
 1

Language Support for A Relation ADT for Clifford

Algebra

Rong Li

School of Computer Science

McGill University, Montreal

December 2005

A Project Report Submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements of the degree of

Master of Science in Computer Science

Copyright @2005 Rong Li

 2

Abstract

This project report describes the implementation of an Abstract Data Type (ADT)

CliffordADT for Clifford algebra which supports addition, subtraction and production

operations of Clifford algebra. It also describes the new features added in JRelix system

to support the creation of this ADT, including grouping by nested relation domain in

equivalence reduction, ordering by nested relation domain in functional mapping, as well

as grouping and ordering by nested relation domain in partial functional mapping. In

addition, three Boolean functions isnulldc, isnulldk and isnull are implemented to test dc

or dk values of an attribute. Background knowledge is presented to make this project

report readable, and the user’s manuals are provided to illustrate the usage of the

CliffordADT and the new features added in the system. This project is part of the Aldat

project at McGill University.

 3

Acknowledgements

I would like to acknowledge all those who make this project possible through their

support and help. First, I would like to express my deepest gratitude and respect to my

supervisor Professor T. H. Merrett for his guidance, advice, and encouragement, as well

as his insightful help and supervising which is crucial for this project. I highly appreciate

his generous financial support, very patient explanation, careful proofreading of this

report, and the time he spent with me on this project.

I am indebted to Ms. Zongyan Wang for her valuable advices and kindly help. My

appreciation also goes to the School of Computer Science for its research environment.

Finally, I would like to thank my husband, ZhiFeng Huang, who gives me support for all

these years.

 4

Contents

Abstract

Acknowledgment

Chapter 1 Introduction 1

1.1 Background and Motivation …………………………………………….. 1

1.2 Project Report Outline …………………………………………………… 2

Chapter 2 Background 3

 2.1 Introduction to JRelix ……………………………………………………. 3

 2.1.1 Getting Started …………………………………………………… 3

 2.1.2 Declaration ………………………………………………………. 4

 2.1.3 Assignments ……………………………………………………… 7

 2.1.4 Relation Algebra ………………………………………………… 7

 2.1.5 Domain Algebra …………………………………………………. 12

 2.1.6 Computation ……………………………………………………... 15

 2.2 Introduction to Implementation of JRelix ……………………………….. 18

 2.2.1 System Overview ………………………………………………... 18

 2.2.2 Parser Generation in JRelix ……………………………………... 20

 2.2.3 Virtual Domain Actualizer ………………………………………. 20

Chapter 3 User’s Manual 26

 3.1 Vertical Domain Algebra ………………………………………………………… 26

3.1.1 Equivalence Reduction to Support Group by

 Nested Relation Domain ……………………………………….. 26

3.1.2 Functional Mapping to Support Order by

 Nested Relation Domain ………………………………………... 27

 5

3.1.3 Partial Functional Mapping to Support Group & Order by

 Nested Relation Domain ………………………………………... 29

 3.2 Three New Boolean Functions …………………………………………… 31

 3.2.1 Function isnulldc …………………………………………………. 31

 3.2.2 Function isnulldk ………………………………………………… 32

 3.2.3 Function isnull …………………………………………………… 33

 3.2.4 Further Examples ………………………………………………… 34

Chapter 4 Implementation 41

4.1 Development Environment ……………………………………………… 41

4.2 Vertical Domain Operations to Support Nested Relation Domain ……… 41

4.2.1 Equivalence Reduction to Support Group by

 Nested Relation Domain ………………………………………... 42

4.2.2 Functional Mapping to Support Order by

 Nested Relation Domain ………………………………………... 46

4.2.3 Partial Functional Mapping to Support Group & Order by

Nested Relation Domain ………………………………………… 48

 4.3 Three New Boolean Functions Implementation ……………………….. 52

Chapter 5 Clifford Algebra & Clifford ADT 60

 5.1 Introduction to Clifford Algebra ………………………………………. 60

 5.2 User Manual of Clifford ADT …………………………………………. 63

 5.2.1 Introduction to Clifford ADT …………………………………... 63

 5.2.2 Examples ……………………………………………………….. 66

 5.3 Implementation of Clifford ADT ……………………………………… 72

 6

Chapter 6 Summary 78

Bibliography 80

 7

Chapter 1

Introduction

In this project report, both the implementation of CliffordADT and the new features

introduced in JRelix to support the creation of this ADT are described. Section 1.1 gives

the background and motivation of this project, and in Section 1.2, project report outline

will be provided.

1.1 Background and Motivation

JRelix system, redesigned from Relix since 1997, is a Database Management System

(DBMS) based on Aldat language [Hao98,Yua98,Bak98]. This system is developed in

Java environment and uses Object-oriented structure, which enables flexible

implementation and multi-platform support.

The first goal of this project, which is one of the JRelix implementation projects, is to

implement an Abstract Data Type (ADT) to provide support of Clifford algebra

operations in JRelix. Clifford Algebra is a type of associative algebra in mathematics. It

provides a complete coordinate-free representation of geometric notation of direction and

magnitude. Clifford Algebra is widely used in different fields [AbF00] including

geometry, theoretical physics, engineering, etc., and leads to large amount of useful

applications.

 8

In the current JRelix system, when grouping or ordering by nested relation domain in

vertical operations such as equivalence reduction, functional mapping and partial

functional mapping, the system will group or order tuples according to the surrogates

instead of the real values of these nested domains. Therefore, another goal of the project

is to extend the system so that the real values of the nested relation domain are used in

grouping or ordering tuples.

Also, the current system is unable to test whether the value of an attribute is dc or dk

value. Thus, Boolean functions need to be implemented to detect these values, serving as

another task of this project.

1.2 Project Report Outline

This project report is organized as follows. Given the topic of this project presented in

this chapter, the related background knowledge is provided in the next Chapter 2. In

Chapter 3, user’s manual for the new features is described. The implementations of these

new features, as well as the implementation and usage of CliffordADT are illustrated in

Chapter 4 and Chapter 5, respectively. Finally, a brief summary is given in Chapter 6.

Chapter 2

Background

The purpose of this chapter is to introduce the required background knowledge to readers

for helping them understand the rest of the project report. In Section 2.1 the usage of

JRelix systems will be described, and outline of the implementation of JRelix will be

given in Section 2.2.

2.1 Introduction to JRelix

2.1.1 Getting Started

JRelix system is a database engine running on any platform that has Java Runtime

Environment 1.1 or up. To start JRelix, typing the following in the command line if it is

in the same directory as where the classes files of JRelix locates:

 java JRelix

or if it is in any other directory, providing classpath as following:

 java –classpath [classpath] JRelix

If JRelix starts successfully, the following screen will appear and > is shown to prompt

user inputs:

Starting stand alone JRelix.
+---+
| Relix Java version 0.93 |
| Copyright (c) 1997 -- 2004 Aldat Lab |
| School of Computer Science |
| McGill University |
+---+
9

>

2.1.2 Declaration

Domain Declaration

Actual domains are declared in JRelix through the use of keyword “domain”, that is

[Zhe02],

“domain” IDList Type “;”

where IDList specifies the list of the domains being declared, and the types of these

domains are presented in Type. There are two domain types in JRelix: One is atomic and

the other is complex. The types of atomic domain include string, Boolean, short, integer,

etc., as shown in Figure 2.1, while the types of complex domain include nested relation

and computation.

The following synta

declared nested dom

declared before the d

 domain nes

Type Short Form
integer intr
long long
short short
float float
double double
string strg
boolean bool
universal univ
numeric num
attribute attr
10

Figure 2.1: Types of atomic domain [Yu04]

x is used to declare nested relation domain. The attributes of the

ain are listed in IDList. Note that the attributes in the IDList must be

eclaration of the nested domain [Yua98]:

ted_domain_name (IDList) “;”

 11

The syntax for declaring computation is shown as below. Parameters of the declared

computation are listed in IDList. Similarly, the parameters in the IDList must be declared

before the declaration of the computation [Bak98]

 domain computation_name comp (IDList) “;”

Examples for declaring domains in JRelix are illustrated in Figure 2.2.

Figure 2.2: Example of domain declarations

Relation Declaration & Initialization

The Syntax for relation declaration and initialization is shown as:

 relation IDList “(“IDList”)” (Initialization)? “;”

where the first IDList specifies the declared relations, and the second IDList specifies the

attributes of the declared relation. If the “Initialization” is absent, an empty relation will

be created without any tuple inside; Otherwise, it will be declared with the actual tuples.

In the relation initialization, the curly brackets “{“ and “}” are used to indicate the start

and end of the initialization, and the data in the same tuple are surrounded by round

bracket “(“ and “)”. In the case that a nested relation is declared and initialized, the

surrogates are stored and used to link the actual values of the nested relation attribute

which are stored in a relation with name “.”+nested relation attribute’s name.

An example for relation declaration and initialization is shown in Figure 2.3.

>domain coeff float;
>domain index intg;
>domain cliff (index);
>domain cliffordL (coeff, cliff);
>domain cliffordR (coeff, cliff);
>domain clifford (coeff, cliff);
>domain Add comp(cliffordL,cliffordR, clifford);

Figure 2.3: Example of relation declaration & initialization

In this example, nested relation SaleInfo with a nested relation domain product as its

attribute is declared and initialized. After initialization, values of SaleInfo are stored in

the system as shown in Figure 2.4. Note that the values of product shown in SaleInfo are

surrogates. The real values of product is stored in relation “.product”, and the function of

“.id” in relation “.product” is to link surrogates to the real values.

domain salePerson strg;
domain saleAmount intg;
domain department intg;
domain company strg;
domain productName strg;
domain product(company, productName);
relation SaleInfo(product, salePerson, department, saleAmount) <-
{({("IBM", "Thinkpad T43P"),("DELL", "Inspiron 5150")},"Smith", 1,
10000),
({("Sony", "Hi 8 Camcorder"), ("Kodak", "Digital Camera")}, "Jones", 1,
7800),
({("IBM", "Thinkpad T43P"),("DELL", "Inspiron 5150")}, "Brown", 2,
6900),
({("IBM", "Thinkpad T43P"),("DELL", "Inspiron 5150")}, "Larry", 2, 3400)
};
>pr SaleInfo;
+----------------------+----------------------+-------------+-------------+
| product | salePerson | department | saleAmount |
+----------------------+----------------------+-------------+-------------+
| 3 | Brown | 2 | 6900 |
| 4 | Larry | 2 | 3400 |
| 1 | Smith | 1 | 10000 |
| 2 | Jones | 1 | 7800 |
+----------------------+----------------------+-------------+-------------+

>pr .product;
+----------------------+----------------------+----------------------+
| .id | company | productName |
+----------------------+----------------------+----------------------+
| 1 | DELL | Inspiron 5150 |
| 1 | IBM | Thinkpad T43P |
| 2 | Kodak | Digital Camera |
| 2 | Sony | Hi 8 Camcorder |
| 3 | DELL | Inspiron 5150 |
| 3 | IBM | Thinkpad T43P |
| 4 | DELL | Inspiron 5150 |
| 4 | IBM | Thinkpad T43P |
+----------------------+----------------------+----------------------+
 12

 13

Figure 2.4: Contents of Relation SaleInfo

2.1.3 Assignment

There are two assignment operators in JRelix System. One is “<-“, which copies contents

and attributes of the operand on the right side of an operator to the operand on the left

side of the operator. The other is “<+”, which appends the content of the right side

operand to the left side operand. An example of using “<-“ is shown in Figure 2.5. For

examples of “<+”, please refer to [Zhe02] for details.

Figure 2.5: Example of assignment operator “<-“

2.1.4 Relation Algebra

In this section, some of the unary and binary operations implemented in JRelix will be

briefly described.

Unary operations

As its name indicates, unary operations take one operand. There are six unary operations

implemented in JRelix system, including projection, selection, T-selection, QT-

selections, etc. Here projection and selection will be described in details. Details for the

other operations can be found in [Mer84].

Projection

cliffordR' <- [coeffR, cliffR] in cliffordR;
cliffordR <- where coeff != 0.0 in ([coeff, cliff] in cliffordR');

Project extracts a specified subset of attributes from the operand. The syntax of this

operation is [Hao98]:

 “[“ (IDList)? “]” in (Projection | Selection)

Here, the list of attributes that need to be projected from the operand is specified in

“IDList”. If “IDList” is empty, a relation with one tuple of Boolean value will be

returned. The Boolean value could be “true” or “false” depending on whether the operand

relation is empty or not. An example is shown in Figure 2.6, where relation “SaleInfo”

defined in Figure 2.3 is used.

Select

Select

specif

> sAmount <- [saleAmount] in SaleInfo;
>pr sAmount;

+-------------+
| saleAmount |
+-------------+
| 3400 |
| 6900 |
| 7800 |
| 10000 |
+-------------+

>pr [] in SaleInfo;

+--------+
| .bool |
+--------+
| true |
+--------+
14

Figure 2.6: Example of Unary Operation: Projection in JRelix

ion

ion operation extracts from the operand relation certain tuples which satisfy the

ied condition. The syntax of selection operation is shown as below [Hao98]:

 where [condition clause] in projection

where “condition clause” could be any expression which returns Boolean value for each

tuple. An example of selection operation is illustrated in Figure 2.7, with relation SaleInfo

being used.

Bi

Bi

the

op

the

12

wi

Fi

sjo
>superSale <- where saleAmount > 7000 in [saleAmount,
salePerson] in SaleInfo;

>pr superSale;

+-------------+----------------------+
| saleAmount | salePerson |
+-------------+----------------------+
| 7800 | Jones |
| 10000 | Smith |
+-------------+----------------------+
15

Figure 2.7: Examples of Unary Operation: Selection in JRelix

nary Operations

nary operations in JRelix fall in the following two categories: µ-join and σ-join. All

se binary operations are set operations and satisfy closure, which means that if two

erands are relations, the result of the binary operation is also a relation. The syntax of

se join operators is [Hao98]:

 Expression JoinOperator Expression

 Or

 Expression “[“ExprList”: “JoinOperator”:”ExprList”]” Expression.

 σ-join operators are implemented in JRelix and used to generalize logical operations,

th definitions given in Ref. [Mer84]. Also, there are seven operators (as shown in

gure 2.8) belonging to µ-join operation, including ijoin, ujoin, ljoin, rjoin,djoin, drjoin,

in. If we define center, left and right as below [Mer84]

 16

we can obtain the definition of these µ-joins as those in Figure 2.8:

Figure 2.8: Definition of µ-joins operators [YiZheng 2004]

The usage of ujoin operator is illustrated in Figure 2.9. Two relations are used in this

example. One is ProductAvaliable, which stores the information about the available

amount of certain product. The other relation ProductPrice contains the prices of

products. The names of products are stored in different attributes in these two relations,

that is, in attribute product of relation ProductAvaliable, and in attribute item of

ProductPrice. To combine all the information in these two relations, union of the two

relations on their common attributes product and item is used to create a new relation

 17

ProductInfo. Note that the value of price for product “Inspiron 5150”, which is not in

relation ProductPrice, is given dc value in the ProductInfo.

Figure 2.9: Example of µ-joins operator: ujoin

>domain product strg;
>domain amount intg;
>domain item strg;
>domain price intg;

>relation ProductAvaliable (product, amount) <- {("Thinkpad T43P", 20),
("Hi 8 Camcorder",50),
("Inspiron 5150", 10)};

>pr ProductAvaliable;

+----------------------+-------------+
| product | amount |
+----------------------+-------------+
Hi 8 Camcorder	50
Inspiron 5150	10
Thinkpad T43P	20
+----------------------+-------------+

>relation ProductPrice (item, price) <- {("Thinkpad T43P", 2500),
("Hi 8 Camcorder", 980)};

>pr ProductPrice;

+----------------------+-------------+
| item | price |
+----------------------+-------------+
| Hi 8 Camcorder | 980 |
| Thinkpad T43P | 2500 |
+----------------------+-------------+

>ProductInfo <- ProductAvaliable[product:ujoin:item]ProductPrice;

>pr ProductInfo;

+----------------------+-------------+----------------------+-------------+
| product | amount | item | price |
+----------------------+-------------+----------------------+-------------+
Hi 8 Camcorder	50	Hi 8 Camcorder	980
Inspiron 5150	10	Inspiron 5150	dc
Thinkpad T43P	20	Thinkpad T43P	2500
+----------------------+-------------+----------------------+-------------+

 18

2.15 Domain Algebra

Domain algebra is an algebra on attributes. There are two main components in Domain

algebra: Scalar operations and Aggregation operations. Scalar operations allow

arithmetic, logic and string processes on attributes within each tuple. Therefore, they

could also be referred as Horizontal operations. On the other hand, Aggregation

operations work vertically on all tuples in a relation, and thus they are also called Vertical

operations.

Scalar operations

Scalar operations could be used in defining constants, renaming attributes, performing

arithmetical and logical operations on attributes, as illustrated in Figure 2.10.

Figure 2.10: Examples of Scalar operations in Domain Algebra

Defining constants:

>let one be 1;

Rename attributes:

>let coeffR be coeff;
>let cliffR be cliff;

Performing arithmetical operation on attributes:

>let evodsjoin be evodsjoin’ mod 2
>let d3 be seqR – seqLi;

Performing logical operation on attributes:
(condition statement if-then-else)

>let tempd2 be if seqdiff < 0 then 0 else seqdiff;

 19

Aggregate Operations

Aggregate Operations include the following four operations: Reduction, Equivalence

reduction, Function mapping and Partial function mapping.

Reduction

The example below is used to illustrate the meaning of Reduction operation:

 > let saleTotal be red + of saleAmount;

which will sum up all the values of saleAmount. Other built-in operations, including *,

min, max, and, or, nop, ijoin, ujoin, sjoin, could also be used in red reduction. The last

three operations are for relations, and operation nop is for both primary typed domain and

relation domain. The rest six operations are for primary typed domain [Yua98].

Reduction operations could also be used as below:

 > let count be red + of 1;

which will count the number of tuples of the relation which count is projected from.

 > let avgSale be (red + of saleAmount)/(red + of 1);

which is the combination of two red reductions (Aggregate operations) with division

(Scalar operation). The first red reduction calculates the sum of saleAmount and the

second red reduction counts the total number of person; the division gives the average

sale amount.

Equivalence Reduction

Equivalence reduction allows reduction to be performed to groups of tuples within a

relation [Mer84]. Whether tuples are in the same group (i.e., they are equivalent) or not

depends on whether they have the same value for a specified set of domains. An example

for using this operation is illustrated in Figure 2.11. Relation SaleInfo defined in Figure

2.4 is used in this example, and the values of equivSum are aggregated inside each group.

Fun

Func

calc

on h

2.12

>let equivSum be equiv + of saleAmount by product;
>equivRel <- [product, saleAmount, equivSum] in SaleInfo;
>pr equivRel;

+----------------------+-------------+-------------+
| product | saleAmount | equivSum |
+----------------------+-------------+-------------+
3	3400	20300
3	6900	20300
3	10000	20300
2	7800	7800
+----------------------+-------------+-------------+
20

Figure 2.11: Example of Equivalence reduction

ctional Mapping

tional Mapping is used to introduce order into vertical operation and perform

ulation that Reduction could not perform. For example, to rank the sale persons based

ow much they sale could only be done in Function mapping, as shown in Figure

.

Figure 2.12: Example of Functional mapping

>let rank be fun + of 1 order saleAmount;

>pr [salePerson, saleAmount, rank] in SaleInfo;

+----------------------+-------------+-------------+
| salePerson | saleAmount | rank |
+----------------------+-------------+-------------+
Brown	6900	2
Jones	7800	3
Larry	3400	1
Smith	10000	4
+----------------------+-------------+-------------+

In Functional mapping, first the tuples are ordered according to domains listed in the

order clause, which is saleAmount here, and then rank is aggregated.

Partial Functional Mapping

Partial Functional Mapping could be viewed as the combination of Functional mapping

and Equivalence reduction. It adds a group facility to functional mapping, which means

tuples are first grouped by domains in group clause, then are ordered according to

domains in the order clause inside each group. An example shown in Figure 2.12 is used

to illustrate the usage of Partial functional mapping. Relation SaleInfo is used in this

example.

In this

aggreg

2.1.6

>let parSum be par + of 1 order product by department;
>parRel <- [department, product, parSum] in SaleInfo;
>pr parRel;

+-------------+----------------------+-------------+
| department | product | parSum |
+-------------+----------------------+-------------+
1	1	1
1	2	2
2	4	1
+-------------+----------------------+-------------+
21

Figure 2.12: Example of Partial functional mapping

 example, tuples in SaleInfo are first grouped by department. The values of parSum

ate in each group following the same rule as Functional mapping.

Computation

 22

The concept of Computation is similar to procedure in some programming languages

such as C, Fortune. It encapsulates a set of codes together to perform a certain

functionality. It accepts a list of parameters which are usually relations or other

computations. Keywords “in” or “out” are used to indicate the input and output

parameters. Input parameters will be used inside the computation and the result will be

written into output parameters. Computation may contain several block of codes

separated by keyword “alt” which is shorten for “alternative”. Depending on the input

and output parameters, different block of codes will be triggered. Computation could be

declared at two levels: top level and nested level [Bak98] depending on whether the

declarations of computations are nested in any declarations of relations or computations.

Top level computations could be invoked anywhere after their declarations. For nested

level computations, It could be invoked either in the computation code block where the

nested level computations are declared or exported from Abstract Data Type where the

computations are defined in. There are advanced usages of computation such as stateful

computations, packages, constrain verification, etc. Readers are encouraged to refer to

[Bak98] for detail information. In the following examples, the definition and invoking of

nested level computations will be illustrated. In Figure 2.13, two nested computations

Add() and Divide() are defined inside Abstract Data Type calculator. Each of the

computation has three parameters. The invocations of these two nested level

computations are shown in Figure 2.14. Keywords “in” and “out” are not used in the

invocations, instead the shortcut is used, i.e. present parameters are input parameters and

absent parameter is output parameter.

Figure 2.13: Definition of abstract data type calculator

domain left, right, sum, division float;
domain Add comp(left, right, sum);
domain Product comp(left, right, division);
comp calculator(Add, Product) is
{

comp Add(left, right, sum) is
{

sum <- left + right;
} alt
{

left <- sum - right;
} alt
{

right <- sum - left;
};

comp Divide(left, right, division) is
{

division <- left / right;
};

};

>calculator (out Add, out Product);
>A1 <- Add[3, 5,];
>pr A1;
+---------------+
| sum |
+---------------+
| 8.0 |
+---------------+
>A2 <- Add[3, , 8];
>pr A2;
+---------------+
| right |
+---------------+
| 5.0 |
+---------------+
>A3 <- Add[,8,10];
>pr A3;
+---------------+
| left |
+---------------+
| 2.0 |
+---------------+
>D1 <- Divide[10.0, 5.0,];
>pr D1;
+---------------+
| division |
+---------------+
| 2.0 |
+---------------+
23

Figure 2.14: Invocations of computation Add(), Divide()

 24

2.2 Introduction to Implementation of JRelix

2.2.1 System Overview

The JRelix system consists of the following three main modules: the front-end processor,

the database engine, and the system database maintainer [Yu04]. These three modules

interact with each other to fulfill the functions of JRelix system, as shown in Figure 2.15.

When an end-user enters a JRelix command, the command first is processed by the front-

end processor which is composed of parser, interpreter and top-level evaluator. The

parser accepts user input and performs syntax analysis. If any error occurs during the

syntax analysis, no further process will be performed and an error message will be

returned to the user to indicate error. Otherwise, a tree structure translated from the input

command will be generated by the parser and passed to the interpreter.

The interpreter accepts syntax tree passed from the parser and does some evaluations

such as type checking etc. It then traverses the tree and issues a set of system calls which

the database engine can understand.

The database engine is critical to the JRelix system. The actual computations are

performed and the results are generated by it. It consists of three main function modules,

including Relation Processor, Virtual Domain Actualizer and Computation Processor,

which correspond to the three conceptual aspects in JRelix system: relation Algebra,

domain Algebra and computation. [Yua97]

 25

Figure 2.15: JRelix System Overview

The System database maintainer is responsible for maintaining system related

information and user-defined data. Such information is maintained in a set of system

tables and stored permanently as system files on the disk. The system tables are stored in

files “.rel”, “.dom”, “.comp”, “.rd”, “.expr”, and “.surrogate”. When a user declares a

relation or domain, the definitions of the relation or domain will be persistent to the

system files “.rel” and “.dom”, and the information of linking a relation and the domains

that it is defined on is stored in file “.rd”. When a user declares a computation, a syntax

tree will be generated according to the definition of the computation and be stored in file

“.comp”. The Syntax trees for virtual domains and views declared in the system are

stored in file “.expr” [Yu04]. File “.surrogate” is used to record next available surrogate

for nested relation.

 Front-end Processor Database Engine System Database Maintainer

 Interpreter

 Parser

 Top-level
 Evaluator

 Relation
 Processor

 Virtual Domain
 Actualizer

 Computation
 Processor

System tables (.rd,
.rel, .dom, .expr,
ect.) &
User defined Data

 26

2.2.2 Parser Generation in JRelix

In JRelix, Java Compiler Compiler (JavaCC) is used for automatically generating parser.

JavaCC is a popular parser generator for java applications. It reads the high level

specification of grammar which is usually stored in a “.jjt” file, and transfers it to a set of

Java classes including “Parser.java”, “Token.java”, “ParserTokenManager.java”, etc.

These classes work together to recognize the matches to the grammar.

As the preprocessor of JavaCC, JJTree inserts parse tree building actions at various

places of the JavaCC source. The output of JJTree is a “.jj” file, which is passed to

JavaCC to create the parser. The commands used for creating the parser are shown in

Figure 2.16.

Figure 2.16: Parsing Commands

2.2.3 Virtual Domain Actualizer

Virtual Domain Actualizer is the key component of the JRelix system. It provides support

for horizontal and vertical operations in domain algebra. When virtual domains are listed

in the destination relation, the interpreter will call virtual domain actualizer to actualize

them. The virtual domain actualizer then obtains the required source relation information

from domain table and environment and instantiates the virtual domains in the destination

relation. Finally, it returns the actualized destination relation back to the interpreter. The

> jjtree Parser.jjt

> javacc Parser.jj

relation between virtual domain actualizer and other compenents in JRelix is described in

Figure 2.17.

Figure 2.17: Relation Between Virt

Equivalence Reduction

For the actualization of virtual doma

the following steps need to be perform

tuple [Kan01]: 1) Source relation sho

for these domains will be loaded into

source relation to generate the destina

the by-domains. Once the process of

the start row and the end row need to

Interpreter

Actualizer

domain

Destination Relation

Call for actualizing
virtual domains

Instantiate vir
domains

Destination
Retlation
Source Relation
27

ual Domain Actualizer and Other Components in
JRelix

ins which contain equivalence reduction operation,

ed before actualizing the virtual domain tuple-by-

uld be loaded into memory first; 2) the syntax trees

 memory; 3) virtual domains are appended to the

tion relation; 4) the destination relation is sorted by

actualizing the virtual domain tuple-by-tuple starts,

 be recorded to distinguish among different groups.

environment
tual

 28

When the group change checking is found to be true, the virtual domains will be assigned

the accumulated value in all the tuples of the group. The simplified process diagram is

shown in Figure 2.18.

Figure 2.18: Equivalence Reduction Process Diagram [Kan01

Functional Mapping

Similar to the actualization of a virtual domain containing equivalence re

virtual domains containing functional mapping are actualized, the source re

Load Source Relation from
the disk

Load Syntax tree of Virtual
domain

Sort the destination relation
by by-domains

Initialize start row memory with
current row number

More tuples

 In the same group

yes

No

yes

Assign the accumulated value
virtual domain in Destination
Relations between Start Row
Current row member

More tuples
N

 Start
o

]

duction, when

lation and the

 to

and

 End

 29

syntax trees for these domains will be loaded into memory and destination relation will

be generated by adding virtual domains to the source relation. Before any further process

is conducted, the destination relation needs to be sorted by the order-domains. Then the

virtual domains are actualized tuple-by-tuple [Kan01]. The order memory needs to be

initialized before two adjacent tuples are compared in order. When a change is found

during the comparison, the domain value is accumulated and written to the destination

relation, and the order memory is re-initialized with the changed value. In the case that

there is no change in order domain memory, to avoid violating functional mapping, the

accumulation process is bypassed and the current accumulated value is written into the

destination relation. The simplified process is depicted in Figure 2.19.

Partial Functional Mapping

The process of actualizing a virtual domain containing partial functional mapping is

similar to that of actualizing functional mapping, but with more complexity due to its

definition described in chapter 2. While virtual domains are actualized with partial

functional mapping operation, the destination relation will first be sorted based on its by-

domains, and then be further sorted according to its order-domains in each group.

Inside each group, value will be accumulated only when a change is detected during

tuple-by-tuple comparison. When the group is found to have changed, the order and by

memory are re-initialized. The above process is illustrated in Figure 2.20.

 30

Figure 2.19: Functional Mapping Process Diagram [Kan01]

Load Syntax tree of Virtual
domain

Sort the destination relation
by order-domains

 Initialize the order memory

 Any change in
 comparison

yes

No

Write the accumulated value into
destination Relation

 End More tuples
No

 Start

Load Source Relation from
the disk

yes

 Bypass
accumulation

 31

Figure 2.20: Partial Functional Mapping Process Diagram [K

Load Syntax tree of Virtual
domain

Sort the destination relation
by by-domains and order-
domains

 Initialize the by memory and order
 memory

 Any change in by
 memory

yes

N

 End More tuples
N

 Start

Load Source Relation from
the disk

yes

Write the accumulated value
destination Relation

 Any change in order
 memory

N

yes
o

o

o

an01]

 Bypass the
accumulation

into

Chapter 3

User’s Manual

This chapter will describe the usage of grouping by relation domain and ordering by

relation domain in equivalence reduction, functional mapping and the three new Boolean

functions by concrete examples.

3.1 Vertical Domain Algebra

SaleInfo database is used as an example in this document for vertical domain algebra. Its

definition is shown in Figure 3.1:

--
SaleInfo

(product salePerson department saleAmount)
(company productName)

--
DELL Inspiron 5150 Brown 2 6900
IBM Thinkpad T43P

--
DELL Inspiron 5150 Smith 1 10000
IBM Thinkpad T43P

--
Kodak Digital Camera Jones 1 7800
Sony Hi 8 Camcorder

--
DELL Inspiron 5150 Larry 2 3400
IBM Thinkpad T43P

--
 32

Figure 3.1: SaleInfo Database

3.1.1 Equivalence Reduction to Support Group by Nested Relation
Domain

The syntax of equivalence reduction is defined as:

 Let virtual-domain be equiv operation of domain by domain-list

In the following example, saleAmount is grouped by the nested relation domain product.

The declaration is shown in Figure 3.2.

Vi

3.3

pr

sa

69

fro

3.

Th

 L

>let equivSum be equiv + of saleAmount by product;

>EquivRel <- [product, saleAmount, equivSum] in SaleInfo;
33

Figure 3.2: Equivalence Reduction Declaration

rtual domain equivSum is contained in the result relation EquivRel, as shown in Figure

. In EquivRel, saleAmounts are accumulated according to domain product. Since the

oduct with saleAmount 6900, the product with saleAmount 10000 and the product with

leAmount 3400 are the same, the value of equivSum for these three tuples is the sum of

00 and 10000 and 3400. For the product with saleAmount 7800, which is different

m the above three, the saleAmount in the related tuple is not accumulated.

1.2 Functional Mapping to Support Order by Nested Relation
Domain

e syntax of functional mapping is defined as:

et virtual-domain be fun operation of domain order domain-list

Figure 3.3: Result of Equivalence Reduction

In the example of Functional Mapping, funSum is ordered by domain product. The

declaration is shown in Figure 3.4.

Virt

3.5.

prod

sale

three

--
EquivRel

(product saleAmount equivSum)
(company productName)

--
DELL Inspiron 5150 6900 20300
IBM Thinkpad T43P

--
DELL Inspiron 5150 10000 20300
IBM Thinkpad T43P

--
DELL Inspiron 5150 3400 20300
IBM Thinkpad T43P

--
Kodak Digital Camera 7800 7800
Sony Hi 8 Camcorder

--
>let funSum be fun + of 1 order product;

>FunRel <- [product, saleAmount, funSum] in SaleInfo;
34

Figure 3.4: Functional Mapping Declarations

ual domain funSum is contained in the result relation FunRel, as illustrated in Figure

In relation FunRel, the number of product is accumulated according to domain

uct. Since the product with saleAmount 10000 is the same as the product with

Amount 6900 as well as that with saleAmount 3400, the value of funSum for these

 products does not increase, that is, all of them have value 1. For the product with

 35

saleAmount 7800, which is different from the above three, the funSum in the related tuple

is accumulated.

Figure 3.5: Result of Functional Mapping

3.1.3 Partial Functional Mapping to Support Group & Order by Nested
Relation Domain

 The syntax of partial functional mapping is defined as:

Let virtual-domain be par operation of domain order domain-list1 by domain-list2

In the example shown below, the number of product parSum is ordered by nested relation

domain product and grouped by domain department. The declaration is depicted in

Figure 3.6.

--
FunRel

(product saleAmount funSum)
(company productName)

--
DELL Inspiron 5150 6900 1
IBM Thinkpad T43P

--
DELL Inspiron 5150 10000 1
IBM Thinkpad T43P

--
DELL Inspiron 5150 3400 1
IBM Thinkpad T43P

--
Kodak Digital Camera 7800 2
Sony Hi 8 Camcorder

--

A

F

I

d

v

i

>let parSum be par + of 1 order product by department;

>ParRel <- [department, product, parSum] in SaleInfo;
36

Figure 3.6: Partial Functional Mapping Declaration

lso, virtual domain parSum is contained in the result relation ParRel, as shown in

igure 3.7.

Figure 3.7: Result of Partial Functional Mapping

n ParRel, number of product is first grouped by domain department and then ordered by

omain product. Since the two products in the department with value 1 are different, the

alue of parSum increases. In the department with value 2, the value of parSum does not

ncrease due to the same values of these two products.

--
ParRel

(department product parSum)
(company productName)

--
1 DELL Inspiron 5150 1

IBM Thinkpad T43P
--

1 Kodak Digital Camera 2
Sony Hi 8 Camcorder

--
2 DELL Inspiron 5150 1

IBM Thinkpad T43P
--

2 DELL Inspiron 5150 1
IBM Thinkpad T43P

--

3.2 Three New Boolean Functions

The three new Boolean functions including isnull, isnulldc, isnulldk are introduced in this

document. The usage of these functions are similar to that of others such as abs(), sin(),

asin(), etc., except that the output of them will be Boolean values. One example of their

application is to use them in conditional statement such as “if”.

CourseFeedBack database will be used in this document for demonstrating the usage of

these functions. Its definition is shown in Figure 3.8.

3

T

d

--
CourseFeedBack

(student course feedback)
--

John CS613 Good
--

Kartrina CS613 dc
--

Larry CS614 dc
--

Mary CS613 Excellent
--

Patrick CS555 Good
--

Rita CS555 dk
--

Tommy CS614 Great
--
37

Figure 3.8: CourseFeedBack Database

.2.1 Function isnulldc

his function will accept one parameter, which is a domain, and test if the value of this

omain is dc or not. It will return true if the value is dc and false if not. In the example

below, isnulldc function is used in if statements in the declaration of virtual domain

numDC. The declarations are shown in Figure 3.9.

In

ca

of

3.

Si

va

ret

In

nu

>let numDC be red + of if isnulldc(feedback) then 1 else 0;

>TestDC <- [numDC] in CourseFeedBack;
Figure 3.9: Function isnulldc declarations

the result relation TestDC, the number of dc values contained in domain feedback is

lculated, as given in Figure 3.10. Since there are 2 dc values in this domain, the value

 numDC is 2.

Figur

2.2 Function isnulldk

milar to function isnulldc, th

lue of this domain is dk or

urn false.

the following example, func

mDK as shown in Figure 3.1

TestDC

(numDC)

2

38

e 3.10: Result of Function isnulldc

is function will accept one domain parameter and test if the

not. If it is, the function will return true; otherwise, it will

tion isnulldk is used in the declaration of virtual domain

1.

Figure 3.11: Function isnulldk Declarations

In the result relation TestDK, virtual domain numDK is calculated according to the

number of dk value in domain feedback. Since there is only 1 dk value in domain

feedback, the value of numDK is 1, as we can see in Figure 3.12.

Figure

3.2.3 Function isnull

Similar to the above two funct

domain parameter and test if th

function will return the Boolean

In the example of Figure 3.13, f

unknown.

TestDK

(numDK)

1

3.12: Result of Function isnulldk

ions isnulldc and isnulldk, this function will accept one

e value of the domain is dk or dc. If it is dk or dc, the

 value true. Otherwise, it will return false.

unction isnull is used in the declaration of virtual domain
>let unknown be red + of if isnull(feedback) then 1 else 0;

>TestNULL <- [unknown] in CourseFeedBack;
>let numDK be red + of if isnulldk(feedback) then 1 else 0;

>TestDK <- [numDK] in CourseFeedBack;
39

Figure 3.13: Function isnull Declarations

In the result relation TestNull, virtual domain unknown is calculated according to the

number of dc and dk value in domain feedback. Since there are 3 such values in domain

feedback, the value of unknown is 3, as shown in Figure 3.14.

Figure 3

3.2.4 Further Examples

In the following document, three

usage of the three Boolean functio

Example for Function isnulldc

Relation R which contains 5 diff

definition shown in Figure 3.15.

TestNULL

(unknown)

3

40

.14: Result of Function isnull

more complete examples will be given to illustrate the

ns.

erent type of attributes is used in this example, with

>domain d1 strg;
>domain d2 double;
>domain d3 boolean;
>domain d4 short;
>domain d5 long;
>relation R (d1, d2, d3, d4, d5) <- { ("try", 11.2, true, 3, 12),

(dc, dc, dc, dc,dc),
("this", 2.5, false, 6, 33)};

>pr R;

+----------------------+-------------------------+--------+--------+-------+
| d1 | d2 | d3 | d4 | d5 |
+----------------------+-------------------------+--------+--------+-------+
| _dc | dc | dc | dc | dc |
| |
| this | 2.5 | false | 6 | 33 |
| |
| try | 11.199999809265137 | true | 3 | 12 |
+----------------------+-------------------------+--------+--------+-------+
 41

Figure 3.15: Definition of Relation R

Function isnulldc is used in the definitions of virtual domains such as t1, t2, t3, t4, and t5

to test the value of different type of attributes in relation R. The result relations containing

the virtual domains are shown in Figure 3.16.

>let t1 be if isnulldc(d1) then "yes" else "no";
>R1 <- [d1, t1] in R;
>pr R1;
+----------------------+----------------------+
| d1 | t1 |
+----------------------+----------------------+
| _dc | yes |
| this | no |
| try | no |
+----------------------+----------------------+

>let t2 be if isnulldc(d2) then 0.0 else 1.0;
>R2 <- [d2, t2] in R;
>pr R2;
+-------------------------+---------------+
| d2 | t2 |
+-------------------------+---------------+
| dc | 0.0 |
| 2.5 | 1.0 |
| 11.199999809265137 | 1.0 |
+-------------------------+---------------+

>let t3 be if isnulldc(d3) then true else false;
>R3 <- [d3, t3] in R;
>pr R3;
+--------+--------+
| d3 | t3 |
+--------+--------+
| dc | true |
| false | false |
| true | false |
+--------+--------+

>let t4 be if isnulldc(d4) then 1 else 0;
>R4 <- [d4, t4] in R;
>pr R4;
+--------+-------------+
| d4 | t4 |
+--------+-------------+
| dc | 1 |
| 3 | 0 |
| 6 | 0 |
+--------+-------------+

>let t5 be if isnulldc(d5) then 1 else 0;
>R5 <- [d5, t5] in R;
>pr R5;
+----------------------+-------------+
| d5 | t5 |
+----------------------+-------------+
| dc | 1 |
| 12 | 0 |
| 33 | 0 |
+----------------------+-------------+
42

Figure 3.16: Result of Example for Function isnulldc

 43

Example for Function isnulldk

Similar to the above example, relation R which contains five different types of attributes

including string, double, Boolean, short and long is used to illustrate the usage of

function isnulldk. The definition of relation R is shown in Figure 3.17.

Figure 3.17: Definition of Relation R

Function isnulldk is used in the definitions of virtual domains such as t1, t2, t3, t4, and t5.

The result relations R1, R2, R3, R4 and R5 containing the virtual domains t1, t2, t3, t4, t5

are shown in Figure 3.18.

>domain d1 strg;
>domain d2 double;
>domain d3 boolean;
>domain d4 short;
>domain d5 long;
>relation R (d1, d2, d3, d4, d5) <- { ("try", 11.2, true, 3, 12),

(dk, dk, false, dk,33),
("this", 2.5, dk, 6, dk)};

>pr R;

+----------------------+-------------------------+--------+--------+-------+
| d1 | d2 | d3 | d4 | d5 |
+----------------------+-------------------------+--------+--------+-------+
| _dk | dk | false | dk | 33 |
| |
| this | 2.5 | dk | 6 | dk |
| |
| try | 11.199999809265137 | true | 3 | 12 |
+----------------------+-------------------------+--------+--------+-------+

>let t1 be if isnulldk(d1) then "yes" else "no";
>R1 <- [d1, t1] in R;
>pr R1;
+----------------------+----------------------+
| d1 | t1 |
+----------------------+----------------------+
| _dk | yes |
| this | no |
| try | no |
+----------------------+----------------------+

>let t2 be if isnulldk(d2) then 0.0 else 1.0;
>R2 <- [d2, t2] in R;
>pr R2;
+-------------------------+---------------+
| d2 | t2 |
+-------------------------+---------------+
| 2.5 | 1.0 |
| 11.199999809265137 | 1.0 |
| dk | 0.0 |
+-------------------------+---------------+

>let t3 be if isnulldk(d3) then true else false;
>R3 <- [d3, t3] in R;
>pr R3;
+--------+--------+
| d3 | t3 |
+--------+--------+
| dk | true |
| false | false |
| true | false |
+--------+--------+

>let t4 be if isnulldk(d4) then 1 else 0;
>R4 <- [d4, t4] in R;
>pr R4;
+--------+-------------+
| d4 | t4 |
+--------+-------------+
| dk | 1 |
| 3 | 0 |
| 6 | 0 |
+--------+-------------+

>let t5 be if isnulldk(d5) then 1 else 0;
>R5 <- [d5, t5] in R;
>pr R5;
+----------------------+-------------+
| d5 | t5 |
+----------------------+-------------+
| dk | 1 |
| 12 | 0 |
| 33 | 0 |
+----------------------+-------------+
44

Figure 3.18: Result of Example for Function isnulldk

Example for Function isnull

In the example, relation R contains five different types of attributes. The values of these

attributes are mixing of dc, dk and normal value. The definition of relation R is shown in

Figure 3.19.

F

d

r

>domain d1 strg;
>domain d2 double;
>domain d3 boolean;
>domain d4 short;
>domain d5 long;
>relation R (d1, d2, d3, d4, d5) <- {("try", 11.2, dk, 3, dk),

(dc, dc, dc, dc, dc),
(dk, dk, false, dk, 33)};

>pr R;
+----------------------+-------------------------+--------+--------+----+
| d1 | d2 | d3 | d4 | d5 |
+----------------------+-------------------------+--------+--------+----+
| _dk | dk | false | dk | 33 |
| |
| _dc | dc | dc | dc | dc |
| |
| try | 11.199999809265137 | dk | 3 | dk |
+----------------------+-------------------------+--------+--------+----+
45

Figure 3.19: Definition of Relation R

unction isnull is used in the definition of virtual domains t1, t2, t3, t4 and t5 to test the

c and dk value containing in attributes d1, d2, d3, d4 and d5 of Relation R. The result

elations are shown in Figure 3.20.

>let t1 be if isnull(d1) then "yes" else "no";
>R1 <- [d1, t1] in R;
>pr R1;
+----------------------+----------------------+
| d1 | t1 |
+----------------------+----------------------+
| _dk | yes |
| _dc | yes |
| try | no |
+----------------------+----------------------+

>let t2 be if isnull(d2) then 0.0 else 1.0;
>R2 <- [d2, t2] in R;
>pr R2;
+-------------------------+---------------+
| d2 | t2 |
+-------------------------+---------------+
| dc | 0.0 |
| 11.199999809265137 | 1.0 |
| dk | 0.0 |
+-------------------------+---------------+

>let t3 be if isnull(d3) then true else false;
>R3 <- [d3, t3] in R;
>pr R3;
+--------+--------+
| d3 | t3 |
+--------+--------+
| dk | true |
| dc | true |
| false | false |
+--------+--------+

>let t4 be if isnull(d4) then 1 else 0;
>R4 <- [d4, t4] in R;
>pr R4;
+--------+-------------+
| d4 | t4 |
+--------+-------------+
| dk | 1 |
| dc | 1 |
| 3 | 0 |
+--------+-------------+

>let t5 be if isnull(d5) then 1 else 0;
>R5 <- [d5, t5] in R;
>pr R5;
+----------------------+-------------+
| d5 | t5 |
+----------------------+-------------+
| dk | 1 |
| dc | 1 |
| 33 | 0 |
+----------------------+-------------+
46

Figure 3.20: Result of Example for Function isnull

 47

Chapter 4

Implementation

In this chapter, the implementation for the functionalities of grouping by relation domain

and ordering by relation domain in equivalence reduction and functional mapping, as

well as the three new Boolean functions are described. The implementation is based on

the previous implementation of JRelix. In Section 4.1, the develop environment of this

project will be introduced briefly. In Section 4.2, the implementation for the new

features of grouping by relation domain and ordering by relation domain in equivalence

reduction and function mapping will be discussed in details. The implementation of the

three new Boolean functions will be shown in Section 4.3.

4.1 Development Environment

This project is written in Java and has been developed under JDK 1.4.2 environment.

Jbuilder 2005 Foundation is used for developing, testing and debugging purpose. The

compiled JRelix runs on both Windows and Linux.

4.2 Vertical Domain Operations to Support Nested Relation

Domain

In the previous JRelix version, although domain list could contain nested relation

domains, the system can not distinguish between the same values of two nested relation

domains since the system determines whether the values of these two domains are the

 48

same according to the surrogates instead of the real values. Now the system is extended

to be able to interpret nested relation domain used in by-domains or order-domains

correctly by using the real values instead of surrogates to determine if two nested relation

domains are the same. The following sections will describe the implementation of

grouping by relation domain and ordering by relation domain in equivalence reduction

and functional mapping in details.

4.2.1 Equivalence Reduction to Support Group by Nested Relation Domain

As mentioned in Chapter 2, virtual domain actualizing is performed in the class

“Actualizer.java” and a set of methods such as actIntCell(), actNumCell(), etc. are

implemented to actualizing a “cell” according to the domain type. Given a virtual domain

which contains equivalence reduction operation, the actualizing process is done in

method actualizeEquiv().

The previous method actualizeEquiv() already has the ability to sort destination relation

according to the by-domains. If there are nested relation domains in the by-domains, it

sorts according to the real values instead of the surrogates of the nested relation domains

by calling method Relation.sort(Domain[]). Such sorting process is very important since

it ensures the precondition, which is required by the subsequent tuple-by-tuple

comparison to correctly detect the boundary of each group, is satisfied. However, when

comparing two values of a nested relation domain, the previous implementation uses

surrogate values instead of the real values to determine if these two are the same.

Therefore, those codes in the previous implementation should be modified. The current

 49

implementation uses existing method Relation.compareTwoRows() to compare the real

values of a nested relation domain. As its name indicates, method compareTwoRows()

compares the values of the attributes. If the attributes are nested relation domains, it calls

method Relation.compareRelation() to compare the real values of the relations domain as

shown in Figure 4.1. Since method compareRelation() is a recursive method, even if the

comparing relation is a nested relation (meaning that the relation contains nested relation

domains), it can still generate the correct result.

Figure 4.1: Method compareTwoRows(), which handles nested relation domain.

Before the method compareTwoRows() is called, the value of nested relation domain,

which is in by-domains, needs to be recorded in by-memory. In the current

implementation, the row number is chosen to be stored because it is a required argument

when method compareTowRows() is called. The codes are shown in Figure 4.2.

if (domsl[j].type==IDLIST)
{

…
Relation doml = myEnv.lookupRel("."+domsl[j].name, true);
Relation rl = doml.getRelation(bm);
Relation domr = myEnv.lookupRel("."+dn.name, true);
Relation rr = domr.getRelation(bn);
int result = rl.compareRelation(rr);
if (result != EQ) return result;
else break;

}

T

F

u

R

B

t

d

r

c

v

m

c

t

t

For (i=0; i < byarray.length; i++)
{

switch(byarray[i].type)
{

…
case IDLIST:

if (env.lookupRel("."+byarray[i].name, true) != null)
{

Integer rownum = new Integer(currow);
vals.addElement(rownum);

}
break;
…

}
}

50

Figure 4.2: Codes added in actualizeEquiv() to initialize by-memory

he codes added to compare the real value of nested relation domains are shown in

igure 4.3. First, whether the domain is a nested relation domain is checked by looking

p if a relation named .domain name exists. Then arguments for method

elation.compareTwoRows() are constructed. Among them, array flags contains

oolean values for each domain stored in array domains. Such Boolean values are used

o signal method compareTwoRows() about whether the values for a nested relation

omain should be compared by surrogates or not. Assigning false indicates such nested

elation domain should be compared by the real value. If the result value that

ompareTwoRows() returns is not equal to 0, i.e., result != 0, which means the two

alues are not the same and the boundary of two different group is reached, the by-

emory is reset to the current row and the breakflag is set to 1 to indicate that the

urrent group reaches its boundary and the current accumulated value should be written

o the destination relation. If result = 0, which means the two values are the same and

hey are still in the same group, the surrogate value stored in the by-memory is assigned

 51

to the current nested relation domain to ensure that in the destination relation, the same

values of the nested relation domain are represented by the same surrogate.

Figure 4.3: Codes added in actualizeEquiv() to compare the real value of nested relation
 domain.

for (i=0;i < byarray.length; i++)
{

…
switch(byarray[i].type)

{
…
case IDLIST:
// if this domain is a nest relation
if (env.lookupRel("."+byarray[i].name, true) != null)
{

Relation tmpr = new Relation(env);
Object[] nestdata = new Object[1];
nestdata[0] = destrel.data[bypos[i]];
int mrow = ((Integer) (vals.elementAt(i))).intValue();
Domain[] domains = new Domain[1];
domains[0] = byarray[i];
boolean[] flags = new boolean[1];
flags[0] = false;
int[] atypes = tmpr.toTypes(domains);
int result = tmpr.compareTwoRows(nestdata, mrow,

nestdata, currow, 1, atypes, flags, domains,
domains);

if (result != 0)
{

vals.setElementAt(new Integer(currow), i);
breakflag = 1;

}
else
{

//if two row are equivalent, update surrogate
((long[])destrel.data[bypos[i]])[currow] =

((long[])destrel.data[bypos[i]])[mrow];
}

}
break;
…

}
}

 52

4.2.2 Functional Mapping to Support Order by Nested Relation Domain

Similar to equivalence reduction, given a virtual domain that contains function mapping

operation, the actualizing process is done in method Actualizer. actualizeFun().

The implementation of method actualizeFun() follows the same steps as

actualizeEquiv(), except that destination relation is sorted by by-domains in

actualizeEquiv(), while it is sorted based on order-domains in actulizeFun(). Also, the

time when the accumulated value should be written to the destination relation is different.

Same as actualizeEquiv(), the destination relation is sorted by calling method

Relation.sort(). In actualizeFun(), first the destination relation is sorted based on the real

values of nested relation domains contained in the order-domains, and then the

accumulated value is calculated through tuple-by-tuple comparison. Similar to the

situation in method actualizeEquiv(), the previous implementation of actulizeFun()

compares the nested relation domains according to surrogates instead of the real values.

In the current implementation, the following codes are added to ensure that tuple-by-

tuple comparison is based on the real values. In the codes shown in Figure 4.4, the order-

memory is filled with current row number if the order domain is a nested relation domain.

Figure 4.4: Codes added in actualizeFun() to initialize order-memory

case IDLIST:

if (env.lookupRel("."+orderarray[i].name, true) != null)
{

Integer rownum = new Integer(currow);
ordermemory.addElement(rownum);

}

break;

The codes illustrated in Figure 4.5 present the way of constructing the comparison based

on the real values of the nested relation domains. Similar to that described in the above

section, method Relation.CompareTwoRows()is used to compare the real values of

nested relation domains. If the two values are different (indicated by result != 0 in the

codes), the ordermemory needs to be reset and breakflag1 is set to be true. If the two

values are the same, the surrogate value in the order-memory is assigned to the current

nested relation domain to ensure that in the destination relation the same values of the

relation domain have the same surrogate.

For (i=0; i<orderarray.length; i++)
{ …

switch(orderarray[i].type)
{ …

case IDLIST:
//if this domain is a nest relation
if (env.lookupRel("."+orderarray[i].name, true) != null)
{

Relation tmpr = new Relation(env);
Object[] nestdata = new Object[1];
nestdata[0] = destrel.data[orderpos[i]];
int mrow = ((Integer) (ordermemory.elementAt(i))).intValue();
Domain[] domains = new Domain[1];
domains[0] = orderarray[i];
boolean[] flags = new boolean[1];
flags[0] = false;
int[] atypes = tmpr.toTypes(domains);
int result = tmpr.compareTwoRows(nestdata, mrow, nestdata,

currow,1, atypes, flags, domains, domains);
if (result != 0)
{

ordermemory.setElementAt(new Integer(currow), i);
breakflag1 = true;

}
else
{

//if two rows are equivalent, update surrogate
((long[])destrel.data[orderpos[i]])[currow] =
((long[])destrel.data[orderpos[i]])[mrow];

}
}

…
}

…

 53

}

 54

Figure 4.5: Codes added in actualizeFun() to compare the real value of nested relation
 domain.

4.2.3 Partial Functional Mapping to Support Group & Order by Nested

Relation Domain

In JRelix, given a virtual domain that contains partial functional mapping operation, the

actualizing process for this virtual domain is carried out in method Actualizer.

actualizeParFun().

Since partial functional mapping has more complicated definition than equivalence

reduction and functional mapping, the implementation of actualizeParFun() presents

more complexity although some parts of the implementation are similar to those of

methods actualizeEquiv() and actualizeFun(). In the definition of partial functional

mapping, the value of a virtual domain containing partial functional mapping operation is

accumulated according to its by-domains and order-domains. In method

actualizeParFun(), destination relation is first sorted by byorder-domains which is the

combination of by-domains and order-domains; then bymemory and ordermemory are

initialized sequentially before the tuple-by-tuple comparison is performed. To be able to

support group & order by nested relation domains, in the process of initializing

bymemory and ordermemory the following codes shown in Figures 4.6 and 4.7 are added.

Figure 4.6: Codes added to initialize bymemory

case IDLIST:
 if (env.lookupRel("."+byarray[i].name, true) != null) {

Integer rownum = new Integer(currow);
bymemory.addElement(rownum);

}
break;

 55

Figure 4.7: Codes added to initialize ordermemory

In the process of tuple-by-tuple comparison, we need to compare nested relation domains

based on the real values instead of the surrogates, and the related codes are presented in

Figure 4.8 and Figure 4.9. Codes in Figure 4.8 are used to detect the group boundary,

while codes in Figure 4.9 are used to detect the order boundary. When the current values

are different from the values in bymemory or ordermemory, i.e. the boundaries are

reached, the breakflag will be set to be true and the values in bymemory or ordermemory

will be set to the current values. In the case that the current values are the same as the

values in bymemory and ordermemory, the surrogates of the current nested relation

domains will be set as the same as those in bymemory and ordermemory so that in the

destination relation, equivalent values of a nested relation domain will be represented by

the same surrogate. Similar to the implementation of actualizeEquiv() and actualizeFun(),

the existing method Relation.compareTwoRows() is used to compare the nested relation

domain by its real values.

case IDLIST:
if(env.lookupRel("."+orderarray[i].name, true) != null) {

Integer rownum = new Integer(currow);
ordermemory.addElement(rownum);

}
break;

for(currow=0; currow < destrel.numtuples;currow++)
{

…
for(i=0;i<byarray.length;i++)
{

switch(byarray[i].type)
{

…
case IDLIST:

// if this domain is a nest relation
if(env.lookupRel("." + byarray[i].name, true) != null)
{

Relation tmpr = new Relation(env);
Object[] nestdata = new Object[1];
nestdata[0] = destrel.data[bypos[i]];
int mrow = ((Integer)

(bymemory.elementAt(i))).intValue();
Domain[] domains = new Domain[1];
domains[0] = byarray[i];
boolean[] flags = new boolean[1];
flags[0] = false;
int[] atypes = tmpr.toTypes(domains);
int result = tmpr.compareTwoRows(nestdata, mrow,

nestdata, currow,
1, atypes, flags, domains, domains);

if (result != 0)
{

bymemory.setElementAt(new Integer(currow), i);
breakflag = true;

}
else
{
// if two rows are equivalent, update the surrogate
((long[])destrel.data[bypos[i]])[currow] =
((long[])destrel.data[bypos[i]])[mrow];

}
}
break;
…

}
}
…

}

56

Figure 4.8: Codes added to detect the group boundary

 57

Figure 4.9: Codes added to detect the order boundary

for(i=0;i<orderarray.length;i++)
{

switch(orderarray[i].type)
{

…
case IDLIST:

// if this domain is a nest relation
if (env.lookupRel("."+orderarray[i].name, true) != null)
{

Relation tmpr = new Relation(env);
Object[] nestdata = new Object[1];
nestdata[0] = destrel.data[orderpos[i]];
int mrow = ((Integer)

(ordermemory.elementAt(i))).intValue();
Domain[] domains = new Domain[1];
domains[0] = orderarray[i];
boolean[] flags = new boolean[1];
flags[0] = false;
int[] atypes = tmpr.toTypes(domains);
int result = tmpr.compareTwoRows(nestdata, mrow,

nestdata, currow, 1, atypes, flags,
domains, domains);

if (result != 0)
{

ordermemory.setElementAt(new Integer(currow), i);
breakflag1 = true;

}
else
{

((long[])destrel.data[orderpos[i]])[currow] =
((long[])destrel.data[orderpos[i]])[mrow];

}
}
break;

…
}

}

4.3 Three New Boolean Function Implementation

To implement the three new Boolean functions: isnulldc, isnulldk and isnull introduced in

chapter 2, we first need to modify the grammar file and generate new parser so that these

new functions could be recognized when the codes entered by users contain these

functions. The lines shown in Figure 4.10 are added into the grammar file Parser.jjt to

generate new parser.

In JRelix, as

parser, and t

interpreter for

Such informa

syntax tree. S

attribute opco

opcode is inte

value to repre

operation is d
TOKEN : /* FUNCTIONS */
{

…
…

 < ISNULLDC: "isnulldc" > |
< ISNULLDK: "isnulldk" > |
< ISNULL: "isnull" >
…

}

58

Figure 4.10: Modifications in Parser.jjt

mentioned before, the command users enter will be analyzed first by the

hen a syntax tree derived from it will be generated and passed to the

 further process. The syntax tree contains all the information of a command.

tion is stored in linked Simple Node objects, which are components of the

imple Node class contains a set of attributes and methods. Among them,

de is used to store the functions or operations information. Since the type of

ger, every function or operation defined in JRelix needs a constant integer

sent itself in Simple Node object. The integer assigned to each function or

efined in file “Constants.java”. Integers also need to be assigned to the three

 59

new Boolean functions so that these functions can be represented in Simple Node object.

The codes added into “Constants.java” are shown in Figure 4.11.

Figure 4.11: Codes added in Constants.java

When a virtual domain is declared, several checkings should be finished before its syntax

tree is cut off from the syntax tree of declaration command and put into domtable. One of

them is to check if there is any mistype matching in the definition of the virtual domain.

Such task is performed in method interpreter.traveType() which is also used to determine

the type of the virtual domain. In this method, different cases are first categorized by

node.type, and then further distinguished by node.opcode. Each case is handled

separately. To handle the three new Boolean functions, the following codes are added in

the method interpreter.traveType() as illustrated in Figure 4.12.

During the actualization of virtual domains, virtual tree building is a very important

procedure, which serves as a preprocess to filter out those virtual domains that could not

be actualized and only allows those that could be actualized to pass to the actualizing

engine. In JRelix, virtual tree building is performed in method actualizer.buildTree(). In

addition to the building virtual tree, other functionalities such as validality check, virtual

Tree expansion, recursive loop detection etc. are also implemented in this method. The

static final int OP_ISNULLDC = 520

static final int OP_ISNULLDK = 521;

static final int OP_ISNULL = 522;

following codes shown in Figure 4.13 are added in buildTree() method to guarantee that

the correct type will be returned for the three new Boolean functions.

private int traverseType(SimpleNode node, Environment env)
throws InterpretError

{
…
switch(node.type)
{

…
 case OP_FUNCTION:

…
switch (node.opcode)
{

…
case OP_ISNULL:
case OP_ISNULLDC:
case OP_ISNULLDK:

return BOOLEAN;
…

}
…

}

Figure 4.12: Codes Added in Method traverseType

private int buildTree(SimpleNode node)
throws InterpretError

{
…
switch(node.type)
{

…
case OP_FUNCTION:
…
switch (node.opcode)

{
…
case OP_ISNULL:
case OP_ISNULLDC:
case OP_ISNULLDK:

return BOOLEAN;
…

}
}

}
60

Figure 4.13: Codes Added in Method buildTree()

 61

In JRelix, actualizing a virtual domain could be viewed as filling calculated values into

the corresponding position in a table. Such position is specified as “cell” in JRelix

implementation. A bunch of methods, including actIntCell(), actStrCell(), actRelCell(),

etc., are implemented in “Actualizer.java” to handle the filling of different types of

“cell”. Among them, actBoolCell() is specified to calculate Boolean value. Since the

three new functions are Boolean functions, the results of these functions should be

calculated in the method actBoolCell(). The following codes shown in Figure 4.14 are

added in this method.

Figure 4.14: Code Added in Method ActBoolCell()

private byte actBoolCell_old(SimpleNode node) throws InterpretError
{

switch (node.type)
{

…
case OP_FUNCTION:

if (node.opcode == OP_ISNULL)
{

SimpleNode arg = (SimpleNode) node.jjtGetChild(0);
if (isnulldc(arg) == (byte)BOOL_TRUE ||

isnulldk(arg) == (byte)BOOL_TRUE)
return BOOL_TRUE;

else
return BOOL_FALSE;

}
else if (node.opcode == OP_ISNULLDC)
{

SimpleNode arg = (SimpleNode) node.jjtGetChild(0);
return isnulldc(arg);

}
else if (node.opcode == OP_ISNULLDK)
{

SimpleNode arg = (SimpleNode) node.jjtGetChild(0);
return isnulldk(arg);

}
else

throw new InterpretError("actBoolCell: function is not
boolean function");

…
}

Furthermore, three auxiliary methods are introduced in Actualizer.java, including

isnulldc(), isnulldk() and getType(). Method isnulldc() is used to determine if the cell

value is dc or not, and returns true or false correspondingly. Since dc value is represented

differently for different types of domain in JRelix system as seen in Figure 4.15, and also

as mentioned before, different types of cell are calculated by different methods such as

actInt(), atclong(), etc., in Method isnulldc() the node type will be checked first and

depending on its type, different actualizing methods will be called to calculate the cell

value. Next, the calculated cell value will be compared with different dc values. The

method is shown in Figure 4.16.

The

meth

calc

valu

4.17

Met

node

for t
Integer, short INT_DC INT_DK
Long LONG_DC LONG_DK
Double, float DOUBLE_DC DOUBLE_DK
Number NUMERIC_DC NUMERIC_DK
String, Attribute STRING_DC STRING_DK
Boolean BOOL_DC BOOL_DK
62

Figure 4.15: DC, DK Value Represented in JRelix

implementation of method isnulldk() is similar to that of method isnulldc(). In this

od the node type is checked first, and handled differently according to its type. The

ulated cell value is then compared with different dk values. The representation of dk

e is shown in Figure 4.15 and the code for Method isnulldk() is illustrated in Figure

.

hod getType() is used in Method isnulldc() and isnulldk() to return the type name of a

. Such information is used when a InterpretError is thrown. Figure 4.18 lists the code

his method.

 63

Figure 4.16: Method isnulldc()

private byte isnulldc(SimpleNode arg) throws InterpretError
{

byte bm = BOOL_DC;
int im = INT_DC;
long lm = LONG_DC;
double dm = DOUBLE_DC;
String sm = STRING_DC;
number nm = NUMERIC_DC;

switch(destrel.domains[arg.bits].type) {
case BOOLEAN:

bm = actBoolCell(arg);
if (bm == BOOL_DC)

return BOOL_TRUE;
else

return BOOL_FALSE;
case SHORT:
case INTEGER:

im = actIntCell(arg);
if (im == INT_DC)

return BOOL_TRUE;
else

return BOOL_FALSE;
case LONG:

lm = actLongCell(arg);
if (lm == LONG_DC)

return BOOL_TRUE;
else

return BOOL_FALSE;
case FLOAT:
case DOUBLE:

 dm = actDoubleCell(arg);
if (dm == DOUBLE_DC)

return BOOL_TRUE;
else

return BOOL_FALSE;
case ATTRIBUTE:
case STRING:

sm = actStrCell(arg);
if (sm.compareTo(STRING_DC) == 0)

return BOOL_TRUE;
else

return BOOL_FALSE;
case NUMERIC:

nm = actNumCell(arg);
if(nm.compareTo(NUMERIC_DC) == 0)

return BOOL_TRUE;
else

return BOOL_FALSE;
case IDLIST:
default:

Utility.dump(arg, "actBoolCell ERROR=>");
throw new InterpretError("nulldc(" + getType(arg) + "): to

be implemented");
}

}

 64

Figure 4.17: Method isnulldk()

private byte isnulldk(SimpleNode arg) throws InterpretError
{

byte bm = BOOL_DK;
int im = INT_DK;
long lm = LONG_DK;
double dm = DOUBLE_DK;
String sm = STRING_DK;
number nm = NUMERIC_DK;

switch(destrel.domains[arg.bits].type) {
case BOOLEAN:

bm = actBoolCell(arg);
if (bm == BOOL_DK)

return BOOL_TRUE;
else

return BOOL_FALSE;
case SHORT:
case INTEGER:

im = actIntCell(arg);
if (im == INT_DK)

return BOOL_TRUE;
else

return BOOL_FALSE;
case LONG:

lm = actLongCell(arg);
if (lm == LONG_DK)

return BOOL_TRUE;
else

return BOOL_FALSE;
case FLOAT:
case DOUBLE:

dm = actDoubleCell(arg);
if (dm == DOUBLE_DK)

return BOOL_TRUE;
else

return BOOL_FALSE;
case ATTRIBUTE:
case STRING:

sm = actStrCell(arg);
if (sm.compareTo(STRING_DK) == 0)

return BOOL_TRUE;
else

return BOOL_FALSE;
case NUMERIC:

nm = actNumCell(arg);
if(nm.compareTo(NUMERIC_DK) == 0)

return BOOL_TRUE;
else

return BOOL_FALSE;
case IDLIST:
default:

Utility.dump(arg, "actBoolCell ERROR=>");
throw new InterpretError("nulldk(" + getType(arg) + "):

to be implemented");
}

}

 65

Figure 4.18: Method getType()

private String getType(SimpleNode node)
{

String typeName = "";
switch (node.type)
{

case BOOLEAN:
typeName = "boolean"; break;

case SHORT:
typeName = "short"; break;

case INTEGER:
typeName = "int"; break;

case LONG:
typeName = "long"; break;

case FLOAT:
typeName = "float"; break;

case DOUBLE:
typeName = "double"; break;

case NUMERIC:
typeName = "numeric"; break;

case STRING:
typeName = "string"; break;

case TEXT:
typeName = "text"; break;

case STMT:
typeName = "stmt"; break;

case EXPR:
typeName = "expr"; break;

case COMP:
typeName = "comp"; break;

case IDLIST:
typeName = "IDList"; break;

case DC:
typeName = "DC"; break;

case DK:
typeName = "DK"; break;

case RELATION:
typeName = "relation"; break;

case VIEW:
typeName = "view"; break;

case COMPUTATION:
typeName = "computation"; break;

default:
typeName = "type number: " + node.type;
break;

}
return typeName;

}

 66

Chapter 5

Clifford Algebra & Clifford ADT

5.1 Introduction to Clifford Algebra

Clifford Algebra is a type of associative algebra in mathematics, named after English

geometer William Clifford. It provides a complete mathematical representation of

geometric notions of direction and magnitude, thus making itself a powerful tool to

describe the physical world [Lou01], and leading to large amount of useful applications

in many different fields including geometry, theoretical physics, engineering, computer

vision, robotics, navigation, space flight, etc. [AbF00]. Accompanying with Graβmann-

Cayley algebras, Clifford algebras broaden the views of a lot of fields. Automatic

theorem proving is related to Clifford algebras; A specific Clifford algebra called

“Deformed Clifford algebra” is used to solve problems in quantum field theory. And

Clifford algebra will certainly play a major role in quantum computing and the design of

quantum computers [AbF00].

One of the important features of Clifford algebra, which distinguishes itself from other

ways to represent geometric concepts, is that this algebra provides a complete coordinate-

free notation to describe space, and hence it can represent any dimensional space in a

generic way and provide unified formalism [Mer05].

In Clifford algebra, a d-dimensional space is composed of elements including points,

edges, faces, volumes, and so on, with each element itself a k-dimensional space with

elements ranging from points(0), edges(1), faces(2), volumes(3) up to hypervolume(d),

and is represented by the linear combination of these components. Therefore the total

 67

number of elements in a d-dimensional space is 2d [Mer05]. For example, a 2-

dimensional space is composed of elements {1, e1, e2, e12}, and the total number of

elements are 2d = 22 = 4, while a 3-dimensional space has basic elements {1, e1, e2, e3,

e12, e23, e13, e123} and the total number of elements is 2d = 23 = 8.

There are two operations in Clifford algebra: addition and multiplication. Clifford

algebras are associative under addition and multiplication, and they are commutative

under addition but anti-commutative under multiplication. This means that given Clifford

elements x, y and z, we have x+(y+z) = (x+y)+z and x+y=y+x under addition and

x*(y*z)=x*(y*z) under multiplication, but x*y≠y*x under multiplication. The reason that

Clifford algebras are not commutative under multiplication operation is that Clifford

algebra integrates direction information in its expression, and thus x*y and y*x represent

elements with different directions and are not equivalent.

Although unlimited number of dimensional space could be represented in Clifford

algebra, the 2-dimensional space will be used to introduce the multiplication operation in

Clifford algebra and the corresponding geometrical interpretation of the operation.

Elements in Clifford algebra Cl2

The Clifford algebra Cl2 represents a 2-dimensional space R2. As mentioned above, the

following elements

1 point

 e1, e2 edges

 e12 faces

 68

form the basis elements for the Clifford algebra Cl2, and an arbitrary element in Cl2 is

represented as: u = u0 + u1e1 + u2e2 + u12e12 which is a linear combination of a point,

edges and a face [Lou01]. The geometrical meanings of these elements are shown in

Figure 5.1, where e1 and e2 are orthonormal components, u1e1 + u2e2 (with u1=cos θ and

u2=sin θ) represents any arbitrary edge with angle θ, and u12e12 represents the oriented

plane area of the square with edges e1 and e2. e12 is short for the production of e1 and e2,

i.e. e12 = e1 e2. As mentioned before, multiplication is not commutative in Clifford

algebra, which means e1 e2 ≠ e2 e1, i.e. e12 ≠ e21. This is due to the fact that e12 represents a

plane with direction towards outside as shown in Figure 5.1, while e21 represents a plane

with direction towards inside. The relation between e12 and e21 is e12 = - e21.

Figure 5.1: Clifford elements in 2-demential space

Multiplication in Clifford algebra

Similar to the coordinate form, it is defined in Clifford algebra that any edge v produces

itself, i.e. the square of this edge is equal to the square of the length of this edge: v2 = |v|2.

e21

 θ

e2

e12

u1e1 + u2e2

e1

θ

 69

Therefore, for normalized orthonormal edges e1 and e2, we have e1
2=|e1|2=1 and

e2
2=|e2|2=1. For an arbitrary edge u1e1 + u2e2 in the Clifford algebra Cl2, (u1e1 + u2e2)2

 =

u1
2e1

2 + u1 u2e12 + u1 u2e21+ u2
2e2

2 = u1
2
 + u2

2
.

Multiplication is a very common operation in the Clifford algebra. A lot of geometrical

operations such as rotation and reflection could be done by multiplying certain factors.

For example, e12 is a right angle rotation factor, meaning that the result of

postmultiplying e12 with any edge v is an edge generated by counterclockwise rotating v

through right angle, and premultiplying e12 with any edge v is equivalent to clockwise

rotating v through right angle. Furthermore, u1+ u2e2 with u1=cos θ and u2=sin θ is a

rotation factor for rotating any edge through angle θ. If θ is positive, any edge multiplied

by this factor will be rotated counterclockwise through θ. On the other hand, if θ is

negative, the edge multiplied by this factor will be rotated clockwise through θ.

Moreover, given normalized edges u and v, uvu is the reflection of v in u. [Mer05]

In the following section, how to use CliffordADT to calculate the addition and

multiplication will be discussed in details.

5.2 User Manual of Clifford ADT

5.2.1 Introduction to the Usage of Clifford ADT

CliffordADT is a predefined stateless Abstract Data Type (ADT) which provides methods

for supporting basic operations such as plus, subtract and product in Clifford algebra. The

definition of CliffordADT is shown in Figure 5.13. This definition is based on [Mer052]

 70

with some modifications so that it can be supported by the current version of JRelix.

CliffordADT is stateless, meaning that it does not have state variables and the previous

invocation of methods in it will not affect the result of the current invocation of the

methods. There are two public methods defined in CliffordADT. One is Add() and the

other is Product(). Method Add() requires three parameters, which are cliffordL, cliffordR

and Clifford. Depending on details of the two input parameters and the output parameter

when the method is invoked, either plus or subtract operation of Clifford algebra will be

performed respectively. Method Product() also requires the three parameters cliffordL,

CliffordR and Clifford when it is invoked. As indicated by the name, it performs the

product operation in Clifford algebra.

Before the usage of CliffordADT is described in detail, how Clifford algebra is

represented in CliffordADT must be discussed. In CliffordADT, the Clifford element is

represented by a two – level nested relation domain with coeff and cliff as attributes.

Coeff is a real scalar for representing the coefficient of the Clifford element; Cliff is

defined as cliff(index), which contains an attribute index of type integer used to store the

indices of the Clifford element. It has been assumed that the indices are in ascending

order in the Clifford element [Mer052]. Examples of representing a Clifford element in

CliffordADT are shown in Figure 5.2.

Figure

After the declar

performed befo

F

Method Add() a

Among them,

operand respec

are three ways

output relation

Example 1:

 3e1347: (coeff cliff)
 (index)

3 1
 3

 4

Example 2:

2e12 + 5e678: (coeff cliff)
 (index)

2 1
2

5 6
 7
 8
71

 5.2: Examples of representing Clifford elements in CliffordADT

ations of Clifford ADT, the Aldat code shown in Figure 5.3 must be

re Add() and Product() could be invoked.

igure 5.3: Code for making Add() and Product() available.

nd Product() have the same parameters cliffordL, cliffordR and Clifford.

CliffordL and cliffordR are used to represent the left operand and right

tively, and Clifford is used to represent the result of the operation. There

to invoke Add() as illustrated in Figure 5.4. Depending on the input and

s, clifford, cliffordL, and cliffordR could be returned. For method

CliffordADT(out Add, out Product);

Product(), there is only one way to invoke this method, as seen in Figure 5.5, which

returns the result of the production. In the next section, examples will be given to

illustrate the usage of CliffordADT.

Figure 5.4: Invocations of Method Add()

There i

ascendin

current

supporte

5.2.2 E

Examp

This firs

Clifford

e12+3e23

Invocation 1: return Clifford <- CliffordL + CliffordR
 Add (in CliffordL, in CliffordR, out Clifford)

Invocation 2: return the difference CliffordL <- Clifford - CliffordR
Add (out CliffordL, in CliffordR, in Clifford)

Invocation 3: return the difference CliffordR <- Clifford - CliffordL
 Add (in CliffordL, out CliffordR, in Clifford)
Invocation: return the product Clifford <- CliffordL * CliffordR
 Product (in CliffordL, in CliffordR, out Clifford)
72

Figure 5.5: Invocation of Method Product()

s a requirement when using CliffordADT, that is indices in cliff must be in

g order. E.g. e34 is allowed while e43 is not. Also, there is a limitation in the

implementation of CliffordADT, that is a Clifford element multiplies itself is not

d by CliffordADT. E.g. e12×e12 is not allowed.

xamples

le 1: using Add()

t example shows how to use method Add() to calculate the several expressions in

 algebra. First for the expression (e12+3e23) + e23, input parameter cliffordL

 and cliffordR e23 are represented by relation leftopd and rightopd respectively.

The sum clifford is represent by relation aSum, and the calculation of it is shown in

Figure 5.6. The result relation aSum represents Clifford element (e12+4e23). Note that

when Add() is invoked, leftopd and rightopd are set as input parameters and asum as

output parameter. Also, since cliff is a nest relation domain, the values shown in the result

are surrogates instead of the real values. The real values that these surrogates represent

are in .cliff.

Given

shown

>CliffordADT(out Add, out Product);
>relation leftopd (coeff, cliff) <- {(1.0, {(1), (2)}),

(3.0,{(2),(3)})};
>relation rightopd (coeff, cliff) <- {(1.0, {(2), (3)})};
>Add(in leftopd, in rightopd, out asum);
>pr asum;

+---------------+----------------------+
| coeff | cliff |
+---------------+----------------------+
| 1.0 | 7 |
| 4.0 | 8 |
+---------------+----------------------+
relation asum has 2 tuples

> pr.cliff;

+----------------------+-------------+
| .id | index |
+----------------------+-------------+
1	1
1	2
2	2
2	3
3	2
3	3
7	1
7	2
8	2
8	3
+----------------------+-------------+
73

Figure 5.6: Using method Add() to calculate the sum.

 cliffordL (e12+3e23) and the sum clifford (e12+4e23), we can calculate cliffordR, as

 in Figure 5.7. The result relation rightopd is interpreted as e23. Note that when

Add() is invoked, the input parameters are leftopd and asum and output parameter is

rightopd. In the result the value for cliff is 16, which is the surrogate value. The real value

represented by this surrogate is shown in Figure 5.12.

On the o

to calcu

Clifford

surrogat

Examp

This exa

Clifford
>Add(in leftopd, out rightopd, in asum);
>pr rightopd;

+---------------+----------------------+
| coeff | cliff |
+---------------+----------------------+
| 1.0 | 16 |
+---------------+----------------------+
Figure 5.7: Calculating the right operand by using method Add()

ther hand, given cliffordR e23 and clifford (e12+4e23), the way using method Add()

late cliffordL is shown in Figure 5.8. The result relation leftopd represents

 element (e12+3e23). Similar to the above example, the values for cliff are

es. The real values these surrogates represent are given in Figure 5.12.
>Add(out leftopd, in rightopd, in asum);
>pr leftopd;

+---------------+----------------------+
| coeff | cliff |
+---------------+----------------------+
| 1.0 | 22 |
| 3.0 | 23 |
+---------------+----------------------+
74

Figure 5.8: Calculating the left operand by using method Add()

le 2: using Product()

mple will show how to use method Product() to calculate product expressions in

 algebra. Given an Clifford expression: (e1+3e2)*(e12+2e23+e13), similar to the

above example, the left operand (e1+3e2) will be represented by a relation lopd shown in

Figure 5.9 and the right operand (e12+2e23+e13) will be represented by relation ropd

shown in Figure 5.10. The result of the product will be represented by relation aproduct.

To invoke method Product(), relation lopd and ropd will be the input parameters and

aproduct, which is the result of the production, will be the output parameter. The codes of

the invocation are listed in Figure 5.11, with the result relation aproduct representing a

Clifford element (-3e1-e123+e2+7e3). Similar to the above example, the values of cliff in

the relations are surrogates, and the corresponding real values are shown in Figure 5.12.

>relation lopd (coeff, cliff) <- {(1.0, {(1)}),
(3.0,{(2)})};
>pr lopd;

+---------------+----------------------+
| coeff | cliff |
+---------------+----------------------+
| 1.0 | 24 |
| 3.0 | 25 |
+---------------+----------------------+
75

Figure 5.9: Representing (e1+3e2) by relation lopd

Figure 5.10: Representing (e12+2e23+e13) by relation ropd

>relation ropd (coeff, cliff) <- {(1.0, {(1), (2)}),
(2.0, {(2),(3)}),(1.0, {(1),(3)})};
>pr ropd;

+---------------+----------------------+
| coeff | cliff |
+---------------+----------------------+
1.0	26
1.0	28
2.0	27
+---------------+----------------------+

>Product(in lopd, in ropd, out aproduct);
>pr aproduct;

+---------------+----------------------+
| coeff | cliff |
+---------------+----------------------+
-3.0	40
-1.0	39
1.0	37
7.0	42
+---------------+----------------------+
76

Figure 5.11: Codes invoking method Product()

>pr .cliff

+----------------------+-------------+
| .id | index |
+----------------------+-------------+
1	1
1	2
2	2
2	3
3	2
3	3
7	1
7	2
8	2
8	3
13	1
13	2
14	2
14	3
15	1
15	2
16	2
16	3
20	1
20	2
21	2
21	3
22	1
22	2
23	2
23	3
24	1
25	2
26	1
26	2
27	2
27	3
28	1
28	3
37	2
38	3
39	1
39	2
39	3
40	1
41	1
41	2
41	3
42	3
+----------------------+-------------+
77

Figure 5.12: Relation .cliff

5.3 Implementation of Clifford ADT

The implementation of Clifford ADT (CliffordADT), as derived from T.H. Merrett’s

unpublished note “Aldat code for Clifford algebra” [Mer052], is shown in Figure 5.13.

Details for the algorithm used by CliffordADT are given in Ref. [Mer052]. In this section,

the focus will be put on the modification of the algorithm.

1 domain coeff float;
2 domain index intg;
3 domain cliff (index);
4 domain cliffordL (coeff, cliff);
5 domain cliffordR (coeff, cliff);
6 domain clifford (coeff, cliff);
7 domain Add comp(cliffordL,cliffordR, clifford);
8 domain Product comp(cliffordL, cliffordR, clifford);
9 comp CliffordADT (Add, Product) is

10 {
11 comp Add(cliffordL,cliffordR, clifford) is
12 {
13 let coeffL be coeff;
14 let cliffL be cliff;
15 cliffordL' <- [coeffL, cliffL] in cliffordL;
16 let coeffR be coeff;
17 let cliffR be cliff;
18 cliffordR' <- [coeffR, cliffR] in cliffordR;
19 clifford' <- cliffordL'[cliffL:ujoin:cliffR]cliffordR';
20 let coeffL' be if isnulldc(coeffL) then 0.0 else coeffL;
21 let coeffR' be if isnulldc(coeffR) then 0.0 else coeffR;
22 let coeff be coeffL'+coeffR';
23 let cliff be cliffL;
24 clifford <- [coeff, cliff] in clifford';
25 }alt
26 {
27 let coeffL be coeff;
28 let cliffL be cliff;
29 cliffordL' <- [coeffL, cliffL] in cliffordL;
30 let coeff' be coeff;
31 let cliff' be cliff;
32 clifford' <- [coeff', cliff'] in clifford;
33 cliffordR' <- cliffordL'[cliffL:ujoin:cliff']clifford';
34 let coeffL' be if isnulldc(coeffL) then 0.0 else coeffL;
35 let coeff'' be if isnulldc(coeff') then 0.0 else coeff';
36 let coeff be coeff''- coeffL';
37 let cliff be cliffL;
38 cliffordR <- where coeff != 0.0 in ([coeff, cliff] in

cliffordR');
39 }alt

(continue next page)
78

 79

Figure 5.13: Definition of CliffordADT

40 {
41 let coeffR be coeff;
42 let cliffR be cliff;
43 cliffordR' <- [coeffR, cliffR] in cliffordR;
44 let coeff' be coeff;
45 let cliff' be cliff;
46 clifford' <- [coeff', cliff'] in clifford;
47 cliffordL' <- cliffordR'[cliffR:ujoin:cliff']clifford';
48 let coeffR' be if isnulldc(coeffR) then 0.0 else coeffR;
49 let coeff'' be if isnulldc(coeff') then 0.0 else coeff';
50 let coeff be coeff'' - coeffR';
51 let cliff be cliffR;
52 cliffordL <- where coeff != 0.0 in ([coeff, cliff] in cliffordL');
53 };

 54
55 comp Product(cliffordL, cliffordR, clifford) is
56 {
57 let coeffL be coeff;
58 let cliffL be cliff;
59 cliffordL' <- [coeffL, cliffL] in cliffordL;
60 let coeffR be coeff;
61 let cliffR be cliff;
62 cliffordR' <- [coeffR, cliffR] in cliffordR;
63 let seqR be fun + of 1 order index;
64 let seqLi be -(fun + of 1 order index);
65 let seqL be (red + of 1) + 1 - (fun + of 1 order index);
66 let sind be fun + of 1 order index;
67 let tempd1 be if isnulldc(seqR) then seqLi else seqR;
68 let s be fun + of 1 order tempd1;
69 let seqdiff be if (sind - s) < 0 then 0 else (sind - s);
70 let cliffLR be ([index,seqLi] in cliffL) sjoin

([index,seqR] in cliffR);
71 let cliff be [index] in cliffLR;
72 let tempd2 be if seqdiff < 0 then 0 else seqdiff;
73 let evodsjoin' be [red + of tempd2] in cliffLR;
74 let evodsjoin be evodsjoin' mod 2;
75 let evodinvert' be [red + of 1] in cliffL;
76 let evodinvert be (evodinvert' / 2) mod 2;
77 let tempd3 be seqR - seqLi;
78 let cliffLRijoin be ([index,seqLi] in cliffL) ijoin

([index,seqR] in cliffR);
79 let tempd4 be [red + of tempd3] in cliffLRijoin;
80 let evodijoin' be if ([] in cliffLRijoin) then tempd4 else 0;
81 let evodijoin be evodijoin' mod 2;
82 let amark be if (evodsjoin+evodinvert+evodijoin)mod 2 = 0

then 1 else -1;
83 let coeffLR be coeffL*coeffR*amark;
84 let coeff be equiv + of coeffLR by cliff;
85 clifford' <- [coeffLR, cliff] in (cliffordL' ijoin cliffordR');
86 clifford <- [coeff, cliff] in clifford';
87 };
88
89 };

 80

Method Add()

There are 3 blocks of codes in this method, as shown in Figure 5.13. Codes in different

blocks will be triggered according to different input and output parameters. The first

block of codes will be performed if input parameters are cliffordL and cliffordR and

output parameter is clifford, with the output result clifford equal to cliffordL + cliffordR.

If the input parameters are cliffordL and clifford, and output parameter is cliffordR, the

second block of codes will be triggered and the output result cliffordR is equal to clifford

– cliffordL. The third block of codes will be performed for the input parameters given by

cliffordR and clifford and the output parameter by cliffordL. The output result cliffordL is

equal to clifford – cliffordR. The first block of codes is illustrated in details in Figure

5.14, and the other two blocks of codes are similar to the first one.

In the codes shown in Figure 5.14, the attributes of input parameters cliffordL and

cliffordR are renamed, and then cliffordL and cliffordR themselves are renamed to

cliffordL’ and cliffordR’ through assignments. After performing union join on cliffordL’

and cliffordR’, the coefficients for cliffL and cliffR, which have the same real values, will

be put in the same tuple as shown in Figure 5.15.

Figure 5.14: First block of codes in Method Add()

 13 let coeffL be coeff;
14 let cliffL be cliff;
15 cliffordL' <- [coeffL, cliffL] in cliffordL;
16 let coeffR be coeff;
17 let cliffR be cliff;
18 cliffordR' <- [coeffR, cliffR] in cliffordR;
19 clifford' <- cliffordL'[cliffL:ujoin:cliffR]cliffordR';
20 let coeffL' be if isnulldc(coeffL) then 0.0 else coeffL;
21 let coeffR' be if isnulldc(coeffR) then 0.0 else coeffR;
22 let coeff be coeffL'+coeffR';
23 let cliff be cliffL;
24 clifford <- [coeff, cliff] in clifford';

Figure 5.15: Example of method Add()

The virtual domains coeffL and coeffR, as defined in Figure 5.14, may have dc value, as

for the example shown in Figure 5.15. It causes problems when coeff, which is equal to

coeffL+coeffR, is calculated. To solve the problem, in Line 20 and 21 of Figure 5.14 two

virtual domains coeffL’ and coeffR’ are defined, that is,

an

ac

ex

ca

an

cliffordL’ cliffordR’
(coeffL, cliffL) (coeffR, CliffR)

1.0 1 3.0 2
2 3

-------------------- -------------------------
1.0 2

 3

clifford’
(coeffL cliffL coeffR cliffR)
 (index) (index)

1.0 1 dc 1
2 2

 1.0 2 3.0 2
 3 3
20 let coeffL' be if isnulldc(coeffL) then 0.0 else coeffL;
21 let coeffR' be if isnulldc(coeffR) then 0.0 else coeffR;
81

d Boolean function isnulldc is used in the definition to detect dc value. After the

tualization, values of coeffL’ and coeffR’ will be the same as those of coeffL and coeffR

cept that the dc value is replaced by 0.0, and then coeffL’ and coeffR’ are used to

lculate coeff. At the end of the codes, attributes in clifford’ are renamed back to coeff

d cliff and assigned to the output parameter clifford.

 82

Method Product()

The codes for method Product() are shown in Figure 5.13. Similar to the method Add(),

first the input parameter cliffordL and its attributes coeff and cliff are renamed as

cliffordL’, coeffL and cliffL. Another parameter clifffordR and its attributes coeff and cliff

are renamed as cliffordR’, coeffR, and cliffR. Then the three factors evodsjoin, evodinvert

and evodijoin which determine the final sign of the result are calculated. (The algorithm

to calculate these factors is described in Ref. [Mer052].) In code line 67, virtual domain

tempd1 is introduced to remove dc value by using Boolean function isnulldc:

Then in line 73, the concept of Red Scalar is applied:

It means that evodsjoin’ will not be a nest relation virtual domain; instead, it is a scalar

value which could be used in mathematical operations such as +, -, *, /, mod, etc., as

shown in code line 74. Similar to evodsjoin’, the definitions of evodinvert’ and tempd4

(see lines 75 and 79) also indicate that they are scalar values.

The factor evodijoin is calculated in the codes below. In line 80, depending on whether

the nested virtual domain cliffLRijion is empty or not, evodijoin’ is given different values.

This test condition must be added since cliffLRijoin may be empty and in that case, if

evodijoin’ is defined as let evodijoin’ be tempd4, during the actualization of evoidijoin’

67 let tempd1 be if isnulldc(seqR) then seqLi else seqR;

73 let evodsjoin' be [red + of tempd2] in cliffLR;
74 let evodsjoin be evodsjoin' mod 2;

75 let evodinvert' be [red + of 1] in cliffL;
79 let tempd4 be [red + of tempd3] in cliffLRijoin;

an error will be generated when the system tries to actualize tempd4 on which

evodijoin' is defined.

In line 84, the equivalence reduction group by nested relation is used in the definition of

virtual domain coeff.

He

78 let cliffLRijoin be ([index,seqLi] in cliffL) ijoin
([index,seqR] in cliffR);

79 let tempd4 be [red + of tempd3] in cliffLRijoin;
80 let evodijoin' be if ([] in cliffLRijoin) then tempd4 else 0;
81 let evodijoin be evodijoin' mod 2;
84 let coeff be equiv + of coeffLR by cliff;
83

re coeffLR is summed up according to the real value of the nested relation domain cliff.

 84

Chapter 6

Summary

The purpose of this project is to build an Abstract Data Type (ADT) CliffordADT for

Clifford algebra and provide language support for it. As a result of this project, the

following new features have been added into JRelix system:

Vertical Domain Algebra operations have been extended in the following aspects:

• Equivalence reduction has been extended to support group by nested relation

domain, so that the real values of nested relation domain that the surrogates

represent, instead of the surrogates themselves, are compared. This ensures

that equivalent values of nested relation domain are detected and grouped

correctly.

• Functional mapping has been extended to support order by nested relation

domain. The system has been extended to use the real values of nested relation

domain to order tuples, instead of using the surrogates which represent the

real values.

• Partial functional mapping has been extended to support group and order by

nested relation domain. Real values of nested relation domain are used in

group and order tuples, which ensures that partial functional mapping is

correctly performed on nested relation domain.

 Also, three new Boolean functions have been implemented:

 85

• Function isnulldc has been implemented to test whether a value of an attribute

is dc or not. This function returns Boolean value true or false depending on

whether the value is dc or not;

• Function isnulldk has been implemented to test whether a value of an attribute

is dk or not. Boolean value true or false is returned according to whether the

value is dk or not;

• Function isnull has been implemented to test whether a value of an attribute is

dc or dk. It returns true or false respectively.

These new features added in JRelix provide support to the creation of the Abstract Data

Type CliffordADT. CliffordADT is a stateless ADT and provides two methods Add() and

Product() to support the addition, subtraction and product operations in Clifford algebra.

Depending on the input and output parameters, method Add() could perform addition and

subtraction in Clifford algebra. Another method Product() is used for calculating the

results of multiplication operations in Clifford algebra. Since the parameters of these two

methods are the same, the output of one method could be used as input of another

method, which ensures that complicated Clifford algebra operations could be performed

by this ADT.

However, there is a limitation in method Product(): pairing products, e.g., e12*e12 are not

supported in the current version of CliffordADT. Future works should be done to remove

such limitation.

 86

Bibliography

[AbF00] R. Abfamowicz and B. Fauser (eds), Clifford Algebras and their Applications

in Mathematical Physics, Volume 1. Birkhäuser Boston, 2000.

[Bak98] P. Baker. Design and Implementation of Database Computations in Java.

Master’s thesis, McGill University, Montreal, 1998.

[Hao98] Biao Hao. Implementation of the Nested Relational in Java. Master's thesis,

McGill University, Montreal, 1998.

[Kan01] Sung Soo Kang. Implementation of Functional Mapping in Nested Relation

Algebra. Master’s project report, McGill University, Montreal, 2001.

[Lou01] P. Lounesto. Clifford Algebras and Spinors, Second Edition. Cambridge

University press, 2001.

[Mer84] T. H. Merrett. Relations as programming language elements. Reston

Publishing Co. Reston, VA, 1984.

[Mer05] T. H. Merrett. Clifford Algebra in Two and Three Dimensions. Unpublished

note for CS 612 “Information Systems”, McGill University, Montreal, 2005.

[Mer052] T.H. Merrett. Aldat code for Clifford algebra. Unpublished note for CS 612

“Information Systems”, McGill University, Montreal, 2005.

 [Yu04] Zhan Yu. Implementation of Recursively Nested Relation of JRelix. Master’s

project report, McGill University, Montreal, 2004.

 [Yua98] Zhongxia Yuan. Java Implementation of the Nested Domain Algebra in a

Database Programming Language. Master’s thesis, McGill University,

Montreal, 1998.

 87

 [Zhe02] Yi Zheng. Abstract Data Types and Extended Domain Operations on Nested

Relation Algebra. Master's thesis, McGill University, Montreal, 2002.

	Language Support for A Relation ADT for Clifford Algebra
	Rong Li
	School of Computer Science
	McGill University, Montreal
	December 2005
	A Project Report Submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements of the degree of Master of Science in Computer Science
	Copyright @2005 Rong Li
	Abstract
	Acknowledgements
	Contents
	
	
	
	Abstract
	Acknowledgment
	Chapter 1 Introduction 1
	Chapter 2 Background 3
	Chapter 3 User’s Manual 26
	Chapter 4 Implementation 41
	Chapter 5 Clifford Algebra & Clifford ADT 60
	Chapter 6 Summary 78
	Bibliography 80

	Chapter 1
	Introduction
	1.1 Background and Motivation
	Project Report Outline

	Chapter 2
	Background
	2.1 Introduction to JRelix
	Getting Started
	2.1.2 Declaration
	
	Domain Declaration

	Figure 2.1: Types of atomic domain [Yu04]
	Figure 2.3: Example of relation declaration & initialization
	Figure 2.4: Contents of Relation SaleInfo
	Assignment
	Relation Algebra
	
	
	Unary operations
	Binary Operations

	2.2.1 System Overview
	2.2.2 Parser Generation in JRelix
	In JRelix, Java Compiler Compiler (JavaCC) is used for automatically generating parser. JavaCC is a popular parser generator for java applications. It reads the high level specification of grammar which is usually stored in a “.jjt” file, and transfers
	As the preprocessor of JavaCC, JJTree inserts parse tree building actions at various places of the JavaCC source. The output of JJTree is a “.jj” file, which is passed to JavaCC to create the parser. The commands used for creating the parser are shown in
	Figure 2.16: Parsing Commands
	2.2.3 Virtual Domain Actualizer
	Equivalence Reduction
	Functional Mapping
	Partial Functional Mapping

	Chapter 3
	User’s Manual
	3.1 Vertical Domain Algebra
	3.1.1 Equivalence Reduction to Support Group by Nested Relation Domain
	3.1.2 Functional Mapping to Support Order by Nested Relation Domain
	3.1.3 Partial Functional Mapping to Support Group & Order by Nested Relation Domain

	3.2 Three New Boolean Functions
	3.2.1 Function isnulldc
	3.2.4 Further Examples
	
	Example for Function isnulldk
	Example for Function isnull

	Chapter 4
	Implementation
	4.1 Development Environment
	
	4.2.1 Equivalence Reduction to Support Group by Nested Relation Domain
	4.2.2 Functional Mapping to Support Order by Nested Relation Domain
	4.2.3 Partial Functional Mapping to Support Group & Order by Nested Relation Domain

	Three New Boolean Function Implementation

	Chapter 5
	Clifford Algebra & Clifford ADT
	
	
	5.2.1 Introduction to the Usage of Clifford ADT

	Chapter 6
	Summary
	Bibliography

