Language Support for A Relation ADT for Clifford
Algebra

Rong Li

School of Computer Science

McGill University, Montreal

December 2005

A Project Report Submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements of the degree of
Master of Science in Computer Science

Copyright @2005 Rong Li

Abstract

This project report describes the implementation of an Abstract Data Type (ADT)
CliffordADT for Clifford algebra which supports addition, subtraction and production
operations of Clifford algebra. It also describes the new features added in JRelix system
to support the creation of this ADT, including grouping by nested relation domain in
equivalence reduction, ordering by nested relation domain in functional mapping, as well
as grouping and ordering by nested relation domain in partial functional mapping. In
addition, three Boolean functions isnulldc, isnulldk and isnull are implemented to test dc
or dk values of an attribute. Background knowledge is presented to make this project
report readable, and the user’s manuals are provided to illustrate the usage of the
CliffordADT and the new features added in the system. This project is part of the Aldat

project at McGill University.

Acknowledgements

I would like to acknowledge all those who make this project possible through their
support and help. First, I would like to express my deepest gratitude and respect to my
supervisor Professor T. H. Merrett for his guidance, advice, and encouragement, as well
as his insightful help and supervising which is crucial for this project. I highly appreciate
his generous financial support, very patient explanation, careful proofreading of this

report, and the time he spent with me on this project.

I am indebted to Ms. Zongyan Wang for her valuable advices and kindly help. My

appreciation also goes to the School of Computer Science for its research environment.

Finally, I would like to thank my husband, ZhiFeng Huang, who gives me support for all

these years.

Contents

Abstract

Acknowledgment

Chapter 1 Introduction

1.1 Background and Motivation

1.2 Project Report Outline

Chapter 2 Background

2.1 Introduction to JRelix

2.1.1 Getting Started

2.1.2 Declaration

2.1.3 ASSIZNMENLS ..ottt ettt et et et e e e et aee e eaens

2.1.4 Relation Algebra
2.1.5 Domain Algebra

2.1.6 Computation

2.2 Introduction to Implementation of JRelix

2.2.1 System Overview

2.2.2 Parser Generation in JRelix

2.2.3 Virtual Domain Actualizer

Chapter 3 User’s Manual

3.1 Vertical Domain Algebra

3.1.1 Equivalence Reduction to Support Group by
Nested Relation Domainooeviiiiiiiiiiiiiiiiiea,

3.1.2 Functional Mapping to Support Order by

Nested Relation Domainooveeenioeeiee e,

12
15

18

18
20
20

26

3.1.3 Partial Functional Mapping to Support Group & Order by

Nested Relation Domain ..., 29
3.2 Three New Boolean Functions ..., 31
3.2.1 Functionisnulldco 31
3.2.2 Functionisnulldk 32
3.2.3 Functionisnullo 33
3.2.4 Further Examplescooiiiiiiiiiiicie e 34
Chapter 4 Implementation 41
4.1 Development Environmentooiiiiiiiiiiiiiiiiiiiieiiieeneennnn. 41
4.2 Vertical Domain Operations to Support Nested Relation Domain 41
4.2.1 Equivalence Reduction to Support Group by
Nested Relation Domain ... 42
4.2.2 Functional Mapping to Support Order by
Nested Relation Domainocooiiiiiiiiiiiiiiie, 46
4.2.3 Partial Functional Mapping to Support Group & Order by
Nested Relation Domain ... 48
4.3 Three New Boolean Functions Implementation 52
Chapter 5 Clifford Algebra & Clifford ADT 60
5.1 Introduction to Clifford Algebracooiiiiiiiiiiii . 60
5.2 User Manual of Clifford ADT ..., 63
5.2.1 Introduction to Clifford ADTcooiiiiiiiiiiii, 63
5.2.2 EXAMPIES ..ottt e 66
5.3 Implementation of Clifford ADT ...t 72

Chapter 6 Summary

Bibliography

78

80

Chapter 1

Introduction

In this project report, both the implementation of CliffordADT and the new features
introduced in JRelix to support the creation of this ADT are described. Section 1.1 gives
the background and motivation of this project, and in Section 1.2, project report outline

will be provided.

1.1 Background and Motivation

JRelix system, redesigned from Relix since 1997, is a Database Management System
(DBMS) based on Aldat language [Hao98,Yua98,Bak98]. This system is developed in
Java environment and wuses Object-oriented structure, which enables flexible

implementation and multi-platform support.

The first goal of this project, which is one of the JRelix implementation projects, is to
implement an Abstract Data Type (ADT) to provide support of Clifford algebra
operations in JRelix. Clifford Algebra is a type of associative algebra in mathematics. It
provides a complete coordinate-free representation of geometric notation of direction and
magnitude. Clifford Algebra is widely used in different fields [AbF00] including
geometry, theoretical physics, engineering, etc., and leads to large amount of useful

applications.

In the current JRelix system, when grouping or ordering by nested relation domain in
vertical operations such as equivalence reduction, functional mapping and partial
functional mapping, the system will group or order tuples according to the surrogates
instead of the real values of these nested domains. Therefore, another goal of the project
is to extend the system so that the real values of the nested relation domain are used in

grouping or ordering tuples.

Also, the current system is unable to test whether the value of an attribute is dc or dk
value. Thus, Boolean functions need to be implemented to detect these values, serving as

another task of this project.

1.2 Project Report Outline

This project report is organized as follows. Given the topic of this project presented in
this chapter, the related background knowledge is provided in the next Chapter 2. In
Chapter 3, user’s manual for the new features is described. The implementations of these
new features, as well as the implementation and usage of CliffordADT are illustrated in

Chapter 4 and Chapter 5, respectively. Finally, a brief summary is given in Chapter 6.

Chapter 2

Background

The purpose of this chapter is to introduce the required background knowledge to readers
for helping them understand the rest of the project report. In Section 2.1 the usage of
JRelix systems will be described, and outline of the implementation of JRelix will be

given in Section 2.2.
2.1 Introduction to JRelix

2.1.1 Getting Started

JRelix system is a database engine running on any platform that has Java Runtime
Environment 1.1 or up. To start JRelix, typing the following in the command line if it is
in the same directory as where the classes files of JRelix locates:

java JRelix
or if it is in any other directory, providing classpath as following:

java —classpath [classpath] JRelix
If JRelix starts successfully, the following screen will appear and > is shown to prompt

user inputs:

Starting stand al one JReli x.
e +
| Rel i x Java version 0.93 |
| Copyright (c) 1997 -- 2004 Al dat Lab |
| School of Conputer Science |
| MG Il University |
e +
>

2.1.2 Declaration

Domain Declaration

Actual domains are declared in JRelix through the use of keyword “domain”, that is
[Zhe02],

“domain” IDList Type “;”

where IDList specifies the list of the domains being declared, and the types of these
domains are presented in Type. There are two domain types in JRelix: One is atomic and
the other is complex. The types of atomic domain include string, Boolean, short, integer,
etc., as shown in Figure 2.1, while the types of complex domain include nested relation

and computation.

Type Short Form
integer intr
long long
short short
float float
double double
string strg
boolean bool
universal univ
numeric num
attribute attr

Figure 2.1: Types of atomic domain [Yu04]

The following syntax is used to declare nested relation domain. The attributes of the
declared nested domain are listed in IDList. Note that the attributes in the IDList must be
declared before the declaration of the nested domain [Yua98]:

domain nested domain name (IDList) “;”

10

The syntax for declaring computation is shown as below. Parameters of the declared
computation are listed in IDList. Similarly, the parameters in the IDList must be declared
before the declaration of the computation [Bak9§]

domain computation_name comp (IDList) «;”

Examples for declaring domains in JRelix are illustrated in Figure 2.2.

>domai n coeff float;

>donmi n i ndex intg;

>domain cliff (index);

>domain cliffordL (coeff, cliff);

>domain cliffordR (coeff, cliff);

>domain clifford (coeff, cliff);

>donmai n Add conp(cliffordL,cliffordR, clifford);

Figure 2.2: Example of domain declarations

Relation Declaration & Initialization
The Syntax for relation declaration and initialization is shown as:

relation IDList “(“IDList”)” (Initialization)? *;”
where the first IDList specifies the declared relations, and the second IDList specifies the
attributes of the declared relation. If the “Initialization” is absent, an empty relation will
be created without any tuple inside; Otherwise, it will be declared with the actual tuples.
In the relation initialization, the curly brackets “{* and “}” are used to indicate the start
and end of the initialization, and the data in the same tuple are surrounded by round
bracket “(“ and “)”. In the case that a nested relation is declared and initialized, the
surrogates are stored and used to link the actual values of the nested relation attribute

which are stored in a relation with name “.”+nested relation attribute’s name.

An example for relation declaration and initialization is shown in Figure 2.3.

11

domai n sal ePerson strg;

n
domai n sal eAnount intg;
domai n departnent intg;
domai n conpany strg;
domai n product Nanme strg;

domai n product (conpany, product Nane);

rel ati on Sal el nfo(product, sal ePerson, departnent, sal eAmount) <-
{({("1BM, "Thinkpad T43P"), ("DELL", "lnspiron 5150")},"Smth", 1,
10000),

({("sony", "H 8 Cantorder"), ("Kodak", "Digital Canera")}, "Jones", 1,
7800),

({("1BM', "Thinkpad T43P"), ("DELL", "Inspiron 5150")}, "Brown", 2,
6900) ,
({("1BM', "Thinkpad T43P"), ("DELL", "Inspiron 5150")}, "Larry", 2, 3400)

’

Figure 2.3: Example of relation declaration & initialization

In this example, nested relation Salelnfo with a nested relation domain product as its
attribute is declared and initialized. After initialization, values of Salelnfo are stored in
the system as shown in Figure 2.4. Note that the values of product shown in Salelnfo are
surrogates. The real values of product is stored in relation *“.product™, and the function of

*“.1d”” in relation ““.product” is to link surrogates to the real values.

>pr Sal el nf o;

o e e e e e aa o e e e e N N +
| product | sal ePerson | department | sal eAmount |
o e e e e e o o e e e o o m e e e oo - Fom e e e e e oo +
3	Brown	2	6900
4	Larry	2	3400
1	Smith	1	10000
2	Jones	1	7800
o e e e e e o o e e e o o m e e e oo - Fom e e e e e oo +

oo ook oo +
| .id | conpany | product Nane

o e e e e e o o e e e o o e e e e e o +
1	DELL	I'nspiron 5150
1	1BM	Thi nkpad T43P
2	Kodak	Digital Canera
2	Sony	Hi 8 Cantorder
3	DELL	I'nspiron 5150
3	1BM	Thi nkpad T43P
4	DELL	I'nspiron 5150
4	1BM	Thinkpad T43P
oo oo oo +

12

Figure 2.4: Contents of Relation Salelnfo

2.1.3 Assignment

There are two assignment operators in JRelix System. One is “<-“, which copies contents
and attributes of the operand on the right side of an operator to the operand on the left
side of the operator. The other is “<+”, which appends the content of the right side
operand to the left side operand. An example of using “<-“ is shown in Figure 2.5. For

examples of “<+”, please refer to [Zhe02] for details.

cliffordR <- [coeffR cliffR in cliffordR
cliffordR <- where coeff !'=0.0 in ([coeff, cliff] in cliffordR);

Figure 2.5: Example of assignment operator “<-*

2.1.4 Relation Algebra

In this section, some of the unary and binary operations implemented in JRelix will be

briefly described.

Unary operations

As its name indicates, unary operations take one operand. There are six unary operations
implemented in JRelix system, including projection, selection, T-selection, QT-
selections, etc. Here projection and selection will be described in details. Details for the

other operations can be found in [Mer84].

Projection

13

Project extracts a specified subset of attributes from the operand. The syntax of this
operation is [Hao98]:

“[*“ (IDList)? “]” in (Projection | Selection)
Here, the list of attributes that need to be projected from the operand is specified in
“IDList”. If “IDList” is empty, a relation with one tuple of Boolean value will be
returned. The Boolean value could be “true” or “false” depending on whether the operand
relation is empty or not. An example is shown in Figure 2.6, where relation “Salelnfo”

defined in Figure 2.3 is used.

> sAnobunt <- [sal eAmount] in Sal el nfo;

>pr sAmount ;

S +
| sal eAmount |
S +
| 3400 |
| 6900 |
| 7800 |
| 10000 |
S +

e +
| .bool |
Fomm o - +
| true |
e +

Figure 2.6: Example of Unary Operation: Projection in JRelix
Selection
Selection operation extracts from the operand relation certain tuples which satisfy the
specified condition. The syntax of selection operation is shown as below [Hao98]:

where [condition clause] in projection

14

where “condition clause” could be any expression which returns Boolean value for each
tuple. An example of selection operation is illustrated in Figure 2.7, with relation Salelnfo

being used.

>super Sal e <- where sal eAnbunt > 7000 in [sal eAnrount,
sal ePerson] in Sal el nfo;

>pr super Sal e;

oo g +
| sal eAmount | sal ePerson |
o m e e e oo - o e e e e o +
| 7800 | Jones |
| 10000 | Smith |
oo oo +

Figure 2.7: Examples of Unary Operation: Selection in JRelix

Binary Operations
Binary operations in JRelix fall in the following two categories: p-join and c-join. All
these binary operations are set operations and satisfy closure, which means that if two
operands are relations, the result of the binary operation is also a relation. The syntax of
these join operators is [Hao98]:

Expression JoinOperator Expression

Or

Expression “[“ExprList”: “JoinOperator”:”ExprList”]” Expression.
12 6-join operators are implemented in JRelix and used to generalize logical operations,
with definitions given in Ref. [Mer84]. Also, there are seven operators (as shown in
Figure 2.8) belonging to p-join operation, including ijoin, ujoin, ljoin, rjoin,djoin, drjoin,

sjoin. If we define center, left and right as below [Mer84]

15

For relations R{X, Y) and 5(Y, 2) sharing a common attribute sei, ¥
center = {(x,y, z)|(x,u) € R A (y,2) € 5}
left = (=, u, DO (2, 4) € RAY:, (0,2) & 5}
right = {[DC, g, z)|(y, z) € §AYE, [z, y) € R}

For relations R{W, X and 5(Y, &) sharing no common atiribute set
center = {(w,z,y, 2)|(w, 2} E RA [y, 2) € Sae =y
left = {(w, z,p DO)|(w,x)e RAz =g Az (2] & 5}
right = {[DC x, n, 2)|(p 2zl ESAz =g AV, (r,y) € B}

we can obtain the definition of these p-joins as those in Figure 2.8:

pi-join Operator Description Set Operator
natural join ijoin or natjoin | center M

union join ujoin left U center U right | U

left join ljoin left U center

right join rjoin center L right

left difference join djoin or dljoin | left —

right difference join drjoin right

symmetric difference join | sjoin left U right +

Figure 2.8: Definition of p-joins operators [YiZheng 2004]

The usage of ujoin operator is illustrated in Figure 2.9. Two relations are used in this
example. One is ProductAvaliable, which stores the information about the available
amount of certain product. The other relation ProductPrice contains the prices of
products. The names of products are stored in different attributes in these two relations,
that is, in attribute product of relation ProductAvaliable, and in attribute item of
ProductPrice. To combine all the information in these two relations, union of the two

relations on their common attributes product and item is used to create a new relation

16

Productinfo. Note that the value of price for product “Inspiron 5150”, which is not in

relation ProductPrice, is given dc value in the Productinfo.

>domai n product strg;
>donmi n anount intg;
>donmain itemstrg;
>domai n price intg;

>pr Product Aval i abl e;

| H 8 Cantorder
| I'nspiron 5150
| Thi nkpad T43P

>rel ati on ProductPrice

>pr ProductPri ce;

| H 8 Cantorder
| Thi nkpad T43P

>Pr oduct I nfo <-

>pr Product | nfo;

| H 8 Cantorder
| I'nspiron 5150
| Thi nkpad T43P

>rel ati on Product Aval i abl e (product,

(item price)

anount) <- {("Thinkpad
("Hi

T43P", 20),

8 Cantorder", 50),

Pr oduct Aval i abl e[product: uj oi n:iteni ProductPri ce;

("I'nspiron 5150", 10)};

+
I
+
I
I
I
+
<- {("Thi nkpad T43P", 2500),

("H 8 Cantorder", 980)};
+
I
+
I
I
+
Fom e e e e e e oo Fom e e e e oo
| item | price
oo i
| H 8 Cancorder | 980
| I'nspiron 5150 | dc
| Thinkpad T43P | 2500
Fom e e e e e e oo Fom e e e e oo

Figure 2.9: Example of p-joins operator: ujoin

17

2.15 Domain Algebra

Domain algebra is an algebra on attributes. There are two main components in Domain
algebra: Scalar operations and Aggregation operations. Scalar operations allow
arithmetic, logic and string processes on attributes within each tuple. Therefore, they
could also be referred as Horizontal operations. On the other hand, Aggregation
operations work vertically on all tuples in a relation, and thus they are also called Vertical

operations.

Scalar operations
Scalar operations could be used in defining constants, renaming attributes, performing

arithmetical and logical operations on attributes, as illustrated in Figure 2.10.

Defining constants:
>l et one be 1;

Rename attributes:

> et coeffR be coeff;
>let cliffRbe cliff;

Performing arithmetical operation on attributes:

>l et evodsjoin be evodsjoin’ nod 2
>l et d3 be seqR — seqli;

Performing logical operation on attributes:
(condition statement if-then-else)

>l et tenpd2 be if seqdiff < 0 then 0 el se seqdiff;

Figure 2.10: Examples of Scalar operations in Domain Algebra

18

Aggregate Operations
Aggregate Operations include the following four operations: Reduction, Equivalence

reduction, Function mapping and Partial function mapping.

Reduction
The example below is used to illustrate the meaning of Reduction operation:

> |et saleTotal be red + of saleAmount;
which will sum up all the values of saleAmount. Other built-in operations, including *,
min, max, and, or, nop, ijoin, ujoin, sjoin, could also be used in red reduction. The last
three operations are for relations, and operation nop is for both primary typed domain and

relation domain. The rest six operations are for primary typed domain [Yua98§].

Reduction operations could also be used as below:

> let count be red + of 1;
which will count the number of tuples of the relation which count is projected from.

> |let avgSale be (red + of saleAmount)/(red + of 1);
which is the combination of two red reductions (Aggregate operations) with division
(Scalar operation). The first red reduction calculates the sum of saleAmount and the
second red reduction counts the total number of person; the division gives the average

sale amount.

Equivalence Reduction
Equivalence reduction allows reduction to be performed to groups of tuples within a
relation [Mer84]. Whether tuples are in the same group (i.e., they are equivalent) or not

depends on whether they have the same value for a specified set of domains. An example

19

for using this operation is illustrated in Figure 2.11. Relation Salelnfo defined in Figure

2.4 is used in this example, and the values of equivSum are aggregated inside each group.

>l et equi vSum be equiv + of sal eAnount by product;
>equi vRel <- [product, sal eAnount, equivSuni in Sal el nfo;
>pr equi vRel ;

o e e aa S Fom e oo - +
| product | sal eAnount | equi vSum |
o e e e e e a oo - o m e e e oo - o m e e e oo +
3	3400	20300
3	6900	20300
3	10000	20300
2	7800	7800
o e e e e e a oo - o m e e e oo - o m e e e oo +

Figure 2.11: Example of Equivalence reduction

Functional Mapping
Functional Mapping is used to introduce order into vertical operation and perform
calculation that Reduction could not perform. For example, to rank the sale persons based

on how much they sale could only be done in Function mapping, as shown in Figure

2.12.

>l et rank be fun + of 1 order sal eAnpunt;

>pr [sal ePerson, sal eAnpunt, rank] in Sal el nfo;

o m e e e aa R N +
| sal ePerson | sal eAmount | rank |
o e e e o Fom e e e e oo - Fom e e e e e oo +
Brown	6900	2
Jones	7800	3
Larry	3400	1
Smith	10000	4
o m e e e aa N N +

Figure 2.12: Example of Functional mapping

20

In Functional mapping, first the tuples are ordered according to domains listed in the

order clause, which is saleAmount here, and then rank is aggregated.

Partial Functional Mapping

Partial Functional Mapping could be viewed as the combination of Functional mapping
and Equivalence reduction. It adds a group facility to functional mapping, which means
tuples are first grouped by domains in group clause, then are ordered according to
domains in the order clause inside each group. An example shown in Figure 2.12 is used
to illustrate the usage of Partial functional mapping. Relation Salelnfo is used in this

example.

>| et par Sum be par + of 1 order product by departnent;
>par Rel <- [department, product, parSunj in Sal el nfo;
>pr parRel ;

oo g oo +

| departnent | product | par Sum |
o m e e e e o - o e e e o Fom e e e e e oo +

| 1 | 1 | 1 I

| 1 | 2 | 2 I

| 2 | 4 | 1 I
o m e e e e o - o e e e o Fom e e e e e oo +

Figure 2.12: Example of Partial functional mapping

In this example, tuples in Salelnfo are first grouped by department. The values of parSum

aggregate in each group following the same rule as Functional mapping.

2.1.6 Computation

21

The concept of Computation is similar to procedure in some programming languages
such as C, Fortune. It encapsulates a set of codes together to perform a certain
functionality. It accepts a list of parameters which are usually relations or other
computations. Keywords “in” or “out” are used to indicate the input and output
parameters. Input parameters will be used inside the computation and the result will be
written into output parameters. Computation may contain several block of codes
separated by keyword “alt” which is shorten for “alternative”. Depending on the input
and output parameters, different block of codes will be triggered. Computation could be
declared at two levels: top level and nested level [Bak98] depending on whether the
declarations of computations are nested in any declarations of relations or computations.
Top level computations could be invoked anywhere after their declarations. For nested
level computations, It could be invoked either in the computation code block where the
nested level computations are declared or exported from Abstract Data Type where the
computations are defined in. There are advanced usages of computation such as stateful
computations, packages, constrain verification, etc. Readers are encouraged to refer to
[Bak98] for detail information. In the following examples, the definition and invoking of
nested level computations will be illustrated. In Figure 2.13, two nested computations
Add() and Divide() are defined inside Abstract Data Type calculator. Each of the
computation has three parameters. The invocations of these two nested level
computations are shown in Figure 2.14. Keywords “in” and “out” are not used in the
invocations, instead the shortcut is used, i.e. present parameters are input parameters and

absent parameter is output parameter.

22

domain left, right, sum division float;
domai n Add conp(left, right, sum;

domai n Product conp(left, right, division);
conp cal cul ator (Add, Product) is

{
conp Add(left, right, sum is
{
sum<- left + right;
} alt
{
left <- sum- right;
} alt
{
right <- sum- left;
1
conp Divide(left, right, division) is
{
division <- left / right;
1
1

Figure 2.13: Definition of abstract data type calculator

>cal cul ator (out Add, out Product);
>Al <- Add[3, 5,];

>pr Al

Fom e e e e e e oo +

| sum |

Fom e e e e e e oo +

| 8.0 |
e +
>A2 <- Add[3, , 8]
>pr A2,

Fom e e e e e e oo +

| right |
S +

| 5.0 |

Fom e e e e e e oo +
>A3 <- Add[, 8, 10];
>pr A3;
S +

| left |

Fom e e e e e e oo +

| 2.0 |
S +
>D1 <- Divide[10.0, 5.0,];
>pr D1,

Fom e e e e e e oo +

| division |
S +

| 2.0 |

Fom e e e e e e oo +

Figure 2.14: Invocations of computation Add(), Divide()

23

2.2 Introduction to Implementation of JRelix

2.2.1 System Overview

The JRelix system consists of the following three main modules: the front-end processor,
the database engine, and the system database maintainer [Yu04]. These three modules

interact with each other to fulfill the functions of JRelix system, as shown in Figure 2.15.

When an end-user enters a JRelix command, the command first is processed by the front-
end processor which is composed of parser, interpreter and top-level evaluator. The
parser accepts user input and performs syntax analysis. If any error occurs during the
syntax analysis, no further process will be performed and an error message will be
returned to the user to indicate error. Otherwise, a tree structure translated from the input

command will be generated by the parser and passed to the interpreter.

The interpreter accepts syntax tree passed from the parser and does some evaluations
such as type checking etc. It then traverses the tree and issues a set of system calls which

the database engine can understand.

The database engine is critical to the JRelix system. The actual computations are
performed and the results are generated by it. It consists of three main function modules,
including Relation Processor, Virtual Domain Actualizer and Computation Processor,
which correspond to the three conceptual aspects in JRelix system: relation Algebra,

domain Algebra and computation. [Yua97]

24

Front-end Processor Database Engine System Database Maintainer

4(Parser h / \ / \

Relation — >
Processor <
i System tables (.rd,
. : rel, .dom, .expr,
Interpreter Virtual Domain ect) &
* Actualizer User defined Data
Top-level > :
Evaluator Computation

Processor

N NG RN /

Figure 2.15: JRelix System Overview

The System database maintainer is responsible for maintaining system related
information and user-defined data. Such information is maintained in a set of system
tables and stored permanently as system files on the disk. The system tables are stored in
files “.rel”, “.dom”, “.comp”, “.rd”, “.expr”, and “.surrogate”. When a user declares a
relation or domain, the definitions of the relation or domain will be persistent to the
system files “.rel” and “.dom”, and the information of linking a relation and the domains
that it is defined on is stored in file “.rd”. When a user declares a computation, a syntax
tree will be generated according to the definition of the computation and be stored in file
“.comp”. The Syntax trees for virtual domains and views declared in the system are

stored in file “.expr” [Yu04]. File “.surrogate” is used to record next available surrogate

for nested relation.

25

2.2.2 Parser Generation in JRelix

In JRelix, Java Compiler Compiler (JavaCC) is used for automatically generating parser.
JavaCC 1is a popular parser generator for java applications. It reads the high level
specification of grammar which is usually stored in a “.jjt” file, and transfers it to a set of
Java classes including “Parser.java”, “Token.java”, “ParserTokenManager.java”, etc.

These classes work together to recognize the matches to the grammar.

As the preprocessor of JavaCC, JJTree inserts parse tree building actions at various
places of the JavaCC source. The output of JJTree is a “.jj” file, which is passed to
JavaCC to create the parser. The commands used for creating the parser are shown in

Figure 2.16.

> jjtree Parser.jjt

> javacc Parser.jj

Figure 2.16: Parsing Commands

2.2.3 Virtual Domain Actualizer

Virtual Domain Actualizer is the key component of the JRelix system. It provides support
for horizontal and vertical operations in domain algebra. When virtual domains are listed
in the destination relation, the interpreter will call virtual domain actualizer to actualize
them. The virtual domain actualizer then obtains the required source relation information
from domain table and environment and instantiates the virtual domains in the destination

relation. Finally, it returns the actualized destination relation back to the interpreter. The

26

relation between virtual domain actualizer and other compenents in JRelix is described in

Figure 2.17.
Interpreter
Destination Call for actualizing)
Retlation virtual domains domain
Actualizer Source Relation
) . environment
Instantiate virtual
domains
Destination Relation

Figure 2.17: Relation Between Virtual Domain Actualizer and Other Components in
JRelix

Equivalence Reduction

For the actualization of virtual domains which contain equivalence reduction operation,
the following steps need to be performed before actualizing the virtual domain tuple-by-
tuple [KanO1]: 1) Source relation should be loaded into memory first; 2) the syntax trees
for these domains will be loaded into memory; 3) virtual domains are appended to the
source relation to generate the destination relation; 4) the destination relation is sorted by
the by-domains. Once the process of actualizing the virtual domain tuple-by-tuple starts,

the start row and the end row need to be recorded to distinguish among different groups.

27

When the group change checking is found to be true, the virtual domains will be assigned

the accumulated value in all the tuples of the group. The simplified process diagram is

shown in Figure 2.18.

Start

'

Load Source Relation from

the disk

Load Syntax tree of Virtual

domain

Sort the destination relation
by by-domains

A
h 4 No
More tuples ——» End
yes yes
A 4
\

In the same group

lNo

Assign the accumulated value to
virtual domain in Destination
Relations between Start Row and
Current row member

l‘

Initialize start row memory with
current row number

N N Y Y

Figure 2.18: Equivalence Reduction Process Diagram [Kan01]

Functional Mapping

Similar to the actualization of a virtual domain containing equivalence reduction, when

virtual domains containing functional mapping are actualized, the source relation and the

28

syntax trees for these domains will be loaded into memory and destination relation will
be generated by adding virtual domains to the source relation. Before any further process
is conducted, the destination relation needs to be sorted by the order-domains. Then the
virtual domains are actualized tuple-by-tuple [Kan01]. The order memory needs to be
initialized before two adjacent tuples are compared in order. When a change is found
during the comparison, the domain value is accumulated and written to the destination
relation, and the order memory is re-initialized with the changed value. In the case that
there is no change in order domain memory, to avoid violating functional mapping, the
accumulation process is bypassed and the current accumulated value is written into the

destination relation. The simplified process is depicted in Figure 2.19.

Partial Functional Mapping

The process of actualizing a virtual domain containing partial functional mapping is
similar to that of actualizing functional mapping, but with more complexity due to its
definition described in chapter 2. While virtual domains are actualized with partial
functional mapping operation, the destination relation will first be sorted based on its by-
domains, and then be further sorted according to its order-domains in each group.
Inside each group, value will be accumulated only when a change is detected during
tuple-by-tuple comparison. When the group is found to have changed, the order and by

memory are re-initialized. The above process is illustrated in Figure 2.20.

29

Start

Load Source Relation from
the disk

Load Syntax tree of Virtual
domain

Sort the destination relation
by order-domains

'

\ 4 No
More tuples ——»{End
yes
Initialize the order memory
\ A No
Any change in
comparison p| Bypass
T laccumulation

l yes

Write the accumulated value into

destination Relation

Figure 2.19: Functional Mapping Process Diagram [KanO1]

30

Start

Load Source Relation from

the disk

Load Syntax tree of Virtual
domain

v
Sort the destination relation
by by-domains and order-

\

domains
v

T

N
More tuples ——» End

l yes

Initialize the by memory and order
memory

yes i

Any change in by
< memory

lNo

Any change in order | No

memory L | Bypass the
accumulation

yes

Write the accumulated value into
destination Relation

Figure 2.20: Partial Functional Mapping Process Diagram [Kan01]

31

Chapter 3

User’'s Manual

This chapter will describe the usage of grouping by relation domain and ordering by
relation domain in equivalence reduction, functional mapping and the three new Boolean

functions by concrete examples.

3.1 Vertical Domain Algebra

Salelnfo database is used as an example in this document for vertical domain algebra. Its

definition is shown in Figure 3.1:

Sal el nfo
(pr oduct sal ePer son depart ment sal eAnount)
(company pr oduct Nare)

DELL I nspiron 5150 Br own 2 6900
| BM Thi nkpad T43P

DELL I nspiron 5150 Smith 1 10000
| BM Thi nkpad T43P

Kodak Digital Canera Jones 1 7800
Sony H 8 Cantorder

DELL I nspiron 5150 Larry 2 3400
| BM Thi nkpad T43P

Figure 3.1: Salelnfo Database

3.1.1 Equivalence Reduction to Support Group by Nested Relation
Domain

The syntax of equivalence reduction is defined as:

32

Let virtual-domain be equiv operation of domain by domain-list

In the following example, saleAmount is grouped by the nested relation domain product.

The declaration is shown in Figure 3.2.

>l et equi vSum be equiv + of sal eAnpbunt by product;

>Equi vRel <- [product, sal eAnount, equivSum in Salelnfo;

Figure 3.2: Equivalence Reduction Declaration

Virtual domain equivSum is contained in the result relation EquivRel, as shown in Figure
3.3. In EquivRel, saleAmounts are accumulated according to domain product. Since the
product with saleAmount 6900, the product with saleAmount 10000 and the product with
saleAmount 3400 are the same, the value of equivSum for these three tuples is the sum of
6900 and 10000 and 3400. For the product with saleAmount 7800, which is different

from the above three, the saleAmount in the related tuple is not accumulated.

3.1.2 Functional Mapping to Support Order by Nested Relation
Domain

The syntax of functional mapping is defined as:

Let virtual-domain be fun operation of domain order domain-list

33

Equi vRel
(pr oduct sal eArmount equi vSun)
(company pr oduct Nare)

DELL I nspiron 5150 6900 20300
| BM Thi nkpad T43P

DELL I nspiron 5150 10000 20300
| BM Thi nkpad T43P

DELL I nspiron 5150 3400 20300
| BM Thi nkpad T43P

Kodak Digital Canera 7800 7800
Sony H 8 Cantorder

Figure 3.3: Result of Equivalence Reduction

In the example of Functional Mapping, funSum is ordered by domain product. The

declaration is shown in Figure 3.4.

>l et funSum be fun + of 1 order product;

>FunRel <- [product, sal eAmount, funSuny in Sal el nfo;

Figure 3.4: Functional Mapping Declarations

Virtual domain funSum is contained in the result relation FunRel, as illustrated in Figure
3.5. In relation FunRel, the number of product is accumulated according to domain
product. Since the product with saleAmount 10000 is the same as the product with
saleAmount 6900 as well as that with saleAmount 3400, the value of funSum for these

three products does not increase, that is, all of them have value 1. For the product with

34

saleAmount 7800, which is different from the above three, the funSum in the related tuple

1s accumulated.

FunRel
(pr oduct sal eAnount funSum
(conpany pr oduct Nane)

DELL I nspiron 5150 6900 1
| BM Thi nkpad T43P
DELL I nspiron 5150 10000 1
| BM Thi nkpad T43P
DELL I nspiron 5150 3400 1
| BM Thi nkpad T43P
Kodak Digital Canera 7800 2
Sony H 8 Cantorder

Figure 3.5: Result of Functional Mapping

3.1.3 Partial Functional Mapping to Support Group & Order by Nested
Relation Domain

The syntax of partial functional mapping is defined as:

Let virtual-domain be par operation of domain order domain-list]l by domain-list2

In the example shown below, the number of product parSum is ordered by nested relation
domain product and grouped by domain department. The declaration is depicted in

Figure 3.6.

35

>l et par Sum be par + of 1 order product by departnent;

>Par Rel <- [department, product, parSuni in Sal el nfo;

Figure 3.6: Partial Functional Mapping Declaration

Also, virtual domain parSum is contained in the result relation ParRel, as shown in

Figure 3.7.
Par Rel
(depart nment pr oduct par Sunj
(conmpany pr oduct Nane)
1 DELL I nspiron 5150 1
| BM Thi nkpad T43P
1 Kodak Digital Canera 2
Sony H 8 Cantorder
2 DELL I nspiron 5150 1
| BM Thi nkpad T43P
2 DELL I nspiron 5150 1
| BM Thi nkpad T43P

Figure 3.7: Result of Partial Functional Mapping

In ParRel, number of product is first grouped by domain department and then ordered by
domain product. Since the two products in the department with value 1 are different, the
value of parSum increases. In the department with value 2, the value of parSum does not

increase due to the same values of these two products.

36

3.2 Three New Boolean Functions

The three new Boolean functions including isnull, isnulldc, isnulldk are introduced in this
document. The usage of these functions are similar to that of others such as abs(), sin(),
asin(), etc., except that the output of them will be Boolean values. One example of their

application is to use them in conditional statement such as “if”.

CourseFeedBack database will be used in this document for demonstrating the usage of

these functions. Its definition is shown in Figure 3.8.

Cour seFeedBack

(st udent cour se f eedback)

""" john cse13 God
~ Kartrina cse13 @
© tary css14 @
~ wry cse13 Excellemt
~ Patrick cssss God
~ Rta cssss a“
""" Tomy cssl4 Geat

Figure 3.8: CourseFeedBack Database

3.2.1 Function isnulldc

This function will accept one parameter, which is a domain, and test if the value of this

domain is dc or not. It will return true if the value is dc and false if not. In the example

37

below, isnulldc function is used in if statements in the declaration of virtual domain

numDC. The declarations are shown in Figure 3.9.

>l et nunDC be red + of if isnulldc(feedback) then 1 else O;

>Test DC <- [nunDC] in CourseFeedBack;

Figure 3.9: Function isnulldc declarations

In the result relation TestDC, the number of dc values contained in domain feedback is
calculated, as given in Figure 3.10. Since there are 2 dc values in this domain, the value

of numDC is 2.

Figure 3.10: Result of Function isnulldc

3.2.2 Function isnulldk

Similar to function isnulldc, this function will accept one domain parameter and test if the
value of this domain is dk or not. If it is, the function will return true; otherwise, it will
return false.

In the following example, function isnulldk is used in the declaration of virtual domain

numDK as shown in Figure 3.11.

38

>l et nunDK be red + of if isnulldk(feedback) then 1 else O;

>Test DK <- [nunDK] in CourseFeedBack;

Figure 3.11: Function isnulldk Declarations

In the result relation TestDK, virtual domain numDK is calculated according to the
number of dk value in domain feedback. Since there is only 1 dk value in domain

feedback, the value of numDK is 1, as we can see in Figure 3.12.

Figure 3.12: Result of Function isnulldk

3.2.3 Function isnull

Similar to the above two functions isnulldc and isnulldk, this function will accept one
domain parameter and test if the value of the domain is dk or dc. If it is dk or dc, the

function will return the Boolean value true. Otherwise, it will return false.

In the example of Figure 3.13, function isnull is used in the declaration of virtual domain

unknown.

>l et unknown be red + of if isnull (feedback) then 1 else O;

>Test NULL <- [unknown] in CourseFeedBack;

39

Figure 3.13: Function isnull Declarations

In the result relation TestNull, virtual domain unknown is calculated according to the
number of dc and dk value in domain feedback. Since there are 3 such values in domain

feedback, the value of unknown is 3, as shown in Figure 3.14.

Test NULL
(unknown)

Figure 3.14: Result of Function isnull

3.2.4 Further Examples

In the following document, three more complete examples will be given to illustrate the

usage of the three Boolean functions.

Example for Function isnulldc

Relation R which contains 5 different type of attributes is used in this example, with

definition shown in Figure 3.15.

40

>domai n dl strg;
>domai n d2 doubl e;
>domai n d3 bool ean;
>domai n d4 short;
>domai n d5 | ong;

>relation R (dl1, d2, d3, d4,
>pr R

| di | d2

| _dc | dc

|

| this | 2.5
|

| try |

d5) <- {

("tl’y",
(dc,
("this",

11.
dc,
2.

2, true, 3, 12),
dc, dc, dc),

5, false, 6, 33)};

S R e

| d3 | d4

Fomm o - Fomm o -

| dc | dc

| false | 6

| true | 3

Fomm o - Fomm o -

Figure 3.15: Definition of Relation R

Function isnulldc is used in the definitions of virtual domains such as t1, t2, t3, t4, and t5

to test the value of different type of attributes in relation R. The result relations containing

the virtual domains are shown in Figure 3.16.

41

>let t1 be if isnulldc(dl) then "yes" else "no";
>Rl <- [d1, t1] in R

>pr Ri1;

o e e e e e o o e e e o +
| di | t1 |
o e e e e e o o e e e o +
_dc	yes
this	no
try	no
o e e e e e o o e e e o +

>let t2 be if isnulldc(d2) then 0.0 else 1.0;
>R2 <- [d2, t2] in R

>pr R2;

B B S +
| d2 | t2 |
oo oo +
dc	0.0
2.5	1.0
11.199999809265137	1.0
B B S +

>let t3 be if isnulldc(d3) then true else false;
>R3 <- [d3, t3] in R

>pr R3;

Fomm o - Fomm e m o - +
| d3 | t3 |
R R +
dc	true
false	false
true	false
R R +

>let t4 be if isnulldc(d4) then 1 else O;
>R4 <- [d4, t4] in R

>pr R4,

S o e e oo +
| d4 | t4 |
S o +
| dc | 1 I
| 3 | O I
| 6 | O I
S o e e oo +

>let t5 be if isnulldc(d5) then 1 else O;
>R5 <- [d5, t5] in R

>pr RS5;

O U U U RO +
| d5 | t5 |
o T +
dc	1
12	O
33	0
o T +

Figure 3.16: Result of Example for Function isnulldc

42

Example for Function isnulldk

Similar to the above example, relation R which contains five different types of attributes
including string, double, Boolean, short and long is used to illustrate the usage of

function isnulldk. The definition of relation R is shown in Figure 3.17.

>domai n dl1 strg

>donmai n d2 doubl €;

>domai n d3 bool ean;

>domai n d4 short;

>donai n d5 | ong;

>relation R (dl1, d2, d3, d4, d5) <- { ("try", 11.2, true, 3, 12),
(dk, dk, fal se, dk, 33),
("this", 2.5, dk, 6, dk)};

>pr R

Fom e e o N S N S N N +
| d1 | d2 | d3 | d4 | d5 |
o e oo oo e e T e e oo - +
| _dk | dk | false | dk | 33 |
I I
| this | 2.5 | dk | 6 | dk |
I I
| try | 11.199999809265137 | true | 3 | 12 |
Fomm e o Fommm e S N S +

Figure 3.17: Definition of Relation R

Function isnulldk is used in the definitions of virtual domains such as t1, t2, t3, t4, and t5.

The result relations R1, R2, R3, R4 and R5 containing the virtual domains t1, t2, t3, t4, t5

are shown in Figure 3.18.

43

>let t1 be if isnulldk(dl) then "yes" else "no"
>Rl <- [dl, t1] in R

>pr R1,

-------------- o4
| t1 I
-------------- o e a4
| yes I
| no I
| no I
-------------- o e a4

>let t2 be if isnulldk(d2) then 0.0 else 1.0;
>R2 <- [d2, t2] in R

>pr R2;

o e o e o e e oo S +
| d2 | t2 |
o m e e e e e e e iao-- Fom e e e a e oo - +
| 2.5 1.0 |
| 11.199999809265137 | 1.0 |
| dk | 0.0 |
o e o e o e e oo S +

>let t3 be if isnulldk(d3) then true el se fal se;
>R3 <- [d3, t3] in R

>pr R3;

| dk
| false
| true

T +
| t3 I
Fomm e o - +
| true |
| false |
| false |
Fomm e o - +

>let t4 be if isnulldk(d4) then 1 el se O;
>R4 <- [d4, t4] in R

>pr R4

oo +
| t4 I
oo - +
| 1 I
| O I
| O I
oo +

>let t5 be if isnulldk(d5) then 1 el se O;
>R5 <- [d5, t5] in R

>pr R5;

-------------- g
| t5 I
-------------- oo+
| 1 I
| O I
| O I
-------------- g

Figure 3.18: Result of Example for Function isnulldk

44

Example for Function isnull

In the example, relation R contains five different types of attributes. The values of these

attributes are mixing of dc, dk and normal value. The definition of relation R is shown in

Figure 3.19.

>domai n d1
>domai n d2
>domai n d3
>domai n d4
>domai n d5

strg;
doubl e;
bool ean;
short;

| ong;

>relation R (d1, d2, d3, d4, d5) <- {("try", 11.2,
(dc, dc,
(dk, dk,

>pr R

oo oo +

| di | d2 |

o e e e e e e e oo Tt +

| _dk | dk |

I

| _dc | dc |

I

| try | 11.199999809265137 |

oo oo +

dk, 3, dk),
dc, dc, dc),
false, dk, 33)};
-------- e
d3 | da | d5 |
-------- T
false | dk | 33 |
I
dc | dc | dc |
I
dk | 3 | dk |
-------- e

Figure 3.19: Definition of Relation R

Function isnull is used in the definition of virtual domains t1, t2, t3, t4 and t5 to test the

dc and dk value containing in attributes d1, d2, d3, d4 and d5 of Relation R. The result

relations are shown in Figure 3.20.

45

>let t1 be if
>Rl <- [di,
R1,;

tl] in R

>let t2 be if
>R2 <- [d2, t2] in R
R2;

dc

>let t3 be if

>R3 <- [d3, t3] in R
>pr R3;

S T +

| d3 | t3 |
S, Fomm e o - +

| dk | true |

| dc | true |

| false | false |
S, Fomm e o - +

>let t4 be if

>R4 <- [d4, t4] in R
>pr R4,

E Fom e e e e - -
| d4 | t4

S R S RN
| dk | 1

| dc | 1

| 3 | O

E Fom e e e e - -

>let t5 be if
>R5 <- [d5, t5] in R
R5;

isnull(dl) then "yes"

isnull (d3) then true

isnull (d5) then 1 else

el se "no";
s +
| t1 I
s +
| yes I
| yes I
| no I
s +

isnull (d2) then 0.0 else 1.0;

e e +
| t2 I
ceedemmeemmemmea——a +
| 0.0 |
| 1.0 |
| 0.0 |
e oo +

el se fal se;

isnull(d4) then 1 el se O;

+
I
+
I
I
I
+

0;
oo +
| t5 I
mm e o o +
| 1 I
| 1 I
| O I
oo +

Figure 3.20: Result of Example for Function isnull

46

Chapter 4

Implementation

In this chapter, the implementation for the functionalities of grouping by relation domain
and ordering by relation domain in equivalence reduction and functional mapping, as
well as the three new Boolean functions are described. The implementation is based on
the previous implementation of JRelix. In Section 4.1, the develop environment of this
project will be introduced briefly. In Section 4.2, the implementation for the new
features of grouping by relation domain and ordering by relation domain in equivalence
reduction and function mapping will be discussed in details. The implementation of the

three new Boolean functions will be shown in Section 4.3.

4.1 Development Environment

This project is written in Java and has been developed under JDK 1.4.2 environment.
Jbuilder 2005 Foundation is used for developing, testing and debugging purpose. The

compiled JRelix runs on both Windows and Linux.

4.2 Vertical Domain Operations to Support Nested Relation
Domain

In the previous JRelix version, although domain list could contain nested relation
domains, the system can not distinguish between the same values of two nested relation

domains since the system determines whether the values of these two domains are the

47

same according to the surrogates instead of the real values. Now the system is extended
to be able to interpret nested relation domain used in by-domains or order-domains
correctly by using the real values instead of surrogates to determine if two nested relation
domains are the same. The following sections will describe the implementation of
grouping by relation domain and ordering by relation domain in equivalence reduction

and functional mapping in details.

4.2.1 Equivalence Reduction to Support Group by Nested Relation Domain

As mentioned in Chapter 2, virtual domain actualizing is performed in the class
“Actualizer.java” and a set of methods such as actIntCell(), actNumCell(), etc. are
implemented to actualizing a “cell” according to the domain type. Given a virtual domain
which contains equivalence reduction operation, the actualizing process is done in

method actualizeEquiv().

The previous method actualizeEquiv() already has the ability to sort destination relation
according to the by-domains. If there are nested relation domains in the by-domains, it
sorts according to the real values instead of the surrogates of the nested relation domains
by calling method Relation.sort(Domain[]). Such sorting process is very important since
it ensures the precondition, which is required by the subsequent tuple-by-tuple
comparison to correctly detect the boundary of each group, is satisfied. However, when
comparing two values of a nested relation domain, the previous implementation uses
surrogate values instead of the real values to determine if these two are the same.

Therefore, those codes in the previous implementation should be modified. The current

48

implementation uses existing method Relation.compareTwoRows() to compare the real
values of a nested relation domain. As its name indicates, method compareTwoRows()
compares the values of the attributes. If the attributes are nested relation domains, it calls
method Relation.compareRelation() to compare the real values of the relations domain as
shown in Figure 4.1. Since method compareRelation() is a recursive method, even if the
comparing relation is a nested relation (meaning that the relation contains nested relation

domains), it can still generate the correct result.

if (donsl[j].type==IDLI ST)
{

Rel ati on dom = myEnv. | ookupRel ("."+domsl[j].nanme, true);
Rel ation rl = donl . getRel ation(bm;

Rel ati on donr = myEnv. | ookupRel ("."+dn. nane, true);

Rel ation rr = donr.getRel ati on(bn);

int result =rl.conpareRelation(rr);

if (result '= EQ return result;

el se break;

Figure 4.1: Method compareTwoRows(), which handles nested relation domain.

Before the method compareTwoRows() is called, the value of nested relation domain,
which is in by-domains, needs to be recorded in by-memory. In the current
implementation, the row number is chosen to be stored because it is a required argument

when method compareTowRows() is called. The codes are shown in Figure 4.2.

49

For (i=0; i < byarray.length; i++)
{
swi tch(byarray[i].type)
{
case |DLIST:
if (env.lookupRel ("."+byarray[i].name, true) != null)
{
I nteger rownum = new I nteger(currow);
val s. addEl enent (r ownunj ;
}
br eak;
}
}

Figure 4.2: Codes added in actualizeEquiv() to initialize by-memory

The codes added to compare the real value of nested relation domains are shown in
Figure 4.3. First, whether the domain is a nested relation domain is checked by looking
up if a relation named .domain name exists. Then arguments for method
Relation.compareTwoRows() are constructed. Among them, array flags contains
Boolean values for each domain stored in array domai ns. Such Boolean values are used
to signal method compareTwoRows() about whether the values for a nested relation
domain should be compared by surrogates or not. Assigning false indicates such nested
relation domain should be compared by the real value. If the result value that
compareTwoRows() returns is not equal to 0, i.e., result !'= 0, which means the two
values are not the same and the boundary of two different group is reached, the by-
memory is reset to the current row and the breakflag is set to 1 to indicate that the
current group reaches its boundary and the current accumulated value should be written
to the destination relation. If result = 0, which means the two values are the same and

they are still in the same group, the surrogate value stored in the by-memory is assigned

50

to the current nested relation domain to ensure that in the destination relation, the same

values of the nested relation domain are represented by the same surrogate.

for (i=0;i < byarray.length; i++)
{

svm tch(byarray[i].type)

case |DLI ST:
/1 if this domain is a nest relation
if (env.lookupRel ("."+byarray[i].nane, true) != null)
{
Rel ation tnpr = new Rel ati on(env);
hj ect[] nestdata = new Cbject[1];
nestdata[0] = destrel.data[bypos[i]];
int mow = ((Integer) (vals.elenmentAt(i))).intValue();
Dormai n[] donai ns = new Donmi n[1] ;
domai ns[0] = byarray[i];
bool ean[] flags = new bool ean[1];
flags[0] = false;
int[] atypes = tnpr.toTypes(domnai ns);
int result = tnpr.conpareTwoRows(nestdata, nrow,
nestdata, currow, 1, atypes, flags, domains,
domai ns) ;
if (result !'=0)
{
val s. set El enent At (new I nteger(currow), i);
breakflag = 1;
}

el se
/1if two row are equival ent, update surrogate

((long[])destrel.data[bypos[i]])[currow] =
((long[])destrel.data[bypos[i]])[nrow];

br eak;

Figure 4.3: Codes added in actualizeEquiv() to compare the real value of nested relation
domain.

51

4.2.2 Functional Mapping to Support Order by Nested Relation Domain

Similar to equivalence reduction, given a virtual domain that contains function mapping

operation, the actualizing process is done in method Actualizer. actualizeFun().

The implementation of method actualizeFun() follows the same steps as
actualizeEquiv(), except that destination relation is sorted by by-domains in
actualizeEquiv(), while it is sorted based on order-domains in actulizeFun(). Also, the
time when the accumulated value should be written to the destination relation is different.
Same as actualizeEquiv(), the destination relation is sorted by calling method
Relation.sort(). In actualizeFun(), first the destination relation is sorted based on the real
values of nested relation domains contained in the order-domains, and then the
accumulated value is calculated through tuple-by-tuple comparison. Similar to the
situation in method actualizeEquiv(), the previous implementation of actulizeFun()
compares the nested relation domains according to surrogates instead of the real values.
In the current implementation, the following codes are added to ensure that tuple-by-
tuple comparison is based on the real values. In the codes shown in Figure 4.4, the order-

memory is filled with current row number if the order domain is a nested relation domain.

case | DLI ST:

if (env.lookupRel ("."+orderarray[i].name, true) != null)

{

I nteger rownum = new I nteger(currow);
order menory. addEl ement (r ownunj ;

}

br eak;

Figure 4.4: Codes added in actualizeFun() to initialize order-memory

52

The codes illustrated in Figure 4.5 present the way of constructing the comparison based
on the real values of the nested relation domains. Similar to that described in the above
section, method Relation.CompareTwoRows()is used to compare the real values of
nested relation domains. If the two values are different (indicated by result = 0 in the
codes), the ordermemory needs to be reset and breakflagl is set to be true. If the two
values are the same, the surrogate value in the order-memory is assigned to the current
nested relation domain to ensure that in the destination relation the same values of the

relation domain have the same surrogate.

For (i=0; i<orderarray.length; i++)

switch(orderarray[i].type)
{ ..
case |DLI ST:
/1if this domain is a nest relation
if (env.lookupRel ("."+orderarray[i].name, true) != null)
{
Rel ation tnpr = new Rel ati on(env);
hj ect[] nestdata = new Cbject[1];
nestdata[0] = destrel.data[orderpos[i]];
int mow = ((Integer) (ordermenory.elenentAt(i))).intValue();
Dormai n[] donai ns = new Donmi n[1] ;
domai ns[0] = orderarray[i];
bool ean[] flags = new bool ean[1];
flags[0] = fal se;
int[] atypes = tnpr.toTypes(domai ns);
int result = tnpr.conpareTwRows(nestdata, nrow, nestdata,
currow, 1, atypes, flags, domains, domains);
if (result !'=0)
{
order menory. set El enment At (new | nteger(currow), i);
breakflagl = true;
}

el se

/1if two rows are equival ent, update surrogate
((long[])destrel .data[orderpos[i]])[currow] =
((long[])destrel .data[orderpos[i]])[nrow];

53

Figure 4.5: Codes added in actualizeFun() to compare the real value of nested relation
domain.
4.2.3 Partial Functional Mapping to Support Group & Order by Nested

Relation Domain

In JRelix, given a virtual domain that contains partial functional mapping operation, the
actualizing process for this virtual domain is carried out in method Actualizer.

actualizeParFun().

Since partial functional mapping has more complicated definition than equivalence
reduction and functional mapping, the implementation of actualizeParFun() presents
more complexity although some parts of the implementation are similar to those of
methods actualizeEquiv() and actualizeFun(). In the definition of partial functional
mapping, the value of a virtual domain containing partial functional mapping operation is
accumulated according to its by-domains and order-domains. In method
actualizeParFun(), destination relation is first sorted by byorder-domains which is the
combination of by-domains and order-domains; then bymemory and ordermemory are
initialized sequentially before the tuple-by-tuple comparison is performed. To be able to
support group & order by nested relation domains, in the process of initializing

bymemory and ordermemory the following codes shown in Figures 4.6 and 4.7 are added.

case |DLI ST:
if (env.lookupRel ("."+byarray[i].name, true) !'= null) {
I nteger rownum = new I nteger(currow);
bynmenory. addEl enent (r ownum ;

}

br eak;

Figure 4.6: Codes added to initialize bymemory

54

case |DLI ST:
i f(env.lookupRel ("."+orderarray[i].name, true) !=null) {
I nteger rownum = new I nteger(currow);
order menory. addEl ement (r ownunj ;

br eak;

Figure 4.7: Codes added to initialize ordermemory

In the process of tuple-by-tuple comparison, we need to compare nested relation domains
based on the real values instead of the surrogates, and the related codes are presented in
Figure 4.8 and Figure 4.9. Codes in Figure 4.8 are used to detect the group boundary,
while codes in Figure 4.9 are used to detect the order boundary. When the current values
are different from the values in bymemory or ordermemory, i.e. the boundaries are
reached, the breakflag will be set to be true and the values in bymemory or ordermemory
will be set to the current values. In the case that the current values are the same as the
values in bymemory and ordermemory, the surrogates of the current nested relation
domains will be set as the same as those in bymemory and ordermemory so that in the
destination relation, equivalent values of a nested relation domain will be represented by
the same surrogate. Similar to the implementation of actualizeEquiv() and actualizeFun(),
the existing method Relation.compareTwoRows() is used to compare the nested relation

domain by its real values.

55

for(currow=0;
{
for (i =0; i
{

currow < destrel.nuntuples;currowt+)

<byarray. | ength;i++)

switch(byarray[i].type)

{

case | DLI ST:
/1 if this domain is a nest relation
i f(env.|ookupRel ("." + byarray[i].name, true) != null)
{
Rel ation tnpr = new Rel ation(env);
oj ect[] nestdata = new bject[1];
nestdata[0] = destrel.data[bypos[i]];
int mow = ((Integer)
(bymenory. el ement At (i))).intValue();
Domai n[] domai ns = new Domai n[1] ;
domai ns[0] = byarray[i];
bool ean[] flags = new bool ean[1];
flags[0] = fal se;
int[] atypes = tnpr.toTypes(domains);
int result = tnpr.conpareTwoRows(nestdata, nrow,
nestdata, currow,
1, atypes, flags, dommins, donains);
if (result '=0)
{
bynenory. set El enent At (new | nteger(currow), i);
breakflag = true;

}

el se
/1 if two rows are equival ent, update the surrogate

((long[])destrel.data[bypos[i]])[currow] =
((long[])destrel.data[bypos[i]])[nrow;

br eak;

Figure 4.8: Codes added to detect the group boundary

56

for(i=0;i<orderarray.!length;i++)

{
switch(orderarray[i].type)
{
case |DLI ST:
/1 if this domain is a nest relation
if (env.lookupRel ("."+orderarray[i].name, true) != null)
{
Rel ation tnpr = new Rel ati on(env);
hj ect[] nestdata = new Cbject[1];
nestdata[0] = destrel.dataforderpos[i]];
int mow = ((Integer)
(ordernmenory. el ement At (i))).intValue();
Dormai n[] donai ns = new Donmi n[1] ;
domai ns[0] = orderarray[i];
bool ean[] flags = new bool ean[1];
flags[0] = fal se;
int[] atypes = tnpr.toTypes(domnai ns);
int result = tnpr.conpareTwoRows(nestdata, nrow,
nestdata, currow, 1, atypes, flags,
domai ns, domai ns);
if (result !'=0)
{
order menory. set El enment At (new | nteger(currow), i);
breakflagl = true;
}
el se
((long[])destrel .data[orderpos[i]])[currow] =
((long[])destrel .data[orderpos[i]])[nrow];
}
}
br eak;
}
}

Figure 4.9: Codes added to detect the order boundary

57

4.3 Three New Boolean Function Implementation

To implement the three new Boolean functions: isnulldc, isnulldk and isnull introduced in
chapter 2, we first need to modify the grammar file and generate new parser so that these
new functions could be recognized when the codes entered by users contain these
functions. The lines shown in Figure 4.10 are added into the grammar file Parser.jjt to

generate new parser.

TOKEN : /* FUNCTI ONS */

< I SNULLDC: "isnulldc" > |
< | SNULLDK: "isnulldk" > |
< I SNULL: "isnull" >

Figure 4.10: Modifications in Parser.jjt

In JRelix, as mentioned before, the command users enter will be analyzed first by the
parser, and then a syntax tree derived from it will be generated and passed to the
interpreter for further process. The syntax tree contains all the information of a command.
Such information is stored in linked Simple Node objects, which are components of the
syntax tree. Simple Node class contains a set of attributes and methods. Among them,
attribute opcode is used to store the functions or operations information. Since the type of
opcode is integer, every function or operation defined in JRelix needs a constant integer
value to represent itself in Simple Node object. The integer assigned to each function or

operation is defined in file “Constants.java”. Integers also need to be assigned to the three

58

new Boolean functions so that these functions can be represented in Simple Node object.

The codes added into “Constants.java” are shown in Figure 4.11.

static final int OP_ISNULLDC = 520
static final int OP_ISNULLDK = 521;
static final int OP_I SNULL = 522;

Figure 4.11: Codes added in Constants.java

When a virtual domain is declared, several checkings should be finished before its syntax
tree is cut off from the syntax tree of declaration command and put into domtable. One of
them is to check if there is any mistype matching in the definition of the virtual domain.
Such task is performed in method interpreter.traveType() which is also used to determine
the type of the virtual domain. In this method, different cases are first categorized by
node.type, and then further distinguished by node.opcode. Each case is handled
separately. To handle the three new Boolean functions, the following codes are added in

the method interpreter.traveType() as illustrated in Figure 4.12.

During the actualization of virtual domains, virtual tree building is a very important
procedure, which serves as a preprocess to filter out those virtual domains that could not
be actualized and only allows those that could be actualized to pass to the actualizing
engine. In JRelix, virtual tree building is performed in method actualizer.buildTree(). In
addition to the building virtual tree, other functionalities such as validality check, virtual

Tree expansion, recursive loop detection etc. are also implemented in this method. The

59

following codes shown in Figure 4.13 are added in buildTree() method to guarantee that

the correct type will be returned for the three new Boolean functions.

private int traverseType(Si npl eNode node, Environnent env)
throws InterpretError
{

svm t ch(node. type)
{

c.éllse OP_FUNCTI ON:

svm tch (node. opcode)

{
case OP_I SNULL:
case OP_I SNULLDC:
case OP_I| SNULLDK:
return BOOLEAN,
}

Figure 4.12: Codes Added in Method traverseType

private int buildTree(Sinpl eNode node)
throws InterpretError
{
swi t ch(node. type)
{
case OP_FUNCTI ON:
svm tch (node. opcode)
{
case OP | SNULL:
case OP_I SNULLDC:
case OP_I| SNULLDK:
return BOOLEAN,
}
}
}

Figure 4.13: Codes Added in Method buildTree()

60

In JRelix, actualizing a virtual domain could be viewed as filling calculated values into
the corresponding position in a table. Such position is specified as “cell” in JRelix
implementation. A bunch of methods, including actIntCell(), actStrCell(), actRelCell(),
etc., are implemented in “Actualizer.java” to handle the filling of different types of
“cell”. Among them, actBoolCell() is specified to calculate Boolean value. Since the
three new functions are Boolean functions, the results of these functions should be
calculated in the method actBoolCell(). The following codes shown in Figure 4.14 are

added in this method.

private byte actBool Cel |l ol d(Si npl eNode node) throws InterpretError

swi tch (node.type)
{

case OP_FUNCTI ON:
i f (node. opcode == OP_I SNULL)

Si npl eNode arg = (Si npl eNode) node.jjtGetChild(0);
if (isnulldc(arg) == (byte)BOOL_TRUE ||
i snull dk(arg) == (byte)BOO._TRUE)
return BOOL_TRUE;
el se
return BOOL_FALSE;

}

el se if (node.opcode == OP_I SNULLDC)

{
Si npl eNode arg = (Si npl eNode) node.jjtGetChild(0);
return isnulldc(arg);

}
el se if (node.opcode == OP_| SNULLDK)
{
Si npl eNode arg = (Si npl eNode) node.jjtGetChild(0);
return isnulldk(arg);
}
el se
throw new InterpretError("actBool Cell: function is not
bool ean function");

Figure 4.14: Code Added in Method ActBoolCell()

61

Furthermore, three auxiliary methods are introduced in Actualizer.java, including
isnulldc(), isnulldk() and getType(). Method isnulldc() is used to determine if the cell
value is dc or not, and returns true or false correspondingly. Since dc value is represented
differently for different types of domain in JRelix system as seen in Figure 4.15, and also
as mentioned before, different types of cell are calculated by different methods such as
actint(), atclong(), etc., in Method isnulldc() the node type will be checked first and
depending on its type, different actualizing methods will be called to calculate the cell
value. Next, the calculated cell value will be compared with different dc values. The

method is shown in Figure 4.16.

I nteger, short I NT_DC I NT_DK
Long LONG DC LONG DK
Doubl e, fl oat DOUBLE_DC DOUBLE_DK
Nunber NUMERI C_DC NUMERI C_DK
String, Attribute | STRING DC STRI NG DK
Bool ean BOOL_DC BOOL_DK

Figure 4.15: DC, DK Value Represented in JRelix

The implementation of method isnulldk() is similar to that of method isnulldc(). In this
method the node type is checked first, and handled differently according to its type. The
calculated cell value is then compared with different dk values. The representation of dk
value is shown in Figure 4.15 and the code for Method isnulldk() is illustrated in Figure

4.17.

Method getType() is used in Method isnulldc() and isnulldk() to return the type name of a
node. Such information is used when a InterpretError is thrown. Figure 4.18 lists the code

for this method.

62

private byte isnulldc(SinpleNode arg)

{

byte bm = BOOL_DC,

i nt
long Im=
doubl e dm
String sm
nunber nm

swi tch(destrel . donmai ns[arg. bits]

case

case
case

case

case
case

case
case

case

L

i m= | NT_DC,

ONG_DC;
DOUBLE_DC;
STRI NG_DC,
NUVER! C_DC;

.type)
BOOLEAN:
bm = act Bool Cel | (arg);
if (bm BOOL_DC)
return BOOL_TRUE;

el se
return BOOL_FALSE;
SHORT:
| NTEGER:
im= actintCell(arg);
if (im | NT_DC)
return BOOL_TRUE;

el se
return BOOL_FALSE;
LONG
I m= actLongCell (arg);
if (I'm LONG_DC)
return BOOL_TRUE;

el se
return BOOL_FALSE;
FLOAT:
DOUBLE:
dm = act Doubl eCel | (arg);
if (dm == DOUBLE_DC)
return BOOL_TRUE;
el se
return BOOL_FALSE;
ATTRI BUTE:
STRI NG
sm= actStrCell (arg);
i f (sm conpareTo(STRI NG_DC)
return BOOL_TRUE;
el se
return BOOL_FALSE;
NUMERI C:
nm = act NuntCel | (arg);
i f(nm conpar eTo(NUVERI C_DC)
return BOOL_TRUE;
el se
return BOOL_FALSE;

case | DLI ST:
def aul t:

Uility.dunp(arg,

"act Bool Cel |
throw new I nterpretError("nulldc(" + getType(arg) + "):

throws InterpretError

== O)

== O)

ERROR=>") ;

be i nmpl enented");

to

Figure 4.16: Method isnulldc()

63

private byte isnulldk(SinpleNode arg) throws InterpretError
{

byte bm = BOOL_DK;

int im= | NT_DK

I ong I m= LONG DK;

doubl e dm = DOUBLE_DK;
String sm = STRI NG _DK;
nunber nm = NUMERI C_DK;

swi tch(destrel.domains[arg. bits].type) {
case BOOLEAN:
bm = act Bool Cel | (arg);
if (bm == BOOL_DK)
return BOOL_TRUE;
el se
return BOOL_FALSE;
case SHORT:
case | NTEGER
im= actlntCell (arg);
if (im== 1NT_DK)
return BOOL_TRUE;
el se
return BOOL_FALSE;
case LONG
I'm= actLongCel | (arg);
if (I m== LONG _DK)
return BOOL_TRUE;
el se
return BOCOL_FALSE;
case FLQOAT:
case DOUBLE:
dm = act Doubl eCel | (arg);
i f (dm == DOUBLE_DK)
return BOCOL_TRUE;
el se
return BOCOL_FALSE;
case ATTRI BUTE:
case STRI NG
sm= actStrCell (arg);
if (smconpareTo(STRI NG DK) == 0)
return BOOL_TRUE;
el se
return BOOL_FALSE;
case NUMERI C
nm = act NuntCel | (arg);
i f(nm compar eTo(NUMERI C_DK) == 0)
return BOOL_TRUE;
el se
return BOOL_FALSE;
case | DLI ST:
defaul t:
Uility.dunp(arg, "actBool Cell ERROR=>");
throw new InterpretError("null dk(" + getType(arg)
to be inplenented");

Figure 4.17: Method isnulldk()

64

private String get Type(Si npl eNode node)
{

String typeName = ;
switch (node.type)
{
case BOOLEAN:
typeNane = "bool ean"; break;
case SHORT:
typeNane = "short"; break;
case | NTEGER:
typeNane = "int"; break;
case LONG
t ypeNane
case FLOAT:
t ypeNane
case DOUBLE:
t ypeNane
case NUMERI C
typeName = "nuneric"; break;
case STRI NG
typeNane = "string"; break;
case TEXT:
typeNane = "text"; break;
case STMI:
typeNane = "stnt"; break;
case EXPR:
t ypeNane
case COWP:
typeNane = "conp"; break;
case | DLI ST:
typeNane = "IDList"; break;
case DC
typeNane = "DC'; break;
case DK
typeNanme = "DK"; break;
case RELATI ON:
typeNane = "rel ation"; break;
case VI EW
t ypeNane "view'; break;
case COVPUTATI ON:
typeNane = "conputation"; break;
defaul t:
typeNane = "type nunber:
br eak;

"l ong"; break;

"float"; break;

"doubl e"; break;

"expr"; break;

+ node. type;

}

return typeNane,

Figure 4.18: Method getType()

65

Chapter 5
Clifford Algebra & Clifford ADT

5.1 Introduction to Clifford Algebra

Clifford Algebra is a type of associative algebra in mathematics, named after English
geometer William Clifford. It provides a complete mathematical representation of
geometric notions of direction and magnitude, thus making itself a powerful tool to
describe the physical world [Lou01], and leading to large amount of useful applications
in many different fields including geometry, theoretical physics, engineering, computer
vision, robotics, navigation, space flight, etc. [AbF00]. Accompanying with Grapmann-
Cayley algebras, Clifford algebras broaden the views of a lot of fields. Automatic
theorem proving is related to Clifford algebras; A specific Clifford algebra called
“Deformed Clifford algebra” is used to solve problems in quantum field theory. And
Clifford algebra will certainly play a major role in quantum computing and the design of

quantum computers [AbF00].

One of the important features of Clifford algebra, which distinguishes itself from other
ways to represent geometric concepts, is that this algebra provides a complete coordinate-
free notation to describe space, and hence it can represent any dimensional space in a

generic way and provide unified formalism [Mer05].

In Clifford algebra, a d-dimensional space is composed of elements including points,
edges, faces, volumes, and so on, with each element itself a k-dimensional space with
elements ranging from points(0), edges(1), faces(2), volumes(3) up to hypervolume(d),

and is represented by the linear combination of these components. Therefore the total

66

number of elements in a d-dimensional space is 2! [Mer05]. For example, a 2-
dimensional space is composed of elements {1, e;, e, €12}, and the total number of
elements are 2¢ = 2% = 4, while a 3-dimensional space has basic elements {1, e, e, €3,

€12, €23, €13, €123} and the total number of elements is 20=2%=3g,

There are two operations in Clifford algebra: addition and multiplication. Clifford
algebras are associative under addition and multiplication, and they are commutative
under addition but anti-commutative under multiplication. This means that given Clifford
elements x, y and z, we have x+(y+z) = (xty)+z and x+y=y+x under addition and
x*(y*z)=x*(y*z) under multiplication, but x*y#y*x under multiplication. The reason that
Clifford algebras are not commutative under multiplication operation is that Clifford
algebra integrates direction information in its expression, and thus x*y and y*x represent

elements with different directions and are not equivalent.

Although unlimited number of dimensional space could be represented in Clifford
algebra, the 2-dimensional space will be used to introduce the multiplication operation in

Clifford algebra and the corresponding geometrical interpretation of the operation.

Elements in Clifford algebra Cl,

The Clifford algebra Cl, represents a 2-dimensional space R?. As mentioned above, the

following elements

1 point
€1, € edges
€12 faces

67

form the basis elements for the Clifford algebra Cl,, and an arbitrary element in Cl; is
represented as: u = uy + uje; + wze; + upzejx which is a linear combination of a point,
edges and a face [Lou0Ol]. The geometrical meanings of these elements are shown in
Figure 5.1, where e; and e, are orthonormal components, u;e; + uye, (with u;=cos 6 and
u2=sin 0) represents any arbitrary edge with angle 0, and ujze;, represents the oriented
plane area of the square with edges e; and e, e, is short for the production of e; and e;,
i.e. e = e; €. As mentioned before, multiplication is not commutative in Clifford
algebra, which means e; e, # e, e; 1.e. €12 # €2;. This is due to the fact that e, represents a
plane with direction towards outside as shown in Figure 5.1, while e,; represents a plane

with direction towards inside. The relation between e, and e>1 1S €12 = - €21.

e A T T I I] (%)

21 I
N
N NN N
N
N NN N
e \:\‘:- R A A I I D B
12 B B
N
N NN N
W T R R R R
R NN N
N
) NN
N
N NN N N N
N >"‘E“> LOLIEN
PRI S uiﬁ:b 112-62 A
NN LGN RN
] DA
NN NN NN
D] NN
NN N
] NN

N NN NN
) I)
e ¢ % 9-: NN

» P\r*)
VAN NN N NN i

Figure 5.1: Clifford elements in 2-demential space

Multiplication in Clifford algebra

Similar to the coordinate form, it is defined in Clifford algebra that any edge v produces

itself, i.e. the square of this edge is equal to the square of the length of this edge: v = |[v[*.

68

Therefore, for normalized orthonormal edges e; and e, we have elz=|el|2=1 and
ezz=|e2|2=1. For an arbitrary edge u;e; + uye; in the Clifford algebra Cl,, (uje; + uzez)2 -

2 2 2. 2 2 2
Ui Tt up weiptur eyt u e =uT 4 up”

Multiplication is a very common operation in the Clifford algebra. A lot of geometrical
operations such as rotation and reflection could be done by multiplying certain factors.
For example, e;» is a right angle rotation factor, meaning that the result of
postmultiplying e;, with any edge v is an edge generated by counterclockwise rotating v
through right angle, and premultiplying e;» with any edge v is equivalent to clockwise
rotating v through right angle. Furthermore, u;+ uye; with u;=cos 6 and u,=sin 0 is a
rotation factor for rotating any edge through angle 0. If 6 is positive, any edge multiplied
by this factor will be rotated counterclockwise through 6. On the other hand, if 0 is
negative, the edge multiplied by this factor will be rotated clockwise through 6.

Moreover, given normalized edges u and v, uvu is the reflection of v in u. [Mer05]

In the following section, how to use CliffordADT to calculate the addition and

multiplication will be discussed in details.

5.2 User Manual of Clifford ADT
5.2.1 Introduction to the Usage of Clifford ADT

CliffordADT is a predefined stateless Abstract Data Type (ADT) which provides methods
for supporting basic operations such as plus, subtract and product in Clifford algebra. The

definition of CliffordADT is shown in Figure 5.13. This definition is based on [Mer052]

69

with some modifications so that it can be supported by the current version of JRelix.
CliffordADT is stateless, meaning that it does not have state variables and the previous
invocation of methods in it will not affect the result of the current invocation of the
methods. There are two public methods defined in CliffordADT. One is Add() and the
other is Product(). Method Add() requires three parameters, which are cliffordL, cliffordR
and Clifford. Depending on details of the two input parameters and the output parameter
when the method is invoked, either plus or subtract operation of Clifford algebra will be
performed respectively. Method Product() also requires the three parameters cliffordL,
CliffordR and Clifford when it is invoked. As indicated by the name, it performs the

product operation in Clifford algebra.

Before the usage of CliffordADT is described in detail, how Clifford algebra is
represented in CliffordADT must be discussed. In CliffordADT, the Clifford element is
represented by a two — level nested relation domain with coeff and cliff as attributes.
Coeff is a real scalar for representing the coefficient of the Clifford element; CIiff is
defined as cliff(index), which contains an attribute index of type integer used to store the
indices of the Clifford element. It has been assumed that the indices are in ascending
order in the Clifford element [Mer052]. Examples of representing a Clifford element in

CliffordADT are shown in Figure 5.2.

70

Example 1:

3e1347: (coeff cliff’)
(index)
3 1
3
4
Example 2:
2e1p + See7s: (coeff cliff’)
(index)
2 1
2
5 6
7
8

Figure 5.2: Examples of representing Clifford elements in Clifford ADT

After the declarations of Clifford ADT, the Aldat code shown in Figure 5.3 must be

performed before Add() and Product() could be invoked.

CliffordADT(out Add, out Product);

Figure 5.3: Code for making Add() and Product() available.

Method Add() and Product() have the same parameters cliffordL, cliffordR and Clifford.

Among them, CliffordL and cliffordR are used to represent the left operand and right
operand respectively, and Clifford is used to represent the result of the operation. There
are three ways to invoke Add() as illustrated in Figure 5.4. Depending on the input and

output relations, clifford, cliffordL, and cliffordR could be returned. For method

71

Product(), there is only one way to invoke this method, as seen in Figure 5.5, which
returns the result of the production. In the next section, examples will be given to

illustrate the usage of CliffordADT.

Invocation 1: return Clifford <- CliffordL + CliffordR
Add (in diffordL, in diffordrR, out Cifford)

Invocation 2: return the difference CliffordL <- Clifford - CliffordR
Add (out CdiffordL, in diffordR, in difford)

Invocation 3: return the difference CliffordR <- Clifford - CliffordL
Add (in diffordL, out diffordR in difford)

Figure 5.4: Invocations of Method Add()

Invocation: return the product Clifford <- CliffordL * CliffordR
Product (in diffordL, in diffordR out Cifford)

Figure 5.5: Invocation of Method Product()

There is a requirement when using CliffordADT, that is indices in cliff must be in
ascending order. E.g. es34 is allowed while es3 is not. Also, there is a limitation in the
current implementation of CliffordADT, that is a Clifford element multiplies itself is not

supported by CliffordADT. E.g. ejxXe;; is not allowed.

5.2.2 Examples

Example 1: using Add()

This first example shows how to use method Add() to calculate the several expressions in
Clifford algebra. First for the expression (ejp+3e3) + €23, input parameter cliffordL

e1pt3ey; and cliffordR ep; are represented by relation leftopd and rightopd respectively.

72

The sum clifford is represent by relation aSum, and the calculation of it is shown in
Figure 5.6. The result relation aSum represents Clifford element (ej,+4e,3). Note that
when Add() is invoked, leftopd and rightopd are set as input parameters and asum as
output parameter. Also, since cliff is a nest relation domain, the values shown in the result
are surrogates instead of the real values. The real values that these surrogates represent

are in .cliff.

>CliffordADT(out Add, out Product);

>relation leftopd (coeff, cliff) <- {(1.0, {(1), (2)}),
(3.0,{(2),(3)}) };

>relation rightopd (coeff, cliff) < {(1.0, {(2), (3)})};

>Add(in leftopd, in rightopd, out asum;

>pr asum

Fom e e e e e e oo o e e e o +
| coeff | cliff |
o e o m e e e aa - +
| 1.0 | 7 |
| 4.0 | 8 |
Fom e e e e e e oo o e e e o +

relation asum has 2 tuples

> pr.cliff;

o e e e o Fom e e e e oo - +
| .id | index |
o e e e e R +
1	1
1	2
2	2
2	3
3	2
3	3
7	1
7	2
8	2
8	3
o e e e e R +

Figure 5.6: Using method Add() to calculate the sum.

Given cliffordL (e;x+3e;3) and the sum clifford (ejx+4e,3), we can calculate cliffordR, as

shown in Figure 5.7. The result relation rightopd is interpreted as e,;. Note that when

73

Add() is invoked, the input parameters are leftopd and asum and output parameter is
rightopd. In the result the value for cliff is 16, which is the surrogate value. The real value

represented by this surrogate is shown in Figure 5.12.

>Add(in leftopd, out rightopd, in asum;
>pr rightopd;

o a e s +
| coeff | cliff |
o a e s +
| 1.0 | 16 |
o m e e e oo Fom e e e e e e oo - +

Figure 5.7: Calculating the right operand by using method Add()

On the other hand, given cliffordR e,; and clifford (e;;+4e¢,3), the way using method Add()
to calculate cliffordL is shown in Figure 5.8. The result relation leftopd represents
Clifford element (ej,t3ep3). Similar to the above example, the values for cliff are

surrogates. The real values these surrogates represent are given in Figure 5.12.

>Add(out leftopd, in rightopd, in asum;
>pr | ef t opd;

oo oo +
| coeff | cliff |
o m e e e oo Fom e e e e e e oo - +
| 1.0 | 22 |
| 3.0 | 23 |
i oo +

Figure 5.8: Calculating the left operand by using method Add()

Example 2: using Product()
This example will show how to use method Product() to calculate product expressions in

Clifford algebra. Given an Clifford expression: (e;+3e;)*(ej2+2€e,3+€13), similar to the

74

above example, the left operand (e;+3e;) will be represented by a relation lopd shown in
Figure 5.9 and the right operand (ej,t2ex3+e13) will be represented by relation ropd
shown in Figure 5.10. The result of the product will be represented by relation aproduct.
To invoke method Product(), relation lopd and ropd will be the input parameters and
aproduct, which is the result of the production, will be the output parameter. The codes of
the invocation are listed in Figure 5.11, with the result relation aproduct representing a
Clifford element (-3e;-e123te,17e3). Similar to the above example, the values of cliff in

the relations are surrogates, and the corresponding real values are shown in Figure 5.12.

>relation lopd (coeff, cliff) < {(1.0, {(1)}),
(3.0, {(2)H };

>pr | opd;

oo oo +

| coeff | cliff |
i oo +

| 1.0 | 24 |

| 3.0 | 25 |
oo oo +

Figure 5.9: Representing (e1+3e2) by relation lopd

>relation ropd (coeff, cliff) <- {(12.0, {(1), (2)}),
(2.0, {(2),(3)}). (1.0, {(1).,(3)})};

>pr ropd;

o m e e e oo Fom e e e e e e oo - +

| coeff | cliff |
oo oo +

| 1.0 | 26 |

| 1.0 | 28 |

| 2.0 | 27 |
oo oo +

Figure 5.10: Representing (e12+2e23+e13) by relation ropd

75

>Product(in lopd, in ropd, out aproduct);
>pr aproduct;

oo oo +
| coeff | cliff |
o m e e e oo Fom e e e e e e oo - +
| -3.0 | 40 |
| -1.0 | 39 |
| 1.0 | 37 I
| 7.0 | 42 |
o m e e e oo Fom e e e e e e oo - +

Figure 5.11: Codes invoking method Product()

76

i ndex

.cliff

>pr

Figure 5.12: Relation .cliff

77

5.3 Implementation of Clifford ADT

The implementation of Clifford ADT (CliffordADT), as derived from T.H. Merrett’s
unpublished note “Aldat code for Clifford algebra” [Mer052], is shown in Figure 5.13.
Details for the algorithm used by CliffordADT are given in Ref. [Mer052]. In this section,

the focus will be put on the modification of the algorithm.

1 domai n coeff float;

2 domai n i ndex intg;

3 domain cliff (index);

4 domain cliffordL (coeff, cliff);

5 domain cliffordR (coeff, cliff);

6 domain clifford (coeff, cliff);

7 domai n Add conp(cliffordL,cliffordR, clifford);

8 domai n Product conp(cliffordL, cliffordR, clifford);

9 comp CiffordADT (Add, Product) is

10

11 comp Add(cliffordL,cliffordR <clifford) is

12 {

13 l et coeffL be coeff;

14 let cliffL be cliff;

15 cliffordL' <- [coeffL, cliffL] in cliffordL

16 l et coeffR be coeff;

17 let cliffR be cliff;

18 cliffordR <- [coeffR cliffR] in cliffordR

19 clifford <- cliffordL'[cliffL:ujoin:cliffRlcliffordR ;
20 let coeffL'" be if isnulldc(coefflL) then 0.0 else coeffl;
21 let coeffR be if isnulldc(coeffR) then 0.0 else coeffR
22 | et coeff be coefflL' +coeffR ;

23 let cliff be clifflL;

24 clifford <- [coeff, cliff] in clifford';

25 talt

26 {

27 l et coefflL be coeff;

28 let cliffL be cliff;

29 cliffordL' <- [coefflL, cliffL] in cliffordL
30 l et coeff' be coeff;

31 let cliff' be cliff;

32 clifford <- [coeff', cliff'] in clifford,

33 cliffordR <- cliffordL'[cliffL:ujoin:cliff']clifford
34 let coeffL' be if isnulldc(coefflL) then 0.0 el se coeffl;
35 let coeff'' be if isnulldc(coeff') then 0.0 else coeff';
36 | et coeff be coeff''- coeffl'

37 let cliff be clifflL;

38 cliffordR <- where coeff !'= 0.0 in ([coeff, cliff] in

cliffordR);
39 talt

(continue next page)

78

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78

79
80
81
82

83
84
85
86
87
88

|l et coeffR be

coeff;

let cliffR be cliff;

cliffordR <-

clifford <-
cliffordL' <-

[coeffR, cliffR]
et coeff' be coeff;

et cliff' be cliff;

[coeff', cliff'] in clifford;

cliffordR [cliffRujoin:cliff']clifford';
et coeffR be if isnulldc(coeffR) then 0.0 el se coeffR;
et coeff'' be if isnulldc(coeff') then 0.0 el se coeff"';
et coeff be coeff'' - coeffR;

et cliff be cliffR;

incliffordR

cliffordL <- where coeff '=0.0 in ([coeff, cliff] in cliffordL")
1
conp Product(cliffordL, cliffordR, clifford) is
{
l et coeffL be coeff;
let cliffL be cliff;
cliffordL' <- [coeffL, cliffL] in cliffordL
| et coeffR be coeff;
let cliffR be cliff;
cliffordR <- [coeffR cliffRl in cliffordR
| et segR be fun + of 1 order index;
| et seqLi be -(fun + of 1 order index);
|l et seqL be (red + of 1) + 1 - (fun + of 1 order index);
et sind be fun + of 1 order index;
let tenmpdl be if isnulldc(seqR) then seqlLi el se segR
let s be fun + of 1 order tenpdl;
let seqdiff be if (sind - s) <0 then 0 else (sind - s);
let cliffLR be ([index,seqLi] in cliffL) sjoin
([index,seqR] in cliffR);
let cliff be [index] in clifflLR
let tenpd2 be if seqdiff < O then 0 el se seqdiff;
| et evodsjoin' be [red + of tenmpd2] in cliffLR
| et evodsjoin be evodsjoin' nod 2;
| et evodinvert' be [red + of 1] in clifflL;
| et evodinvert be (evodinvert' / 2) nod 2;
| et tenpd3 be seqR - seqlLi
let cliffLRijoin be ([index,seqLi] in cliffL) ijoin
([index,seqR] in cliffR);
let tenpd4 be [red + of tenpd3] in cliffLRijoin;
let evodijoin' be if ([] incliffLRijoin) then tenpd4 else 0
| et evodijoin be evodijoin' nod 2;
| et anark be if (evodsjoi ntevodi nvert+evodijoin)nod 2 = 0
then 1 else -1;
| et coefflLR be coeffL*coeffRramark;
| et coeff be equiv + of coeffLR by cliff;
clifford <- [coeffLR cliff] in (cliffordL'" ijoin cliffordR);
clifford <- [coeff, cliff] inclifford
1

Figure 5.13: Definition of CliffordADT

79

Method Add()

There are 3 blocks of codes in this method, as shown in Figure 5.13. Codes in different
blocks will be triggered according to different input and output parameters. The first
block of codes will be performed if input parameters are cliffordL and cliffordR and
output parameter is clifford, with the output result clifford equal to cliffordL + cliffordR.
If the input parameters are cliffordL and clifford, and output parameter is cliffordR, the
second block of codes will be triggered and the output result cliffordR is equal to clifford
— cliffordL. The third block of codes will be performed for the input parameters given by
cliffordR and clifford and the output parameter by cliffordL. The output result cliffordL is
equal to clifford — cliffordR. The first block of codes is illustrated in details in Figure

5.14, and the other two blocks of codes are similar to the first one.

In the codes shown in Figure 5.14, the attributes of input parameters cliffordL and
cliffordR are renamed, and then cliffordL and cliffordR themselves are renamed to
cliffordL’ and cliffordR’ through assignments. After performing union join on cliffordL’
and cliffordR’, the coefficients for clifflL and cliffR, which have the same real values, will

be put in the same tuple as shown in Figure 5.15.

13 l et coeffL be coeff;

14 let cliffL be cliff;

15 cliffordL' <- [coeffL, cliffL] in cliffordL;

16 l et coeffR be coeff;

17 let cliffR be cliff;

18 cliffordR <- [coeffR cliffR in cliffordR

19 clifford <- cliffordL'[cliffL:ujoin:cliffRlcliffordR ;
20 |l et coeffL'" be if isnulldc(coefflL) then 0.0 el se coeffl;
21 let coeffR be if isnulldc(coeffR) then 0.0 else coeffR
22 | et coeff be coefflL' +coeffR ;

23 let cliff be clifflL;

24 clifford <- [coeff, cliff] in clifford';

Figure 5.14: First block of codes in Method Add()

80

cliffordL’ cliffordR’
(coeffL, cliffL) (coeffR, CliffR)
1.0 1 3.0 2
2 3
1.0 2
3
clifford’
(coeffL cliffL coeffR cliffR)
(index) (index)
1.0 1 dc 1
2 2
1.0 2 3.0 2
3 3

Figure 5.15: Example of method Add()

The virtual domains coeffL and coeffR, as defined in Figure 5.14, may have dc value, as

for the example shown in Figure 5.15. It causes problems when coeff, which is equal to

coeffL+coeffR, is calculated. To solve the problem, in Line 20 and 21 of Figure 5.14 two

virtual domains coeffL’ and coeffR’ are defined, that is,

20
21

let coeffL' be if isnulldc(coefflL) then 0.0 el se coefflL;
let coeffR be if isnulldc(coeffR) then 0.0 el se coeffR

and Boolean function isnulldc is used in the definition to detect dc value. After the

actualization, values of coeffL” and coeffR’ will be the same as those of coeffL and coeffR

except that the dc value is replaced by 0.0, and then coeffL’ and coeffR’ are used to

calculate coeff. At the end of the codes, attributes in clifford’ are renamed back to coeff

and cliff and assigned to the output parameter clifford.

81

Method Product()

The codes for method Product() are shown in Figure 5.13. Similar to the method Add(),
first the input parameter cliffordL and its attributes coeff and cliff are renamed as
cliffordL’, coeffL and cliffL. Another parameter clifffordR and its attributes coeff and cliff
are renamed as cliffordR’, coeffR, and cliffR. Then the three factors evodsjoin, evodinvert
and evodijoin which determine the final sign of the result are calculated. (The algorithm
to calculate these factors is described in Ref. [Mer052].) In code line 67, virtual domain

tempd1 is introduced to remove dc value by using Boolean function isnulldc:

67 let tenpdl be if isnulldc(seqR) then seqlLi else seqgR

Then in line 73, the concept of Red Scalar is applied:

73 | et evodsjoin' be [red + of tenpd2] in clifflLR;
74 | et evodsjoin be evodsjoin' nod 2;

It means that evodsjoin’ will not be a nest relation virtual domain; instead, it is a scalar
value which could be used in mathematical operations such as +, -, *, /, mod, etc., as
shown in code line 74. Similar to evodsjoin’, the definitions of evodinvert’ and tempd4

(see lines 75 and 79) also indicate that they are scalar values.

75 | et evodinvert' be [red + of 1] in clifflL;
79 let tenpd4 be [red + of tenpd3] in cliffLRijoin;

The factor evodijoin is calculated in the codes below. In line 80, depending on whether
the nested virtual domain cliffLRijion is empty or not, evodijoin’ is given different values.
This test condition must be added since cliffLRijoin may be empty and in that case, if

evodijoin’ is defined as let evodijoin’ be tempd4, during the actualization of evoidijoin’

82

an error will be generated when the system tries to actualize tempd4 on which

evodij oi n' is defined.

78 let cliffLRijoin be ([index,seqLi] in cliffL) ijoin
([index,seqgR] in cliffR);

79 let tenpd4 be [red + of tenpd3] in cliffLRijoin;

80 let evodijoin' be if ([] incliffLRijoin) then tenpd4 el se O;

81 | et evodijoin be evodijoin' nod 2;

In line 84, the equivalence reduction group by nested relation is used in the definition of

virtual domain coeff.

84 | et coeff be equiv + of coeffLR by cliff;

Here coeffLR is summed up according to the real value of the nested relation domain cliff.

83

Chapter 6

Summary

The purpose of this project is to build an Abstract Data Type (ADT) CliffordADT for
Clifford algebra and provide language support for it. As a result of this project, the

following new features have been added into JRelix system:

Vertical Domain Algebra operations have been extended in the following aspects:

* Equivalence reduction has been extended to support group by nested relation
domain, so that the real values of nested relation domain that the surrogates
represent, instead of the surrogates themselves, are compared. This ensures
that equivalent values of nested relation domain are detected and grouped
correctly.

* Functional mapping has been extended to support order by nested relation
domain. The system has been extended to use the real values of nested relation
domain to order tuples, instead of using the surrogates which represent the
real values.

* Partial functional mapping has been extended to support group and order by
nested relation domain. Real values of nested relation domain are used in
group and order tuples, which ensures that partial functional mapping is

correctly performed on nested relation domain.

Also, three new Boolean functions have been implemented:

84

* Function isnulldc has been implemented to test whether a value of an attribute
is dc or not. This function returns Boolean value true or false depending on
whether the value is dc or not;

* Function isnulldk has been implemented to test whether a value of an attribute
is dk or not. Boolean value true or false is returned according to whether the
value is dKk or not;

* Function isnull has been implemented to test whether a value of an attribute is

dc or dk. It returns true or false respectively.

These new features added in JRelix provide support to the creation of the Abstract Data
Type CliffordADT. CliffordADT is a stateless ADT and provides two methods Add() and
Product() to support the addition, subtraction and product operations in Clifford algebra.
Depending on the input and output parameters, method Add() could perform addition and
subtraction in Clifford algebra. Another method Product() is used for calculating the
results of multiplication operations in Clifford algebra. Since the parameters of these two
methods are the same, the output of one method could be used as input of another
method, which ensures that complicated Clifford algebra operations could be performed

by this ADT.

However, there is a limitation in method Product(): pairing products, e.g., ¢;2¥e1, are not
supported in the current version of CliffordADT. Future works should be done to remove

such limitation.

85

Bibliography

[AbF00]

[Bak98]

[Hao98]

[KanO1]

[Lou01]

[Mer84]

[Mer05]

R. Abfamowicz and B. Fauser (eds), Clifford Algebras and their Applications
in Mathematical Physics, Volume 1. Birkhduser Boston, 2000.

P. Baker. Design and Implementation of Database Computations in Java.
Master’s thesis, McGill University, Montreal, 1998.
Biao Hao. Implementation of the Nested Relational in Java. Master's thesis,
McGill University, Montreal, 1998.
Sung Soo Kang. Implementation of Functional Mapping in Nested Relation
Algebra. Master’s project report, McGill University, Montreal, 2001.

P. Lounesto. Clifford Algebras and Spinors, Second Edition. Cambridge
University press, 2001.
T. H. Merrett. Relations as programming language elements. Reston
Publishing Co. Reston, VA, 1984.
T. H. Merrett. Clifford Algebra in Two and Three Dimensions. Unpublished

note for CS 612 “Information Systems”, McGill University, Montreal, 2005.

[Mer052] T.H. Merrett. Aldat code for Clifford algebra. Unpublished note for CS 612

[Yu04]

[Yua98]

“Information Systems”, McGill University, Montreal, 2005.

Zhan Yu. Implementation of Recursively Nested Relation of JRelix. Master’s
project report, McGill University, Montreal, 2004.

Zhongxia Yuan. Java Implementation of the Nested Domain Algebra in a
Database Programming Language. Master’s thesis, McGill University,

Montreal, 1998.

86

[Zhe02] Yi Zheng. Abstract Data Types and Extended Domain Operations on Nested

Relation Algebra. Master's thesis, McGill University, Montreal, 2002.

87

	Language Support for A Relation ADT for Clifford Algebra
	Rong Li
	School of Computer Science
	McGill University, Montreal
	December 2005
	A Project Report Submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements of the degree of Master of Science in Computer Science
	Copyright @2005 Rong Li
	Abstract
	Acknowledgements
	Contents
	
	
	
	Abstract
	Acknowledgment
	Chapter 1 Introduction 1
	Chapter 2 Background 3
	Chapter 3 User’s Manual 26
	Chapter 4 Implementation 41
	Chapter 5 Clifford Algebra & Clifford ADT 60
	Chapter 6 Summary 78
	Bibliography 80

	Chapter 1
	Introduction
	1.1 Background and Motivation
	Project Report Outline

	Chapter 2
	Background
	2.1 Introduction to JRelix
	Getting Started
	2.1.2 Declaration
	
	Domain Declaration

	Figure 2.1: Types of atomic domain [Yu04]
	Figure 2.3: Example of relation declaration & initialization
	Figure 2.4: Contents of Relation SaleInfo
	Assignment
	Relation Algebra
	
	
	Unary operations
	Binary Operations

	2.2.1 System Overview
	2.2.2 Parser Generation in JRelix
	In JRelix, Java Compiler Compiler (JavaCC) is used for automatically generating parser. JavaCC is a popular parser generator for java applications. It reads the high level specification of grammar which is usually stored in a “.jjt” file, and transfers
	As the preprocessor of JavaCC, JJTree inserts parse tree building actions at various places of the JavaCC source. The output of JJTree is a “.jj” file, which is passed to JavaCC to create the parser. The commands used for creating the parser are shown in
	Figure 2.16: Parsing Commands
	2.2.3 Virtual Domain Actualizer
	Equivalence Reduction
	Functional Mapping
	Partial Functional Mapping

	Chapter 3
	User’s Manual
	3.1 Vertical Domain Algebra
	3.1.1 Equivalence Reduction to Support Group by Nested Relation Domain
	3.1.2 Functional Mapping to Support Order by Nested Relation Domain
	3.1.3 Partial Functional Mapping to Support Group & Order by Nested Relation Domain

	3.2 Three New Boolean Functions
	3.2.1 Function isnulldc
	3.2.4 Further Examples
	
	Example for Function isnulldk
	Example for Function isnull

	Chapter 4
	Implementation
	4.1 Development Environment
	
	4.2.1 Equivalence Reduction to Support Group by Nested Relation Domain
	4.2.2 Functional Mapping to Support Order by Nested Relation Domain
	4.2.3 Partial Functional Mapping to Support Group & Order by Nested Relation Domain

	Three New Boolean Function Implementation

	Chapter 5
	Clifford Algebra & Clifford ADT
	
	
	5.2.1 Introduction to the Usage of Clifford ADT

	Chapter 6
	Summary
	Bibliography

