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Abstract  
 
 
This project report discusses the design and implementation of new features involved in 

JRelix, including semi-structured data loading, improved queries (recursive nesting, path 

expression and regular expression operators). Semi-structured data is self-describing thus 

more flexible. Acceptance of semi-structured data loading makes data loading for relation 

initialization more convenient in JRelix. To simply the edition of relation loading data, 

the data can be edited in a file and saved as a .txt file. The relation can then be declared 

and initialized by the data in the file. After allowing JRelix to accept recursive nesting, 

the regular expression operators (“*”, “+”, “.”, “?”) have been implemented to query the 

relations with a recursively nesting domain. In addition, path operator, which is likely to 

be frequently used in querying nested relations, has been implemented as a short-cut by 

using the / operator. The implementation of this project is part of the Aldat project at 

McGill University.  
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Chapter 1  
 
 
Introduction  
 
This project report describes the design and implementation of some new features 

involved in JRelix, including semi-structured data loading and improved queries 

(recursive nesting, path expression and regular expression operators). In section 1.1, a 

background material and motivation is given for the implementations. In section 1.2, a 

brief outline on the structure of this report can be found.  

  

1.1 Backgrounds and Motivation   
Relix System 
Over the past 18 years, Relix, which is a relational database language, has been designed 

and developed at the Aldat lab of the School of Computer Science at McGill. The original 

version of Relix was developed in the C language and ran on the UNIX operating system. 

Since then, the system has been enhanced with further developments. In 1998, the Relix 

system was redesigned to be implemented it in Java [Yua98, Hao98]. The new system 

was named JRelix and covered the most important functions of the original Relix system, 

with a further extension to support a nested relational model. 

 

The current JRelix system supports relational algebra, domain algebra and computations. 

Furthermore, the Internet capability has been integrated into JRelix, so it can also process 

remote data processing through the Internet [Wan02].  

 

Semi-structured Data  
 
The data resides in different forms ranging from unstructured data to highly structured 

data. At an extreme we find data coming form traditional relational or object-oriented 

databases, with a completely known structure. At another extreme, we have data that is 
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fully unstructured, such as sound or images. But most of the data falls somewhere in 

between those two extremes and the data have been given the term semi-structured data 

[Suc99].  

 

Semi-structured data is often described as “schema-less” or “self-describing”, and these 

terms mean that a pre-imposed schema or type system is needed for the interpretation of 

semi-structured data [Bun97]. Typically, when we store or program with data, we firstly 

describe the structure (type, scheme) of that data and then create instances of that type. In 

semi-structured data we directly describe the data using a simple syntax. For example, 

{name: “Joe”, ID: “23451”, Tel: “514-398-0980”} is a simple set of pairs such as name: 

“Joe” consisting of a label and a value. We are not constrained to make all the tuples the 

same type. One of the main strengths of semi-structured data is its ability to 

accommodate variations in structure. In addition, semi-structured data allows forgetting 

any type the data might have had, and serializes it by annotating each data item explicitly 

with its description (such as name, ID, etc). Such data is called self-describing. The term 

serialization signifies the conversion of the data into a byte stream that can be easily 

transmitted and reconstructed at receivers [ABS00].  

 

Schemas for semistructured data differ from those for relational data. In a traditional 

database approach, types are always fixed prior to populating the database. Once the data 

is populated, its binary storage cannot be interpreted without having knowledge the 

schema. With semistructured data we may specify the type after the database is populated. 

The type may often describe the structure only for a part of the data and, even then, do 

that with less precision. An important consequence is that a data instance may have more 

than one type [ABS00].  

 

The web provides numerous popular examples of semi-structured data. On the web, data 

consists of files in HTML format, with some structuring primitives such as tags and 

anchors. Secondly, the need for semi-structured data arises when integrating several 

sources. Finally, semi-structured data arises under a variety of forms for a wide range of 

application such as scientific databases and on-line documentations. [Abi95]. 
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The most popular example of semi-structured data is XML (Extensible Markup 

Language). It is a language for representing data as a string of text that includes 

interspersed “markup” for describing properties of the data. Using markup allows the text 

to be interspersed with information related to its content or form [Gra02]. Element is the 

basic component of XML. XML can contain attributes with varied order and multiple 

elements with the same element type. This makes it easier to represent more complex 

data.  

 

Semistructured Data DBMS 
 
The exploration of application of semi-structured data in databases is due to the advent of 

semi-structured data. Firstly, database systems were developed to manage semi-structured 

data. The most famous is Lore (Lightweight Object Repository), which was implemented 

at Stanford University. The Lore system is designed specifically for the management of 

semi-structured data. In general, Lore attempts to take advantage of structure where it 

exists, but can also handle irregular cases gracefully. Implementing the Lore system 

requires rethinking all aspects of a DMBS, including storage, query and user interface 

[MAG+97]. Secondly, data is not stored as semi-structured, but it can be exported as 

semi-structured and presented to other applications or users. Semi-structured data can be 

entered into a database by compressing the data and storing the data in the structure of the 

database, such as relations [Gra02].  

 

A semi-structured data interface to a relational DBMS provides access to robust database 

technology with the advantages of semi-structured data delivery. It is especially useful 

when a relational database already exists. Loading the semi-structured data into an 

existing relational database allows more flexible data input for the relational database 

system [GRA02].  

 

Generally, there are two approaches in devising query language for semi-structured data. 

First, take SQL as a starting point and features are added to perform useful queries. The 

second one is to start from a language based on the notion of computation on 
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semi-structured data then to modify that language into acceptable syntax [Bun97]. 

Several query languages for semi-structure data have been proposed: LOREL 

[QRS+95,AQM+96,AQM+97,MAG+97], UnQL [BDS95, BDHS96], WebSQL 

[MMM96]. Their common feature is the ability to traverse arbitrary long paths in the data, 

usually specified in the form of a regular path expression: thus these query languages are 

recursive. [Suc99].  

 

Motivation 

Due to the advantages of semi-structured data, one part of this project is devoted to the 

implementation of embedding semi-structured data into JRelix. An advantage is that the 

data structure can be much more flexible. Alternatively, the self-describing data could be 

embedded in natural language text.  

 

We can further explore the flexibility of semistructured data. For nested relations, path 

expressions are useful to describe the hierarchy. And the notion of path expression takes 

its full power when we start using it in conjunction with wild card (.) or regular 

expression operators, such as Kleene star (*), plus operator (+) and question mark 

operator (?). This project is also devoted to implementing path expression, recursive 

nesting and the regular operators. 

 

 

1.2 Outline of the Report 

This project report discusses the design and implementation of some new features in 

JRelix. Chapter 1 of this report introduces the project topic. In chapter 2, the overview of 

the current JRelix system is given. Chapter 3 describes how the new features of JRelix are 

used, including semi-structured data input, recursive nesting, path expression (“/”) and 

the regular expression operators (“*”, “+”, “.”, “?”). Chapter 4 explores the issues 

involved in implementating the new features. In chapter 5, a brief summary is provided 

and future work is presented.  
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Chapter 2  
 
 

JRelix Overview 

This chapter is to introduce JRelix, describing how to use JRelix to perform database 

operations. Section 2.1 explains how to start JRelix. Section 2.2 describes the declarations 

of domains and relations and the initialization of relations. The functional operations of 

relational algebra will be explored in section 2.4. The use of domain algebra operations 

will be presented in section 2.5. In the section 2.6, the usage of views and computations 

will be briefly introduced.  

 

2.1 Getting started  
JRelix runs on any platform that has the Java Runtime Environment (JRE) version 1.1 or 

up. To start JRelix interpreter, type the following  

java JRelix 

As the result, JRelix copyright information will be displayed in its run-time environment, 

as illustrated in Figure 2.1.  

 

 
                 

                         Figure 2.1 JRelix startup 

After successful starting up, prompt > is shown and JRelix is ready to accept user inputs.  
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2.2 Commands  

In this section, the most commonly used commands of JRelix are presented.  

pr Expression Display the result of a relational expression.  

time Time on/off interpreter.  

trace Log on/off. 

sr (<IDENTIFIER>)? Display the description of the relation identifier. All relations 

are shown if identifier is omitted.   

sd (<IDENTIFIER>)? Display the description of the attribute identifier. All attributes 

are shown if identifier is omitted.   

dd IDList Remove the attributes specified in IDList.  

dr IDList Remove the relations, views or computations specified in IDList.  

quit Exit the system. JRelix performs clean-up procedure and saves the information 

before it returns the original operating system.  

 

 

2.3 Declarations 
2.3.1 Domain Declaration  
 
Use the following syntax to declare domains: 

domain IDLIST Type; 

where domain is a keyword and IDLIST specifies the list of domains being declared, Type 

donates the types of these domains. In the current JRelix system there are two kinds of 

domain types: atomic and complex. The atomic types are primary such as integer, string, 

long, double, etc. Nine atomic data types for domains declaration are shown in Figure 

2.3.1.  
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Type Short Form Corresponding Java Type 

integer intg signed int, 4 bytes 

short short signed short int, 2 bytes 

long long singed long, 8 bytes 

double double singed double, 8 bytes 

float float signed float, 4 bytes 

string strg String 

boolean bool true,false 

attribute attr String 

universal univ String 

numeric num  

                  Figure 2.3.1 Atomic domain types in JRelix 

                   

In addition, two complex domain types have been implemented in JRelix: i.e. nested 

relation and computation. In general, the syntax used to declare nested domains is as 

follows: 
domain nest_domain_name(domName1,domName2…); 

where the nest_domain_name specifies the name of the nested domain being declared and 

the domain list that the nested relational domain contains are present in the following 

bracket.  

As well, the following syntax is to declare a computational domain: 
  domain comp_domain_name comp(domName1,domName2…); 

Note that the current JRelix implementation required that the attributes on which a nested 

attribute is defined must be declared already, so the recursively defined nested attributes 

were now allowed. The current implementation allows them. The details about 

recursively defined nested attributes will be presented in next chapter.  

 

Figure 2.3.2 gives some examples of declaring both atomic-type domains and 

complex-type domains. 
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                Figure 2.3.2. Examples of domain declaration 

 

2.3.2 Relation Declaration and Initialization  
 
The following syntax is used to declare and initialize relations  
 

relation IDLIST “(“ IDLIST “)” (Initialization)?  
 
where the first IDLIST specifies the name of a relation to be declared or initialized. The 

domain list that the relation being declared contains is specified in the second IDLIST.  

When initialization is absent, an empty relation is declared without any tuple data inside, 

otherwise, a relation is declared with actual data tuples, called relation initialization. The 

most often used initialization is the so called curly bracket syntax in which relations start 

and terminate with curly bracket { and }, while their tuples are surrounded with round 

bracket ( and ). Also, the use of the name of another relation can initialize a relation.  

 

For a nested relation, surrogates are used to replace actual values of nest attributes. The 

actual data for a nest attribute are stored in a relation with additional attribute .id which 

function is to link surrogates of the attributes in its parent relation. The name of the 

relation is the name of the nested attributes prefixed with a dot(.). 

 

The following is the examples of relational declaration and initialization.  

 

In the example presented in Figure 2.3.3, the relation EmployeeInfo contains three 

domains, name, department and ContactInfo. The type of the domain name and 

department is strg, while ContactInfo is a nested domain, which is defined on email and 

fax.  
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           Figure 2.3.3 Initialization of relation EmployeeInfo 

 

To display the contents of the relation, the command pr can be used.  
pr EmployeeInfo; 

The relation EmployeeInfo is shown in Figure 2.3.4. Since ContactInfo is a nested 

domain, .ContactInfo is generated to store all the ContactInfo data. Note that in relation 

EmployeeInfo, surrogates 608, 609and 610 for nested attribute Contact link the values 

608,609 and 610 of attribute .id in relation .ContactInfo. 

 

 
 

  Figure 2.3.4. Contents of relation EmployeeInfo 
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2.4 Assignment  
 
JRelix provides two assignment operators, which are replacement (<−) and incremental 

assignment (<+). The replacement operators completely replace the left-hand relation that 

may have been defined or not. The data in the right-hand relation is copied into the 

left-hand relation. The incremental assignment adds new tuples and the attributes of the 

right-hand relation must be compatible with those of the relation on the left. The 

renaming assignment allows attributes on the left to be matched with the attributes on the 

right. The syntax for assignment is shown below: 

Identifier (“<−“|“<+” ) Expression 
or 

Identifier  “[“ IDList(“<−“|“<+”ExpressionList “)” Expression 
 

 
2.5 Relational Algebra    
 
In this section, the syntax and semantics of the relational algebra are presented. Firstly, 

we describe the unary operators and binary operators. Assignment and incremental 

assignment operations are then described.  

 

2.5.1 Unary Operators 
 
There are six unary operators, including projection, selection, T-selection, QT-selections 

implemented in JRelix system.  

 

Projection  
The syntax for projection is as follows:  

“[“ (IDList)? “]” in (Projection | Selection) 

Projection extracts a subset of attributes named in IDList from a source relation. 

Duplicate tuples in the result relation are removed. If IDList is absent, a relation 

containing only one tuple with a boolean domain “.bool” is projected. The value of the 

boolean domain is true if the relation resulting from the projection has at least one tuple, 

and otherwise the value is false. Figure 2.5.1 and Figure 2.5.2 show examples of 

projection.  
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Projection query1: Retrieve the attribute name in relation EmployeeInfo  

 

  

 
           

           Figure 2.5.1. Retrieve the attribute name from relation EmployeeInfo 

 

Projection query 2: Check if there is any tuple in relation EmployeeInfo  

 

  
              

           Figure 2.5.2. Check if there is any tuple in relation EmployeeInfo  

 

Selection  

 
Selection is used to return a subset of a source relation that satisfies certain conditions. 

The syntax for selection is as follows:  

where  SelectClause in Projection 

where selectClause specify the certain conditions that the result relations must satisfy. A 

example of selection is shown in Figure 2.4.3.  

Selection query 1: Retrieve the tuples of relations EmployeeInfo where department is 

“IT”. 
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   Figure 2.5.3. Retrieve the tuples of relation EmployeeInfo where department is “IT”. 

 

T-Selection   
 
T-selection is a combination of projection and selection. The general syntax for the 

T-Selection is  

“[“(IDList)?“]” where SelectClause in Projection 

Figure 2.4.4 gives a example of T-selection using the relation EmployeeInfo.  
 
T-Selection query 1: Find all employees of the department “IT”  

 

 
Figure 2.5.4. Find employees of the department “IT” 

 
 

2.5.2 Binary Operators   
There are two categories: µ-join and σ-join. µ-joins are set operations generalized to 

relations, and σ-joins generalize logical operations.  

 

The syntax of join operators is as following: 
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Expression JoinOperator Expression 

or 

Expression “[“ ExpressionList “:” JoinOperator (“:”)? 

ExpressionList “]” Expression 

 

In the first production, the common attributes of both sides are joined attributes. While in 

the second production, users can select the common attributes to be joined attributes.  

 

µ-join 

µ-join are used as set operations including union, intersection and difference. The µ-join 

can be defined in term of the left wing, the center wing and the right wing. The 

definitions of them are as following [Mer84]:  

 
The description of µ-join is summarized as following: 

 

ijoin or natjoin ≡ center  

ujion ≡ left wing U center U right wing 

ljoin ≡ left wing U center  

rjoin ≡ center U right wing 

djoin or dljoin ≡ left wing  

drjoin ≡ right wing  

sjoin ≡ left wing U right wing 

For more details please refer to [Mer84] 
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σ-join 

The σ-join extends truth-valued comparison operation on sets to relations by applying 

them to each set of values of join attribute for each of other values in the two 

relations[Mar84].  

 

Given relations R(W, X) and S(Y, Z), Rw is the set of values of X associated by R with a 

given value, w, of W, and Sz is the set of values of Y associated by S with a given value, z, 

of Z are sets of attributes of S, the following definitions are general, and even allow for X 

and Y to be the same set of attributes. X and Y must by at least compatible attribute 

sets[Mer84].        

 

 

 

 

 

 

 
 

 

2.6 Domain Algebra 

The algebra on attributes is called the domain algebra and contains two main components: 

scalar operations and aggregate operations. In the table view of relations, these can be 

thought of as “horizontal” and “vertical” operations [Mer84]. Horizontal domain 

operations work within the tuples, while vertical domain operations work among tuples.  

 

2.6.1 Scalar Operations 
 
Scalar operations work on a single tuple of a relation. In the current JRelix system, scalar 

operations include constant definition, renaming, arithmetic function, conditional 

statements etc. All these basic scalar operations are listed in Figure 2.6.1.  
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Figure 2.6.1. Scalar operations  

 

2.6.2 Aggregate Operations  
 
Aggregate operations, often referred as vertical operations, work on attribute values of all 

tuples in a relation. Basic vertical operations are listed as follows:  

- Reduction 

- Equivalence reduction 

- Functional mapping 

- Partial functional mapping   

The examples used to illustrate these operations are shown in Figure 2.6.2.    
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Figure 2.6.2. Examples of vertical operations  

For more information about the domain algebra, please refer to [Mer84, Yua98].   
 

2.7 Nesting 
The relational algebra and domain algebra can be applied to relation-valued attributes in 

nested relations that are an expanded data structure, where a value of an attribute can be a 
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relation. Generally speaking, there is no new syntax for nested relations; we just subsume 

the relational algebra into domain algebra.  

 

Unnesting operations and nesting operations are needed to raise and lower the levels of 

nesting. Since the nesting operation is still in a progress of implementation, here we are 

not going to discuss it.   

 
An example is given to illustrate unnesting operations. To find all fax numbers of 

employees, we can use the query shown in Figure 2.7.1, but note that the result is itself a 

nested relation. To remove the nested structure of the result, called unnesting, two steps 

are followed. Firstly, do the reduction,  

red ujoin of [fax] in ContactInfo;  

Projecting the red ujoin still given a nested relation, but a singleton. The second step is 

to lift a level through anonymity (i.e., no giving the name of the attribute of result 

relation), by writing the reduction directly in a projection list.  

AllFax’<-[red ujoin of [fax] in ContactInfo] in EmployeeInfo;  

(The result shown in Figure 2.7.2)  

Thus the system has no choice but to bring values of the attribute fax one level up, 

resulting in a single-level relation. The new syntax, syntactic sugar, which is likely to be 

frequently used in querying nested relations, has been implemented as a shorthand by 

using the / operator. So, the query can be  

AllFax’<-ContactInfo/ fax in EmployeeInfo; 

This is a path expression. Fully descripted in in chapter 3. 
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Figure 2.7.1. All Fax Number. Version 1 

 

 
                   

Figure 2.7.2. All Fax Number. Version 2 

   

Although there are also important components such as views, update, computation, and 

so on in JRelix, we are not going to elaborate them here since they are not crucial for the 

implementations of semi-structured data input and recursive nesting.  
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Chapter 3    
 

User’s Manual 
 

3.1 Semi-structured data input  
Compared to conventional data, which is described by a scheme available to the database 

system separately from the data, semi-structured data is self-describing by embedding the 

scheme with the data by using markup language tags. The self-describing data structure is 

more flexible than in conventional relations. In the following example (Figure 3.1), the 

relation EmployeeInfo, will be used to demonstrate the rule of using semi-structured data 

input in JRelix.  

 

3.1.1 An Example 

 
               Figure 3.1.1 Example: Relation EmployeeInfo 

 

The semi-structure input corresponding to the relation EmployeeInfo is shown in Figure 

3.2.  
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Figure 3.1.2 Example: Semi-structure input of Relation EmployeeInfo 

 

 

3.1.2 Domain Declaration   

The new syntax of domain declaration for the semi-structured data input is described 

below.  

 

Since the semi-structure data is self-describing, it is not necessary to define the domains 

used in a relation before the semi-structured input of the relational initialization 

(schemaless). The domains are declared in their first occurrence in the semi-structured 

input of the relation initialization using the following syntax:  
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<domainName type = data_type>… …</domainName> 
Where 

· domainName is the name of the new domain where type is being defined. 

· The start tag is surrounded by angle brackets, while the end tag has the angle 

bracket and a slash “/”. The domainName in the start tag and in the end tag 

should be the same.  

· The text after “ type = ” represents the data type of the new domain.  

· If the type of domain is not specified, the default type is strg (String). 

· The text between the start tag and the end tag is the data value of the domain. 

Since the type of the domains is illustrated in its start tag, the values of the 

domains, whose type is strg, do not have to be surrounded by quotes.  

· For subsequent occurrence of the same domains, the following syntax is used  

<domainName>… …</domainName> 

· For a nested domain, it is not necessary to specify the names of attributes that the 

nested domains contain. Similar to the initialization of a relation, the text 

between the start tag of a nest domain and its end tag is the initialization of the 

nested domain. In the example shown above, the nested domain 

otherContactInfo is initialized by the following text:  

    

 

         
  

… …  

 
     

 

Figure 3.1.3 Initialization of nested domain otherContactInfo 

 

3.1.3 Relation Declaration and Initialization 
The relation declaration syntax for loading semi-structured data is: 

relation  IDList  Initialization 

where  

   · The first IDList specifies the name of the relation being declared and the 
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production Initialization is the angle bracket syntax in which the relation starts 

and terminates with first angle bracket < and the last angle bracket >.  

   · Specification of the attributes on which relations are defined are omitted, since the  

semi-structured data input contains the information about the attributes of the  

relations to be initialized.  

   · The name of the relation that is to be initialized is not necessarily the same as the 

first tag and its corresponding end tag in its semi-structure data input. 

relation R<-<R1>… … </R1>; 

is acceptable.   

 

In addition, to take further advantage of the semi-structured data, some entries for 

relations can be missed in their semi-structured data input for their initialization, since 

each entry has its own tags to describe it. As in the example relation EmployeeInfo, some 

entries are missed and in this situation the null values (dc) are added for the missing 

entries. For the nested relation, “dc” can be added automatically, if it is necessary, to 

terminate the initialization. 

 

Furthermore, the tags <.tuple> and </.tuple>, used to separate tuples, are optional. 

However, they are compulsory when there is ambiguity. If <.tuple> and </.tuple> are 

missed, the reoccurrence of the same domains will be considered to be in a new tuple. 

And the separations of tuples are also dependent on the occurrence order of domains in 

the input data. To explain this more clearly, figure 3.1.4 illustrates a relation initialized by 

different cases of semi-structured data.  

 

Refer back to the example in section 3.1.1. Both “Patrick” and “Josee” have the same 

attribute employeeName, so it would be regarded as being in two different tuples. But, 

since Id is just after EmployeeInfo in the domain list of the relation, if “2002” is not the Id 

of “Josee”, <.tuple> and </.tuple> have to be used to avoid ambiguity, since without the 

tags “Josee” “2002” would be considered as being two domain entries in a same tuple.      

 

Note that relations initialized with semi-structure data input are the same as with the 
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relations initialized with a curly bracket input. All relational algebra and domain algebra 

can be performed. 

   
Figure 3.1.4 Example of different cases for relation R 

 

3.2 Input Data From a File 

To simplify the edition of input semi-structured data, a relation schema can be edited in a 

file and saved as a text file. Then a relation can be declared and initialized using the 

following syntax: 

relation rel_name <- “ file_path/ file_name ”;  

It is not necessary for the relation name to be same as the relation name in the file.  

 

Take the relation EmployeeInfo as an example: firstly we edited the input of the relation 

EmployeeInfo in a file and saved it as “Emp_xml.txt” (Figure 3.2.1):  
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Emp_xml.txt:  

 

          
 

Figure 3.2.1. Emp_xml.txt file for initialization of relation EmployeeInfo 

 

Then we may declare the relation EmployeeInfo and initialize it with the following:  

relation EmployeeInfo <-“Emp_xml.txt”; 

 

This initialization mechanism can also be used to declare and initialize relations where 

initialization requires curly bracket syntax. The only difference from the above case is 

that in this case the attributes on which the relation is defined should be specified. See the 

example in the following figure 3.2.2:   

 

Emp_curly_bracket.txt: 

 

                
 

Figure 3.2.2. Emp_curly_bracket.txt file for initialization of relation EmployeeInfo 
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Then the relation can be initialized by the following:  

relation EmployeeInfo(employeeName,Id,teleNum, otherContactInfo) 

 <- “Emp_curly_bracket.txt”; 

 

Note that in this case, it is necessary for domains to be declared before the relation 

initialization.  

 

 

3.3 Recursive Nesting Declaration and Initialization  
In recursive nesting, a relation name can be an attribute of itself.  

 

Declaration of recursively nested attributes uses the syntax for nested domain declaration 

domain IDList “(“ IDList “)” 

Here IDList specifies the name of a nested attribute being declared, “(“ IDList “)” is 

used to specify the names of attributes on which the nested attribute is defined. The 

former Relix required that the attributes on which a new nested attribute is defined must 

be already defined. Therefore recursively defined nested attributes were not allowed. 

Now, recursively defined nested attributes are allowed, meaning the name of an attribute 

on which a nested attribute is defined can be the same as the name of the nested attribute. 

For example, the following is permitted in order to declare a nested attribute N and a 

relation containing the nested attribute. 

domain A data_type; 

domain N(A,N);    

relation R(N) ……; 

 

In the following sub-section, I will illustrate a recursive nesting example. The relation 

“dept” contains a recursive domain “subdept ” to indicate the hierarchical structure 

involved in departments. (Figure 3.3.1)   
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               Figure 3.3.1: Contents of the relation Dept 

 

Similar to the non-recursive nested relation, the relation can be initialized as illustrated in 

Figure 3.3.2.  
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Figure 3.3.2. Initialization of a recursive nesting relation and its attributes 
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Note that null value (dc) must be added to terminate the recursion. Finally, it is necessary 

to mention that the names subdept, subdept_0 and subdept_1 are automatically created by 

JRelix to represent the hierarchical structure of the entries. The reason to implement 

recursive nesting in this way is that in current JRelix implementation, relation names and 

relational domain’s names are stored in the form of hashTable and the names are used as 

keys. However, it is not necessary for users to know the name subdept_n. As illustrated in 

Figure 3.3.3, subdept can represent any level of the recursive nested attribute subdept in 

queries.  

 

       
       Figure 3.3.3. An example query for the recursive nested attribute 

 

Recursively nested attributes can also be initialized in semi-structured data format. Figure 

3.3.4 shows a small example where a relation R containing a recursively nested attribute 

is initialized with a semi-structured data input. Note that in the semi-structured input the 

null value (dc) will be added automatically to terminate the recursion.  
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Figure 3.3.4. Initialization for the recursive nested attribute 

 

3.4 Path Expression Operator 
Path expression will concatenate attribute names into a path by using the “/” operation. 

The syntax in using path expression is as follows:  

           [rel_name/] (nested_rel_name “/”)*[ domain_name]  

We take the example relation dept shown in the last section to illustrate the syntactic 

sugar. Let’s start with the following: suppose we would like to project the nested attribute 

address, instead of 

addr<-[red ujoin of [red ujoin of address] in contact ] in dept; 

The red ujoin of raises the level of nesting as in section 2.7. Now, the simpler format  

addr<-dept/contact/address  

can be used. The result is listed in figure 3.4.1.   
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                    Figure 3.4.1 Address of dept   

 

We can go further,  

dname<-[red ujoin of [red ujoin of [dname] in address] in contact] in dept;  

becomes  

dname<-dept/contact/address/dname;  (Figure 3.4.2)  

 

 
                     Figure 3.4.2: dname of address                    

 

For the recursive nested attribute subdept,  

query<-dept/subdept/subdept; 

can lift subdept on the second level to the top-level relation dept (Figure 3.4.3).  

         

 
 

          Figure 3.4.3. Projection of the recursive nested attribute subdept 
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Furthermore, the path operator can be at any end of a regular T-selection. The two queries 

below (Figure 3.4.4) illustrate the path operator used in projection and relational 

expression.   

 

 

 

             Figure 3.4.4. Path operator in projection 

 

To produce multiple attributes from a deeper level is also easy by using path operator. 

For instance,  

addrs<-[num,dname] in dept/contact/address;  

will project attributes num and dname from the deeper level address. The output is shown 

below. 

 

          

Figure 3.4.5. Multiple attributes in projection  
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In addition, the path operator can be used in selection. We have the query: Find all dname 

in dept where dname in its contact/address is “Park way”, the query 

dns<-[dname] where contact/address/dname ="Park way" in dept; 

that can be expanded as:  

dns<-[dname] where ([] where ([] where dname="Park way" in address)  

in contact) in R; 

will answer the query.  

 

Suppose we want to find all tels in contact where dname in address is “Park way”. The 

query  

telp<-[tel] where address/dname="Park way" in dept/contact; 

will complement the task. Outputs of these two examples are shown below.  

 

 

 
                 

Figure 3.4.6. Path operator in selection 

 

Finally, the queries listed below will produce the same results:  

dept/contact/address/dname; 

or 

contact/address/dname in dept; 

or 

address/dname in dept/contact; 

                                                                                              39 



or  

[dname] in dept/contact/address; 

 

3.5 Regular Expression Operators 

The regular expressions, similar to the regular expressions of XML, provide Kleene 

star(*), plus operator(+),question mark(?), and dot operator (.).  

 

3.5.1 Kleene Star (*) and Plus Operator (+) 
The Kleene star is involved for the recursive nesting in order to answer such queries as 

“find all some attribute(s) of a recursive nesting domain from a relation or recursively 

nested relation”.  

 

The syntax for Kleene star in projection or relational expression is the following:  

rel_name(/recursivelyNested_attribute_name)*[/attribuete_name] 

or 

rel_name/(recursivelyNested_attribute_name/)*attribuete_name 

 

The syntax for Kleene star in selection is the following:  
 

where [rel_name/]( recursivelyNested_attribute_name/)*attribute_name “=” value 
 

where rel_name is the names of relation or nested domains which contains a recursively 

nested attribute, while recursivelyNested_attribute_name is the names of recursively 

nested attributes and attribute_name is the names of domains to be projected from the 

recursively nested attribute.  

 

Since Kleene star indicates zero or many occurrences of its operand [Mer03], the 

consequence of the expression should be the projection of the attribute whose name is 

attribute_name from all levels of the recursively nested relation where the name is 

recursivelyNested_attribute_name and from the top_level relation which is rel_name.  
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Below I will display the use of the syntax with Kleene star by using the example relation 

dept. Firstly, if we would like to project dname from all levels of subdept and dept, the 

easiest way is: 

    dname<-dept(/subdept)*/dname;  

It is obvious that it is actually the same as the following query:  

    dname<-dept/dname ujoin dept/subdept/dname ujoin dept/subdept/subdept/dname; 

 

Apparently,  

dname<-[dname] in dept (/subdept)*;  

or 

dname<-(subdept/)*dname in dept;  

will produce the same result . The result is listed in Figure 3.5.1.  

 

 
           Figure 3.5.1. All dname in dept and subdept 

 

The “+” operator represents one or many occurrences. Therefore, queries  

dnameofSub<-dept(/subdept)+/dname; 

or  

dnameofSub<- [dname] in dept/(subdept)+; 

or  

dnameofSub<-(subdept)+/dname in dept;  

will also project the dname from all levels of subdept, but do not project dname of dept. 
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Their output is listed in Figure 3.5.2.  

 

  
  Figure 3.5.2. All dname in subdept  

 

In addition, to project all attributes from all levels of subdept,  

allSubDept<- dept(/subdept)+; 

is the simplest query to answer it.  

While,  

allDept<-dept (/subdept)*  

should produce all attributes from dept and from all levels of subdept.  

 

In this example, relation dept and its nested attribute subdept have the common attribute 

dname. In this situation, all dname are projected from dept and from all levels of subdept. 

The result is shown in Figure 3.5.3.  
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    Figure 3.5.3. Projection of all attributes from the recursively nested relation 

 

One point that should be mentioned is that these relations may be disjoint, that is, when   

top-level relations and recursively nested relations have no common attributes. In this 

case, N is a recursively nesting domain that contains A, B and R has domains X,Y, N. The 

query 

q<-R(/N)*; 

that is, 

  q<-R ujoin R/N ujoin R/N/N ujoin… R/N/N/../N; 

will be interpreted as a Cartesian product. A small example to illustrate this is shown in 

Figure 3.5.4.  
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         Figure 3.5.4. Projection of add attributes using Kleene Star 

 

The benefits of exploring Kleene star in selections are obvious. A simple query, 

deptName<-[dname] where (subdept/)*empcount=100 in dept; 

will produce all dname from dept that has a subdept which empcount is 100 and dname 

from dept which empcount is 100 (Figure 3.5.5). Without using the Kleene Star, the query 

to answer the question will be too complicated to be performed. Firstly, users have to 

know how many levels the recursively nested attribute subdept contains. Then perform 

the long query listed below:  

deptName<-[dname] where empcount=100 in dept  ujoin  

[dname] where subdept/empcount=100 in dept  ujoin 

[dname] where subdept/subdept/empcount=100 in dept;  

 

 
                Figure 3.5.5. Kleene star in selection  
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Also keep in mind that  

[dname] where (subdept/)* empcount=100 in dept; 

should include the dname from dept, where its empcount is 100, however, the expression 

  [dname] where (subdept/)+ empcount=100 in dept;  

that can be expanded to  

[dname] where subdept/empcount=100 in dept  ujoin 

[dname] where subdept/subdept/empcount=100 in dept; 

only projects dname from dept that have a subdept where empcount is 100.  

 

Furthermore, the following Figure3.5.7 will show the use of “*” (or “+”) both in selection 

and projection. The expression  

Q1<-subdept100<-[dname] where (subdept/)*empcount=100 in dept(/subdept)*; 

produces all dname from all levels of subdept which has a nested attribute subdept (no 

matter how many levels down) where empcount is 100 and all dname from dept where 

empcount is 100. In comparison, the query Q2 will not produce all dname from dept 

where empcount is 100, since in the example “+” is used instead of “*”. In order to 

provide a clearer explanation, these queries have been expanded in the following figure 

3.5.6. 

 

 45



 
        

 Figure 3.5.6. Queries with “*” and “+” in selection and projection  
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Figure 3.5.7. “*” and “+” in selection and projection  

 

3.5.2 Dot Operator  
In addition, we can avoid writing the names of intermediate nested attributes if we use a  

“wildcard”, namely “.”. Queries in figure 3.5.8 retrieve all dname from all relations that 

have the attribute dname. 
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Figure 3.5.8. Query: retrieve all dname from relation dept and its nested attributes 

 

Here, “.” indicates any relation name. So, “.*” stands for all relations and we don’t care at 

which level they are. “.*” can be shortened to “*” to resemble Unix conventions[Mer03].  

  

In comparison, unlike the  

addDepts<-dept/.*/dname; 

the queries  

addDepts<-dept/.+/dname;  

or  

addDepts<-dept/+/dname; (Figure 3.5.9)  

do not project the dname attribute of the relation dept, since “+” represents one or many.  
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Figure 3.5.9. Query: retrieve all dname from the nested attributes of dept 

 

We can explore the wildcard further. The example in figure 3.5.10 signifies that (././) 

means any two levels below the relation dept. The query is to find out all dname in the 

nested attributes that are two levels below the dept. Since both the relation 

dept/contact/address and the recursively nested attribute subdept of dept contain the 

domain dname, the query  

q1<-dept/(././)dname; 

will produce the result which is the same as the result of the query  

q1<-dept/contact/address/dname ujoin dept/subdept/subdept/dname;   

 

                     
            Figure 3.5.10. Example of Wildcard  
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3.5.3 Question Mark Operator  
Question mark operator (?) allows zero or one occurrence of its operands. Figure 3.5.11 

and Figure 3.5.12 show the syntax for the question mark operator using the example 

relation dept. 

  

      
 

Figure 3.5.11. Example for the syntax of Question mark operator  

 

In the figure 3.5.11 the query  

qm_f<-dept/(contact/addres/)? dname; 

means that if contact/address has the attribute dname, the dname of contact/address 

should be projected with dname in dept. Otherwise, only project dname in dept.    

 

Sometimes we don’t want to write down the names at intermediate levels. We can use (./) 

instead of writing down the specific names of relations in intermediate levels. In the 

figure 3.5.12, the query  

qm<-dept/(././)? dname; 

is used to find dname from the relation dept and from all relations that is two levels 

below dept. Since in the relation dept both dept/contact/address and its recursively nested 

attribute subdept have the domain dname, the query should produce the same result as the 

query listed below:  
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qm<-dept/dname ujoin dept/contact/address/dname ujoin  

dept/subdept/subdept/dname;  

 

 

 

  
Figure 3.5.12. Example for question mark operator 
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Chapter 4  
 

 

Implementation and Solution Strategy 

 

Implementation details for the new features in JRelix as shown in last chapter will be 

presented in this chapter. In section 4.1 and 4.2 an overview of the system architecture is 

given. In section 4.3, we introduce how to allow the current JRelix system to accept 

semi-structured data input. In section 4.4, we discuss the implementation of recursive 

nesting. In section 4.5, we describe the implementation of path expression operator. In 

the last section, the implementation of the expression operators, including “*”, “+”, “.”, 

and “?”, are presented.     

 

4.1 Developing Environment  
JRelix is written in Java. The old version Relix is implemented in the C programming 

language. It runs on UNIX, and Windows as well. The parser is generated by JavaCC 

and JJTree. JavaCC, is a java compiler compiler that acts as a parser generator. It reads 

high-level grammar specification and converts it to a Java program that matches the 

grammar. JJTree is a preprocessor for JavaCC that inserts parser tree building action at 

various places in the JavaCC source.  

 

4.2 System Overview 

The JRelix system contains three main conceptual modules: a front-end interface, a 

database engine and a system database maintainer. The picture is shown below: 
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The Front-end Interface consists of a parser and an interpreter. It is an interface 

between the user and the database engine. The parser accepts the user command input; 

then performs command syntax analysis. The user command can be translated into 

intermediate code that has a tree structure. Then the tree is passed to the interpreter. The 

interpreter performs error checking, traverses the tree and generates a set of method 

calls that can be accepted by the database engine.  

 

The Database engine is the central part of the JRelix system. It implements relational 

algebra, domain algebra, computation and nested relation.  

 

The Database maintainer maintains user-defined data and system information of the 

JRelix system. These system files are stored as “.rel”, “.dom”, “.rd”, “.expr” and  

“.comp”. Files “.rel” and “.dom” stores information about all relations and domains that 

are defined in the database. File “.rd” stores all information that links relations and the 

domains on which the relation are defined. File “.expr” stores the syntax trees for virtual 

domain and views and file “.comp” stores syntax trees for computations.  

 

 

4.3 Implementation of Semi-Structured Data Input  
All JRelix statements and input commands are parsed first and then they are transferred to 

the syntax trees in the Parser class. The syntax trees are then decomposed top-down into 
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some sub-trees in Interpreter class and are further processed. In order to make the current 

JRelix accept the semi-structure data input, quite a few additions have been brought to 

the Parser and Interpreter class.  

 

Theoretically, the semi-structured data input should be parsed twice. In the first parsing, 

all domains should be declared. The domain list of the relation should be collected. In 

addition, the missing entries should be added to the original semi-structured data input 

before processing the second parsing to create a corresponding syntax tree. Subsequently 

the second-time parsing will be involved to generate a syntax tree, which can be 

processed correctly in the Interpreter class. However, the implementation avoids going 

back to the parser again after parsing the input in order to decrease the processing system 

time. After the Interpreter receives the immature tree translated by the parser from a 

semi-structured data input to initialize a relation, firstly the domain information is 

collected while interpreting the syntax tree and the domain list of the relation is then 

created. Secondly, the tree is modified by adding the nodes that are corresponding to the 

missing entries. Finally, the correct syntax tree resulting from the modification will be 

further processed to initialize the relation. The example below is used to explain this 

procedure. 

 

Note that in the parsing time, only tags <.tuple> and </.tuple> can be used to 

separate tuples. When <.tuple> and </.tuple> are missing, entries are added to the 

same tuple. In order to clarify this explanation, the relation EmployeeInfo shown in 

chapter 3.1.1 was taken as an example. Firstly, the syntax tree corresponding to the 

semi-structured input of the relation EmployeeInfo, generated by the parser, is illustrated 

in Figure 4.3.1 below. It is clear from the figure that the resulting syntax tree of 

EmployeeInfo initialization has only two tuples since only one pair of <.tuple> and 

</.tuple> is includ 



 
Figure 4.3.1. The tree created by parser for the initialization of EmployeeInfo 

 

As declared before, since semi-structured data is self-describing, information of domains 

to be defined is in the input of a relation initialization, and entry missing is also allowed. 

Hence, during the parser time, all information, including the domain names and its 

defined types except for their values, have been saved in the syntax tree. In the syntax 

trees created by parser for semi-structured data inputs, the field name in nodes is used to 

store domain names. And if there is information about the defined types of domains, the 

defined types are also stored in the name field as a whole string with domain names 

instead of null. For example, parsing  

<employeeName type = strg>Ban</employeeName>  

results in a node with “employeeName type = strg”.  

 

After passing the whole syntax tree to Interpret class, extra steps are carried out to further 
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modify the syntax tree to be processed. The modifications include adding nodes that are 

corresponding to the entries that have been missed in the input (the value for the missing 

entries is set to be dc) and correctly group the entries to tuples. The XMLInitialization 

function is used to implement these modifications. For the relation EmployeeInfo 

initialization, the tree further modified by the function is shown below:  

 
Figure 4.3.2. The tree modified for the initialization of EmployeeInfo 

 

Before processing the tree correctly corresponding to the initialization data, new domains 

in the input must be declared. XmlDomInfo class is created to contain the names and the 

types of the domains being declared. XmlRelInfo class is introduced to save the domain 

list of a relation. In the case of the initialization of the relation EmployeeInfo, by 

traversing the tree passed from parser, the information of all domains and the domain lists 

of all relations can be obtained (Shown in Figure 4.3.3).   
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Figure 4.3.3. The domain information of EmployeeInfo 

 

Instead of going back to the parser again, domain declaration trees corresponding to 

“domain employeeName strg;”, “domain Id strg;”, “domain teleNum intg;”, “domain 

FaxNum intg;”, “domain cell intg” and “domain otherContactInfo(FaxNum,cell);” are 

created. The function executeDaclaration is then invoked to declare all these domains.  

 

After declaring all domains, the tree which correctly corresponds to the initialization data 

will be processed to initialize the relation.  

 

4.4 Implementation of Inputting Data From a File 
To declare and initialize a relation using the data in a file, firstly the data is retrieved from 

the file. The data in the format of “String” is then combined with the relation name to 

produce a new input string that is acceptable to JRelix. The Parser Class is subsequently 

invoked to parse the new input string, and finally the syntax tree corresponding the new 

input is processed by Interpreter to initialize the relation. A small example is presented 

below to explain the process.  
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4.5 Implementation of Recursive Nesting 
The current implementation of JRelix requires that the attributes on which a new nested 

attribute is defined must already be defined. Recursively defined nested attributes are not 

allowed. Hence, to implement recursive nesting, firstly of all, the recursive definition of 

domains [e.g domain N(A, N)] must be accepted. Modifications are made to the method 

lookupDom( ) in the Environment class to allow the recursive definition of domains.  

 

Secondly, careful modifications are made to the method RelationalInitialization ( ) in 

the Interpreter class, which is used to initialize a relation. To keep the hierarchical 

structure of recursive nested relations, the number of levels of the recursive nested 

relations are recorded when the relations are initialized. As I mentioned in the last 

chapter, hashtable is used in the current system to save the data of relations. The key of 

the reltable is relation names, hence a duplicate name is not allowed in the table. So, the 

recursive relation names on each recursive level have been changed according the 

current level value. Furthermore, after a relation initialization the recursive domain 

names in the relations on all recursive levels have also been modified according to the 

recursive level values. The source code that implements this function is added to the 
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method RelationalDeclaration() in the Interpreter class. 

 

Take the recursive nested relation R(A,N), which contains the recursive domain N, as an 

example. Suppose R has 4 levels, then after the initialization of the relation R, four 

relations, as illustrated below, that have been created:   

 

R(A,N)  
.N(A,N_0) 
.N_0(A, N_1)  
.N_1( A,N_2)  
.N_2( A,N_3)  

 

Note that the type of domains N, N_0, N_1,N_2 is IDLIST, while the type of domain 

N_3 is a LONG and is used to stop the chain of DAG. However, compared to 

non-recursive domains, the types of the recursive domains should be changed when 

another relation, which contains the same recursive domain N, is to be initialized. For 

instance, another relation Q(B,N), where the recursive level of N is more than 4, is 

initialized after the initialization of the relation R. In the situation, after the initialization 

of relation Q, the domain type of N_3 is changed to IDLIST from LONG.. The 

modification of recursive domain types is implemented by functions putRecurDom in 

the Environment class and rmRecurDom in the domTable class. 

 

An advantage of this implementation is that operations on non-recursive nesting will 

still work on the recursive nesting, since the recursive nesting retains the exactly the 

same structure as the non-recursive nesting. However, it is not necessary for users to 

find values of recursive levels and use the different relation names on different recursive 

levels to query recursively nested relations. In queries that concern the recursive nesting 

relations users can simply use the recursive domain name at any level. For example, the 

queries:  

RN<-[red ujoin of [red ujoin of N] in N] in R;  

RA<-[red ujoin of [red ujoin of [A] in N] in N] in R;  

etc. are acceptable. To allow the queries, modifications are made to the syntax trees, 

generated from the queries by parser. The modification is simple: change the names of 
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Identifier nodes that carry the name of the same recursive relation name to 

corresponding recursive relation names before implementating operations. Figure 4.4.1 

presents a clearer explanation. 

  

 
  Figure 4.4.1. An example of the queries involved in the recursive nesting relation 

 

It must be noted that in recursive nesting, the recursive loop will not terminate until the 

null value, dc, is found.  

 

4.6 Implementation of Path Expression Operator 
In the current JRelix system, the vertical operation red ujoin of is used for level-lifting 

in nested relations. For example, the query  

Address<-[red ujoin of otherContactInfo] in EmployeeInfo;  

accomplishes the raising of otherContactInfo, the nested attribute of the relation 

EmployeeInfo, to the relation EmployeeInfo. Using the operator “/”, the path operator 

will turn this into  

Address<- EmployeeInfo /otherContactInfo;  
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To implement the path operator, firstly the parser should recognize the command with 

the path operator “/’ and build up the corresponding syntax trees for level lifting. 

Obviously, syntax trees for path operator are the same as the trees translated from the 

red ujoin of operation. However, “/” is used as the division operator in the current 

JRelix system. The path operator is overloaded. For example, for the query  

let p be R/A; 

where the “/” could be a division operator or a path operator. In order to check whether it 

is a path operator or a division operator, the function lookupDom in Environment class is 

called. If R is a relation and contains a domain A, “/” is a path operator; otherwise it is a 

division operator. Then the syntax trees corresponding to the path operator or division 

operator are built up.  

 

To take fuller advantage of path operator, the last component of path operator query can 

either be a relation name or a domain name. Given the example relation EmployeeInfo, 

to project its domain employeeName from relation EmployeeInfo, we can simply use the 

expression 

    Ename<- EmployeeInfo/employeeName;  

In this case, the syntax trees passed from parser to interpreter should be further modified. 

Firstly, the type of the last attribute is determined and the syntax tree passed from the 

Parser is then modified before being further processed if the last attribute is a domain, 

not a relation. The function sugarInProject in Interpreter class implements the 

operations. The following figure shows how the trees change if the last component of a 

path expression is a domain name. In the example, since employeeName is a domain, the 

syntax tree passed from the parser from the query EmployeeInfo/employeeName is 

modified by the method sugarInProject before being processed. If the last component in 

the path expression EmployeeInfo/otherContactInfo is a relation’s name, the tree is 

processed directly without any modification.  
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          Figure 4.5.1 An example of trees modification for the path expression 

 

As mentioned in previous chapter, path expression operator may be used in any part of a 

regular T-selector. In this case, the trees passed to the Interpreter are modified to their 

correct forms in order to enable further processing. For example, the query  

street/cname in company/address; 

(the structure of the relation company is shown in Figure 4.5.2) contains a path operator 

in both projection and expression. The syntax tree translated from the query will be 

modified, resulting in a tree corresponding to the query:  

[cname] in company/address/street;  

before being further processed in the Interpret class. Furthermore, as declared in the 

previous chapter, the path operator may also be used in selection, for example, the query  

[cname] where address/city ="Montreal" in company;  

contains a path operator in its selection. In this situation, the syntax tree, modified from 

the tree passed from parser and being further processed to accomplish this query, 

corresponds to the query below,     
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[cname] where ([] where city = "Montreal" in address) in company;  

 

The codes to implement these functions are used in the method sugarInProject().    

 

  
Figure 4.5.2. The relation company  

 

4.7 Implementation of Expression Operators “*”, “+”, “.”  
and “?” 

In order to implement the operators “*”, “+”,”.” and ”?”, the subsets of queries that 

contain the expression operators are stored in the syntax trees built up by the parser. For 

example, the syntax tree for the query  

   R(/N)*/A;  

built up by the parser contains a node with name (N)*. Then, in Interpreter class, 

significant modifications to the trees are required before further processing. The reason to 

implement this way is: to build up correct syntax trees, parser should get all information 

about the recursive nesting relations on that queries with which the operators are. 

However, it might be hard for the parser to get all the information.  

  

First of all, in Interpreter the function searchSTAR is invoked before process syntax trees 

are passed from parser, to check whether there are expression operators in any node of 

the trees. If there are such operators in the trees, function modifyNodeForKSTAR is then 

celled to make necessary modifications to the trees.  

 

For example, suppose N is a recursively nested domain that contains the attributes A and 

B. R(/N)*/A should be solved by lifting the attribute A in the nested attributes N at all 
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recursive levels to the top level relation R and ujoin them, as illustrated in Figure 4.6.1.  

 

 
Figure 4.6.1. An example of Kleene Star operator   

 

The figure 4.6.2 below shows the modification made to the original tree of R(/N)*/A 

before further processing.   

 

 
 

Figure 4.6.2. The original and final tree of R(/N)*/A 
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As mentioned in the previous chapter, the Kleene star “*” can be used in any part of a 

regular T-selector. An example for Kleene star in selection is shown in Figure 4.6.2.  

 
Figure 4.6.3. Kleene Star in Selection  

 

The figure 4.6.4 below shows the modification made to the original tree of the query [B] 

where (N/)*A=value in R before further processing.   

 

 
Figure 4.6.4. The original tree and final tree of query [B] where (N/)*A=value in R 
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It is more complicated if the Kleene star occurs in both projection and selection. Figure 

4.6.3 illustrates an example of this case.   

 
              Figure 4.6.5. Kleene Star in projection and selection  

 

For the case R/.*/A or R/*/A, extra steps to find all relations, regardless of level, 

containing the attribute A are required. The nestDomsA is created to handle this case. The 

example relation dept (Figure 4.6.4) used in the previous chapter is taken to illustrate this 

case in Figure 4.6.5.  

 

  
 

                      Figure 4.6.6. The relation dept 
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         Figure 4.6.7. Projection of an attribute from all levels  

 

The most popular queries using the operator “*” are presented above. Operator “+” is 

almost the same as the “*”. The only difference between them is that for the queries with 

the operator “+”, the top-level relation is ignored. The final trees modified from the 

original tree passed from the passer will be processed to accomplish the queries.  

 

For the dot operator “.”, search steps are also required to find the relations that satisfy 

specific conditions which are specified in queries. For example, the query  

  dept/(././)dname; 

will be accomplished in this way: first, all relations, which are two-levels below the 

relation dept and contain the attribute dname, should be found. Subsequently, the syntax 

trees, corresponding to ujoin and projection of the attribute dname from these relations, is 

generated by modifying the tree passed from the parser, which has a node with the name 

(././). The new method withoutRelName() is created to accomplish these functions. Finally, 

the modified tree will be further processed in order to answer to the query.     

 
The new method modifyNodeForQuestionMarker() is involved in the implementation of 

the question mark operator “?”. The implementation policy for “?” is not complicated. 

Firstly, find whether the answer to the “?” is yes or no. If the answer is no, a warning will 

be given. If the answer is yes, then modifications to trees passed from the parser are 

required, since the original trees translated by parser contain the node which name is (..)? 
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and can not be processed. Take the query 

dept/(contact/addres/)? dname;  

as a example. In the function modifyNodeForQuestionMarker, firstly it is found that 

dept/contact/address contains a attribute dname, subsequently, the syntax tree 

corresponding to the query  

    dept/contact/addres/ dname; 

is generated by modifying the syntax tree passed from parser. The result of the query will 

be given after processing the modified syntax tree.  

 

Due to their complexity, not all original trees and final trees in the examples are 

illustrated in this section.  
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Chapter 5  

 

Summary and Future Work  

 
In this project, the design and implementation of some new features of JRelix, including 

semi-structured data loading, recursive nesting and improved query path expression and 

regular expression operators were described. In the implementation of these new features, 

the syntax of the former JRelix was used where it is possible. The new features are 

summarized below:  

 

·Acceptance of semi-structured data loading makes data loading for relation 

initialization more convenient in JRelix. To simply the edition of relation loading data, 

the data can be edited in a file and saved as a .txt file. The relation can then be declared 

and initialized by the data in the file.  

· The syntax for the semi-structured data input is similar to XML. The types of the 

domains in the relations to be initialized by a semi-structured data input are specified in 

the input data. While loading data some entries can be missed and in this situation the 

null values (dc) are added for the missing entries.  

· To support recursive nesting, recursively defined nested attributes are now 

permitted After the relations containing a recursively defined domain are initialized, the 

modifications to the names of the nested relations created in the initialization are 

performed to indicate the hierarchical structure of the relations. The advantage of the 

implementation is that operations on non-recursive nesting can still work on the recursive 

nesting, 

· Regular expression operators (“*”, “+”, “.”, “?”) have been implemented to 

query relations with a recursively nested domain.  

· In addition, path expression operator, which is likely to be frequently used in 

 69



querying nested relations, has been implemented as a shorthand by using the / operator.  

 

So far, only the major functions of these new features have been implemented. There is 

further work to be done to refine the implementation.    

· To date, only semi-structured data loading is accepted. Query results can be 

output as semi-structured data by further implementations. In addition, further work on 

semi-structured data queries may be explored.  

· Further implementations on the regular expression operators, which includes   

combination of these operators, additions of “or” operator ( | ) and etc, will improve the 

queries with the expression operators.   

       · Union type, which allows attributes alter their types, could be implemented 

with further work, permitting an attribute to have more than one type.      
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