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This is taken from [SZ04, Chap. 5]. It is the first of three applications they develop based on their
review of timeseries techniques in the first four chapters.

1. Data streams are unending sequences of data arriving rapidly and needing to be processed.
For example, quotations and transactions arriving every second for fifty thousand stocks would
constitute a data stream of fifty thousand sequences. Or the Space Shuttle telemeters readings
each second for twenty thousand sensors to Houston.

The kind of analyses discussed in chapter 5 of [SZ04] include single-stream statistics such as average,
standard deviation and best-fit slope, pairwise statistics such as correlation and “beta”, and lagged
statistics such as autocorrelation for single streams or cross correlation for pairs of streams.

We should start with a review.
We write an arbitrary timeseries with capital letters, X or Xi, Xo, .., X,,.

Often we mormalize the timeseries so that its average is 0 and its standard deviation is the the
square root of its length, /n. We write a normalized series with small letters, x or x1, z, .., Tp.

. X; —avg(X)
’ std(X)
where .
avg(X) = E:IXZ/n
and " Z
(std(X))* = ;(Xi —avg(X))?/n

The Pearson Correlation Coefficient between series X and Y is

avg(X. *xY) — avg(X)avg(Y)

corr(X,Y) = std(X)std(Y)
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where we use the MATLAB symbol for the product of two series (vectors),

For a normalized series, the Pearson Correlation Coefficient is just the inner (“dot”) product divided
by the length

corr(x,y) = (xxy)/n

where we use the MATLAB symbol for the inner product of two series (vectors),
n
Xy =Y Ty
i=1

The distance between two series is just the Euclidean distance between two points with the terms

of the series as coordinates.
n

D*(X,Y) =) (X; - Y;)?
i=1

The Pearson Correlation Coefficient of two arbitrary series is negatively related to the distance
between the normalized series [SZ04, p.92].

D?(x,y) = 2n(1 — corr(X,Y))

“Beta” between two series gives the relative movement of the first to the second

iz (Xi — avg(X)) (Vi — aveg(Y))
iz (Yi —avg(Y))?

beta(X,Y) =

With stocks, X is often compared with the market, Y, to assess the “risk” of X. Try it with X =
2,2,—2,—2and Y =1,1,—1,—1.

2. Statistics such as correlation and beta are based on the inner product between two series,
so [SZ04] focus on speeding up calculating the inner product.

They do this by approximation. First, the inner product of the Fourier transforms of two series
equals the inner product of the series. This is obvious because the Fourier transform is an orthonor-
mal linear transform, like the matrix that changes the axes of a vector space. The inner product
of two vectors in this space is unchanged by axis transformation, and so is the same in the new
coordinate system, e.g. the Fourier-transformed series.

Second, the Fourier transform can be approximated by omitting many small coefficients (in many
cases but not all). We’ve discussed this for multimedia data compression. The inner product of
the approximations is always smaller than the inner product of the full Fourier-transformed series,
but we can still use it to estimate correlation, or distance, between two series.

The relationships between correlation and the approximate distance given by the selected coeffi-
cients of the Fourier transform are [SZ04, pp.112-3]

COI‘I‘(X,Y) >1- e = Dapprox(XFayF) < \/ﬁe

COI‘I‘(X, Y) < -1+ 62 = DapprOX(_XF7 yF) < \/E6



where xF is our notation for the Fourier transform of the normalized series, x, and similarly yF
and so on. (We'll write XF to specify the Fourier transform of a non-normalized series.)

Here, € is a small threshold. So to ensure that corr(X,Y) is within 1/4 of 1 (fully correlated),
given X, we need to find Y such that the approximated distance between the Fourier-transformed
normalized x and y is at most \/n/2.

The second relationship above allows us to find negatively-correlated series.

Note that the approximation to the Fourier-transformed inner product is not monotonic, and does
not avoid false negatives. That is, it could miss some highly-correlated series if we used only a
correlation threshold. But we are saved by the relationships with the Fourier-transformed distances,
above.

3. Fourier-transforming an entire series would be expensive, especially since, if it is a data stream,
the series is non-ending. So Shasha and Zhu work with sliding windows of, say, an hour’s worth of
(3600) points or so.

In addition to the sliding windows, for which the statistics are to be gathered, Shasha and Zhu use
a smaller unit, of say a couple of minutes (120 points) or so, as an intermediate. They call these
“basic windows” but we’ll call them blocks.

A block has b points, a sliding window has w points, and we’ll say that an integer number, k, of
blocks make up a window, w = bk.

The idea is to Fourier-transform the block, once all its points have been received, and to store only
“digests”: f selected Fourier coefficients and two running sums (of the points and of their squares)
instead of the data points themselves for the block. This is 2 + 2f numbers, since the Fourier
coefficients are complex.

The sum, sum-of-squares and inner product for the sliding window can be computed on the fly
from these digests for each block. If s; is the sum of points for block j = ¢, ..,c+k —1 for a window
commencing at block ¢, g; is the sum of squares, and d; is the inner product of a pair of series,
then as the window moves from blocks ¢,..,c 4+ k — 1 to blocks ¢+ 1,..,c + k we can replace the
corresponding quantities for the window.

Set1 = Seqk—1+ Serk — Sc
Qc-i—l = Qchkfl + Gtk — 4c
Deyy = Deyg—1+depr —de

Of course we would have to store d for all pairs of series in the data stream, N!2 (N choose 2)
different numbers. So it is better to construct any d needed from the stored Fourier coefficients.
we do not repeat the formula [SZ04, p.114], which is in the same spirit as the three calculations
above.

4. It is time for an example. We simplify rather heavily from, say, 24 300-point blocks per sliding
window. Let’s look at 16-point blocks, b = 16.

Here are four input series for a single block, written as column vectors. We'll call them w, x, y
and z, respectively.

1 1 -1 -1
1 1 -1 -1
1 -1 1 -1
-1 -1 1 1
1 1 -1 -1
1 1 -1 -1
-1 -1 1 1



Their inner products are
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all normalized, their correlations are

MATLAB calculates the Fourier matrix using makeDFT (16):

%makeDFT.m THM 060704

%function

Fn

function Fn
for j=1:n, for k=1:n, En(j,k)=mod((j-1)*(k-1),n); end; end;
Fn = exp((i*2*pi/n).*En)./sqrt(n);

Applied to the four series gives the fourier-transformed series.

.1622
.3536
.1084
.5000
.8155
.3536
.5449
.0000
.5449
.3536
.8155
.5000
.1084
.3536
.1622
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+ o+ + o+

[eNeoNeoR S oNoNoNoNeoNeoNoN NeNeNe

makeDFT(n) generates n*n Fourier transform matrix

.815561
.856361
.1622i
.50001
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.10841
.00001
.10841
.14641
.5449i
.50001
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.856361
.815561

makeDFT (n)
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.00001
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.00001
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.00001
.00001

.00001

.1622
.3536
.1084
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.8155
.35636
.5449
.0000
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.35636
.8155
.5000
.1084
.3536
.1622
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.815561
.856361
.1622i
.50001
.5449i
.14641
.10841
.00001
.10841
.14641
.5449i
.50001
.1622i
.856361
.815561



Note that coefficients 15 are the complex conjugates of coefficients 1 (counting rows above from 0)
and so on for pairs (14,2), (13,3), etc. This is generally true for Fourier coefficents of a series of
real values, and is one of the symmetry properties of Fourier transforms [SZ04, p.20].

To help us select coefficients (Shasha and Zhu just take the first f, but in this simple example
we’ll take the largest ones, in order to keep the number of digests to a minimum), we look at the
magnitudes of all these coefficients.

0 0 0 0
0.6913 0.0000 0.0000 0.6913
0.8536 0.0000 0.0000 0.8536
0.0381 0.0000 0.0000 0.0381
4.5000 8.0000 8.0000 4.5000
0.9619 0.0000 0.0000 0.9619
0.1464 0 0 0.1464
0.3087 0.0000 0.0000 0.3087
1.0000 0 0 1.0000
0.3087 0.0000 0.0000 0.3087
0.1464 0.0000 0.0000 0.1464
0.9619 0.0000 0.0000 0.9619
4.5000 8.0000 8.0000 4.5000
0.0381 0.0000 0.0000 0.0381
0.8536 0.0000 0.0000 0.8536
0.6913 0.0000 0.0000 0.6913

From this we see that coefficients 4 and 12 (counting from row 0) dominate all four series.

We can confirm that the inner products of the Fourier-transformed series are the same as the inner
products of the original series.

16.0000 12.0000 + 0.0000i -12.0000 - 0.0000i -16.0000

12.0000 - 0.0000i 16.0000 -16.0000 -12.0000 + 0.0000i
-12.0000 + 0.0000i -16.0000 16.0000 12.0000 - 0.00001
-16.0000 -12.0000 - 0.0000i 12.0000 + 0.0000i 16.0000

Now we approximate by setting all coefficients to zero except for 4 and 12. The approximate inner
products are

9 12 -12 -9
12 16 -16 -12
-12 -16 16 12
-9 -12 12 9

Note that we do not need to keep coefficients 12, since they are the complex conjugates of coefficients
4. In fact, the inner product values can be found by calculating inner products with only coefficients
4 non-zero, and then doubling.

It is not surprising that we got perfect results for inner products involving series x and y, since
these are both periodic and the coefficients 4 and 12 are the only nonzero Fourier coefficients: the
approximation is exact. Here are the series transformed back again from the approximate Fourier
transform.



0.7500
0.7500
-0.7500
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.00001
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00001
00001
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.0000
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.0000

Clearly, x and y are identical to
originals, differing in sign in only two places each.

o O

0.
0.
0.

the

-1.0000 -0.7500
.00001i -1.0000 - 0.0000i -0.7500 - 0.0000i
.00001i 1.0000 + 0.0000i 0.7500 + 0.0000i
.0000i 1.0000 + 0.0000i 0.7500 + 0.00001i
-1.0000 -0.7500
.0000i -1.0000 - 0.0000i -0.7500 - 0.00001i
.00001i 1.0000 + 0.0000i 0.7500 + 0.0000i
.00001i 1.0000 + 0.0000i 0.7500 + 0.0000i
-1.0000 -0.7500
.0000i -1.0000 - 0.0000i -0.7500 - 0.0000i
.0000i 1.0000 + 0.0000i 0.7500 + 0.0000i

.00001 1.0000 + 0.00001i 0.7500 + 0.00001

-1.0000 -0.7500
0000i -1.0000 - 0.0000i -0.7500 - 0.0000i
0000i  1.0000 + 0.0000i 0.7500 + 0.00001
0000i  1.0000 + 0.0000i 0.7500 + 0.00001

original series, and w and z are periodic variants of the

5. Now we can use the relationships of Note 2, above, to find similar (closely correlated) pairs of
series, as well as opposite (closely negatively correlated) pairs of series. We do this in the context
of the single block we calculated above, rather than for a full sliding window of k blocks. Shasha
and Zhu use the full window, as we should do.?

First, we can find the true correlations, corr(), between pairs of the original series, and we can find
the true distances-squared, D?(), between pairs of the full Fourier-transformed series.

W
w 1
x 3/4
y -3/4
z -1

corr()

X y
3/4 -3/4
1 -1

-1 1
-3/4 3/4

-1

Z

-3/4
3/4

1

distance-squared()

W X y z
w O 8 56 64
x 8 0 64 56
y 56 64 0 8
z 64 56 8 0

Confirm that these satisfy the property given in Note 1, above.

Since we have retained only f = 1 Fourier coefficient in the approximation for each series, we can
locate each series in a two-dimensional space (2f, with different dimensions for real and imaginary
parts of the complex coefficients).

These coefficients are

w

1.5000 + 1.50001

Here is the plot.

X

y Z

2.0000 + 2.0000i -2.0000 - 2.0000i -1.5000 - 1.50001

20n p.114, Shasha and Zhu take the Fourier transformation over all w points of the full window, while on p.110
they take the Fourier transformation over the b points of the block. We use the above 16-point Fourier transform,
and say that w = 16.
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We can calculate the distances between these approximations to the four series, or just read them
off the plot.

distance-squared()

w X y z
w O 1 7 6
X 1 0 8 7
y 7 8 0 1
z 6 7 1 0

Let’s use these approximate distances to find pairs of series that correlate within 1/4, i.e., corr()
> 1—1/4. Thus, € = 1/2, so we need approximate distances y/we = v/16/2 = 2, i.e., distance-
squared < 4. We see this is true for pairs (w,x) and (y,z).

We can use the second relationship to find pairs that anticorrelate within 1/4, i.e., corr() ;e—1+1/4.
Here we need distance-squared of the one series with the negative of the other to be < 4, and we
see that this maps w right on top of z and x right on top of y. So the anticorrelated pairs are
(w,z), (xy), (w)y) and (x,2).

Shasha and Zhu apply a grid to plots such as the above two-dimensional plot in such a way that
we need look only in the grid cell containing one series, or in the immediately adjoining grid cells,
to find other series within the prescribed distance. The grid depends on e.

In our example, the grid cell width should be /we = 2. The whole grid must be able to contain
all possible values of the Fourier coefficients. Since the sum of squares of Fourier coeflicients of
a normalized series equals w, by definition of normalization, the largest any coefficient can be is
vw/2. (The 2 comes from the fact that coefficients are paired, as we saw above, into two complex
conjugates, in the case (always!) that the series is real-valued.)

For our example, \/w/2 = v/8 = 21/2, and this is the absolute value of the coordinates of the outer
box shown in the plot above.

The number of grid cells of width /we that can fit into length (of the positive half of either axis)



Vw/2 is

we

1 2
g = T =51 =2

Thus we showed two cells along each half-axis, above, making sixteen cells in all, of width /2
instead of 2. (Excursion: can we change e after building the grid?)

We still need to search only the cell and its immediate neighbours to find series within \/we of a
given series. As it happens, in our example the closely-correlated series all appear in the same cells
as each other.

This grid structure is a specially-tuned special case of multipaging [Mer78, Mer99], devised for
orthogonal range queries, nearest-neighbour and other multidimensional searches.

6. The correlations discussed so far are without lag: each point in a block for one series is combined
with the corresponding point in the block for the other series (or for itself).

Not only are x and y anticorrelated, but they also are fully correlated with a lag of 2. Let’s look
at this with an even smaller block, b = 4, in the case of windows of three blocks, k£ = 3,w = 12.
We designate the lag as ¢ = 2, and we will need b — ¢ (which also equals 2 so we must be a little
careful in the following example).

y [-1-111|-1-111]-1-11]1][-1-1 |
e
x [11-1-1|11-1-1]11-1-]

We can write and rearrange the sum giving the inner product to see more clearly what we need to
do.

w k
Z TilYite = Z T(j—1)b+1Y(j—1)b+3 T T(j—1)b+2Y(j—1)b+4
i=1 j=1
(- 1)p+3Yjb+1 T T(j—1)b+4Yjb+2
k b—t ¢
= Z Z Z(j—1)b+a¥(j—1)b+a+e T Z L(j-1)b+b—t+a¥Yjb+a
j=la=1 a=1
k jb—t jb
= Z Z ZTaYate + Z LalYa+r
Jj=la=(j—1)b+1 a=jb—{+1

The last two equations are valid for any b and ¢, not just 4 and 2.

To illustrate how this affects the Fourier transform, we transform the block not the window, fol-
lowing p.110 rather than p.114 of [SZ04]. This enables us to show the Fourier transform matrix,
which is 1/2 times

1 1 1 1
1 i-1-1i
1-1 1-1
1 -i-1 1

That is, half of /™% = i raised to the power of {0,1,2,3}*{0,1,2,3} mod 4:

O O OO
W N+~ O
NONO
= N WO



Since

1 1 1 1 1 —1 0 0 0 0
11 i -1 —i 1 —1 | | 14 —(141i) | | zF, yF,
211 -1 1 -1 ~1 1]~ 0 0|~ 0 0

1 —i -1 —1 1 1—i —(1—14) 2F yF

we can find the components of x; and y; in terms of the Fourier coeflicients zF'; and yF; by using
the inverse Fourier matrix

1 1 1 1 0 0
Ir1 —i =1 4 zFy yF,
211 -1 1 -1 0 0

1 -1 —1 zFy yFy

This works out, for the two terms in the same block, to
* * 1 * *
T1Y3 + T2yy = —§($F2yF4 + 2F 4yF3)
and, for the two terms crossing blocks, to
* * * * 1 * *
T3Ys + TaYs = T3Y] + Tays = —§($F2?/F4 + zF4yF'3)

(y: = yi and yg§ = y5 in our example because the series are periodic.)

(You’ll find it informative to work out which elements of the matrix are combined with which other
elements to get the -1/2 factors: they are in the second and fourth columns, of course, and some
combine to 0, some to -1/2.)

The purpose of this oversimplified example is to show that lag gives rise to cross-terms in the
Fourier expansion. Note that zF> combines with yF, above, and vice versa. For the non-lagged
case, zF; would only combine with yF;—for the same i—because of the orthogonality of the rows
(columns) of the Fourier transform.

Writing the above expressions in matrix form

* " 0 —1/2 1
T1Y3 +$2y4 = ($F2,.TF4) ( _1/2 0/ > ( ze% )

* * 0 —1/2 3

while the matrices for the unlagged case would be diagonal.

7. Putting all this together, we have, for our example, f = 1 Fourier coefficient, i.e., 2f = 2
numbers, for each block. If we include the block sum-of-terms and sum-of-squares, this is a record
(tuple) of 2f + 2 numbers, say 4(2f + 2) bytes.

These statistics are summarized from the b data points of the block at, say, 4 bytes each. In our
example, b = 16 and
4b:4(2f +2) =64:16

so we save a factor of 4 on even this baby example.

This is for one data stream, so if there are N data streams, the block must also include a stream
identifier, say 2 bytes (the U.S. trades 50,000 stocks; NASA monitors 20,000 sensors on the space



shuttle): N(4(2f 4+ 2) + 2) bytes for N tuples.

Since a sliding window has k blocks, we must retain k times this many tuples, and add a block
identifier of, say, 1 byte: kN (4(2f+2)+3) bytes for kN tuples. The block identifier is the sequence
number on which the timeseries is ordered.

In addition, we have the statistics we are compiling from these block digests for the entire sliding
window. But these are only a handful of numbers for the whole window.

This counting is correct both for our examples in which we Fourier-transformed only within each
block and for the proper way of doing it in which we must Fourier-transform the entire sliding
window.

We can use redwin(k) to pick out the window. But with data streams, which have indefinite
length, in practice the stored data will be only the window, replacing the first block by the next
block we come to as we move on.

If we have privacy mechanisms, which prevent certain users from seeing certain data, a data stream
can be thought of as a relation with global privacy outside the current sliding window: nobody
can see data in the future of the latest block of the window or in the past of the first block of the
window.

Here are the numbers and the relational representation of an example from [SZ04, p.115]. Sixteen
Fourier coefficients are kept for blocks of b = 300 (5 minutes) timepoints and used to build statistics
for windows of w = 7200 (2 hours) timepoints: k =24, f =16, 2f +2 = 34, 4(2f +2) + 3 = 139
bytes per tuple.

The storage requirements are, for N data streams

N | 1000 10,000 100,000
B | 139K 1.39M 13.9M
W | 3.34M 33.4M  334M

where B is the number of bytes in a block and W is the number of bytes in a window. (Note that
2 bytes cannot identify each of 100,000 streams, so we’d have to add another couple of bytes per
record.)

The relation is

Window

(seq stream S Q foir for1i f02r f02i  f03r f031 fO4r f04i
fo5r  f05i  foor fo6i  fOTr  fO7i fO0Sr  f08i f09r f09i f1O0r f10i
flir  fiti f1or f12i f13r  f1%  fi4r fi4i fi5r f15i fl6r  f16i)

and has 24 different sequence numbers.
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