call assignLiteral(R1,0,0,L)
 (R1.data[0])[1]<-2

Second child of K: M
 Type of M: TupleList

 Newrel<-.n1
 Call 7 result<- RelationalInitialization(M,relsHT,.n1,0,0)
 Type of M: TupleList
 S<-2
 First child of M: N
 Call 8 RelationalInitialization(N, relsHT,.n1, 2, 1)
 Type of N: Tuple
 (.n1.data[0])[2]<-2
 offset<-1

 Call assignLiteral(.n1,0,1,O)
 (.n1.data[1])[2]<-2
 Call assignLiteral(.n1,1,1,P)
 (.n1.data[2])[2]<-‘2’
 .n1.capacity<-3
 return 2
 (R1.data[1])[1]<-2
 R1.capacity<-2

Return 0

c1.type is union; first domain of c1 is n1; n1 is
idList; match(.n1,D) return true.

(R1.data[1])[1]<-n1:2

c1.type is union; first domain of c1 is n1; n1 is
idList; match(.n1,M) return true.

Call 8: RelationalInitialization(Q, relsHT, R1, 0, 3)
 Type of Q: Tuple
 First child of Q: R
 Type of R: Literal
 Call assignLiteral(R1,0,0,R)
 (R1.data[0])[2]<-3

Second child of Q: S
Type of S: Literal
Call assignLiteral(R1,0,0,S)
 (R1.data[1])[2]<-‘string: Hi’
R1.capacity<-3

Chapter 4 Implementation

 73

4.3.4 Initialization of relation with union type domains

We now have a complete understanding of how the function RelationalInitialization

works without union type domains. In the following discussion, we will focus on how to

deal with union type domains when implement initialization of the relation. Since there is

no change to the right hand side of the assignment operator, namely the initialization

string, what we need to do is to make some changes to the function so that it can

determine what actual type a union type domain is really used and do the assignment.

Let’s start with an example. Suppose we have the following domain declaration:
domain c1 n1|string;
domain n1(a,b);
relation Tc(a,c1)<-{(1,{(1,”1”),(2,”2”)}),(2,{(2,”2”)}),(3,”hi”)};
This example is quite similar to what we’ve discussed in last section except we change

the second attribute to union type domain c1 and add one more tuple, with the second

attribute of type string. The new tuple is reflected in dotted circle in figure 4.3.2, the third

node of root node A. Now, when we do the assignment to a tuple, we still need to check

each of its domain type as it originally does, in addition we need to check to see if it is

union type domain. In case of it is union type domain, we need to figure out what actual

type the initialization string matches with. Please take a look at figure 4.3.5 the dotted

circle part. Of course, we need to deal with union type domain also in assignLiteral

function if the literal value is assigned to a union type domain. We will discuss this part

later after we finish this U part. If we find a tupleList node from the initialization string,

before we deal with it as a nested relation, we need to check if the domain is union type,

if this is the case, we need to pick one from the list of domains that matches the

initialization string, in this case, a nested relation, and then do the assignment. For this

example, when we see {(1,”1”),(2,”2”)}, we know it is a nested relation and is

represented as a TupleList node in the parse tree. What we need to do in this function is

we need to check c1’s type, since c1 is a union type domain, we need to expand its

declaration, which are either n1 or string type. We can ignore string type at once, since it

will not match with a nested relation. We will check n1’s declaration to see if it matches

with the input string, and if so, we do the assignment to .n1, and put surrogate to the

relation Tc just as what the function used to do. One more thing we need to add with the

surrogate is the name of the nested domain “n1”, so that we know that the value in this c1

field is stored in .n1 relation. The following figure 4.3.8 is the flowchart of U part. This

Chapter 4 Implementation

 74

part is actually expanding upon the declaration of union type domain, and checks if each

type is a nested domain, if it is, the program will call the match function to see if they

match each other. If they match, the program will call relationalInitializaiton to do the

initialization on this nested relation and then assign the name of matched domain and

surrogate that this call returned, to this union type domain of the tuple.

Function match takes each tuple of the nested relation from input parameter and checks

each attribute with each domain from the nested relation to see if it matches the

initialization string. If every domain in the nested relation matches with the domains of

every input tuple, the match function will return true, otherwise it will return false. The

match function is itself a recursive function, and the reason is that a domain in the nested

relation can be of union type or nested domain type. So the match function is needed to

expand union type domains in the nested relation and requires a recursive call if any one

of the domains is of union type and contains nested domains. Figure 4.3.9 and Figure

4.3.10 is the flowchart of the match function.

Chapter 4 Implementation

 75

Figure 4.3.8 RelationalInitializtion: “U” in Figure 4.3.5 (union type)

Put union type domain into
vector

vector empty?

Take one out from vector

opcode of domain’s
jth union type is
identifier?

d.type is idList?

match

hasMatch<-true
result<-
RelationalInitialization(child,
relsHT,r,0,0)
surrogate<-result.toString()
(rel.data[i+offset])[rel.capaci
ty]<-d.name+’:’+surrogate
break

U

j<-0

j<number of
union types of
this domain

N

Y

Y

d<-get this domain

nm=’.’+d.name
r<-get relation of nm
match<-match(r,child)
Figure 4.3.9

Y

j++

Y

d.type is union?

Put union type domain into
vector

Throw
error

End of
U

N

N

N

Y

N

Y

N

N

Initialization string

Domain Declaration

Key

Chapter 4 Implementation

 76

boolean match(Relation r, SimpleNode child)

Figure 4.3.9 flowchart of the match function

i=0

domN<-get (k-1)th child of tuple

node domN
‘s type
literal

r.domain[k].
type=union

Same type
as domN

noMatch<-true
Put it into vector

Vector
empty?

dc<-Take out one from vector
j=0

dc.union[j].
type=union

add it into vector
j++

child.numOf
Children=0

Y

N

Return
true

i<child.num
OfChildren

tuple<-get ith child of
node child

k=1

k<r.numOfDo
main

N

N

N

Return
false

N

N

j<numOf union
types of dc

Same type
as domN

N Y

noMatch=false
break

N

!noMatch

Y

k++

i++

Y

Y

N

Return
true

Y

Y

Y

noMatch

N

r.domain[k].
type!=idlist

r.domain[k].
type!=union

Return
false

N

Y

Y

M

Y

Y

N

N

Y

Initialization string

Domain Declaration

Key

N

Y

N

Y

Chapter 4 Implementation

 77

Figure 4.3.10 continue of the match function

Now, we can walk through the flowchart shown in figure 4.3.8 and function match in

figure 4.3.9 and figure 4.3.10 to see how the initialization with union type domain works.

Please see the dotted area in figure 4.3.7. The following is the content of R1.

pr R1;
+-------------+----------------------+
| a | c1 |
+-------------+----------------------+
1	n1:1
2	n2:2
3	string:Hi
+-------------+----------------------+
relation R1 has 3 tuples

m?

M

noMatch<=true
Put it into vector

Vector
empty?

dc<-Take out one from vector
j=0

dc.union[j].
type=union

add it into vector
j++

j<numOf union
types of dc

N

dc.union[j].
type=idlist

R<-get relation for
‘.’+dc.union[j].name
m<-match(R,domN)

noMatch=false
break

YY
Y

N

!noMatch

noMatch Return
false

Y

Y

End M

N

N

Y

N

N

Y

Y

N

N

Initialization string

Domain Declaration

Key

Y

Chapter 4 Implementation

 78

The function assignLiteral is relatively simple since the input string(node type) is literal,

it only needs to take one of the expanded union type to see if they match each other. If

they match, it will do the assignment with the type information.

The following is the function assignLiteral with union type domain

Function: assignLiteral (Relation rel, int i, int offset, SimpleNode node)
With union types

Figure 4.3.11 the function assignLiteral(Figure 4.3.6,union type)

 Case union

Switch node.type

Put union type domain into
vector

vector empty?

Take one out from vector

opcode of domain’s
jth union type is
identifier?

d.type is idList?

j<-0

j<number of
union types of
this domain

d<-get this domain

j++

d.type is union?

Put union type domain into
vector

N

N

Y

Same as
node.type

((String[])rel.data[i+
offset])[rel.capacity]
<-“node.type:”+
(node.info).toString

Y

Throw
error

N

end

Y

Y

N

Y

N

Initialization string

Domain Declaration

Key

Y

N

Chapter 4 Implementation

 79

4.4 Implementation of the top level scalar

Top level scalar is a primitive type variable with a scope the same as relation. As shown

in section 3.3, once declared, it can be used as a relation and a virtual domain.

In order to implement top level scalar, we need to introduce ‘declare’ in the parser, and

we need to store the declaration in both .rel and .dom file so that we can use it as relation

and domain as well.

4.4.1 Syntax of the top level scalar declaration and initialization

In parser, we need to add:

<declare> IDList DType (DType can be any primitive type)

Top level scalar is declared as the following:
>declare s1 integer;

After declaration, we can assign it a value using:
>s1<-1;

Or, we can initialize it when declare it:
>declare s3 integer<-3;

A top level scalar can be defined on other top level scalar, for example:
>declare s4 integer;

>s4<-s1+s3;

4.4.2 implementation of the top level scalar

When the interpreter see the top level declaration, it will call the function

DeclareDeclaration

We also need to add one more possible value of rvc(RELATION, VIEW or COMPUTATION)

in class Relation, namely SCALAR.

The function DeclareDeclaration:

It takes the declaration root node from parser. Figure 4.4.1 is a parse tree of top level

scalar declaration. It saves the definition of each scalar in both .rel and .dom, because top

level scalar is considered at the same level as a relation and at the same time can be used

as a virtual domain.

Chapter 4 Implementation

 80

>declare s1 integer;

Figure 4.4.1 An example of the top level scalar declaration tree

The following is a flowchart of the function DeclareDeclaration(node):

Figure 4.4.2 the function DeclareDeclaration

Besides the implementation of declaration of top level scalar, there are some other

modification made where is needed. For example, when we print a top level scalar, we

treat it like a relation; the system will implicitly convert it to a relation which has the

same domain name as its relation name. For example,
>pr s1;
+-------------+
| s1 |
+-------------+
| 1 |
+-------------+
relation s1 has 1 tuple

identifer:Declaration
opcode: OP_DECLARE
type: OP_DECLARATION

identifer: IDList
opcode: OP_IDList
type: OP_IDList

identifer: Identifier
opcode: OP_IDENTIFIER
type: OP_IDENTIFIER
name: s1

identifer: Type
opcode: OP_Integer
type: OP_TYPE

Type nodes

i<rels.numOf
Children

relname<name of rels’ ith child
Create relation r with name relnam

r.rvc<-SCALAR
create virtual domain with name relname

i++

Rels<-node.firstChild
Type<node.secondChild

i<-0

end

Y

N

Chapter 4 Implementation

 81

the top level scalar is created to work with relational algebra and domain algebra. These

are several examples introduced in section 3.3. Since it can work at both relation level

and domain level, we have also made some changes in the main function interpreter

where a top level scalar can be used. We take advantage of virtual domain so that we

make the smallest possible impact on the existing system.

Chapter 4 Implementation

 82

4.5 Implementation of the Substring Function

Substring function is used with relation algebra and domain algebra. A virtual domain can

be defined using Substring. To implement substring function, we need introduce its

syntax in the parser, and we need to build a new function actSubstr in the function

Actualizer where virtual domain is declared and actualized.

4.5.1 Syntax of the substring function

Substring function has similar syntax with Java substring function; we can use it as the

following example:

>let sub1 be substr(z,0,1);

The two integer type parameters have the same meaning as Java substring function.

The syntax is the following:

<SUBSTRING> (<Identifier> , <ILITERAL> (, <ILITERAL>)?)

< SUBSTRING> : "substr" | "substring"

<ILITERAL>: <INTEGER_LITERAL> | <IDENTIFIER>

Among the parameters, x is an identifier that can represent a domain, virtual domain or

top level scalar. X has the type of string. Parameters a and b are integers, a indicates the

start position in a string, b indicates one position after the end position in the string. The

second integer b can be omitted just like Java does with the substr function, which means

that the substring will start at the first position and continue to the end of the string.

Chapter 4 Implementation

 83

Example in Figure 3.4.1

let sub1 be substr(z,0,1)

Figure 4.5.1 An example of the substring function tree

4.5.2 Implementation of the substring function

Upon implementation, we need to add substr or substring keyword to the parser, so that it

will recognize the function. We also need to add OP_SUBSTR to Constants class to

indicate the operation of substring.

identifer:Declaration
opcode: OP_LET
type: OP_DECLARATION

identifer: Identifier
opcode: OP_IDENTIFIER
type: OP_IDENTIFIER
name: sub1

identifer: Identifier
opcode: OP_IDENTIFIER
type: OP_IDENTIFIER
name: z

identifer: substr
opcode: OP_SUBSTR
type: OP_UOPERATOR

substr

identifer: ILiteral
opcode: OP_INTEGER
type: OP_LITERAL
info: 0

identifer: ILiteral
opcode: OP_INTEGER
type: OP_ LITERAL
info: 1

Chapter 4 Implementation

 84

The function actSubstr(SimpleNode node)

Figure 4.5.2 the actSubstr function

start.getInf
o()!=null

from =
((Integer)start.getInfo()).

intValue

id <-node.firstChild
val <- actStrCell(id);
start<-node.secondChild
from<-0

start.type==
OP_LITERAL

from =
actIntCell
(start)

start.name
!=null

end = node.thirdChild

node.NumChi
ldren()==3

end.getInfo(
)!=null

Y

N

Y

N

N
from =
actIntCell(start)

Y

end.type==OP
_LITERAL

to =
((Integer)end.getInfo()).in
tValue

to =
actIntCell
(end)

substr =
val.substring(from,to);

Y

N
end.type!=OP
_LITERAL

to = actIntCell(end)
substr =
val.substring(from,to);

Y

N

substr =
val.substring(from)

substr =
val.substring(from)

N

substr =
val.substring(from,to);

Return
substr

Y

N

Y

Chapter 5 Conclusions

 85

Chapter 5 Conclusions

We will give a summary of the work that has been accomplished in this thesis, followed

by a discussion of future work.

5.1 Summary

What we contribute to the current JRelix in this thesis are the following new features:

• Grep Command

The grep command works on a relation and will return a relation as the result. The

purpose of the grep command is to search a particular regular expression pattern in the

database tables and return the exact match values with information such as in which

attribute and position they are found. In addition to the pattern and relational expression

(e.g. relation name), the grep command can take two parameter lists. All the parameters in

these two lists will show up in the result relation as attributes. One parameter list can have

up to 4 parameters to indicate the attribute, type of attribute, position and value of where

the match is found. The other parameter list is a user defined parameter list. Each

parameter in this list also appears in the pattern. It represents part of the match values.

• Union Type

We implement type polymorphism in a relational database. Briefly, union type means that

an attribute can have more than one type and that these types can be primitive or

complex. They can be defined on other previously defined types. Union type provides

some flexibility in the rigid schema definition in a relational database and this may be

very useful when dealing with semistructured data.

• Top Level Scalar

A Top level scalar is a primitive type variable that can be declared at the same level as a

relation. It can be treated equally as virtual domain or as a singleton unary relation. We

can use it with nested relations as shown in the example of Figure 3.3.5.

• Substring Function

The substring function working with domains of type of string. It gets parts of a string

value. Like other domain algebra functions, it can be used in any calculation with

domains.

Chapter 5 Conclusions

86

5.2 Future work

• Grep

We can take a relation and a top level scalar as the search string, but it is not treated as a

real pattern. For example, we have a top level scalar that is defined as string value

“he.*o” and we want to find match with string “hello”. It does not return a result because

“he.*o” is not treated as a pattern that will match “hello”, “heo” or any string that has

“he” and “o” and the length of 0 to many any characters in between. It is considered as “.”

and “*”, and is not taken as a wild card. We probably want both ways of interpretation. If

we want to treat it as real pattern, we need to have a new type “pattern”. Every domain

with type of pattern will be treated automatically as a regular expression pattern. In

addition, we can create a new function “toPattern”, which will convert a string toa regular

expression pattern.

Currently we use a relation as a container to store a set of strings that we want to search.

The number of attributes that the relation has does not matter. We treat each cell equally

as one of the search string. Alternatively, we can cross the boundary of the attributes to

concatenate them as one string. For example, relation R has two attributes A and B. In a

tuple, the value of A is “hello”, the value of B is “there”. In the current implementation,

the search string will be “(hello)|(there)”, but we can interpret it as “hello”and “there” and

make the search program to find any two attributes which have “hello” in the first

attribute and “there” in the second attribute. If we do this, we also need to consider how

we output these pair of attributes.

Another thing that might be interesting is to grep in a nested relations. The current

implementation of the grep does not look into the nested domain, because we design it to

work with relational algebra. It might also be useful to have a grep that can work as

domain algebra operator. Let’s take a look at the following example: suppose a relation

has an attribute with name of address. It is a union type domain, it can be string, or a

nested relation that has street address, and zipcode as its attributes. Let’s say we want to

find all the tuples that have names like “cote”, the current grep operator will only look

within the flat domain, it will not look within the nested domain, so it will miss some of

the matches. Of course we can write the command to recursively grep on the nested

Chapter 5 Conclusions

 87

domain, but it might be desirable to have the ability to grep into nested relations directly.

We might also want to integrate path expression with the grep operator in order to search

particular levels of the nesting as lorel[AQMWW97] does. For instance, we might want

to have the ability to say in the where clause:

where address (.streeAddress)? grep ‘.*cote.*’

Bibliography

88

Bibliography

[AA04] Tony Abou-Assaleh and Wei Ai, Faculty of Computer Science, Dalhousie
University, “Survey of Global Regular Expression Print (GREP) Tools” March 2, 2004

[ABC+76] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Ewaran, J. Gray, P.P.
Griffiths, W.F. King, R.A. Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu, I.L. Traiger,
B.W. Wade, and V. Watson. System R: Relational Approach to Database Management.
ACM Trans. on Database Systems, 1(2):97--137, 1976.

[Abiteboul97] S. Abiteboul, “Querying Semistructured Data”, Proc. 6

th
Int. Conf. On

Database Theory (ICDT’97), Delphi, Greece (January 1997), Lecture Nodes in Computer
Science 1186, Springer-Verlag, 1-18.

[ABS00] S. Abiteboul, P. Buneman, and D. Suciu, “Data on the Web : From Relations to
Semistructured Data and XML”, Morgan Kaufmann, 2000.

[AC75]Alfred V. Aho, Margaret J. Corasick, "Efficient string matching: an aid to
bibliographic search", Commun. ACM, 18, #6, June 1975, pp. 333-340.

[ACC+97] Serge Abiteboul, Sophie Cluet, Vassilis Christophides, Tova Milo, Guido
Moerkotte, Jérôme Siméon “Querying Documents in Object Databases”, 1997. Int. J. on
Digital Libraries

[Aho90] A.V. Aho. 1990. Algorithms for finding patterns in strings. In Handbook of
Theoretical Computer Science . Algorithms and Complexity, Vol. A, ed. by J. van
Leeuwen, Elsevier, Amsterdam, The Netherlands, pp. 255.300.

[AQMWW97] S. Abiteboul, D. Quass, J. McHugh, J. Widon and J. Weiner, “The Lorel
Query Language for Semistructure Data”, Journal of Digital Libraries 1, 1 (April 1997)
pp. 68-88.

[AWK88]Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, “The AWK
Programming Language” Addison Wesley (January 1, 1988)

[BBW92] Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. “Naturally
embedded query languages.” In J. Biskup and R. Hull, editors, LNCS 646: Proceedings of
4th International Conference on Database Theory, Berlin, Bermany, October, 1992, pages
140-154. Springer-Verlag, October 1992.

[BCF+04] S. Boag, D. Chamberlin, M.F. Fern´andez, D. Florescu, J. Robie, and J.
Simeon. “XQuery 1.0: An XML Query Language.” World Wide Web Consortium,
October 2004. http://www.w3.org/TR/xquery/

Bibliography

 89

[BDHS96] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. “A query
language and optimization techniques for unstructured data”. In Proceedings of
ACMSIGMOD International Conference on Management of Data, pages 505-516,
Montreal, Canada, June 1996.

[BDS95] Peter Buneman, Susan Davidson, and Dan Suciu. “Programming constructs for
unstructured data”. In Procecclings of 5th International Workshop on Database
programming Languages, Gubbio, Italy, September 1995.

[BFS00] Peter Buneman, Mary Fernandez, Dan Suciu “UnQL: a query language and
algebra for semistructured data based on structural recursion” The VLDB Journal — The
International Journal on Very Large Data Bases Volume 9 , Issue 1 (March 2000) Pages:
76 - 110 ISSN:1066-8888

[BLS+94] P. Buneman, L. libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension
syntax. SIGMOD Record, 23(1):87-96, March 1994.

[BM77] BOYER R.S., MOORE J.S., 1977, “A fast string searching algorithm”.
Communications of the ACM. 20:762-772.

[BNTW95] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Principles
of programming with collection types. Theoretical Computer Science, 149:3-48, 1995.

[BPM+04] Tim Bray, Textuality and Netscape, Jean Paoli, Microsoft, C. M. Sperberg-
McQueen, W3C, Eve Maler, Sun Microsystems, Inc., François Yergeau, Third Edition,
W3C Recommendation 04 February 2004

[Brennan91] Mike Brennan, “mawk”, 1991,
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?mawk

[Brzozowski64] Janusz A. Brzozowski, Derivatives of Regular Expressions, Journal of
the ACM (JACM), v.11 n.4, p.481-494, Oct. 1964

[Buneman97] Peter Buneman, “Semistructured data”, Proceedings of the sixteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, Tucson, Arizona,
United States Pages: 117 – 121, 1997 ISBN:0-89791-910-6

[CCGJ+92]Crochemore, M., Czumaj A., Gasieniec L., Jarominek S., Lecroq T.,
Plandowski W., Rytter W., 1992, Deux méthodes pour accélérer l'algorithme de Boyer-
Moore, in Théorie des Automates et Applications, Actes des 2e Journées Franco-Belges,
D. Krob ed., Rouen, France, pp 45-63, PUR 176, Rouen, France.

[CD92] Sophie Cluet and Claude Delobel. “A general framework for the optimization of
object oriented queries”. In M. Stonebraker, editor, Proceedings ACM-SIGMOD
InternationalConference on Management of Data, pages 383-392, San Diego, California,
June 1992.

Bibliography

90

[CD99] James Clark, Steve DeRose, “XML Path Language (XPath)” Version 1.0, W3C
Recommendation 16 November 1999, http://www.w3.org/TR/xpath

[Codd70] E.A. Codd. “A relational model for large shared databanks”. Communications
of the ACM, 13(6):377--387, 1970

[Codd71] E.F. Codd, "Normalized Data Base Structure: A Brief Tutorial", in [SIGFIDET
71].

[Codd72] E.F. Codd, "Further Normalization of the Data Base Relational Model", in R.
Rustin (ed.), Data Base Systems (Courant Computer Science Symposia 6), Prentice-Hall,
1972. Also IBM Research Report RJ909.

[CR91] Debra Cameron , Bill Rosenblatt, “Learning GNU Emacs”, O'Reilly &
Associates, Inc., Sebastopol, CA, 1991 . See also
http://www.gnu.org/software/emacs/emacs.html

[DFFS98] A.Deutsch, M.Fernandez, D.Florescu, A.Levy, and D.Suciu. XML-QL: A
query language for XML, 1998. http://www.w3.org/TR/NOTE-xml-ql

[DFH+99] Eduard Derksen (CSCIO), Peter Fankhauser (GMD-IPSI), Ed Howland
(DEGA), Gerald Huck (GMD-IPSI), Ingo Macherius (GMD-IPSI), Makoto Murata (Fuji
Xerox), Michael Resnick (Object Design, Incorporated),Harald Schöning (Software AG)
“XQL (XML Query Language)” August 1999. http://www.ibiblio.org/xql/xql-
proposal.html

[DR97] Dale Dougherty, Arnold Robbins, “sed & awk”, Second Edition,1997

[Eckel00]Bruce Eckel, “Thinking in Java” ,Pearson Education 2000

[Ellard97] Dan Ellard, http://www.eecs.harvard.edu/~ellard/Q-
97/HTML/root/node45.html

[FG85] Patrick C. Fischer, Dirk Van Gucht, “Determining when a Structure is a Nested
Relation” VLDB 1985: 171-180

[Findutils05] GNU Findutils http://www.gnu.org/software/findutils/findutils.html

[Friedl97] Jeffrey E. F. Friedl, “Mastering Regular Expressions; Powerful Techniques for
Perl and Other Tools” 1st Edition January 1997

[Glantz57] Herbert T. Glantz 1957. On the recognition of information with a digital
computer. Journal of the ACM, Vol. 4, No. 2, pp. 178–188.

[GSS04] Rick Greenwald, Robert Stackowiak, Jonathan Stern, Oracle Essentials, 3e:
Oracle Database 10g (Paperback) O’RELLY 2004

Bibliography

 91

[GNUgrep05] GNU grep, http://www.gnu.org/software/grep/grep.html

[Guo05] Fan Guo, “Implementing Attribute Metadata Operators to Support
Semistructured Data”, School of Computer Science, McGill University, January 2004.
http://www.cs.mcgill.ca/~tim/cv/theses/fGuoThesis.ps.gz

[Hao98] B. Hao, “Implementation of the Nested Relational Algebra in Java”, Master’s
thesis, School of Computer Science, McGill University, 1998.
http://www.cs.mcgill.ca/~tim/cv/theses/hao.ps.gz

[HH96] Michael Hauben, Ronda Hauben, “On the Early History and Impact of Unix,
Tools to Build the Tools for a New Millenium”, 1996,
http://www.columbia.edu/~rh120/ch106.x09

[Horspool80] Horspool R.N., 1980, “Practical fast searching in strings”, Software -
Practice & Experience, 10(6):501-506.

[Hume88] Andrew Hume. 1988. A tale of two greps. Software – Practice and
Experience, Vol. 18, No. 11, pp. 1063–1072

[IEEE03a] The IEEE and The Open Group. 2003. Regular Expressions. The
Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2003 Edition, Base
Definitions Volume.

[IEEE03b] The IEEE and The Open Group. 2003. Utilities: grep. The Open
Group Base Specifications Issue 6, IEEE Std 1003.1, 2003 Edition, Shells and Utilities
Volume.

[ISO2002] (ISO-ANSI Working Draft) XML-Related Specifications (SQL/XML)
http://xml.coverpages.org/SQLX-5wd-14-xml-2002-08.pdf

[JS82] B . Jaeschke, H .J . Schek . "Remarks on the algebra of non first normal form
relations" . Proc. list ACM PODS, 124—138 (1982) .

[KD71] K. Thompson, D. M. Ritchie, “UNIX PROGRAMMER'S MANUAL” First
edition, November 3, 1971, command part2, page 7-13. http://cm.bell-
labs.com/cm/cs/who/dmr/man12.pdf

[KMP77] Knuth D.E., Morris (Jr) J.H., Pratt V.R., 1977, Fast pattern matching in strings,
SIAM Journal on Computing 6(1):323-350.

[KR87] Karp R.M., Rabin M.O., 1987, “Efficient randomized pattern-matching
algorithms”. IBM J. Res. Dev. 31(2):249-260.

[Lecroq92]Lecroq T., 1992, “A variation on the Boyer-Moore algorithm”, Theoretical
Computer Science 92(1):119--144.

Bibliography

92

[Lecroq95]Lecroq, T., 1995, “Experimental results on string matching algorithms”,
Software - Practice & Experience 25(7):727-765.

[Libes95] Libes, D., "Exploring Expect: A Tcl-Based Toolkit for Automating Interactive
Applications", O'Reilly & Associates, Inc., pp. 602, January 1995. See also
http://expect.nist.gov/

[LR98] Linda Lamb, Arnold Robbins, Learning the vi Editor, Sixth Edition, November
1998

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. “Lore: A
database management system for semistructured data”. Technical report, Stanford
University Database Group, February 1997.

[Mak77] A. Makinouchi. “A consideration on normal form of not necessarily normalised
relation in the relational data model”. In VLDB'77, pp 447--453.

[MB90] Tony Mason , Doug Brown, Lex & yacc, O'Reilly & Associates, Inc.,
Sebastopol, CA, 1990. See also http://www.mkssoftware.com/products/ly/

[Merrett84] T. H. Merrett, “Relational Information Systems”, Reston Publishing Co.,
Reston, VA, 1984.

[Merrett00] T. H. Merrett, Computer Science 308-612A Database Systems, Lecture notes,
http://www.cs.mcgill.ca/~cs612/homepage.html

[Merrett03] T. H. Merrett, “A Nested Relation Implementation for Semistructured Data”,
School of Computer Science, McGill University, December 2003.
http://www.cs.mcgill.ca/~tim/semistruc/recnest.ps.gz

[MKSawk] MKS awk command manual
http://www.mkssoftware.com/docs/man1/awk.1.asp

[MKSegrep]] MKS awk egrep manual
http://www.mkssoftware.com/docs/man1/grep.1.asp

[MySql] MySQL Reference Manual, 3.3.4.7. Pattern Matching
http://dev.mysql.com/doc/mysql/en/pattern-matching.html

[Nudelman05] Mark Nudelman, “The LESS” http://www.greenwoodsoftware.com/less/

[ODMG 3.0] Edited by R. G. G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman,
David Jordan, Craig Russell, Olaf Schadow, Torsten Stanienda, and Fernando Velez;
“The Object Database Standard:ODMG 3.0”. Morgan Kaufmann, San Mateo, California,
2000. http://www.odmg.org/

Bibliography

 93

[Ousterhout94] John K. Ousterhout, Tcl and the Tk toolkit, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, 1994

[Paxson00] Vern Paxson, “GNU flex” http://freeware.sgi.com/fw-
5.3/fw_GNUflex/GNUflex.html

[Polymorphism05] webopedia, “term: Polymorphism05”, 2005,
http://www.webopedia.com/TERM/p/polymorphism.html

[RCF00] Jonathan Robie (Software AG), Don Chamberlin (IBM Almaden Research
Center), Daniela Florescu (INRIA), “Quilt: an XML Query Language”, 31 March 2000
http://www.almaden.ibm.com/cs/people/chamberlin/quilt_euro.html

[Rischert03] Writing Better SQL Using Regular Expressions By Alice Rischert
http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/rischert_regex
p_pt1.html

[Robbins98] Arnold D. Robbins, “Gawk: The GNU AWK Users' Guide, 2nd edition”,
Free Software Foundation , 1998. Also see: http://www.gnu.org/software/gawk/

[Rossum] http://www.python.org/~guido/

[Shienbrood92] Eric Shienbrood, UC Berkeley, unix more.
http://unixhelp.ed.ac.uk/CGI/man-cgi?more

[SHWK76]Michael Stonebraker , Gerald Held , Eugene Wong , Peter Kreps, “The design
and implementation of INGRES”, ACM Transactions on Database Systems (TODS), v.1
n.3, p.189-222, Sept. 1976

[SQL99] ANSI/ISO/IEC International Standard (IS)
Database Language SQL—Part 2: Foundation (SQL/Foundation)
http://www.ncb.ernet.in/education/modules/dbms/SQL99/ansi-iso-9075-2-1999.pdf

[TF86] Stan J. Thomas, Patrick C. Fischer: “Nested Relational Structures”. Advances in
Computing Research 3: 269-307 (1986)

[Thompson68] Ken Thompson, Bell Telphone Labs, Inc., Murray Hill
“Regular expression search algorithm”, Communications of the ACM archive
Volume 11 , Issue 6 (June 1968) table of contents Pages: 419 - 422

[TMD92] J. Thierry-Mieg and R. Durbin. Syntactic definitions for the ACeDB data base
manager. Technical Report MRC-LMB xx.92, MRC Laboratory for Molecular Biology,
Cambridge, UK, 1992.

[Todd76] S.Todd. The PeterLee Relational Test Vehicle. IBM Systems Journal vol. 15 no
4 1976

Bibliography

94

[Wall00] Larry Wall , Programming Perl, O'Reilly & Associates, Inc., Sebastopol, CA,
2000

[Wikipedia05] Wikipedia, “Boyer-Moore string search algorithm”, 2005,
http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm

[Xie05] Jiantao Xie, “Text Operators in a Relational Programming Language” School of
Computer Science, McGill University, January 2005.
http://www.cs.mcgill.ca/~tim/cv/theses/xieThesis.pdf.gz

[Yu04] Zhan Yu, “Implementation of Recursively Nested Relation of JRelix”, School of
Computer Science, McGill University, January 2004.
http://www.cs.mcgill.ca/~tim/cv/theses/YuProject.pdf.gz

[Yuan98] Zhongxia Yuan, “Java Implementation of the Domain Algebra for Nested
Relations”, 1998. http://www.cs.mcgill.ca/~tim/cv/theses/yuan.ps.gz

Appendix

95

Appendix: partial JRelix syntax
Tokens:

< ASSIGN : "<-" >

< DOMAIN : "domain" >

< GREP: "grep" >

< OR : "|" >

< UNIVERSAL : "univ" | "universal" >

< TYPE : "type" >

< ATTRIBUTE : "attr" | "attribute" >

< BOOLEAN : "bool" | "boolean" >

< SHORT : "short" >

< INTEGER : "intg" | "integer" >

< LONG : "long" >

< STRING : "strg" | "string" >

< FLOAT : "float" | "real" >

< DOUBLE : "double" >

< NUMERIC : "number" >

< TEXT : "text" >

< STATEMENT : "stmt" | "statement" >

< EXPRESSION : "expr" | "expression" >

< COMP : "comp" | "computation" >

< LETTER : ["a"-"z", "A"-"Z"] >

< OTHERS : ["_", "'"] >

< DOTUS : [".", "_"] >

< DIGIT : ["0"-"9"] >

< INTEGER_LITERAL : (<DIGIT>)+ (["s","S","i","I","l","L"])? >

< FLOAT_LITERAL :

(<DIGIT>)+ "." (<DIGIT>)* (<EXP>)? (["f", "F", "d", "D"])?

 |

 "." (<DIGIT>)+ (<EXP>)? (["f", "F", "d", "D"])?

 |

 (<DIGIT>)+ <EXP> (["f", "F", "d", "D"])?

 |

 (<DIGIT>)+ (<EXP>)? ["f", "F", "d", "D"] >

< NUMERIC_LITERAL : "\"" (["+","-"]) (<DIGIT><DIGIT><DIGIT>) ["+", "-"]

(<DIGIT>)+ ["N"] "\"" >

< STRING_LITERAL : "\"" (~["\"","\n","\r"])* "\"" >

Appendix

96

< AND : "and" | "&" >

< CAT : "cat" >

< EVAL : "eval" >

< QUOTE : "quote" >

< TRANSPOSE : "transpose" >

< NOP : "nop" >

< IJOIN : "ijoin" | "natjoin" >

< UJOIN : "ujoin" >

< DJOIN : "djoin" >

< SJOIN : "sjoin" >

< LJOIN : "ljoin" >

< RJOIN : "rjoin" >

< DLJOIN : "dljoin" >

< DRJOIN : "drjoin" >

< ICOMP : "icomp" | "natcomp" >

< EQJOIN : "eqjoin" >

< GTJOIN : "gtjoin" >

< GEJOIN : "gejoin" | "sup" | "div" >

< LTJOIN : "ltjoin" >

< LEJOIN : "lejoin" | "sub" >

< IEJOIN : "sep" | "iejoin" >

< MAX : "max" >

< MIN : "min" >

< POW : "**" >

< PLUS : "+" >

< MINUS : "-" >

< MUL : "*" >

< DIV : "/" >

< MOD : "mod" >

< NOT : "not" | "!" >

< LET : "let" >

< SUBSTRING : "substr" | "substring" >

Domain declaration:

<DOMAIN> <IDList> <Type> (<OR> <Type>)*

<Type> :

 <UNIVERSAL>|<TYPE>|<ATTRIBUTE>|<BOOLEAN>|<SHORT>|<INTEGER>|

 <LONG>|<FLOAT>|<DOUBLE>|<NUMERIC>|<STRING>|<TEXT>|<STATEMENT>|

Appendix

97

 <EXPRESSION>|<COMP> "(" [<IDList>] ")" | "(" <IDList> ")" |

 <Identifier>

<IDList> : <Identifier> ("," <Identifier>)*

<Identifier> : (<DOTUS>)? <LETTER> (<LETTER>|<DIGIT>|<OTHERS>)*

Relation declaration:

<RELATION> <IDList> "(" <IDList> ")" [<Initialization>]

<Initialization> : <ASSIGN> "{" <ConstantTupleList> "}" | <Identifier>

<ConstantTupleList> : [<ConstantTuple> ("," <ConstantTuple>)*]

<ConstantTuple> : "(" <Constant> ("," <Constant>)* ")"

<Constant> : <Literal>|"{" <ConstantTupleList> "}"

<Literal> : <NULL> | <DC> | <DK> | <TRUE> | <FALSE> | (“+”|“-”)? |

<INTEGER_LITERAL> | <FLOAT_LITERAL> | <NUMERIC_LITERAL> |

<STRING_LITERAL>

Top level scalar declaration:

<DECLARE> <IDList> <DType> [<TInitialization>]

<DType> :

<BOOLEAN>|<SHORT>|<INTEGER>|<LONG>|<FLOAT>|<DOUBLE>|<NUMERIC>|<STRING>|<

TEXT>

<TInitialization> : <ASSIGN> <Literal>|<Expression>

<Expression> : <Disjunction>

<Disjunction> : <Conjunction> (<OR> <Conjunction>)*

<Conjunction> : <Comparison> (<AND> <Comparison>)*

<Comparison> : <Concatenation> (<ComparativeOperator> <Concatenation>)?

<ComparativeOperator> : <EQ> | <NEQ> | <GT> | <LT> | <GE> | <LE>

<Concatenation> : <MinMax> (<CAT> <MinMax>)*

<MinMax> : <Summation> (<MinMaxOperator> <Summation>)*

<MinMaxOperator> : <MIN> | <MAX>

<Summation> : <JoinExpression> (<AdditiveOperator> <JoinExpression>)*

<AdditiveOperator> : <PLUS> | <MINUS>

<JoinExpression> : <Projection> (<JoinOperator> <Projection>

 |

 "[" <ExpressionList> ":" <JoinOperator> (":")?

 <ExpressionList> "]" <Projection>)*

<Projection> : <Projector> ((<IN> | <FROM>) <Projection>|<Selection>)

 |

 <Selection>

<Projector> : [<QuantifierOperator>] "[" (<ExpressionList>)? ”]”

<Selection> : <Selector> | <QSelector> | <Term>

Appendix

98

<Selector> : (<WHERE> | <WHEN>) <Expression> (<IN> | <FROM>)

<Projection> | <EDIT> [<Projection>] | <ZORDER> <Projection>

<QSelector> : <QUANT> [(<WHERE> | <WHEN>) <Expression>]

 (<IN> | <FROM>) <Projection>

<Term> : <Factor> (<MultiplicativeOperator> <Factor>)*

<Factor> : <UnaryOperator> <Factor> | <Power>

<UnaryOperator> : <PLUS> | <MINUS> | <NOT>

<MultiplicativeOperator> : <MUL> | <DIV> | <MOD>

<Power> : <Primary> (<POW> <Power>)*

<Primary> : <Identifier> | <Literal> | <QuantifierOperator>

 | <ArrayElement>

 | <PositionalRename> <Cast> | "(" <Expression> ")"

 | <Pick> | <AttribsOf> | <grep> | <substr>

 | <Quote> | <Transpose> | <Function> | <IfThenElseExpression>

 | <VerticalExpression>

<ExpressionList>: <Expression> ("," <Expression>)*

<JoinOperator> : <NOP> | <MuJoin> | [<NOT>] <SigmaJoin>

<MuJoin> : <IJOIN> | <UJOIN> | <DJOIN> | <SJOIN> | <LJOIN> |

 <RJOIN> | <DLJOIN> | <DRJOIN>

<SigmaJoin> : <ICOMP> | <EQJOIN> | <GTJOIN> | <GEJOIN> | <LTJOIN>

| <LEJOIN> | <IEJOIN>

<GREP> ("("<GIDList>")")? <Literal>|<Identifier> <IN> <Selection>

<GIDList> : <LIDList>(";" <IDList>)?

<LIDList> : (<Identifier> ("," <Identifier>)*)?

Virtual domain declaration:

<LET> <identifier> be <Expression>

Substring function:

<SUBSTRING> "(" <Identifier> "," <ILITERAL> ("," <ILITERAL>)? ")"

