
A Nested Relation Implementation for Semistructured Data

T. H. Merrett∗

McGill University, Montreal, Canada

April 21, 2005

Abstract

A simple implementation of nested relations also supports recursively nested trees of indef-
inite depth, directed acyclic graphs for sharing common subexpressions, cyclic graphs for links
and cross-references, and union types for attributes. This can all be built without going beyond
the capabilities of an algebra of flat relations which includes relational recursion. Its advantage
is to offer shortcuts to thinking about programs over the kind of data thus modelled, and to
support, to this end, syntax for relational expressions which includes paths of nested attributes,
regular expressions on these paths, and wildcards for generality and for partially known data
schemas. This last is the essential aspect of “semistructured” data. Embedding such semistruc-
tured data within a matrix of ordinary text finally leads to new capabilities which include the
analysis of text with or without implicit schemas induced by text markup.

Keywords nested relations path expressions semistructured data

Contents

1 Introduction 2
1.1 Relational Algebra . 3

1.1.1 T-selectors . 3
1.1.2 Joins . 3
1.1.3 Grep . 4
1.1.4 Statements . 6
1.1.5 Updates . 6

1.2 Domain Algebra . 8
1.3 Nesting: Attributes are Relations . 11

2 Syntactic Sugar for Nested Queries 14

3 Recursive Nesting 17

4 Links: Common Subexpressions and Crossreferences 20
4.1 Queries . 26

5 Union Types: Alternative Forms of Attributes 26
5.1 Queries . 28

6 Schema Discovery 28

7 Marked Up Text 33
7.1 Text . 33
7.2 Marked-Up Text . 36

∗Copyleft c©T. H. Merrett, 2003, 2005

1

8 Data on the Web 39

9 Acknowledgements 41

A Semistructured Queries from Classical Papers 43
A.1 G, G+ and Graphlog . 43
A.2 ACeDB . 46
A.3 Atlas and SGML relations . 48
A.4 Lorel . 51
A.5 UnQL . 55
A.6 OQL-doc . 58
A.7 From Relations to Semistructured Data and XML 59
A.8 Web Query Languages . 62
A.9 XQuery . 64

B Glossary 67

1 Introduction

Serge Abiteboul, Peter Buneman, and Dan Suciu provide [1] a fusion of the two major lines of work
on semistructured data over the past decade. Three decades before, the late Ted Codd gave [9]
the simple form of flat relations, which excel at representing data on secondary storage because
they abstract it to the appropriate level of whole files. The structure of flat relations has a trivial
syntax because it is simple. The work on semistructured data has focused on data descriptions
which generalize Codd’s work, and on related query formalisms.

The relational algebra, which Codd also provided, abstracts over looping, and so is the basis for
a very high-level programming language. This goes beyond query languages such as SQL because
a query language is specialized and notoriously must be extended to provide, say, logical inference,
or calculations on spatial or temporal data. Since semistructured data is frequently an aspect of
scientific databases (e.g., genome databases or bibliographies), it seems important to include it in
a programming language for secondary storage which can also handle such calculations.

We show that a formalism (with the required general programming capabilities, although we
do not dwell on them in this paper) based on flat relations can indeed cope with all the subtleties
of semistructured data and so include this new flexibility into a language which already deals with
expert system rules, geospatial data, numerical calculations, and the like.

The rest of this introductory section reviews the relational algebra and the complementary
domain algebra in the context of a modified syntax which is more suited to general programming
than the apparently similar query-language syntax. Going beyond the limitations, which soon
appear, of query language, we can introduce nested relations through a simple idea which needs
only the most minor syntactic support.

In the sections following, we introduce syntactic sugar for referring to nested relations, and
show a couple of useful representations, one of which is the flat-relation implementation of nesting
(section 2). In section 3, we expand the syntax to recursive nesting, which has the same implemen-
tation representation. Crossreferencing by links, which also support data sharing, is explained in
section 4, and then union types in section 5 complete the formalism for semistructured data. The
syntax explained in the first five sections is sugar and adds nothing to the capabilities of the flat
relational algebra given in the Introduction, but it offers more powerful ways to think about certain
problems. However, a cautionary example shows that the new thinking is not always better than
the old, and in section 7 we move on to the analysis of text with semistructured data embedded in
it.

2

1.1 Relational Algebra

While we can assume that the algebra of flat relations is familiar to the reader, the syntax we
need for it may not be. We restrict our attention to three well-known operators—a combination of
selection and projection called the T-selector, natural join (join), and set union (union)—, three
less common operators used for comparison of relations—natural composition comp, relational
equality, = , and relational division, sup—, and a new relational operator called grep. We also
give a unified syntax for updates.

1.1.1 T-selectors

The T-selector places the relational operand at the extreme right, for ease of expression-building,
followed (to the left) by the selection condition, in turn followed (now on the extreme left) by the
projection list. On the relation (describing the bill of materials to manufacture an electric outlet)

BoM
(assembly qty subassembly)
wallplug 1 cover
wallplug 1 fixture
cover 1 plate
cover 2 screw
fixture 2 plug
fixture 2 screw
plug 2 connector
plug 1 mould

the T-selector to find the components of plugs and their quantities is
[subassembly, qty] where assembly="plug" in BoM

Any number of attributes may appear in the projection list, and any condition that evaluates
to true or false on each separate tuple of the operand may be used after where. (“T” in “T-
selector” stands for “tuple”.) The special cases of projection or selection are obtained by omitting
the where-clause or the projection list, respectively.

Another important special case makes the T-selector a Boolean predicate:
[] where assembly="plug" in BoM

gives a relation on no attributes (“nullary”). A nullary relation can evidently have only two states:
empty (no tuples in the operand satisfy the selection condition), or not empty (some tuples are
selected). The empty nullary is interpreted as false and the non-empty nullary as true. The above
example is pronounced “something where assembly=‘plug’ in BoM”.

1.1.2 Joins

The natural join is written as an infix operator, join. This differs from the apparently more flexible
SQL convention of writing the join conditions explicitly in syntax which is SQL T-selector syntax
except that a second operand is introduced. The advantages of infix notation are that the join
operator is readily seen for what it is (and this obliges the programmer to have a clear idea of what
natural join means), and that expressions of several operations may be articulated. Since join
defaults to Cartesian product if the operands share no attributes, combining this with a T-selector
regains flexibility in case we need a join condition which does not test join attributes for equality.

The full form of natural join includes a specification of the attributes to be matched between
the operand relations, still in infix form. Here is an example, using a copy of BoM, above, renamed
Bom ′(assembly ′,qty ′,subassembly ′). It matches subassembly and qty from BoM with (respectively)
assembly ′ and qty ′ from Bom ′.

Bom [subassembly,qty join assembly ′,qty ′] Bom ′

The result contains the union of the attribute sets of the two operands, but we notice that the

3

attribute pairs subassembly and assembly ′, and qty and qty ′ duplicate each other, and can be
considered alias names for the same attributes in the result.

(assembly qty subassembly assembly ′ qty ′ subassembly ′)
wallplug 1 cover cover 1 plate
fixture 2 plug plug 2 connector

(This example is contrived for illustrative purposes rather than being particularly useful.)
The union operator is, generally, an outer join, extending set union to relations just as natural

join extends set intersection to relations. In this paper we need only set union, so we just call it
union. It is an infix operator between two relations.

While join and the general form of union can be seen as extensions to relations of set-valued
operators on sets (intersection and union, respectively), we also need extensions to relations of
truth-valued operators on sets, such as tests for non-empty intersection, containment, and equality.
These are given, respectively, by natural composition [11] (comp), division (sup), and an equality
test (=). We illustrate natural composition by finding grandparents given a relation Parent(Sr,
Jr).

Parent [Jr comp Sr]Parent
The result has attributes Sr and Jr, like Parent, but Sr comes from the first operand and Jr from the
second: the join attributes disappear in the result because they are used to specify the sets of values
(associated with each value of the non-join operands) that are compared (for empty intersection,
in the case of comp). The other two operators mentioned here have similar semantics, except that
the sets of values specified by the join attributes are compared for containment (sup) or equality
(=).

1.1.3 Grep

A new relational operator is suggested by the need we shall have in section 7 for textual pattern
matching. We would like to be able to find a substring or a match for a more general regular
expression in a relation without knowing in advance which attribute it is in. For this, we consider
grep (which stands for “get regular expression pattern”, as it does in Unix) to be a relational
operator.

grep "plug" in BoM
returns, like selection, each whole tuple in which some attribute contains the (substring) pattern,
"plug":

(assembly qty subassembly)
wallplug 1 cover
wallplug 1 fixture
fixture 2 plug
plug 2 connector
plug 1 mould

Grep can be made more specific by allowing parameters. One parameter is of type integer and
gives the position in the attribute where the match started. The second parameter is of type
attribute and gives the attribute itself that matched the pattern. Neither, either, or both these
parameters may be supplied to grep, and the type of the variable chosen for each tells grep what
it is. Typically, we could use pos (integer) and attr (attribute):

grep(attr,pos) "plug" in BoM

(assembly qty subassembly attr pos)
wallplug 1 cover assembly 4
wallplug 1 fixture assembly 4
fixture 2 plug subassembly 0
plug 2 connector assembly 0
plug 1 mould assembly 0

4

Note that this requires a metadata type attribute for attributes. We shall make further use of
this in section 6.

Note that a pattern may be found several times in a tuple, in which case there will be more
than one value of attr or pos. Grep produces additional tuples in this case, distinguished by the
different values of attr or pos.

grep(attr,pos) "l" in BoM

(assembly qty subassembly attr pos)
wallplug 1 cover assembly 2
wallplug 1 cover assembly 3
wallplug 1 cover assembly 5
wallplug 1 fixture assembly 2
wallplug 1 fixture assembly 3
wallplug 1 fixture assembly 5
fixture 2 plug subassembly 1
plug 2 connector assembly 1
plug 1 mould assembly 1
plug 1 mould subassembly 3

Note that pos can be used to extract proximity of two occurrences of a pattern. If two successive
values of pos are within a pre-specified distance, a proximity test may be considered satisfied. (To
do this requires domain algebra which is not covered in section 1.2.) Note also that pos can be used
to rank tuples or attributes according to how often a pattern occurs. (This requires equivalence
reduction in the domain algebra of section 1.2.)

Of course, grep supports regular expressions, so that we can ask for attributes containing er
or re

grep(attr,pos) "er|re"
or use the wildcard symbol, ., and the Kleene star, *, to cover gaps

grep(attr,pos) "e.*r|r.*e"
This will include connector, as well as cover and fixture
from the er|re example.

As well as these basic regular expression operators, grep supports derived or specialized oper-
ators. For example, finding plug or Plug can use

grep(attr,pos) "[Pp]lug" in BoM
or, for case insensitivity in general, we can use string operators ˆ (or uppercase) or (or lower-
case) to convert the operand to upper or lower case, respectively:

grep(attr,pos) "plug" in BoM or
grep(attr,pos) "plug" in lowercase BoM

(This approach will, of course, give a result in upper or lower case.)
Note that grep will match a pattern if it occurs anywhere in the operand, so we are not obliged

to say
grep(attr,pos) ".*plug.*" in BoM

to find plug anywhere in the attributes of BoM. Indeed, this is not equivalent to our very first
example, because it will return pos=0 for every tuple, since the pattern given actually starts at the
beginning of each attribute that contains plug, even wallplug. To insist on exact match of an
attribute to a pattern, we use the grep symbols indicating the beginning and ending of a string

grep(attr,pos) "^plug$" in BoM
This will not match wallplug. (Note that the grep symbol ˆ has a quite different meaning from
the uppercase string operator ˆ.)

Variables may be useful instead of the .* construct, so that the additional parts of the string
can be returned. To provide this, we allow the programmer to define further attributes in the grep
parameter list which can be used as wildcard variables in the pattern. For example,

grep(attr,pos;x,y) "\x plug\y" in BoM
gives

5

(assembly qty subassembly attr pos x y)
wallplug 1 cover assembly 4 wall
wallplug 1 fixture assembly 4 wall
fixture 2 plug subassembly 0
plug 2 connector assembly 0
plug 1 mould assembly 0

Note that the semicolon in the parameter list for grep separates the list of attributes that are
recognized by type from the list of wildcard variables, which all have type string and are recognized
by position. Note also that we use parentheses as delimiters in the pattern, unless whitespace
happens to separate variable from constant parts of the pattern. This allows x and y to be part of
the constant pattern.

As well as pattern constants, which we have shown above, grep can work with pattern variables,
which could be attributes or top-level variables. For example, an equivalent to our first example
(grep "plug" in BoM) would be

fix <− [subassembly] where assembly="fixture" in BoM ;
grep(attr,pos) fix in BoM

When the pattern variable is a relation of many tuples, each value is treated as an alternative—the
patterns are ored—and there will be at least one tuple in the result for each match.

1.1.4 Statements

An important supplement to the relational algebra are the operators that turn relational expressions
into statements. These are the assignment and view operators. Assignment evaluates an expression
and names the result.

Grandparent <− Parent [Jr comp Sr]Parent
creates the new relation, Grandparent, discussed earlier with attributes Sr, and Jr. View looks
similar to assignment but names the expression without evaluating it: it can be thought of as a
parameterless function.

GPview is Parent [Jr comp Sr]Parent
creates the view, GPview, with the same attributes as Grandparent but no data. If GPview is
subsequently used in an assignment statement, for example, the evaluation is done then. The
advantage of this postponement is that subsequent updates to Parent will be reflected in later
references to GPview. This is not the case for Grandparent.

We can also have recursive views. These can be used to find transitive closure (for example,
Ancestor(Sr, Jr) from Parent(Sr, Jr)) or in an inference engine to fire all rules starting with a
given set of facts. To illustrate the simplest forms of these recursive views, we show the transitive
closure that gives ancestor.

Ancestor is Parent union Parent [Jr comp Sr] Ancestor ;
In the next section we show a more elaborate recursion than this on BoM, using join instead of
comp.

1.1.5 Updates

Finally, update is an operator which, like assignment and view definition, gives a statement and
has side-effects. (The relational algebra up to the discussion of assignment is purely functional, as
is the domain algebra which follows.) This one operator has variants which accomplish all three
forms of update, add, delete, and change. Update works always on subrelations, never at the
level of individual tuples. We can use union to give the semantics of add:

update <relation1> add <relation2>;
is equivalent to

<relation1><− <relation1> union <relation2>;
except that the update can be done in place rather than by copying <relation1>, which most
implementations of the latter would do.

6

Delete can similarly be defined in terms of a difference operator, which we have not given in
this paper.

Change may be followed by statements which operate on attributes (so that full discussion
depends on knowing the domain algebra, below) to alter them in place, and may have an optional
using clause which specifies another relation whose join with the relation to be changed identifies
the part of that operand relation whose tuples will be changed. (The conditional expression of the
domain algebra gives an alternative way to select tuples to change.) The full exploitation of these
two notions is very expressive and we illustrate only a simple variant. In BoM, replace wallplug
by outlet wherever it appears in assembly1, using the auxiliary relation

auxBoM (assembly newassembly)
wallplug outlet

update BoM using auxBoM change assembly <− newassembly ;
We cannot update wildcard variables in change mode:

update BoM change x <− "base"
using where x 6= "" grep(;x) "\x plug" in BoM ;

does not change any attribute in BoM containing plug to baseplug, because x is not an attribute of
BoM and so cannot be updated. Instead, we must identify the attribute and change that, which we
do by extracting the value of the generated attribute attr. This introduces the metadata operator,
eval, which is useful for all kinds of metadata.

update BoM change eval attr <− "baseplug"
using grep(attr) "^plug$" in BoM ;

does change any attribute in BoM containing plug to baseplug.
We may want to update part of the value found by grep instead of the whole of it. We could

permit two more attributes before the semicolon in the grep parameter list, of types type and
any, containing, respectively, the type and the value of the attribute that matched. Then we could
change, say, plug to socket anywhere it is found by an update such as

update BoM change eval attr <− (type) (substr(eval attr,0,pos−1)
cat "socket" cat substr(eval attr,pos+len(val)))
using grep(attr,pos,type,val;) "plug" in BoM ;

The cat operator concatenates strings. The final string resulting from the two concatenations must
be cast to the type of the attribute being changed.

Update to the grep parameter attr is also possible; to pos is unnecessary; and to type is not
always possible except indirectly, because of the independence of domains from relations. Attributes
such as attr, type and val appear again with the transpose operator discussed at the end of
section 1.3.

The add mode of update reveals the important consideration that relations may be polymor-
phic. For example (although this may not be good database design), we might want to add to BoM
a relation giving the costs of the final components.

ComponentCost
(assembly cost)

plate 0.75
screw 0.05

connector 0.20
mould 1.35

The result of
update BoM add ComponentCost;

could be written with null values (since the outer join, which the full form of union implements,
can be considered to generate null values):

1For this paper, no update used as an example will persist; that is, the next time we see BoM in the paper, it will
be the original BoM.

7

BoM
(assembly qty subassembly cost)
wallplug 1 cover DC
wallplug 1 fixture DC
cover 1 plate DC
cover 2 screw DC
fixture 2 plug DC
fixture 2 screw DC
plug 2 connector DC
plug 1 mould DC
plate DC DC 0.75
screw DC DC 0.05
connector DC DC 0.20
mould DC DC 1.35

Here, we introduce the “don’t care” null value, which behaves for all operations as if it isn’t there:
it is the identity of any scalar operation on it, and so on. An attribute containing only DC is the
same as an attribute which isn’t there. Conversely, any attribute which isn’t in a relation can be
thought of as being an attribute of the relation but containing only DC. So the above relation
could also be thought of (and stored) as two separate subrelations, one on attributes assembly, qty
and subassembly, and the other on attributes assembly and cost.

A second variant of the change mode of update takes advantage of this polymorphism to allow
inserting or removing of attributes (as opposed to adding or deleting tuples in the add and delete
modes, respectively). We can remove an attribute from a whole relation (BoM as modified above)

update BoM change remove cost ;
or from selected tuples

update BoM change remove cost using where assembly=screw in BoM ;
The effects of these would be, respectively, to restore BoM to its original three attributes (but
retaining the four extra tuples that came from ComponentCost), or to remove the cost only of the
tuple of ComponentCost containing screw (i.e., setting its cost to DC in the table above).

Any attribute to be inserted into a relation, or part of a relation, must be virtual and defined
by an expression of the domain algebra, discussed next. Example syntax is

update BoM change insert <some virtual attribute>;
or

update BoM change insert <some virtual attribute> using where assem-
bly=screw in BoM ;
and the meaning (after we have explained virtual attributes) is clear by comparison with the re-
move examples.

We may use both insert and remove in one update, to achieve replacements. Each may
be followed by a list of attribute names. (Without ambiguity, but possibly with more confusion,
the keywords remove and insert could be replaced by delete and add, or even drop and add,
respectively.)

Note that for the flat relations we have discussed so far, these modes to insert and remove
attributes are not very useful, since the same results can be had, albeit by copying data, by
projections. For nested relations (section 1.3), on the other hand, they are more useful.

1.2 Domain Algebra

The relational algebra alone does not permit us to do the kind of calculations needed by a pro-
gramming language. We need operations on attributes, constituting what is known as the “domain
algebra” (although it should be called the “attribute algebra”). As the relational algebra abstracts
over the components of the relations (so that the syntax above looks like conventional algebra on
numbers, with unary and binary operators, except the operands can be thought of as whole files),
so the domain algebra abstracts over the relations involved. This is just about the only subtlety

8

of the domain algebra, which is otherwise straightforward, but it is a very important subtlety:
being able to write operations on attributes without reference to the relations they may be part of
greatly reduces the mental effort of programming. In consequence, all domain algebra statements,
like relational algebra views, may be considered to define parameterless functions.

Because the domain algebra is divorced from the relations containing the attributes, the result
of any domain algebra expression is a “virtual” attribute, and must at some point be “actualized”
if it is ultimately to be part of a relation. Suppose we had joined BoM and BoM ′, above, on
subassembly and assembly ′ (instead of on subassembly,qty and assembly ′,qty ′)

Bom ′′ <− Bom [subassembly join assembly ′] Bom ′

and so had

Bom ′′

(assembly qty subassembly assembly ′ qty ′ subassembly ′)
wallplug 1 cover cover 1 plate
wallplug 1 cover cover 2 screw
wallplug 1 fixture fixture 2 plug
wallplug 1 fixture fixture 2 screw
fixture 2 plug plug 2 connector
fixture 2 plug plug 1 mould

Then the virtual attribute qtyp defined by the domain algebra statement
let qtyp be qty×qty ′;

could be actualized by the projection
[assembly,qtyp,subassembly ′] in Bom ′′

to give

(assembly qtyp subassembly ′)
wallplug 1 plate
wallplug 2 screw
wallplug 2 plug
fixture 4 connector
fixture 2 mould

We often write a virtual attribute outside the parentheses containing the attributes of a relation
on which we intend to actualize it, in order to show the values it would eventually have.

Bom ′′

(assembly qty subassembly assembly ′ qty ′ subassembly ′) qtyp
wallplug 1 cover cover 1 plate 1
wallplug 1 cover cover 2 screw 2
wallplug 1 fixture fixture 2 plug 2
wallplug 1 fixture fixture 2 screw 2
fixture 2 plug plug 2 connector 4
fixture 2 plug plug 1 mould 2

(And note that this display contains one important extra tuple missing from the projected
actualization above. We will return to this issue at the end of this section.)

A domain algebra expression may contain any scalar operation on an attribute or any number
of attributes. The above example, qty×qty ′, is the simple binary operation of multiplication. These
expressions are called “scalar”, or “horizontal” because they operate within tuples and tuples are
represented as horizontal rows in the most popular, tabular, representation of relations.

In addition, there may be “vertical” or “aggregate” operations such as summing all the values
of a single attribute. An example is the group-by sum, or “equivalence reduction”, that adds up
the quantities, qtyp, for each pair of assembly and subassembly ′:

let qty ′′ be equiv + of qtyp by assembly, subassembly ′;

9

Note that equiv takes an operator such as + as an operand; the only restriction is that the operator
must be commutative and associative or else the result is undefined because relations are unordered.
This is also true for red, the operator that defines simple aggregation without the by clause.

The relational and domain algebras work together by using the relational algebra to actualize
any virtual attribute. Here is the example of a bill-of-materials “explosion”, the more elaborate
recursion that we referred to earlier, using BoM.

let assembly ′ be assembly;
let qty ′ be qty;
let subassembly ′ be subassembly;
let qty ′′ be equiv + of qty×qty ′ by assembly, subassembly ′;
let qty ′′′ be qty + qty ′′;
let qty be qty ′′′;
let subassembly be subassembly ′;
BoMtc is [assembly,qty,subassembly] in [assembly,qty ′′′,subassembly ′] in

(BoM union [assembly,qty ′′,subassembly ′] in
(BoM [subassembly join assembly ′] [assembly ′,qty ′,subassembly ′] in BoMtc));

Note that we start with three domain algebra statements which simply rename attributes (mak-
ing it unnecessary to have a separate copy, BoM ′, of BoM). This is followed by the definition of
qty ′′, having the same meaning as above, by a single domain algebra expression which combines
both scalar and aggregate operations. The definition of qty ′′′ is to combine quantities when as-
sembly and subassembly are connected by paths of different lengths. The final two domain algebra
statements rename again. Note that both are cyclic when considered together with the previous
domain algebra statements. However, in the relational algebra that follows next, actualization is
done in separate projections, so there are in fact no cycles. The final statement is a recursive view
in the relational algebra which defines the “transitive closure” of BoM, in which the new quantity
is the sum over parallel paths of the product along sequential edges of the original quantities.

The domain algebra has all been defined without reference to the one statement of relational
algebra (but, of course, with it in mind). That one statement is fairly complex, but follows the
same form as the view defining Ancestor, above: a union of the source relation, BoM, with a join
of BoM with the recursively defined result, BoMtc. If such a result had to be defined with a domain
algebra which explicitly named relations, it would be really intricate. (Try writing it in Prolog!).

Two points arise from this example. First, it avoids the loss of the second tuple involving
2 screws, mentioned above, so that wallplug will indeed be shown to have 4 screws. (This
is from the sum over parallel paths. Wallplug also has 4 connectors, due to the product over
sequential edges.) Second, while cycles may appear in the definitions of virtual attributes, they
must be resolved by actualization into non-cyclic (or nonrecursive) calculations. When we extend
the discussion to nested relations, we will find it legitimate to have recursively defined attributes,
so long as each recursive cycle bridges two different levels of nesting.

In section 1.1.5 we referred to conditional expressions in the discussion of updates. These
provide another illustration of scalar domain algebra coupling with relational algebra, so we show
how to change occurrences of cover in either attribute of BoM to top.

update BoM change {
assembly <− if assembly="cover" then "top" else assembly;
subassembly <− if subassembly="cover" then "top" else subassembly;

};
We can also improve the update from section 1.1.5 which uses grep:

update BoM change eval attr <− (if x="wall" then "base" else x) cat "plug"
using grep(attr;x) "\x plug" in BoM ;

changes wallplug to baseplug wherever it appears as an attribute value in BoM.

10

1.3 Nesting: Attributes are Relations

The relations we have discussed so far are “flat”, in keeping with Codd’s first normal form [10]: no
attribute may have set or tuple values. It is not appropriate in a programming language to have such
a caste system, whereby some data types (sets, tuples, and hence relations) have fewer privileges
than others (strings, integers, etc.). So we violate first normal form by the simple expedient of
allowing, in each tuple, the values of any attribute to be relational.

Since this is an apparently expanded data structure, which we call nested relations, we should
have a formalism to manipulate it, or it would be as useless for programming as relations without
the relational and domain algebras. Fortunately, we find a formalism by an expedient as simple
as that which gave nested relations: we permit the operators of the domain algebra to include the
operators of the relational algebra. That is, for nesting, the domain algebra subsumes the relational
algebra.

The only mechanisms we need beyond this idea are those for raising and lowering levels of
nesting. Even here, we can almost entirely again avoid adding new syntax.

Here is a three-level nested relation, written out in a self-evident way. Outside the parentheses,
we also show some virtual attributes which we discuss next.

company
(cname address) compname addcity nameAddCity

(street city codezip) (cname) (city) (cname city)
(num cname)

Dink Inc. 1 Dink St Dinkton D1N3T0 Dink Inc. Dinkton Dink Inc. Dinkton

13 Dink St

1 Dink St Dinkville D1N3V1 Dinkville Dink Inc. Dinkville

FemtoSoft 10000 No Way Rapa City R8P8C1 FemtoSoft Rapa City FemtoSoft Rapa City

KiloSoft 314 Speed Way Adroit 48207 KiloSoft Adroit KiloSoft Adroit

The first virtual attribute we declare introduces the new syntax for adding a new level of nesting.
let compname be relation(cname);

This makes cname an attribute of a new relation, which itself could be a virtual attribute of either
company or street, both of which have cname as attribute: above we show the result only for
company. The relation() syntax allows grouping of any number of attributes into a new relation,
but the relation is a singleton: it has only one tuple for each tuple of the relation it is nested in
(the “outer relation”).

The second virtual attribute illustrates projection subsumed into the domain algebra.
let addcity be [city] in address;

This creates a virtual attribute, shown for company, which is a relation on the attribute city.
We now have two virtual attributes, compname and addcity, so we can combine them with a

binary relational operator, join, in the domain algebra.
let nameAddCity be compname join addcity;

This gives a relation on the two attributes, cname and city, using the Cartesian product mode
of join, since the two operands have no common attribute, and we did not explicitly specify join
attributes (say, [cname join city]).

We could create a new top-level relation by projecting nameAddCity from company,
NameAddCity <− [nameAddCity] in company;

but note that the result is a nested relation (horizontal lines mark the boundaries between the outer
tuples):

NameAddCity
(nameAddCity)
(cname city)
Dink Inc. Dinkton
Dink Inc. Dinkville

FemtoSoft Rapa City

KiloSoft Adroit

11

We might like to “flatten” this into a single-level relation. This requires combining all the outer
tuples into one, which we can do by taking the union of the inner relation, nameAddCity, with itself
over all tuples: red union of nameAddCity. It also requires getting rid of the name, nameAddCity.
We can do both of these by writing the reduction directly in a projection list, without giving the
domain expression a name. Then the system has no choice but to raise the level.

NameCity <− [red union of nameAddCity] in company;

NameCity
(cname city)
Dink Inc. Dinkton
Dink Inc. Dinkville
FemtoSoft Rapa City
KiloSoft Adroit

Note that level raising requires no new syntax, just anonymous projection. But it does require
care in making sure that the outer relation is a singleton, so that the anonymous expression usually
involves a red union of.

Implementing nested relations is easy, and shows that their benefit is ease of thinking about
certain problems rather than extending the capabilities of flat relations. We build a nested relation
as a collection of flat relations, linked by “surrogate” values. Thus, company becomes

company
(cname address)
Dink Inc. 37
FemtoSoft 22
KiloSoft 48

.address .street
(.id street city codezip) (.id num cname)
37 144 Dinkton D1N3T0 144 1 Dink St
37 156 Dinkville D1N3V1 144 13 Dink St
22 132 Rapa City R8P8C1 156 1 Dink St
48 111 Adroit 48207 132 10000 No Way

111 314 Speed Way

These separate flat relations are implicitly joined on the attribute that is the name of the nested
relation and the .id attribute of the nested relation. Note that the surrogate values held in these
attributes permit one-to-many joins. Implementing the formalism that subsumes the relational
algebra into the domain algebra is straightforward: the join is made and reductions are translated
to equivalence reductions by .id. Where suitable, the full join need not be made, but only part of
it, by a process of pointer dereferencing on secondary storage.

Update on nested relations likewise requires that statements involving the relational algebra be
allowed after the change keyword, including, of course, nested update statements. For example,
we change Dinkton to Dinkburg in city in address in company:

update company change
update address change

city <− if city="Dinkton" then "Dinkburg" else city ;
A useful new operator of the domain algebra generates special nested attributes. Transpose,

followed optionally by parameters of types attribute, type, or any creates a relation on attributes
which are these parameters, containing a tuple for each attribute of the relation it is actualized in.
Thus

let xpose be transpose(attr,type,val);
gives the virtual attribute xpose in ComponentCost from section 1.1.5

12

ComponentCost
(assembly cost) xpose

(attr type val)
plate 0.75 assembly string plate

cost real 0.75
screw 0.05 assembly string screw

cost real 0.05
connector 0.20 assembly string connector

cost real 0.20
mould 1.35 assembly string mould

cost real 1.35

We see from this why types type and any must be introduced. Type any is an example of a union
type, which we shall encounter again in section 5. We will mostly be interested in the attribute
parameter in this paper, so do not pursue the others.

(Updates using transpose are similar to updates using grep, and provide a way to change
an attribute name under certain circumstances, for example: change attr <− <newAttribute>
will replace any selected values of attr by DC and introduce newAttribute polymorphically into the
relation.)

Using transpose, we can begin a discussion of finding the paths in a nested relation (and hence
its schema) which we shall be able to complete once we have considered recursive nesting in sec-
tion 3. For this application, we also need a keyword, self, which returns the name of the relation
it is actualized in. For company,

let xpose be transpose(attr);
let path be self/attr ;

gives the virtual attributes xpose and path shown below for every subrelation (they are actualizable
on all of the subrelations because they do not refer to any attributes). (The definition of path is
equivalent to

let path be self cat "/" cat attr ;
with suitable castings.)

company
(cname address) xpose

(street city codezip) xpose (attr) path
(num cname) xpose (attr) path

(attr) path
Dink Inc. 1 Dink St num street/num Dinkton D1N3T0 city address/city cname company/cname

cname street/cname codezip address/codezip
13 Dink St num street/num

cname street/cname
1 Dink St num street/num Dinkville D1N3V1 city address/city

cname street/cname codezip address/codezip
FemtoSoft 10000 No Way num street/num Rapa City R8P8C1 city address/city cname company/cname

cname street/cname codezip address/codezip
KiloSoft 314 Speed Way num street/num Adroit 48207 city address/city cname company/cname

cname street/cname codezip address/codezip

Note that transpose returns data only on scalar attributes; it does not report on nested
attributes or provide recursive structure by itself. Doing that will be our goal in section 3. (Note
also that we have cheated above: self would really pick up xpose in each case instead of the name
of the relation two levels up (street, etc.). This can be fixed by not naming xpose, as we will see in
section 3.)

The above result is highly redundant, because we did not ask transpose to produce a value,
so we remove the repetitions and raise the level by an anonymous red union. For example:

let paths be [red union of [path] in xpose] in street ;
gives the virtual attribute

13

company
(cname address)

(street city codezip) paths
(num cname) (path)

Dink Inc. 1 Dink St Dinkton D1N3T0 street/num
13 Dink St street/cname
1 Dink St Dinkville D1N3V1 street/num

street/cname
FemtoSoft 10000 No Way Rapa City R8P8C1 street/num

street/cname
KiloSoft 314 Speed Way Adroit 48207 street/num

street/cname

This is still redundant, but before raising the level still higher, we modify the definition of paths
to include the paths at the new level.

let path ′ be self/path;
let paths be [red union of [path] in (([path] in xpose) [path union path ′]

[path ′] in [red union of [path] in xpose] in street] in address;
giving

company
(cname address)

(street city codezip) paths
(num cname) (path)

Dink Inc. 1 Dink St Dinkton D1N3T0 address/street/num
13 Dink St address/street/cname
1 Dink St Dinkville D1N3V1 address/city

address/codezip
FemtoSoft 10000 No Way Rapa City R8P8C1 address/street/num

address/street/cname
address/city
address/codezip

KiloSoft 314 Speed Way Adroit 48207 address/street/num
address/street/cname
address/city
address/codezip

One more union and level-raising will produce all the paths in company, but we will save this
closure until we discuss recursive nesting in section 3.

2 Syntactic Sugar for Nested Queries

We can investigate in more detail elements which are likely to be frequently used in querying nested
relations, and can thus be captured by simplified syntax. By “query” we mean mainly T-selectors
and grep operations; we consider binary operations only briefly.

The T-selector (section 1.1) has three components: projection list, selection condition, and re-
lational expression. The first two involve domain expressions, but since nesting subsumes relations
as domains, the projection list and the relational expression may be considered together. The selec-
tion condition is a special kind of domain expression, with Boolean value, and must be considered
separately.

We start with projection. We saw an example in section 1.3, which used anonymous red union
of to raise the level of nesting. We start the present discussion by projecting address from company
in this way.

Address <− [red union of address] in company ;
Our syntactic sugar will turn this into

Address <− company/address;
where we concatenate attribute names into a path by the / operator (so that the path looks like a
directory path in an operating system such as Unix). The result of either is

14

Address
(street city codezip)
(num cname)

1 Dink St Dinkton D1N3T0
13 Dink St
1 Dink St Dinkville D1N3V1

10000 No Way Rapa City R8P8C1
314 Speed Way Adroit 48207

We can go deeper.
Street <− [red union of [red union of street] in address] in company ;

becomes
Street <− company/address/street ;

giving the top-level relation, Street(num,cname). Going all the way to a leaf looks different in the
unsweetened syntax:

Cname <− [red union of [red union of [cname] in street] in address] in company ;
becomes

Cname <− company/address/street/cname;
giving Cname(cname).

Now suppose we wanted to project cname either directly from company or, two levels down,
from street.

Cname <− [red union of
relation(cname) union [red union of [cname] in street]
in address] in company;

or, eliding the relation() operator since it has only one operand, cname
Cname <− [red union of cname union [red union of [cname] in street]

in address] in company;
becomes

Cname <− company/(address/street/)?cname;
where the regular expression operator, ?, allows zero or one occurrences of its operand, address/street/.
The result of this last is

Cname
(cname)
Dink Inc.
FemtoSoft
KiloSoft
Dink St
No Way
Speed Way

The syntactic sugar can be used at either end of a regular T-selector.
company/address/street/cname;

is the same as
address/street/cname in company;

or
street/cname in company/address;

or
cname in company/address/street;

where we have omitted the brackets, [..], around the projection list, since only one attribute is
projected.

To project multiple attributes from some deeper level is also easy.
[red union of [red union of [num, cname] in street] in address] in company;

is

15

[num, cname] in company/address/street;

Selection introduces Boolean selection conditions. Suppose we wanted to find tuples of company
where address/city is Dinkton.

DinkCity <− where ([] where city="Dinkton" in address) in company;
which, of course, becomes the syntactic sugar

DinkCity <− where address/city="Dinkton" in company;
Note that attribute paths in a selection condition have a different interpretation from attribute
paths serving as projections. The nullary expression, [] where city="Dinkton" in address, is just
the Boolean “something where city = ‘Dinkton’ in address” of section 1.1.1.

Now move from T-selectors to the second unary relational operator, grep. In select mode
(section 1.1.3), grep is not recursive:

grep "Way" in company
returns an empty result.

grep(attr,pos) "Dink" in company
gives, because "Dink" is a substring of the top-level scalar attribute, cname

(cname address) attr pos
(street city codezip)
(num cname)

Dink Inc. 1 Dink St Dinkton D1N3T0 cname 0
13 Dink St
1 Dink St Dinkville D1N3V1

We must be explicit to go deeper. For example, to find attributes containing “Dink” in street,
we can proceed in two steps

let streetDink be grep(attr) "Dink" in street;
[red union of [red union of [attr] in streetDink] in address] in company

or in one step
[red union of [red union of [attr] in grep(attr) "Dink" in street] in address]

in company
Syntactic sugar makes this shorter.

attr in grep(attr) "Dink" in company/address/street

Now that we have established two meanings for expressions concatenating attributes into paths,
depending whether the context is a projection or a condition, we can easily interpret such paths if
they appear as arguments or operands of the binary operators.

Update..change uses a third interpretation of the same syntactic sugar. Changing Dinkton
to Dinkburg in city in address in company at the end of section 1.3 can be written:

update company/address change
city <− if city="Dinkton" then "Dinkburg" else city ;

(but not
update company change

address/city <− if city="Dinkton" then "Dinkburg" else city ;
since path expressions are not maeningful on the left of an assignment). The first abbreviates

update company change
update address change

city <− if city="Dinkton" then "Dinkburg" else city ;
We have, thus far, introduced only one regular expression operator, i.e., "?". More such oper-

ators appear as we elaborate further in the next three sections.

16

3 Recursive Nesting

We were led to nested relations by the consideration that limiting some data types relative to others
complicates a programming language by multiplying special cases. A similar consideration leads to
recursive data types, in our case, recursive nesting: why should a relation not be an attribute of
itself? The bill of materials appears to be a potential application.

assembly
(component subassembly)

(qty component subassembly)
(qty component subassembly)

(qty component subassembly)
wallplug 1 cover 1 plate DC

2 screw DC
1 fixture 2 plug 1 mould DC

2 connector DC
2 screw DC

(The null value, DC, is one of two possible nulls, and stands for irrelevant, or “don’t care”.)
To find all components from this, the domain algebra must allow recursive definitions of virtual

attributes across levels of nesting.
let cmpnt be component union [red union of cmpnt]

in subassembly ;
As with relational recursion, cmpnt is initially empty. At the lowest level, it then takes on the value
of component. Apart from the recursion and initialization, we recognize the idiom that translates
to the syntactic sugar (subassembly/)?component.

Considering initialization and recursion gives the Kleene star in the syntactic sugar.
let cmpnt be (subassembly/)*component;

Alternatively, we could write the projection directly.
assembly/(subassembly/)*component;

These each give

(component)
wallplug
cover
fixture
plate
screw
plug
mould
connector

The Kleene star gives our syntactic sugar half the capabilities of regular expressions. The other
half, alternatives, will appear in section 5.

Implementing recursive nesting adds nothing new. The .id attribute is enough. The flat relations
for assembly are assembly(component,subassembly) and .subassembly(.id,component,subassembly),
with .subassembly/subassembly and .subassembly/.id sharing surrogate values to build the recursion.

17

assembly .subassembly
(component subassembly) (.id qty component subassembly)
wallplug 13 13 1 cover 27

13 1 fixture 24
27 1 plate DC
27 2 screw DC
24 2 plug 31
24 2 screw DC
31 2 mould DC
31 2 connector DC

2

The mechanisms we have explored for recursive nesting allow us to exploit fully another useful
feature, the “wildcard”, even for fixed nesting. Suppose we wanted to project cname from all levels
of company (section 2), but did not wish to write down the attribute names for intermediate levels
(or perhaps do not even know what they are).

Cname <− [cname union [red union of [red union of cname] in .] in .]
in company;

or
Cname <− company/(././)?cname;

We can go further, and not even bother with how many levels there are, by using domain algebra
recursion

let cn be cname union [red union of cn] in .;
let cname be cn;
Cname <− [red union of cname] where !null(cname) in [cn] in company;

This works through intermediate levels containing no cname attribute if we assume that the absence
of an attribute is the same thing as the presence of that attribute with nothing but null values
(hence the test for nullity). This is a plausible assumption, being the converse of considering an
attribute with all null values in a relation not to be an attribute of the relation (section 1.1.5).

The syntactic sugar for this uses the Kleene star
Cname <− company/(./)*cname;

which can be abbreviated to
Cname <− company/*/cname;

or even
Cname <− company//cname;

To find cname more than one level down,
Cname <− company/(./)+cname;

2It is instructive to write the code that “explodes” the bill of materials in this recursively nested form. It follows
the lines of the explosion of the flat BoM, but is a little more involved. We write it explicitly without sugar (or
further explanation except to note the use of syntax to initialize a recursion).

let qty ′ be qty ;
let component ′ be component ;
let suba1 be [qty ′,component ′] in relation (qty,component) join [qty,component]

in suba0 ;
let qty ′′ be qty×qty ′;
let suba2 be relation (qty,component) union [component ′,qty ′′,component]

in suba1 ;
let qty ′′′ be qty+qty ′′;
let suba3 be [component ′,qty ′′′,component] in suba2 ;
let qty ′′′′ be equiv + of qty ′′′ by component ;
let qty be qty ′′′′;
let suba0 initial subassembly be [qty,component] in [qty ′′′′,component]

in [red union of suba3] in subassembly ;
assemblyExplode <− [red union of suba0] in assembly ;

18

is the syntactic sugar for
let cn be cname union [red union of cn] in .;
let cname be cn;
Cname <− [red union of cname] where !null(cname) in [red union of cn]

in company;

If we also allow specialized constructs supported by grep, such as

[<any attribute in list>]
[ˆ <any attribute not in list>]
<regex> | <regex> alternatives
\ <metasymbol> e.g., \., \∗, \+, \?, \!, \(, \), \$, \[, \], \ˆ, \ |, ..

we can multiply them with ∗ or + in the same way. For example, to find cname but not in street,
Cname <− company/([ˆ(street)]/)*cname;

would be the syntactic sugar for
let cn be cname union [red union of cn] in [ˆ(street)];
let cname be cn;
Cname <− [red union of cname] where !null(cname) in [cn] in company;

Parentheses are needed around street in the bracketted exclusion list so it is not taken as an exclusion
of the letters s, t, r, or e, which is the interpretation of this regular expression when applied to
strings as opposed to attribute names.

The most general expression we can make with this syntactic sugar is
company(/.)* or company//

which flattens company to

(cname city codezip num)
Dink Inc. DC DC DC
DC Dinkton D1N3T0 DC
DC Dinkville D1N3V1 DC
Dink St. DC DC 1
Dink St. DC DC 13
Femtosoft DC DC DC
DC Rapa City R8P8C1 DC
No Way DC DC 10000
DC Adroit 48207 DC
Speed Way DC DC 314

given a suitable definition of union for relations with only some, or no, common attributes. This
flattening is simpler for a recursively nested relation:

assembly//
gives

(qty component)
DC wallplug
1 cover
1 fixture
1 plate
2 screw
2 plug
1 mould
2 connector

Of course, the hierarchical relationships among the components are lost: this operation does not
generate the ternary flat relation retaining these relationships.

19

Finally, we can finish the code we started at the end of section 1.3 to find all paths in the nested
relation company.

let path be self/attr ;
let path ′ be self/path;
let paths be [path] in (([path] in transpose(attr)) [path union path ′]

([path ′] in [red union of paths] in .));
[red union of paths] in company

(Because the union is qualified by attributes in [path union path ′], this code is now too specialized
to be reducible to simple syntactic sugar such as

company//transpose(attr)/path.)
The result is

(path)
city/address/street/num
city/address/street/cname
city/address/city
city/address/codezip
city/cname

4 Links: Common Subexpressions and Crossreferences

Nested relations so far, even with recursive nesting, form hierarchies which are strict trees. This
precludes the possibility of data sharing, and certainly of cycles. For example, Dink St is repre-
sented twice in the example of section 1.3. Since there is nothing in the flat relational data structure
we use to implement nested relations that precludes directed acyclic graphs (DAGs) from being
represented, or even cycles, we should look at this possibility for saving storage and for the further
advantages of data sharing such as the impossibility of inconsistently updating one branch of a tree
and not the other.

The bill of materials of section 3 provides an example of data sharing. Suppose we also wished
to describe the subassembly fixture as a product, and hence as an assembly. Given only a tree
structure, we would be forced to repeat the data for fixture, one level higher up in the nesting.

assembly
(component subassembly)

(qty component subassembly)
(qty component subassembly)

(qty component subassembly)
wallplug 1 cover 1 plate DC

2 screw DC
1 fixture 2 plug 1 mould DC

2 connector DC
2 screw DC

fixture 2 plug 1 mould DC
2 connector DC

2 screw DC

and this would be reflected in the implementation.

20

assembly .subassembly
(component subassembly) (.id qty component subassembly)
wallplug 13 13 1 cover 27
fixture 14 13 1 fixture 24

27 1 plate DC
27 2 screw DC
24 2 plug 31
24 2 screw DC
31 2 mould DC
31 2 connector DC
14 2 plug 21
14 2 screw DC
21 2 mould DC
21 2 connector DC

Since the implementation is easily able to save this redundancy, by changing a surrogate,

assembly .subassembly
(component subassembly) (.id qty component subassembly)
wallplug 13 13 1 cover 27
fixture 24 13 1 fixture 24

27 1 plate DC
27 2 screw DC
24 2 plug 31
24 2 screw DC
31 2 mould DC
31 2 connector DC

we should have a way of indicating value sharing in the programmer representation. We can suggest
using a label of some sort, which we are fairly free to invent.

assembly
(component subassembly)

(qty component subassembly)
(qty component subassembly)

(qty component subassembly)
wallplug 1 cover 1 plate DC

2 screw DC
1 fixture fixture: 2 plug 1 mould DC

2 connector DC
2 screw DC

fixture subassembly:fixture

The term “label” is reminiscent of goto in programming languages, which was considered unde-
sirable because obscure code can result. In fact, shared subexpressions better resemble subroutines,
since they have clear terminations as well as starts. We will use subex technically instead of “label”
(although informally, we may use “label” since it is an English word).

We say we are “fairly free to invent” a representation of labels because the above is only a print
representation of the data. We have yet to discuss a true programmer representation, to be used,
for instance, in initializing (nested) relations. Now is the appropriate occasion to do this.

There are many possibilities, but we introduce a “mark-up” representation called xML, where
x ∈ {G, HT, SG, X, ..}, so that xML has the characteristics of all the markup notations that
originated with GML. This is quite a redundant representation, because it repeats the schemas for
the data that we have been assuming were declared in the program prior to use (see section 5). It

21

has the attraction of freeing us from such declarations should we want or need to avoid them. We
revisit this discussion in section 6

We start with the simple, flat relation, BoM(assembly,qty,subassembly), from section 1.1.

<Bom>
<assembly>wallplug</assembly> <qty>1</qty> <subassembly>cover</subassembly>
<assembly>wallplug</assembly> <qty>1</qty> <subassembly>fixture</subassembly>
<assembly>cover</assembly> <qty>1</qty> <subassembly>plate</subassembly>
<assembly>cover</assembly> <qty>2</qty> <subassembly>screw</subassembly>
<assembly>fixture</assembly> <qty>2</qty> <subassembly>plug</subassembly>
<assembly>fixture</assembly> <qty>2</qty> <subassembly>screw</subassembly>
<assembly>plug</assembly> <qty>2</qty> <subassembly>connector</subassembly>
<assembly>plug</assembly> <qty>1</qty> <subassembly>mould</subassembly>

</Bom>

This straightforward way of encoding a relation is fine if there are no complications such as omitted
values. A more elaborate xML representation introduces a hidden tag, <.tuple>, to separate tuples.

<Bom>
<.tuple>
<assembly>wallplug</assembly> <qty>1</qty> <subassembly>cover</subassembly>
</.tuple>
<.tuple>
<assembly>wallplug</assembly> <qty>1</qty> <subassembly>fixture</subassembly>
</.tuple>
<.tuple>
<assembly>cover</assembly> <qty>1</qty> <subassembly>plate</subassembly>
</.tuple>
<.tuple>
<assembly>cover</assembly> <qty>2</qty> <subassembly>screw</subassembly>
</.tuple>
<.tuple>
<assembly>fixture</assembly> <qty>2</qty> <subassembly>plug</subassembly>
</.tuple>
<.tuple>
<assembly>fixture</assembly> <qty>2</qty> <subassembly>screw</subassembly>
</.tuple>
<.tuple>
<assembly>plug</assembly> <qty>2</qty> <subassembly>connector</subassembly>
</.tuple>
<.tuple>
<assembly>plug</assembly> <qty>1</qty> <subassembly>mould</subassembly>
</.tuple>

</Bom>

The straightforward form can work with nesting. Here is the xML representation of the recur-
sively nested bill of materials, including a linking label, subex, and the additional entry for fixture.

<assembly>
<component>wallplug</component>
<subassembly>
<qty>1</qty>

22

<component>cover</component>
<subassembly>

<qty>1</qty>
<component>plate</component>
<qty>2</qty>
<component>screw</component>

</subassembly>
<qty>1</qty>
<component>fixture</component>
<subassembly subex="fixture">

<qty>2</qty>
<component>plug</component>
<subassembly>

<qty>1</qty>
<component>mould</component>
<qty>2</qty>
<component>connector</component>

</subassembly>
<qty>2</qty>
<component>screw</component>

</subassembly>
</subassembly>
<component>fixture</component>
<subassembly:fixture/>

</assembly>

Note that the label, fixture (same name as the component, but that poses no problem), is the
value of the xML “attribute”, 3 subex, of the subassembly tag. Note also that the second tuple
of assembly is a type:label pair (see section 5). It has a crossreference instead of a value, so we
combine the tag with its endtag, giving <subassembly:fixture/>. (A more conventional xML
alternative could be <subassembly link="fixture"/>, but we can avoid the extra keyword.)

In the above xML, some of the relational attributes are missing—those corresponding to DC in
the print representation—but they are all the last attribute, subassembly, in the tuple, and so no
confusion arises. Since it may help the reader, we show the same xML, with the <.tuple> hidden
tag.

<assembly>
<.tuple>
<component>wallplug</component>
<subassembly>

<.tuple>
<qty>1</qty>
<component>cover</component>
<subassembly>

<.tuple>
<qty>1</qty>
<component>plate</component>

</.tuple>
<.tuple>
<qty>2</qty>

3Unfortunately, “attribute” is used both in xML and in relations, with different meanings. We use it mainly in
the relational sense in this paper, but hope that context will reveal our occasional use in the xML sense.

23

<component>screw</component>
</.tuple>

</subassembly>
</.tuple>
<.tuple>

<qty>1</qty>
<component>fixture</component>
<subassembly subex="fixture">

<.tuple>
<qty>2</qty>
<component>plug</component>
<subassembly>

<.tuple>
<qty>1</qty>
<component>mould</component>

</.tuple>
<.tuple>

<qty>2</qty>
<component>connector</component>

</.tuple>
</subassembly>

</.tuple>
<.tuple>
<qty>2</qty>
<component>screw</component>

</.tuple>
</subassembly>

</.tuple>
</subassembly>

</.tuple>
<.tuple>
<component>fixture</component>
<subassembly:fixture/>

</.tuple>
</assembly>

Links can also make cyclic references. For example, companies can be customers of (other)
companies, so if we added a customer attribute to company (section 1.3), it could contain links
back to company. As long as a company is unlikely to be its own customer, the data would not be
cyclic, but the schema is. Here is the print representation of company, with a customer attribute.
And just to show that even cyclic data causes no problem in principle, we make Dink Inc. its own
customer.

company (cname address customer)
(street city codezip)
(num cname)

Dink Dink Inc. 1 Dink St Dinkton D1N3T0 company:Dink
13 Dink St
1 Dink St Dinkville D1N3V1

DC FemtoSoft 10000 No Way Rapa City R8P8C1 company:Dink
DC KiloSoft 314 Speed Way Adroit 48207 DC

The implementation representation with flat relations and surrogates adds an .id attribute to
the outer relation, company:

24

company
(.id cname address customer)
7 Dink Inc. 37 7
DC FemtoSoft 22 7
DC KiloSoft 48 DC

and uses the same inner relations as in section 1.3:

.address .street
(.id street city codezip) (.id num cname)
37 144 Dinkton D1N3T0 144 1 Dink St
37 156 Dinkville D1N3V1 144 13 Dink St
22 132 Rapa City R8P8C1 156 1 Dink St
48 111 Adroit 48207 132 10000 No Way

111 314 Speed Way

The xML representation is

<company>
<.tuple coex=Dink>
<cname>Dink Inc.</cname>
<address>
<street>

<num type=integer>1</num> <cname>Dink St</cname>
<num type=integer>13</num> <cname>Dink St</cname>

</street>
<city>Dinkton</city>
<codezip>D1N3T0</codezip>
<street>

<num type=integer>1</num> <cname>Dink St</cname>
</street>
<city>Dinkville</city>
<codezip>D1N3V1</codezip>

</address>
<customer:company:Dink/>

</.tuple>
<cname>FemtoSoft</cname>
<address>
<street>

<num type=integer>10000</num> <cname>No Way</cname>
</street>
<city>Rapa City</city>
<codezip>R8P8C1</codezip>

</address>
<customer:company:Dink/>
<cname>KiloSoft</cname>
<address>
<street>

<num type=integer>314</num> <cname>Speed Way</cname>
</street>
<city>Adroit</city>
<codezip>48207</codezip>

</address>
</company>

25

where we use a <.tuple> tag to identify the first outer tuple, and give it a coex (xML-)attribute in
order to label it "Dink" for the cross-reference. Unlike the fixture subex attribute for the Bill of
Materials example, the link tags <customer:company:Dink/> have an extra type qualifier because
the referenced attribute has a different name from the referring attribute.

We have used coex, for “co-expression”, instead of subex, as a pragma, since a cross-reference
link gives rise to cycles in the schema, unlike a common subexpression link. In general, “coex”
and “subex” are interchangeable in the syntax. If we are labelling tuples, we must identify them
with .tuple tags, which have label (xML-)attributes. Between this and the BoM example, we see
how we can label either a whole relation or an individual tuple. Note that links do not behave as
“object identifiers”: many tuples may all have the same link value.

The base type string is assumed. Data to be translated to integer is typed. (Since xML is
sequential, we could type an attribute, such as num, only the first time it appears, and assume the
type persists over subsequent appearances unless explicitly changed.)

4.1 Queries

For T-selector queries, links require nothing new. In the case of common subexpressions, where
the data forms a DAG, the shared data can be thought of, for query purposes, as replicated at
each sharing position, thus converting the DAG to a tree. In the case of cross-references, or
co-expressions, cycles appear, and this means that we may need to use the query mechanisms
introduced for recursive nesting, notably the Kleene star.

Here is a projection on the company name.
let cn be cname union [red union of cn] in customer;
let cname be cn;
[red union of cname] in [cn] in company

or
company/(customer/)*cname

gives all three company names, Dink Inc., FemtoSoft, and KiloSoft, in a relation with attribute
cname. In principle, this code would loop forever, because of the data cycle on Dink Inc., but
since the result is a relation, the loop can stop as soon as the relation stops changing: we discover
that Dink Inc. is the only addition each time around the cycle, and it was already in the answer.

5 Union Types: Alternative Forms of Attributes

In section 4, we used data constructs such as subassembly:fixture and company:Dink and called
them type:label pairs, without saying anything about types. We also mentioned schema declara-
tions. Allowing alternatives for attributes, such as address being either a simple string or the nested
construct we have used so far, introduces dynamic typing, and requires us to start with these issues.

We might make the following declarations for company as we have formulated it so far.
domain cname string;
domain city string;
domain codezip string;
domain num integer;
domain street(num,cname);
domain address(street,city,codezip);
domain customer company;
domain company(cname,address,customer);
relation company(cname,address,customer); 4

4The declarations for the recursively nested assembly would include
domain subassembly(qty, component, subassembly);
relation assembly(component, subassembly);

26

Here, nested relations are declared as attributes (domain) which may be of base type (integer,
string, ..) or themselves relations. Note that the outer relation is now also declared as a domain.
The linked attribute, customer, is declared to be of “type” company, in order for us to be able to
refer to, for example, customer/cname, where cname is an attribute of company.

Thus, there are both base and composite types, and we consider relations or domains that are
nested relations to be the latter.

To allow address to be a simple string as an alternative to the composite (street,city,codezip),
we could write

domain stctcd (street,city,codezip);
domain address string|stctcd;

We could also allow customer to be a single value, as we have done so far, or a nested relation
with multiple values. The values could either be strings or links to company, as above.

domain namcomp cname|company ;
domain custrel(namcomp);
domain customer cname|company|custrel;

With these replacements for address and customer, the print representation of company becomes

company(cname address customer)
Dink Dink Inc. stctcd : company :Dink

(street city codezip)
(num cname)

1 Dink St Dinkton D1N3T0
13 Dink St
1 Dink St Dinkville D1N3V1

DC FemtoSoft 10000 No Way, Rapa City R8P8C1 custrel :
(namcomp)
company :Dink
cname:Joe Dink Jr
cname:Bill Hatch

DC KiloSoft 314 Speed Way, Adroit 48207 cname:Joe Dink III

Note that we do not mention the base types (string, integer,..) explicitly: since this is print
representation, they are displayed as strings.

The implementation representation with flat relations and surrogates adds an .id attribute to
the outer relation, company.

company
(.id cname address customer)
7 Dink Inc. stctcd:37 company:7
DC FemtoSoft 10000 No Way, Rapa City R8P8C1 custrel:17
DC KiloSoft 314 Speed Way, Adroit 48207 cname:Joe Dink III

.stctcd .street
(.id street city codezip) (.id num cname)
37 144 Dinkton D1N3T0 144 1 Dink St
37 156 Dinkville D1N3V1 144 13 Dink St

156 1 Dink St

.custrel
(.id namcomp)
17 company:7
17 cname:Joe Dink Jr
17 cname:Bill Hatch

27

(We have omitted to identify base types, this time to simplify the presentation. If the schema is
incomplete or not available, type information will be needed in the implementation.)

In xML representation,

<company>
<.tuple coex=Dink>
<cname>Dink Inc.</cname>
<address type=stctcd>
<street>

<num type=integer>1</num> <cname>Dink St</cname>
<num type=integer>13</num> <cname>Dink St</cname>

</street>
<city>Dinkton</city>
<codezip>D1N3T0</codezip>
<street>

<num type=integer>1</num> <cname>Dink St</cname>
</street>
<city>Dinkville</city>
<codezip>D1N3V1</codezip>

</address>
<customer:company:Dink/>

</.tuple>
<cname>FemtoSoft</cname>
<address>10000 No Way, Rapa City R8P8C1</address>
<customer type=custrel>
<namcomp:company:Dink/>
<namcomp type=cname>Joe Dink Jr</namcomp>
<namcomp type=cname>Bill Hatch</namcomp>

</customer>
<cname>KiloSoft</cname>
<address>314 Speed Way, Adroit 48207</address>
<customer type=cname>Joe Dink III</customer>

</company>

Note the difference between the tags <namcomp:company:Dink/> and <namcomp type=cname>Joe
Dink Jr</namcomp>. In the second, Joe Dink Jr is a stored value, and so must appear between
separate start and end tags, and type information must be given as an xML attribute. In the first,
there is no value, and while we could have used xML attributes, as in <namcomp type=company
link=Dink/>, the more compact form does not need new keywords, and supports unlimited expan-
sion of types if needed.

5.1 Queries

6 Schema Discovery

Given a nested relation for which we may not know the schema, it would be nice to find it out. For
example, given the relation of section 1.3

company
(cname address)

(street city codezip)
(num cname)

we would like to generate a schema relation

28

schema
(attr schema)

(attr schema)
(attr)

cname
address street num

cname
city
codezip

which gives its schema as relational data.
We do it with a combination of transpose and relation, both from section 1.3, in a recursive

attribute definition.
let attr be self ;
let schema be transpose(attr) union [attr,schema] in .;
schema in company

where we see constructs we used in sections 1.3 and 3 to find all attribute paths.
We can expand this example to show the steps of the recursion.

Recursion 0.

company
(cname address) attr schema

(street city codezip) attr schema (attr)
(num cname) attr schema (attr)

(attr)
street num address city company cname

cname codezip

Dink Inc. 1 Dink St Dinkton D1N3T0

13 Dink St

1 Dink St Dinkville D1N3V1

FemtoSoft 10000 No Way Rapa City R8P8C1

KiloSoft 314 Speed Way Adroit 48207

Recursion 1. (Since the data in company does not affect the result, we leave it out in the following.)

company
(cname address) attr schema

(street city codezip) attr schema (attr schema)
(num cname) attr schema (attr schema) (attr)

(attr) (attr)
street num address city company cname

cname codezip address city
street num codezip

cname

Recursion 2. (This is the last iteration for this example. Note that the schema attribute of company
is the desired result.)

company
(cname address) attr schema

(street city codezip) attr schema (attr schema)
(num cname) attr schema (attr schema) (attr schema)

(attr) (attr) (attr)
street num address city company cname

cname codezip address city
street num codezip

cname street num
cname

We can also extract the types of the attributes.
let attr be self ;
let schema be transpose(attr, type) union [attr,type,schema] in .;

to give

29

schema
(attr type schema)

(attr type schema)
(attr type)

cname string
address DC street DC num integer

cname string
city string
codezip string

This is useful when the schema has links (even if they are cyclic). In the extended company
relation of section 4, customer may be, cyclically, a company.

company (cname address customer)
(street city codezip)
(num cname)

Dink Dink Inc. 1 Dink St Dinkton D1N3T0 Dink
13 Dink St
1 Dink St Dinkville D1N3V1

DC FemtoSoft 10000 No Way Rapa City R8P8C1 Dink
DC KiloSoft 314 Speed Way Adroit 48207 DC

Here is the schema, generated by the code above.

schema
(attr type schema)

(attr type schema)
(attr type)

cname string
address DC street DC num integer

cname string
city string
codezip string

customer company

where the possibly cyclic recursion is captured by the self-reference in type company.
A more complicated example is from section 5. Here, address is a string or a tuple,

stctcd(street,city,codezip),
and customer is a string, cname, or a cyclic reference to company, or, thirdly, a relation, custrel,
of many companies or cnames. For this example, the above code gives

schema
(attr type schema)

(attr type schema)
(attr type schema)

cname string
address stctcd street relation num integer DC

cname string DC
city string DC
codezip string DC

address string DC
customer company DC
customer custrel namcomp company DC

namcomp cname DC
customer cname DC

30

For recursive nesting, the original code works, but gives us all paths. Not to worry: any
particular relation is finite. Thus the nested bill of materials in section 3

assembly
(component subassembly)

(qty component subassembly)
(qty component subassembly)

(qty component)
wallplug 1 cover 1 plate

2 screw
1 fixture 2 plug 1 mould

2 connector
2 screw

will give

schema
(attr schema)

(attr schema)
(attr schema)

(attr)
component
subassembly qty

component
subassembly qty

component
subassembly qty

component

It would be nice to shorten this result to

schema
(attr schema)

(attr)
component
subassembly qty

component
subassembly

and reveal the basic two relations,
assembly(component,subassembly), and
subassembly(qty,component,subassembly).

We can start by stopping the recursion when
([attr] in schema) = schema/attr

We can do this by introducing a terminating condition into the recursion.
let attr be self ;
let schema

target ([attr] in schema) = schema/attr
be transpose(attr) union [attr,schema] in .;

This stops, in our example, after the second iteration, with

31

schema
(attr schema)

(attr schema)
(attr)

component
subassembly qty

component
subassembly qty

component

and we are left with removing the second level of nesting.
If this were a LISP problem, we could define a function, butlast, and supporting functions, to

find all but the last element of a list:
butlast(schema) is copybutlast(car(schema),cdr(schema));
copybutlast(s1,s2) is if null(cdr(s2)) then s1 else

copybutlast(absorb(s1,car(s2)), cdr(s2));
absorb(s1,s2) is if null(s1) then s2 else

cons(car(s1),absorb(cdr(s1),s2));
So all we have to do is to define the basic LISP functions, car, cdr, cons, and null for recursively
nested relations. In the special case of a recursive relation with a single non-nested and a single
recursively nested attribute, which we have in schema, these are

car(schema) is
[red union of (attr ijoin [attr ′] in schema)] in schema
given {let attr ′ be attr};

cdr(schema) is schema/schema;
cons(schema,x) is [attr,schema] in schema

given {let attr be attr ′;
let schema be (attr in equiv union of relation(attr ′) by attr)

join if [] in x then x else true
};

null(x) is not [] in x;
In this mapping from recursively nested relations to a special case of LISP, an atom is a flat

relation, a list is a recursively nested relation, and NIL is an empty relation. (Or DC. NIL satisfies
not [] in NIL, and so false is [] in NIL, pretty close to LISP’s identification of NIL with false.)
LISP is more general than this sketch because its lists can bifurcate. If we were to generalize to
arbitrary recursively nested relations, we would have a structure of potentially any fanout. Since
it is clear that much work would be needed to make this kind of code efficient for large structures
on secondary storage, and since it is at present unclear if the enterprise would eventually be useful,
we do not pursue it. We also do not take space to make comments on the above definitions,
save for two. The given construct follows an expression with statements needed to give values to
components of the expression. Note in the last line of the definition of cons that a relation can be
joined with true: true is the nullary projection of a non-empty relation, and is the identity of
join (joining with false, the nullary projection of an empty relation, on the other hand, gives an
empty relation (which is not false) on the attributes of the other operand).

As well as finding the whole schema, as we have spent this section discussing, we might want to
know partial schemas. We introduce a variant of transpose in the relational algebra (transpose
is a domain algebra operator): attribsOf returns a relation on a single attribute of type attrib
whose name is given as a parameter, which relation contains all the attributes of the operand, in
this case whether scalar or not. Thus

attribsOf(attr) company
gives

32

attr
cname
address
customer

We can take the next step, having found the attributes of company, and ask about the attributes
of address within company

attribsOf(attr) company/address
gives

attr
street
city
codezip

and so on, like expanding a tree compressed on a display screen click by click.
(The difference, that attribsOf provides all attributes while transpose provides only scalar

attributes, leads to an easy implementation to discover whether a relation is flat or not.
flat(r) is (attribsOf(attr) r = [red union of transpose(attr)] in r;

By the way, with our above definition that atoms are flat relations, atom(r) = flat(r).)

7 Marked Up Text

We have seen a number of advantages for data representation and coding in the foregoing, but
we have not always gained by introducing semistructured data. For example, the semistructured
representation of both wallplug and fixture in section 4 is forced into contortions to accomplish
the same result as the simple flat relation shown in section 1.1.1. A significant advantage of the
semistructured approach appears when we embed it in text data to give marked-up text. Before we
investigate marked-up text, we must say some things about plain text.

7.1 Text

Text seems to be very different from relations, having no intrinsic repetitions which would give
rise to tuples, and depending absolutely on the order of its elements. However, if we capture the
order by sequencing attributes, text can indeed seem to be a set of tuples. We could suppose that
text has implicit attributes giving characters and their sequence, or words and their sequence, or
sentences and their sequence, and so on. Thus, a text such as

Ted married Alice in 1932. Their children, Mary (1934) married Alex in 1954 (Joe was
born to Mary and Alex in 1956) and James (1935) married Jane in 1960 (James and
Jane had Tom in 1961 and Sue in 1962).

might be seen as the following relation, where we temporarily introduce attributes whose names
begin with “.” and might be system-generated.

33

(.char .charseq .word .wordseq .sent .sentsq .para .paraseq)
T 1 Ted 1 Ted..1932 1 Ted..1962). 1
e 2 Ted 1 Ted..1932 1 Ted..1962). 1
d 3 Ted 1 Ted..1932 1 Ted..1962). 1

4 1 Ted..1932 1 Ted..1962). 1
m 5 married 2 Ted..1932 1 Ted..1962). 1
a 6 married 2 Ted..1932 1 Ted..1962). 1
r 7 married 2 Ted..1932 1 Ted..1962). 1
r 8 married 2 Ted..1932 1 Ted..1962). 1
i 9 married 2 Ted..1932 1 Ted..1962). 1
e 10 married 2 Ted..1932 1 Ted..1962). 1
d 11 married 2 Ted..1932 1 Ted..1962). 1
: : : : : : : :
1 198 1962 49 Their..1962) 2 Ted..1962). 1
9 199 1962 49 Their..1962) 2 Ted..1962). 1
6 200 1962 49 Their..1962) 2 Ted..1962). 1
2 201 1962 49 Their..1962) 2 Ted..1962). 1
) 202) 50 Their..1962) 2 Ted..1962). 1
. 203 . 51 Their..1962) 2 Ted..1962). 1

This may seem wasteful, but that is not an issue. The text is stored as a sequence of ASCII
(or other encoding) characters as usual, not as an ungainly relation all spelled out as above. An
expansion such as the above would probably never be created, but projections and selections and
other relational operators on these attributes are now available. Whether they are used effectively
or clumsily is up to the programmer.

We can reinforce this point, and also gain flexibility, if we have an attribute generator instead
of the collection of system-generated new names (.char, etc.) all needing to be remembered by
the programmer. We can call such an attribute generator text2attr and use it as an operator on
text which creates a relation (or, in the domain algebra, as an operator on text attributes which
creates a nested relation). Text2attr takes parameters of types pattern, string, and integer (or
some more specialized form of sequencing type). The pattern is used to define the element, and
the programmer can use the string and integer to name the new attributes. (Either, but not both,
of these two is optional, in case only the element or only the sequence is wanted.) Here are some
simple definitions for character, word, and sentence elements.

text2attr(".", char, charseq)
text2attr("\w", word, wordseq)
text2attr("(.| \n)*?(\.| \,)", sent, sentseq)

where \w stands for any word and \n meansnew line. (apart from ’ and), which we saw above is
treated as words, and ˆ and $ mean start and end of lines as usual.

For elements that are hierarchically related, text2attr could take a sequence of these triples/pairs
of parameters, and could thus generate all of the above relation if needed.

text2attr(".", char, charseq, "\w", word, wordseq,
"(.| \n)*?(\.| \,)", sent, sentseq)

We can also join two texts, using a grep join which creates a relation linking them. Like
text2attr, the grep join supplies a pattern and names attributes for the resulting relation, which
the grep join associates with the proper values according to the types of the attributes. We illustrate
with the igrep join, where the i means that an intersection is being done, and also serves to
distinguish this binary operator from the unary grep of section 1.1.3.

Given two texts, Jtext,

On his way to work,
Joe met Sue. ”Let’s
go out tonight”, he invited
her. After work, he met her

34

at her apartment and they
went to a movie
which he enjoyed a lot.

and Stext,

Sitting in a movie
with Joe, Sue
wondered why she had accepted his
invitation. She had just
started to paint her apartment
and did not really have time.

the result of
JStextlink <− Jtext igrep("\s*",pos1,val1,val2,pos2) Stext ;

is

JStextlink
(pos1 val1 val2 pos2)

4 his his 64
12 to to 101
21 Joe Joe 25
29 Sue Sue 30
61 invit invit 68
69 her her 110
93 her her 110
93 her apartment her apartment 110
97 apartment apartment 114
114 and and 124
128 to to 101
131 a movie a movie 12
156 a a 12

We see first that one of val1 or val2 could have been omitted, since both are necessarily the
same. Such omission is allowed in the attribute list for igrep: the positions of the parameters
within their types determine the source of the value. Thus, omitting one of the string parameters,
val1 or val2, would leave only one string parameter, which is taken to be the value from the left-
hand operand. The two integer parameters, pos1 and pos2, need not be together; the first will be
the sequence number (always by character position in the text) from the left-hand operand, and
the second from the right.

Second, we note that the pattern, "\s*", is a start delimiter, saying that the comparisons start
only after whitespace; that is to say, at the beginnings of words.

It may be more informative to remove noise words (by a conventional relational join) such as
a, and, her, his, and to, giving the more compact result

(pos1 val1 val2 pos2)
21 Joe Joe 25
29 Sue Sue 30
61 invit invit 68
100 her apartment her apartment 114
131 a movie a movie 12

Let’s consider a symmetric difference variant of the grep join, sgrep, applied to units of lines
(instead of words) in Sue’s story, above, and the following minor reformatting of Sue’s story.

35

Stext ′

Sitting in a movie
with Joe, Sue wondered
why she had accepted his
invitation. She had just
started to paint her apartment
and did not really have time.

SSdiff <− Stext sgrep("^", pos1,val1,val2,pos2) Stext ′;
gives

SSdiff
(pos1 val1 val2 pos2)

20 with Joe, Sue DC DC
34 wondered why she had accepted his DC DC
DC DC with Joe, Sue wondered 20
DC DC why she had accepted his 43

Apart from using character positions instead of line numbers, this result is identical to the Unix
diff operator on these two texts:

2,3c2,3
< with Joe, Sue
< wondered why she had accepted his

> with Joe, Sue wondered
> why she had accepted his

We also have ugrep, analogous to set union, dgrep, inspired by set difference, and some other
useful variants of binary grep, each with granularity controlled by regular expression patterns.

7.2 Marked-Up Text

The unary grep operator of section 1.1.3, text2attr, and the binary grep operators all allow us
to generate attributes from text. Marking up the text with xML tags specifies more elaborate
attributes. For example, marking up

Ted married Alice in 1932. Their children, Mary (1934) married Alex in 1954 (Joe was
born to Mary and Alex in 1956) and James (1935) married Jane in 1960 (James and
Jane had Tom in 1961 and Sue in 1962).

to

<Person>
<Name>Ted</Name> married
<Family><Spouse>Alice</Spouse> in <Married>1932</Married>. Their children,
<Children><Name>Mary</Name> (<DoB>1934</DoB>) married

<Family><Spouse>Alex</Spouse> in <Married>1954</Married>
(<Children><Name>Joe</Name> was born to Mary and Alex in <DoB>1956</DoB>
</Children>)

</Family>
and <Name>James</Name> (<DoB>1935</DoB>) married
<Family><Spouse>Jane</Spouse> in <Married>1960</Married>

36

(<Children>James and Jane had <Name>Tom</Name> in
<DoB>1961</DoB> and <Name>Sue</Name> in <DoB>1962</DoB>
</Children>).

</Family>
</Children>

</Family>
</Person>

gives a source not only of the original text, but also of a nested relation

(Name Family)
(Spouse Married Children)

(DoB Name Family)
(Spouse Married Children)

(DoB Name Family)
Ted Alice 1932 1934 Mary Alex 1954 1956 Joe DC

1935 James Jane 1960 1961 Tom DC
1962 Sue DC

While we might expect this nested relation to be generated automatically, as semistructured
data, from the marked-up text, to generate a nested relation including the text requires new at-
tribute names, and hence an attribute generator, mu2nest. This takes as parameters a pattern
which indicates what is to be excluded from the text, and attributes for the content (the text itself),
the start position, and the length of the text. Of the last two, start retains sequencing information
for the tags, which would be lost on removing the tags, and length is redundant (if there is a length
operator or function) but useful.

Here is the result of executing
nestPerson <− mu2nest("<.*>",content,start,length) Person;

nestPerson
(content start length Name Family)

(content start length)
Ted .. 1962). 1 203 Ted 1 3 <Family><Spouse>Alice .. </Family>

We see that mu2nest extracts the specified attributes at the top level and for unstructured
attributes one level down. Since Family recursively contains marked-up text, mu2nest does not
descend into Family. Before we consider recursive application of mu2nest, we look at special cases.

mu2nest("<.*>",content,,length) Person;
omits all start attributes.

nestPerson <− mu2nest("<.*>",content) Person;
does not need to expand Name as above, since Name has no further attributes, but for consistency
we generate the unary attribute for Name.

nestPerson
(content Name Family)

(content)
Ted .. 1962). Ted <Family><Spouse>Alice .. </Family>

To go deeper, we must apply mu2nest to Family.
let nestFamily be mu2nest("<.*>",content,start,length) Family ;

We will not be able to show this virtual attibute unless we abbreviate all the names, so in the
following result, Person becomes P , nestPerson becomes P ′, content becomes c, and so on in a
self-explanatory way. To help us follow the result more clearly, the c, s and l attributes are prefixed
by the attributes (P , N , etc.) they are generated for.

P ′ <− mu2nest("<.*>",c, s, l) P ;
let F ′ be mu2nest("<.*>",c, s, l) F ;

37

P
′

(P.c N F) F
′

P.s P.l (N.c) (F.c S M C)
N.s N.l F.s F.l (S.c) (M.c)

S.s S.l M.s M.l

Ted ..). Ted <F><S>Alice .. </F> Alice ..). Alice 1932 <N>Mary ..).
1 203 1 3 13 191 13 5 22 4

(We show the .s and .l attributes underneath the .c attribute to reduce the width further, so
each data tuple is on two lines.)

To expand Person at all levels, we need recursion. Since this example nests Children inside
Family, and Family inside Children, we need two mutually recursive attributes. Using the abbrevi-
ations,

let F ′ be [F.c, F.s, F.l, S, M, C ′] in mu2nest("<.*>",.c, .s, .l) F ;
let C ′ be [C.c, C.s, C.l, N, D, F ′] in mu2nest("<.*>",.c, .s, .l) C;
P ′ <− [P.c, P.s, P.l, N, F ′] in mu2nest("<.*>",.c, .s, .l) P ;

gives
P

′

(P.c N F
′ ..)

P.s P.l (N.c) (F.c) S M C
′

N.s N.l F.s F.l (S.c) (M.c) (C.c) N D F
′ ..

S.s S.l M.s M.l C.s C.l (N.c) (D.c) ..
N.s N.l D.s D.l ..

Ted ..). Ted Alice ..). Alice 1932 <N>Mary ..). Mary 1934 ..
1 203 1 3 13 191 13 5 22 4 44 201 44 4 50 4 ..

James 1935 ..
121 5 128 4 ..

(The whole nested relation is too wide to show, but a synopsis, without the contents fields for the
relation and relational attributes, is

Person
(Name Family)

(Spouse Married Children)
(DoB Name Family)

(Spouse Married Children)
(DoB Name)

Ted Alice 1932 1934 Mary Alex 1954 1956 Joe
1,3 13,5 22,4 50,4 44,4 64,4 72,4 111,4 78,3

1935 James Jane 1960 1961 Tom
128,4 121,5 142,4 150,4 182,4 175,3

1962 Sue
198,4 191,3

.)
It may be useful to have predefined patterns for special formats, such as \html, \latex, \ps, and

\pdf, to save programming in extracting text.
mu2nest("\latex",.content) Person

Once we have a text, we can apply to it all the operations of section 7.1. For instance, we might
want to know the sequence numbers of the words that are the names of Ted’s and Alice’s children.

let words be text2attr("(^| \s*.*\s*|$)| \p", Name, Pos) Person.content ;
let childpos be words join [Name] in Family/Children;
nestPerson/childpos

giving

(Name Pos)
Mary 44
Mary 94
James 121
James 156

(Note that the tags are in fact only on words 44 and 121: separating the tags from the text loses
that information.)

In section 7.1, above, we linked two apparently related texts, considered as pure texts. With
markup tags, we can control such links explicitly. Here are Joe’s and Sue’s stories marked up.

38

On his way to work, Sitting in a <A>movie
<C>Joe</C> met <C>Sue</C>. "Let’s with <C>Joe</C>, <C>Sue</C>
go out tonight", he <A>invited wondered why she had accepted his
her. After work, he <A>met her <A>invitation. She had just
at her apartment and they started to paint her apartment
went to a <A>movie and did not really have time.
which he enjoyed a lot.

The three categories of tag, A, B, and C, in each story correspond to three attributes. Three at-
tributes are not needed for the linking exercise we wish to show, but they illustrate some interesting
points. First, note that movie is a value for two different attributes in each story, and, to avoid
repeating the word, which would not make sense if we were to extract the text, we violate the
usual prescription that tags be strictly nested. Nested tags now have the special meaning that they
generate nested relations: we are happy with having flat relations in this example.

Second, we need a convention for extracting the flat relation from the text as marked up with
these attribute tags. Specifically, the problem is where will tuples begin and end? We have not
provided a nesting <.tuple> tag to specify this. The convention is simple: run through the
tags, and as soon as any one repeats, start a new tuple. Thus, the relations we obtain, using
mu2nest("<.*>",content) are

(A B C) (A B C)
work Joe movie movie Joe

invit Sue invit Sue
met her apartment her apartment
movie movie

8 Data on the Web

The World Wide Web is structured by the HyperText Markup Language, HTML, a descendent
of SGML, and a variant of xML. The Web also includes other documents, such as plain text,
PostScript files, Graphical Interchange Format files, etc., but these all appear as leaves in the Web,
since they do not contain further links. Only HTML documents include the links from which the
Web draws its name.

An HTML document contains semistructured data, with attributes given by xML tags; it also
contains text, and so fits into the category of marked up text discussed in the previous section. The
present section is thus an application of the above material. There is one additional consideration,
which arises from HTML (and shared by XML and other languages in the family): tags may
have “attributes”, illustrated by href, name, src, and width, in the example below. These are
leaves in the nested representation, having no contained tags, and considered identical to other leaf
attributes.

The advance made by the relational model of data over earlier approaches is that it does not
distinguish between data in RAM and data on secondary storage: all relations are conceptually
“inside” the machine, whether they are in RAM or on disk or other secondary storage. This saves
the programmer from explicit input/output operations. In our representation of the HTML Web,
we similarly ignore any distinctions between local pages and pages which require remote access
via the Internet. We will consider the whole accessible web to be contained in any page to which
we happen to have access, thus eliminating explicit page fetches from the programmer’s concerns.
Such an abstraction is almost accomplished by the usual browser interfaces to the Web, but the
operation of clicking on an anchor is still an explicit page fetch.

To accomplish this, we must view the anchor tag, <A>, of HTML, as a nested HTML document,
including nested Head and Body attributes where appropriate, as well as attributes, contained tags,
and contents. As an example, here is a two-document web, based on the text version of Ted’s
family tree.

39

<HTML> <!file famtree.html>
<Head><Title>Family Tree</Title></Head>
<Body>
Ted married
Alice in 1932. Their children, Mary (1934) married Alex in 1954
(Joe was born to Mary and Alex in 1956) and James (1935) married
Jane in 1960 (James and Jane had Tom in 1961 and Sue in 1962).

Ted and Alice Just Married, 1932
</Body>
</HTML>

<HTML> <!file biotext.html>
<Head><Title>Ted’s Biography</Title></Head>
<Body>
Ted was born at McGill University and worked there until retiring.
</Body>
</HTML>

The nested relational representation of this small web, assuming that attributes suffixed .content
have been created by applying mu2nest, is

HTML
(Head Body)
(Title) (Body.content A)

(A.content href Head Body name img)
(Title) (src width)

Family Tree Ted married.. Ted bioTed.html Ted’s Biography Ted was..
married #TedAliceWedding
Ted and.. TedAliceWedding Ted Alice.jpg 400

Head Body
(Title)
Ted’s Biography Ted was..

Since img does not need to be nested inside A, we also have the option of recording img as a
direct attribute of Body. Thus, a schema which might be generated from this web is

relation HTML(Head,Body);
domain Head(Title);
domain Body strg|(Body.content,A,img);
domain A(A.content,href,Head,Body,name,img);
domain img(src,width);

Note first that Ted’s Biography occurs twice, once as a part of Family Tree, and once as a
web page in its own right. This would only happen if both pages were independently loaded into
the nested relation, so we will ignore the second entry from now on.

The second thing to note is more important. A contains, optionally, the recursive attribute
Body (along with Head), thus capturing the relational idea that the whole accessible web is present,
even though it may not have actually been retrieved.

It is useful to be able to make distinctions among remote, local, and internal anchor hrefs. The
above example illustrates the latter two, and remote hrefs will be familiar to all readers. These
distinctions may allow programs to avoid expensive parts of a recursion, namely those that require
access to remote web pages, if Internet connection is found to be expensive, or even to local ones,
should even a disk access seem to cost too much. The distinctions can be made by examining the
structure of the href data. Internal references start with the # symbol:

let internal be grep "^#" in href in A;
Local references must not start with “/”:

let local be grep "^[^/]" in href in A;
Finally, remote references are neither internal nor local:

let remote be where (not []in grep "^#" in href) and
not []in grep "^[^/]" in href in A;

40

These virtual attributes may be used in path expressions just as if they were original attributes.
For example, to find only internal references, write

HTML/Body/internal/href
(instead of

HTML/Body/A/href)
The above is a little simplistic. A more thorough specification of internal and local references

would include comparisons of href with the URL of the page itself. This requires an additional
attribute in HTML, which should also be called href, to hold these URLs, say famTree.html
and, of course, bioTed.html. Comparisons could be from the upper level, say between href and
Body/A/href, but this is awkward for defining the virtual attribute at the lower level. If the upper
attribute had a different name, say url, we can suppose this name is visible from the lower level,
just as in programming language scope blocks: we could compare href at the lower level directly
with url from above. However, such a solution could not recurse. So we adopt a scoping convention
from operating system file hierarchies, instead of from programming languages, and allow a “..”
path element to make visible any higher name which has been redefined at a lower level. Thus,
we compare href with ../../href. In fact, since the higher href is visible and unambiguous only one
level up (Body does not redefine href as one of its own attributes, and so the href in HTML is also
a (constant) attribute on Body) we can get away in this example with comparing href with ../href.

So to specify the alternative definition that a local href must be contained in the parent href as
a prefix, we say

let local be grep "^"cat ../href in href in A;
and this can be put together as an alternative to the previous definition

let local be (grep "^[^/]" in href in A)
union grep "^"cat ../href in href in A;

The type or format of a document (e.g., html, ps, pdf, jpg, ftp) can also be learned from
its URL:

let format ′ be x in grep(;x) "[^| \.]\x[^/\.][$|#]" in href ;
where “[^| \.]” specifies: from the start of the string or from a “.”; “[^/\.]” specifies: no “/” or
“.” may occur after x; and “[$|#]” specifies: to the end of the string or to “#”.

let format be if format ′="" then "html" else format ′;
says that an internal reference is always in HTML format.

This format, and other properties, can be gleaned alternatively from the HTTP headers, such
as Content-Type (for format), Content-Length, Date, Last-Modified and so on. These could all be
considered further attributes of HTML or of A and so accessible in the resulting nested relation.

9 Acknowledgements

We are indebted to the Natural Science and Engineering Research Council of Canada for support
under grant OGP0004365. Zhan Yu, Fan Guo, Yu Gu and Jiantao Xie have implemented the
recursive domain algebra and the regular expression syntactic sugar, the metadata operators, the
grep operators, and the text and marked-up text operators in the research system, relix.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : from Relations to Semistructured
Data and XML. Morgan Kaufmann, San Francisco, 2000.

[2] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Simeon. Querying
documents in object databases. Internat. J. on Digital Libraries, 1(1):5–19, 1997.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for
semistructured data. Technical report, Stanford U., Palo Alto CA, 1997.

41

[4] G. E. Blake, M. P. Consens, P. Kilpelainen, P.-A. Larson, and F. Tompa. Text/relational
database management systems: Harmonizing SQL and SGML. In Proc. of the ADB’94 Conf.,
., 1994.

[5] O. P. Buneman. Semistructured data. In Proc. PODS, ., 1996.

[6] O. P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and optimization
techniques for unstructured data. In H. V. Jagadish, editor, Proceedings of ACM SIGMOD
International Conference on Management of Data, pages 505–16, Montreal, Canada, June
1996. ACM.

[7] O. P. Buneman, S. Davidson, and D. Suciu. Programming constructs for unstructured data.
In Workshop on Database Programming Languages, ., 1995.

[8] D. D. Chamberlin. XQuery: An XML query language. IBM Systems Journal, 41(4):597–615,
2002.

[9] E. F. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–87, June 1970.

[10] E. F. Codd. Further normalization of the data base relational model. In R. Rustin, editor, Data
Base Systems, pages 34–64. Prentice-Hall, Engelwood Cliffs, N. J., 1972. Courant Institute of
Mathematical Sciences, New York University, 1971/5/24–25.

[11] E. F. Codd. Relational completeness of data base sublanguages. In R. Rustin, editor, Data
Base Systems, pages 65–98. Prentice-Hall, Engelwood Cliffs, N. J., 1972. Courant Institute of
Mathematical Sciences, New York University, 1971/5/24–25.

[12] M. P. Consens and A. O. Mendelzon. Graphlog: a visual formalism for real-life recursion. In
Proc. of the ACM Symp. on Principles of Database Systems, PODS’90, pages 404–16, ., 1990.

[13] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language supporting recursion.
In U. Dayal and I. L. Traiger, editors, Proc. of the ACM Internat. Conf. on Management of
Data, SIGMOD’87, pages 323–30, San Francisco, May 27–9 1987. ACM Press.

[14] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. G+: Recursive queries without recursion. In
L. Kershberg, editor, Proc. of the Second Internat. Conf. on Expert Database Systems, pages
355–68, Tysons Corner, Va., April 25–7 1988.

[15] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. A declarative language for querying
and restructuring the web. In Proc. of the Sixth Internat. Workshop on Research Issues in
Data Engineering, RIDE’96, New Orleans, Feb. 1996.

[16] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the world wide web. Int. J. on Digital
Libraries, 1997. (Also Proc. PDIS, 1996).

[17] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representative objects: Concise repre-
sentations for semistructured, hierarchical data. In Alex Gray and Per-Åke Larson, editors,
Proc. of the 13th Internat. Conf. on Data Engineering, pages 79–90, Birmingham, U.K., April
7–11 1997. IEEE Computer Society.

[18] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying semistructured
heterogeneous information. In Proc of the Internat. Conf. on Very Large Databases, VLDB?,
., 1995?

[19] R. Sacks-Davis, A. Kent, K. Ramamohanarao, J. Thom, and J. Zobel. Atlas: A nested
relational database system for text applications. IEEE Transactions on Knowledge and Data
Engineering, 7(3):454–70, 1995.

42

[20] D. Suciu. An overview of semistructured data. SIGACT News, 29(4):28–38, Dec. 1998.

[21] J. Thierry-Mieg and R. Durbin. acedb—a C.elegans database: Syntactic definitions for the
ACeDB data base manager. www.acedb.org/Cornell/syntax.html, Dec. 1992.

[22] Fred Wobus. Aql—moviedb example queries.
www.acedb.org/Software/whelp/AQL/MovieDB/queries.shtml, Dec. 1999.

A Semistructured Queries from Classical Papers

In the body of this paper, we have developed solutions for semistructured and marked-up data and
querying as a logical result of extending relational nesting to completeness. In doing the work,
we have depended for guidance on a number of papers in the literature from the mid-’80s on,
and these are discussed here. This appendix works through query examples from the literature in
chronological order: G+ and Graphlog, ACeDB, Atlas, SGML relations, Lorel, UnQL, OQL-doc,
and the web query languages Weblog, WebSQL, and XML-QL.

A.1 G, G+ and Graphlog

The graphical query language, G, appeared [13] in 1987. Since a second paper, extending G to G+,
gives simpler examples, we look there first, then return.

Saying “the extension of query languages to handle problems not solvable in relational algebra is
an area of much current interest”, Alberto Mendelzon’s group at the University of Toronto published
a paper in 1988 [14] which expressed transitive queries on suitable relations as Horn clauses with
regular expressions. They expressed both data and queries as graphs, but it is possible to be more
linear.

Parent
(Sr Rel Jr)
Don F Sue
Liz M Sue
Wil F Bob
Wil F Ted
Sue M Bob
Sue M Ted
Ted F Pam
Ann M Pam

1. Sue’s children (Sue, M, x)

2. People with common ancestor (x, y) ← (z,[M|F]+,x)
(x, y) ← (z,[M|F]+,y)

3. Ancestor or descendent (x, y) ← (x,[M|F]+,y)
(x, y) ← (y,[M|F]+,x)

These first examples of the paper pertain to finding an arbitrary regular expression on the Rel
attribute in a generalized closure of the relation. Brute-force evaluation can do just this: take the
closure recursively, concatenate the values of Rel from each level together, and use grep to select
the desired result. But since the paper is on recursive queries without recursion, and full closures
require a lot of computing, we should do better. As in section 7, however, it is not clear that there
is a nested version better than the flat relation above, even though we might be able to make the
syntactic sugar quite compact and resembling the G+ queries.

The second set of examples in the paper look at summary or aggregation operators on numerical
attributes. Example data is not given, so we use BoM from section 1.1 and a modification of data
from [13] which includes distances between airports.

43

Flights
(From Line Dist To)
Tor AC 4200 Van
Tor AC 880 Bos
Tor AC 690 NY
Van AC 4200 Tor
LA AC 4700 Tor
Tor AA 880 Bos
Bos AA 380 NY
NY AA 5000 LA
LA AA 1000 SF
SF AA 5200 NY

To find all components to assemble a wallplug and how many of each are needed, G+ writes the
graphical equivalent of (wallplug,(×,+),x) while we find BoMtc from section 1.2 and then select

[subassembly, qty] where assembly="wallplug" in BoMtc
To find the shortest distance between Toronto and San Francisco, G+ writes (Tor,(+,min),SF).

We find the closure of the projection, [From,Dist,To] in Flights, using the same code as for BoMtc
except that + is replaced by min and × is replaced by +, then

[Dist] where From="Tor" and To="SF" in FlightsTC
To find the city which is the longest distance (but not necessarily on the longest path) from

Toronto,
let maxDist be equiv max of Dist by From;
[maxDist,To] where From="Tor" in FlightsTC

or, since this gives 8400 from Tor to Tor,
[maxDist,To] where From="Tor" in where From 6=To in FlightsTC

(a rare example of the usually redundant double selection in where). This code appears to diverge
from the G+ formulation, which involves (+,max) operators and must use special syntax to collapse
multiple valuations into one. Note that we cannot replace min of the previous query by max in
the closure computation, when the graph has cycles, because each traversal of a cycle increases the
aggregate, and the computation will not stop.

(To find the city which is on the longest path from Toronto, we use the domain algebra non-
recursively, but with an apparent cycle, to count levels while finding the closure of the projection
[From,To] in Flights:

let level be 1;
FTFlights <− [From,To,level] in Flights;
let level ′ be level + 1;
let level ′′ be equiv min of level ′ by From, To ′;
let level be level ′′;
FTFlightsTC is [From,To,level] in [From,To,level ′′] in

(FTFlights [From,To,level union From,To,level ′]
[From,To ′,level ′] in
([From,To ′,level ′] in (FTFlights[To join From ′]
[From ′,To ′,level ′] in FTFlightsTC)));

let maxLev be equiv max of level by From;
[maxLev,To] where From="Tor" and maxLev=level in FTFlightsTC;

To find the number of “edges in the graph” is to find the number of tuples:
let edgeCt be red + of 1;
[edgeCt] in Flights

does not need the closure.
Finally, a “same-generation” query can use the same level-counting technique on Parent that

we used on FTFlights to find the longest path.
let generation be 0;
genParent <− [Sr,Jr,generation] in Parent;

44

let generation ′ be generation + 1;
let generation be generation ′;
genParentTC is genParent union [Sr,Jr,generation] in [Sr,Jr,generation ′] in genParentTC;
let Jr ′ be Jr;
([Jr,generation] in genParentTC) comp [Jr ′,generation] in genParentTC

The earlier paper [13] poses a interesting query on Flights, “find first and last cities visited in
all round trips from Toronto, in which the first and last flights are with Air Canada and all other
flights (if any) are with the same airline”. It answers with the graphical equivalent to the union of
x, y and z given

{(Tor, AC,x),(x,AC,Tor)} and
{(Tor, AC,y),(y, w+, z),(z,AC,Tor)}

However, the paper acknowledges a difficulty in implementing this answer, in that only simple paths
of the graph are intended to be traversed, while a naive implementation will erroneously include
the results of traversing the cycles indefinitely. The implementation must maintain a list of visited
nodes. We can build up a closure with the Line attribute cumulatively concatenated, on which
we can subsequently apply grep. In each tuple, we build up a nested relation of the visited nodes
(Visit), and we connect an edge to a path in the growing closure only if 1) the path is not a loop,
with the same endpoints, and 2) the nodes visited by the path do not contain the From node of
the edge being added. Here is the closure

let Node be To;
let Visit be relation(Node);
FLTVFlight <− [From,Line,To,Visit] in Flights;
let Line ′ be Line;
let Line ′′ be Line cat Line ′;
let Line be Line ′′;
let Visit ′ be Visit;
let Visit ′ be Visit union Visit ′;
let Visit be Visit ′′;
let From ′ be From;
let To ′ be To;
let To be To ′;
let Start be relation(From);
FLTVFlightTC is FLTVFlight union [From,Line,To,Visit] in

[From,Line ′′,To ′,Visit ′′] where ((Visit sep Visit ′)
and ((Start [From sep Node] Visit ′′) or (From=To ′′))) in
(FLTVFlight [To join From ′]
[From ′,Line ′,To ′,Visit ′] where From 6=To in FLTVFlightTC);

(We have used a “sigma join”, sep, not discussed in the paper: this tests its two operands for
separateness, i.e., non-overlap; it is related to comp and sup (section 1.1.2).) and here is the final
path selection

[From,Line,To] where ([] in grep(;w) "AC(w)*AC" in Line) in FLTVFlightTC
(Note that we have applied grep to a single attribute, considered as a nested relation.)

A later paper [12] extends G+ to Graphlog, which now includes negation. An example on
Parent is “find descendents of Don who are not also descendents of Ann”.

([Jr] where Sr="Don" in ParentTC) diff [Jr] where Sr="Ann" in ParentTC
uses set difference.

In summary, Graphlog and its precursors, although specialized, provide a neater formalism than
we do, but do not transcend in expressiveness the relational and domain algebras with recursion.
Our implementations, above, have all been in terms of full closures, which could be inefficient: a
Graphlog implementation could do better, but so could relational recursion.

45

A.2 ACeDB

“A C.elegans Database”, ACeDB [21], appeared in 1992 to help genome researchers with their
bibliographies and data, originally for the genome of the C.elegans nematode. It was subsequently
an inspiration for work on semistructured data, so we look at some example queries on a movies
database [22]. Here is an extract from the schema (ACeDB calls it the “model”) of the movies
database suitable for the queries we shall look at.

?Movie Director ?Person XREF Directed UNIQUE Text
Based_on ?Book XREF Script_for
Cast ?Person XREF Stars_in UNIQUE Text
Release Date DateType UNIQUE Text
Rating UNIQUE Float UNIQUE Int

?Person Real_name UNIQUE Text
Date_of_Birth UNIQUE DateType UNIQUE Text
Relations Spouse ?Person UNIQUE DateType UNIQUE DateType

Children ?Person
Directed ?Movie XREF Director
Stars_in ?Movie XREF Cast
Wrote ?Book XREF Author

?Book Reference Publisher UNIQUE Text
Year UNIQUE Int

Author ?Person XREF Wrote

As a set of nested relations, this is
relation Movie(Name,Directors,Based on,Cast,Release,Rating);
domain Directors(Director,Comments);
domain Cast(Actor,Role);
domain Release(Date,Country);
relation Person(Real name,Date of Birth,Relations,Directed, Stars in,Wrote);
domain Relations(Spouses,Children);
domain Spouses(Spouse,From,To);
domain Children(Child);
domain Directed(Film);
domain Stars in(Film);
domain Wrote(Story);
relation Book(Reference,Authors);
domain Reference(Publisher,Year);
domain Authors(Author);

which would be supplemented by declarations such as
domain Name string; etc.
domain Director Person;

(and so are Actor, Spouse, Child and Author declared as Person)
domain Based on Book;

(and so is Story declared as Book)
domain Film Movie;

There are a number of points to note in this mapping from ACeDB.

• “UNIQUE” in ACeDB is a semantic constraint, specifying both singleton sets and functional
dependences. Keys and functional dependences are not specified by our formalism in this
paper. However, if an attribute is non-singleton (is not specified UNIQUE in ACeDB), it must
be a nested relation, so we have had to invent plural names beyond the names specified in
the ACeDB schema. (A relational entry gives us the “∗” quantifier, zero or many.)

46

• Any ACeDB entry is optional, which is to say that the relational version is polymorphic and
can omit any attribute. (Any entry thus gives us the “?” quantifier, zero or one.)

• ACeDB also does not specify the names of some fields, just their types, so we have invented
names. This will be helpful to the reader, who is not left guessing as to the meanings (as in
the Text field following Director, which we just called Comments, having been given no clue
by the ACeDB schema).

• We have simplified the design by giving Rating and Date of Birth single numerical values.

• ACeDB uses “XREF” as a further semantic constraint to link mappings between object classes
and their inverse mappings in the target class. Such semantics are not provided for our
formalism in this paper.

• We have added the Name of the movie, which is implicit in the ACeDB example.

• Finally, the ACeDB example omits the ACeDB enumerated type construction, such as

Description Recessive
Dominant
Semi-dominant
Weak

or exclusive enumerated types such as

Language UNIQUE French
English

Here are ten queries from [22], selected to be challenging.

4. list all movies and their directors and possibly their real names
let Dir be [Real name] in Directors;
[Name,Dir] in Movie

5. list authors of books on which movies are based
[red union of [Authors] in Based on] in Movies

10. list the movies that have been released after 1990, i.e. in 1991 and thereafter
[Name,Release/Date] where Release/Date>1990 in Movie

11. list all movies for which no release year information is stored
[Name] where (not [] in [Year] in Release) in Movie

15. list all movies with more than 3 cast members
[Name] where ([] where (red + of 1)>3 in Cast) in Movie

16. calculate the average age of all the actors
let Age be today − Date of Birth;
Actors <− [red union of [red union of [Real name,Age] in Actor]

in Cast] in Movie;
let avgAge be (red + of Age)/(red + of 1);
[avgAge] in Actors

47

20. show release date of first “James Bond” film
BondFilms <− [red union of (Name join [Date] in Release)]

where ([] where Role="James Bond" in Cast) in Movie;
[Date] where Date=red max of Date in BondFilms

25. list bond films with the James Bond actor and list all the movies that actor has starred in
let Actors be [Actor,Actor/Stars in/Name]

where Role="James Bond" in Cast ;
let Name ′ be Name;
[red union of (Name join [Actor,Name ′] in Actors)]

where ([] where Role="James Bond" in Cast) in Movie

28. for all Bond actors list their films where they weren’t James Bond and who they played in
those films

BondActors <− Cast/Actor where Cast/Role="James Bond" in Movie;
let Actor ′ be Actor ;
AllActors <− [red union of (Name join [Actor,Role]

where Role6="James Bond" in Cast)] in Movie;
AllActors join BondActors

29. list actors from Bond-films that didn’t play “James Bond”
let Actors be [Actor] where Role6="James Bond" in Cast ;
[red union of Actors] where

([] where Role="James Bond" in Cast) in Movie

Overall, our formulations, with or without syntactic sugar, are more compact than the ACeDB
queries. A particular drawback of the ACeDB approach is that they must resort (from query 20 on)
to a secondary, relational, formulation, so an ACeDB programmer is obliged to learn their variant
of relational queries as well as the native ACeDB structure.

A.3 Atlas and SGML relations

Also first published in 1992, Atlas [19] went beyond conventional structured access to documents by
publication date, author, citation count or date, etc., and offered text processing: retrieval on words,
word phrases, and word parts; soundex; stemming; and ranking. Two years later, Tompa’s group at
the University of Waterloo proposed [4] a relational interface to the Standard Generalized Markup
Language, SGML, to accomplish a similar fusion of text processing and structured databases. We
refer to this work as SGMLql for short.

We translate an example Atlas schema into nested relations.

Document [
doc_id INTEGER,
title TEXT,
Authors [name (surname TEXT, firstname TEXT)],
Nodes [node REF Hypertext]

] key = (doc_id)
Hypertext [

id INTEGER,
doc REF Document,
content TEXT,
Links [
node REF Hypertext,
linktype TEXT

] key = (node)

48

] key = (id)

As nested relations, this is
relation Document(doc id,title,Authors,Nodes);
domain Authors(surname,firstname);
domain Nodes(node);
relation Hypertext(id,doc,content,Links);
domain Links(node,linktype);

with supporting declarations such as
domain doc id integer; etc.
domain node integer;
domain id integer;
domain doc Document ;

Note that we could have declared node to be a recursively nested Hypertext, but Atlas uses explicit
joins, so our nested relations are in keeping with Atlas’ approach to the following queries. REFerence
in Atlas is a tuple comprising the global key of the relation referenced, and this is why Atlas must
make the semantic specification of what the key of each relation is.

Note also that Atlas violates the relational model, and consistency between outer and inner
relations by not removing duplicates, and by retaining the notion of tuple order for inner relations.
It finds it needs to do this to support text, which is a sequence rather than a set. (The Atlas text
type is also used for binary data such as images, but Atlas provides no special operators such as
clipping or scaling.)

Here are our versions of the last six of the seven queries used to illustrate Atlas. (We have
provided our own formulations in three cases where examples are not given or are elided.)

• For each document, list the title, its authors, and the contents of all of its nodes. (N.B.
explicit join version.)

[red union of (title join Authors join Nodes)] in Document
[node comp id] [id,content] in Hypertext

• Retrieve all hypertext nodes that have at least three links from other nodes directed to it.
let ct be equiv + of 1 by id ;
[id] where ct≥3 in [red union of (id join Links)] in Hypertext

• List all documents written by an author with surname McEnroe (case ignored).
where ˆ(Authors/surname)="MCENROE" in Document

where [] in (grep "MCENROE" in ˆ(Authors/surname)) in Document

• List hypertext nodes that contain the phrase ‘computer science’ and the word ‘education’.
(Note that this query and the next combine to form one query in the Atlas paper.)

where ([] in (grep "computer science" in content) and
[] in (grep "education" in content)) in Hypertext

• List hypertext nodes that contain the phrases ‘computer science’ or ‘computing science’, etc.,
and the word ‘education’. (This illustrates stemming, for which Atlas uses special operators
but we use a relation, stems(word,stem), which serves as a dictionary of stems. Note that we
use it twice, first to find the stem of ‘computer’, then to find all other words with this stem.

let word ′ be word ;
where ([] in grep

((where word ′="computer" in [word ′,stem] in stems) comp stems)
cat " science" in content and
[] in (grep "education" in content)) in Hypertext

• List all documents whose author surname sounds like McEnroe. (Atlas also uses a special
operator for soundex queries, but we again use a dictionary, soundex (word,sounds.)

49

let word ′ be word ;
((where word ′="mcenroe" in [word ′,sounds] in soundex) comp soundex)

[word join surname]
[red union of (doc id join title join Authors join Nodes)]
in Document

• Rank hypertext nodes according to how they satisfy a query on keywords ‘art’, ‘aesthetics’,
‘craft’, or ‘philosophy’. (This is the simplest kind of ranking: rank counts the number of
different positions that match the pattern. We have just written out the four patterns inline,
instead of constructing a relation containing them.)

let rank be equiv + of 1 by id ;
[id,rank] in [id,pos] where

[] in grep(pos) "art" "aesthetics" "craft" "philosophy"
in content in Hypertext

SGMLql embeds structure in text, and allows free text anywhere. Their example might be
marked up as follows.

<author>W.L. MORTON</author>, <refs><work>The Kingdom of Canada</work>,
<edition>2nd ed.</edition> <paren>(</paren><date>1969</date>)</refs>,
is the fullest one-volume history and the most
traditional<termin>.</termin>.. To understand the place of the colonies
that became Canada in the British Empire, the following are most useful:
<author>H.A. INNIS</author>, <refs><work>The Fur Trade in Canada</work>,
<edition>2nd ed.<\edition> <paren>(</paren><date>1956</date>) and
<work>The Code[sic] Fisheries</work>, <edition>rev.ed.</edition>
<paren>(</paren><date>1954</date>)</refs><termin>;</termin>... The
following works both introduce and analyse the development of the
remaining British colonies to self-governing communities and their union
in confederation. <author>W.S. MacNUTT</author> combines in a single
narrative the histories of the Atlantic provinces in <refs><work>The
Atlantic Provinces, the Emergence of Colonial Society, 1712--1857</work>
<paren>(</paren><date>1965</date>)</refs><termin>.</termin>
<author>FERNAND OUELLET</author> in his <refs><work>Histoire
\’{e}conomique et sociale du Qu\’{e}bec, 1760--1850</work>
<paren>(</paren><date>1966</date>; Eng. trans. in prep.)</refs>,
applies with great success the demographic method of French
historiography to the little known domestic development of that province
<termin>.</termin>..

From this we can extract a nested relational schema.
domain biblio(author,refs)
domain refs(work,edition,date)

The SGMLql paper goes on to embed these domains in a parent relation
relation Encyclopedia(aid,title,cid,req date,req wc,due date,article,biblio)

in which article ID, contributor ID, requested date, and requested word count amplify the ab-
breviated attributes aid, cid, req date, and req wc, respectively. This relation has further nested
attributes

domain article(title,rest)
domain rest body|xref
domain xref(title)
domain body(chapter,keywords,summary)
domain chapter(paragraph)

50

In the above schema, we have omitted what might be called delimiter attributes, which have fixed
or closely prescribed values: termin in biblio may be “;” or “.”; paren in refs is always “(”; and see
in xref is always “see”.

The paper offers eight queries, only one of which is so specialized to SGML that we cannot
formulate it in a general system. Here are all but the first.

• Who contributed articles for which the proposed titles do not match the titles included in the
article’s body?

[cid,aid] where not(title comp article/title) in Encyclopedia

• Find proposed titles and lengths of long articles on Canada. (We could have used body instead
of *, but chose to keep the query the same as the SGMLql query.)

[title,req wc] where (req wc>5000 and [] in grep "Canada"
in article/*/keywords) in Encyclopedia

• Find all nodes of type “paragraph” and containing substring “Canada”.
where attr=paragraph in grep(attr) "Canada" in Encyclopedia/*

• Select all nodes having an ancestor of type ”chapter”.
Encyclopedia/*/chapter/*

• Select all nodes that have children.
Encyclopedia/+

• Select all nodes where the parent has an (SGML) attribute of type status and value “Obs.”.
(This is specific to SGML, which SGMLql incorporates among its relations, so we can only
express it with a similar translator from SGML structure to a relational representation.)

• Find the article identification, title, contibutor, and bibliography for entries where the bibli-
ography has more than one citation but all are from the same author. (This query requires
a domain algebra idiom to count the number of different values of an attribute, in this case,
author, which uses functional mapping, not discussed in section 1.2.)

[aid,title,cid,biblio] where
([] where (red + of 1)>1 and
(red max of fun + of 1 order author)=1
in biblio) in Encyclopedia

Atlas and SGMLql are the first text-querying systems from the literature that we discuss.
Since semi-structured data is supposedly half-way between rigidly structured flat relations and
unstructured text, the direction taken by these systems is important.

A.4 Lorel

The Lightweight Object REpository, LORE, supports the query Language, LOREL, which was de-
veloped for flexibility and to be more forgiving than earlier object-oriented query languages. This
made it useful for both The Stanford-IBM Manager of Multiple Information Sources, TSIMMIS,
a contemporaneous project on integration of heterogeneous data, and as an early semistructured
query language. Since, as we would expect, the two major projects at Stanford generated a great
deal of literature, we will focus on two papers [18, 3], which query the now well-known good living
guide. ([17] illustrates an interesting soccer league database, but has no queries. It is concerned
with schema discovery (we have looked at a simple implementation of this paper’s notion of “con-
tinuation” (“dataguides” in Lorel) using attribsOf at the end of section 6), query optimization,
and improving implementation of path expressions.)

Frodo’s Guide to Good Living in the Bay Area is presented by [18] as a hierarchical table. As
nested relations, we formulate it

51

relation Frodos(Restaurant|Group)
domain Restaurant(Name,Category,Entree,Location)
domain Entree(Name,Price)
domain Location(Street,City,Phone)
domain Group(Name,Category,Performance,TicketPrice,Location)
domain Performances(Performance)
domain Performance(Date,Work)
domain Work string|(Title,Composer)
domain Composer(Name)
domain TicketPrice(AgeGroup,Price)

Note that, as in section A.2, the relational formulation must distinguish multiple from singleton
entries by adding plural names.

All queries from [18] can be expressed.

• Find names of all opera groups. (Note that, as usual, we have written an expression, not
a statement. A name such as Answer is not automatically generated for the result. If a
name is needed, it must be supplied by embedding the expression into an assignment or view
statement—which is what most programming languages require.)

Group/Name where Group/Category="Opera" in Frodos

• Find names of all opera groups. (In this variant of the first query, we seek the whole group,
producing a structured (nested) result.)

Group where Group/Category="Opera" in Frodos

• Find titles of all performances where the title is the same as one of the composers. (Here we
do a natural composition on a singleton relation with attribute Name (generated by default
from the scalar attribute Name) and Composer(Name). We cannot use “=” because this
would also default to a relational operator, but one that returns true iff the two relations are
identical. The query seeks intersection only between the sets in Title and Composer.)

let Name be Title;
Title where Name comp Composer in Frodos/Group/Performance/Work

• Find works performed by groups whose ticket price is known in advance.
Performance/Work where [] in TicketPrice in Frodos/Group

• Find names of all groups located in Santa Clara county. (We replace the external predicate,
isInCounty, of the Lorel paper, by the relation isInCounty(City,County): external predicates
are special cases of procedures, or “computations”, which we have not discussed in this paper,
so we use comp instead as an alternative solution.)

Name where Location/City comp
([City] where County="Santa Clara" in isInCounty)
in Frodos/Group

• Find the names of all groups such that either the group is an opera group or it performs
on 3/19/95. (Our result is correct even for groups with no performance date provided, as is
Lorel’s, but for a slightly different reason. An absent attribute, or empty nested relation, is
understood to have a DC null value, and this translates to a DC Boolean null in the Boolean
condition. Boolean operators deal with null values just as other operators do: in particular,
DC acts as the identity of or and so is effectively ignored.)

Name where Category="Opera" or Performance/Date="3/19/95"
in Frodos/Group

• Find the names of restaurants whose entrees all cost < $10. (While we avoid needing a new
keyword, SATISFIES, as Lorel does, we must go beyond the relational algebra discussed in this
paper to include “QT-selectors” which allow quantification. Note that we cast Entree/Price

52

to integer in order to resolve the union type of this attribute.)
Name quant (•=1)Entree where (integer)Entree/Price<10

in Frodos/Restaurant

• Find the names of restaurants that offer more than seven entrees priced $10 or less. (Again,
a QT-selector. No need for COUNT.)

Name quant (#>7)Entree where (integer)Entree/Price<10
in Frodos/Restaurant

• Select the titles of all performances of works by Gilbert and Sullivan.
relation GnS (Name) <− {("Gilbert"),("Sullivan")};
Title where Composer sup GnS in Frodos/Group/Performance/Work

• Find names of restaurants located in Palo Alto. (As with the Lorel example, this query goes
beyond the data shown in the Lorel paper and the schema shown above, and supposes that we
are unsure of just where under Restaurant the City appears. Hence the need for the Kleene
star in .*, which is elided to just * .)

Name where */City="Palo Alto" in Frodos/Restaurant

• Find all possible sequences of labels in the Frodos database. (We do not repeat the code at
the end of section 3, but refer the reader to it and suggest replacing company by Frodos.)

• Find both Name and Phone objects for every group in Palo Alto. (We embed the expression
into a statement to name the result.)

LocalGroups <− [Name,*/Phone] where Location/City="Palo Alto"
in Frodos/Group;

• In the previous query, we don’t have Lorel’s problem of failing to correlate Name, Phone in
the result, so we don’t need FOREACH; but we could retain a nested structure anyway:

let GroupNP be [Name,*/Phone] where Location/City="Palo Alto"
in Group;

LocalGroups <− [GroupNP] in Frodos;

• Find name, type, and rating of restaurants (where type is category, and joining with an
additional relation which gives ratings.)

relation BBB(Name,Rating) <− {("Blues on the Bay", 4),
("The Greasy Spoon", 1)}

let Type be Category ;
RatedRestaurant <− Frodos/Restaurant join BBB ;

The Guide in [3] is shown both textually as a hierarchical table and as a graph with edges
labelled by attributes, leaves labelled by values, and each node identifying its object. It is simpler
than Frodos but has some interesting aspects. Here is a schema.

relation Guide(restaurant);
domain restaurant(category,name,addresses,zip,prices,nearbys);
domain addresses(address);
domain address string|(street,city,zip);
domain prices(price);
domain nearbys(nearby);
domain nearby restaurant ;
domain zip string|integer;

First, the schema is recursive on restaurant, since nearby is a descendent attribute of restaurant
which is itself a restaurant. Second, an attribute such as zip occurs twice, in different places. It
is understood that zip will probably appear not more than once in any restaurant entry, but, in
keeping with the flexibility of semistructured data, this is not enforced.

53

The queries presented display these two aspects of Guide.

• Find the addresses of all restaurants in the 92310 zipcode. (First version: assume zip appears
only under address. Note the cast, since zip is either string or integer.)

where (string) zip="92310" in Guide/restaurant/address

• Find the addresses of all restaurants in the 92310 zipcode. (Second version: zip may appear
at either place.)

where (string) zip="92310" in Guide/restaurant/*
or

where (string) zip="92310" in Guide/restaurant/address?

• Find the names and zipcodes of all “cheap” restaurants.
[red union of (name join ?/zip)] in grep cheap" in Guide/restaurant

• Return the names of all restaurants having an address with a zip code of 92310 or that are
located on El Camino Real in Palo Alto.

name where (string)address/zip="92310" or
(address/street="El Camino Real" and
address/city="Palo Alto") in Guide/restaurant

• Find the names of cheap restaurants with zipcode 92310.
name in grep cheap" where (string) (?/zip)="92310" in Guide/restaurant

• Return all restaurants that have two distinct paths to the same nearby restaurant. (We test
nearbys for overlap with itself in two copies of restaurant. A clever compiler could make this
as fast as using variables, the way Lorel does.)

let category ′ be category ;
let name ′ be name;
let addresses ′ be addresses;
let zip ′ be zip;
let prices ′ be prices;
let nearbys ′ be nearbys;
where nearbys ′ comp nearbys in Guide/restaurant join

[category ′,name ′,addresses ′,zip ′,prices ′,nearbys ′] in Guide/restaurant

• Record that my favourite restaurant is the Saigon.
myFavourite <− where name="Saigon" in Guide/restaurant ;

• Change my mind: my favourite restaurant is the Chef Chu.
myFavourite <− where name="Chef Chu" in Guide/restaurant ;

• Delete myFavourite.
myFavourite <− DC;

or
update myFavourite delete;

• Create a new relation.
relation new <−

{< a >5< /a ><bs>< b >"X"< /b >< b >"Y"< /b >< /bs>};

• Update price in Prices. (Note that even if Prices originally had many tuples, this update will
result in only one, since it makes every value 7 and duplicates are not allowed. In this and
following examples, we assume, along with [3], that the schema is simple enough not to need
explication.)

update Prices change price <− 7;

54

• Create a new Prices relation. (This replaces the old Prices with another. It has the same
effect as the previous update.)

relation Prices(price) <− {(7)};

• Update price in Prices by adding 1 to each value.
update Prices change price <− price+1

• Add “Sunnyvale” to the addresses of my favourite restaurant. (This updates the string
alternative for address. It could be shortened by replacing Sunnyvale by the relation constant
{<address>Sunnyvale}, but we show an explicit version.)

relation Sunnyvale(address) <− {("Sunnyvale")};
update myFavourite/addresses add Sunnyvale;

• Add the restaurant’s city as a direct subobject of the restaurant object if the city is Palo Alto
or Menlo Park. (The Lorel example does not delete city from addresses under these circum-
stances. Nor do we: doing so needs a transpose operation to reveal the type of address, and
remove city only if it is a relation, not a string.)

let city be addresses/address/city ;
update Guide change restaurant <−

if restaurant/name="Palo Alto" or restaurant/name="Menlo Park"
then [category,name,addresses,city,zip,prices,nearbys] in restaurant
else restaurant ;

• Transform all the restaurant labels to eatery labels.
let eatery be restaurant ;
Guide <− eatery in Guide;

A.5 UnQL

Independently, Buneman and colleagues at the University of Pennsylvania were developing UnQL,
a query language for unstructured data. Subsequently, UnQL and Lorel were more or less fused [1].
We look at the queries in four papers starting in 1995 [7, 6, 5], and [20].

The data structure underlying the UnQL work is a labelled tree without the exceptional leaf
nodes used by Lore: the values that Lore stores on leaves are edge labels in UnQL just as every
attribute is an edge label, and so data values and attribute names are treated equally. The bibli-
ography database of [7] can be expressed as nested relations:

relation bib(doc);
domain doc(topics,book|article);
domain topics(topic);
domain book(title,authors);
domain article(title,authors);
domain authors(author);

and topic, title, and author have type string.
Note that “unstructured data” is not supposed to possess a schema separate from the data:

we could go on to show their data as well by displaying the nested relations, but we have shown
only the structure for brevity. This structure must be known to the query writer, as is clear from
UnQL’s formulation of the three queries the paper presents.

Example 1. Find the titles of all books on Genetics.
book/title where topics/topic="Genetics" in bib/doc;

Example 2. Find the authors of all documents, regardless of the type of the document.
authors in bib/doc/.

55

Example 3. Find the title and topic[sic] of all books by Gonick and Wheels.
relation GonWheel(author) <− {("Gonick"),("Wheels")};
[book/title, topics] where book/authors=GonWheel in bib/doc;

The paper then goes on to be the first to introduce cycles into the data structure, by separating
author data from document data and linking both ways. In the relational representation, we need
only close a loop:

domain author string;
becomes

domain author(name,papers);
with

domain papers(doc);
(“papers” is used by the authors despite referring to books, too.)

A movie database is introduced in [6] and used in [5]
relation DB(Entry);
domain Entry(Movie|TVShow);
domain Movie(Title,Cast,Director,Refs,RefBy);
domain TVShow(Title,Cast,Episodes);
domain Cast(Actors,CreditActors);
domain Actors(Actor);
domain CreditActors(Actor);
domain Episodes(Episode,SpecialGuests,Director);
domain SpecialGuests(Actor);
domain Refs Movie;
domain RefBy Movie;

and every datum is a string, except Episode which is integer.
Here are selected queries from these two papers.

Example 3.5 Give the titles and casts of all entries—movies, TV shows, etc.
[Title,Cast] in DB/Entry/.

Example 3.6 Give actress/actor and title tuples for movies.
[Title,Cast/Actors] in DB/Entry/Movie

Example 3.7 Find the set of all strings in the database.
let typval be transpose(type,value) union typval ;
value where typval/type=string in DB ;

Example 3.8 Find all movies involving “Bogart” and “Bacall”.
relation BogBac(Actor) <− {("Bogart"),("Bacall")};
where */Actors sup BogBac in DB/Movie

Example 3.9 Find all movies involving “Bogart” and “Bacall”, avoiding the cycles possibly generated by
Refs and RefBy : do not follow paths containing Movie more than once.

where [ˆMovie]*/Actors sup BogBac in DB/Movie

Example 4.1 Replace all SpecialGuest labels with a Featuring label.
let Featuring be SpecialGuest ;
update DB/* change insert Featuring remove SpecialGuest ;

Example 4.2 For TV shows, replace all SpecialGuest labels with a Featuring label.
let Featuring be SpecialGuest ;
update DB/*/TVShow/* change insert Featuring remove SpecialGuest ;

• Where in the database is the string “Casablanca” to be found?
let attrCasa be (attr in grep(attr) "Casablanca" in .) union attrCasa;
attrCasa/attr in DB ;

56

• Are there integers in the database greater than 216?
let typval be transpose(type,value) union typval ;
[] where type=integer and (integer)value>2^16 in DB/typval

• What objects in the database have an attribute name that starts with “Act”?
let attribs be transpose(attr) union attribs;
where grep "^Act" in attribs in DB

The queries from [6] that we did not answer above pertain to an emulation of flat relations in
the labelled tree model. This database can also be emulated by nested relations (although there is
little motivation to do so). A literal interpretation of the emulation is

relation DB(R1,R2);
domain R1 (tup);
domain R2 (tup);
domain tup(A, B, C);
domain tup(C, D);

where we use polymorphism for tup. Given the application, we can simplify:
relation DB(R1,R2);
domain R1 (A, B, C);
domain R2 (C, D);

The queries are

Example 3.1 Compute the union of all trees t such that DB contains an edge R1⇒ t emanating from the
root.

DB/R1

Example 3.2 Find the union of all tuples in both relations.
DB/R1 union DB/R2

Here, polymorphism allows the heterogeneous result to be a single, if awkward, relation. Note
that UnQL does not need to name R1 and R2.

Example 3.3 Join R1 and R2 on their common attribute C and then project onto A and D.
[[A, D] in (R1 join R2)] in DB

Example 3.4 Perform a group-by operation on R2 along the C column.
let Dset be equiv union of D by C;
[[C,Dset] in R2] in DB

Finally, [20] uses a bibliographic database, which we capture as
relation Bib(paper |book);
domain paper(authors,title,year,pages,references);
domain book(authors,title,publisher,references);
domain references(reference);
domain authors(author);
domain author string|(firstname,lastname);
domain pages(first,last);
domain reference Bib;

The queries are

• Return the titles of papers written since 1995.
title where year>1995 in Bib/paper ;

• Find all papers referenced directly or indirectly by Ullman:.
references/reference/paper where authors/author/lastname?="Ullman"

in Bib/.

57

• Retrieve all integers in the database.
let typval be transpose(type,value) union typval ;
value where typval/type=integer in Bib;

• Convert all integers to strings in books, leaving integers untouched in other publications.
let attr ′ be attr cat S;
let atTyVal be transpose(attr,type,value) union atTyVal ;

A.6 OQL-doc

The O2 document database in [2] can be put into nested relational form (without constraints, and
without hiding information as private—which, together with instantiation and other aspects of full
object orientation, requires procedural mechanisms and is beyond the scope of this paper).

relation Articles(title,authors,affil,abstract,sections,acknowl,status,cites);
domain authors(author,seq);
domain sections(seq,title,bodies,subsectns);
domain subsectns(seq,title,bodies,subsectns);
domain bodies(seq,figure|paragr);
domain figure(picture,caption,label);
domain paragr(reflabel);
domain cites(citation);
domain citation Articles;

Note that we have added seq attributes to authors, sections, subsectns and bodies to distinguish first,
second, etc. authors, since relations are not ordered. We have also made the subsectns attribute
recursive, beyond the O2 specification. We do not follow up the specification of label and reflabel
as lists of Objects, because this is not explained or used in the OQL-doc paper.

We have added a recursive cites(citation) attribute in order to answer query 6, below.

Q1 Find the title and the first author of articles having a section with the title containing “SGML”
and “OODB”.

[red union of (title join where seq=1 in authors)] where
[] in grep "SGML" in section and [] in grep "OODB" in section
in Articles

Q2′ Find the subsections of articles containing the sentence “complex object”. (Nonrecursive.)
[section/subsectn] in grep "complex object" in Articles

Q2 Find the subsections, containing the sentence “complex object”, of articles. (Nonrecursive.)
grep "complex object" in Articles/section/subsectn

Q2+ Find the subsections, containing the sentence “complex object”, of articles. (Recursive.)
grep "complex object" in Articles/section/subsectn+

Q3 Find all titles in Articles.
*/title in Articles

Q3+ Find all the paths titles are on in Articles. (See the end of section 1.3.)
let path be self/attr ;
let path ′ be self/path;
let paths be path in

((path where attr=quote title in transpose(attr))
[path union path ′] (path ′ in [red union of paths] in .));

[red union of paths] in Articles

58

Q3++ Find all titles in Articles and the paths they are on.
let path be self/attr ;
let path ′ be self/path;
let paths be [title,path] in

((title join (path where attr=quote title in transpose(attr)))
[title,path union title,path ′] ([title,path ′] in [red union of paths]
in .));

[red union of paths] in Articles

Q3+++ Find titles containing “OODB” in Articles and the paths they are on.
let path be self/attr ;
let path ′ be self/path;
let paths be [title,path] in (((grep "OODB" in title) join

(path where attr=quote title in transpose(attr)))
[title,path union title,path ′] ([title,path ′] in [red union of paths]
in .));

[red union of paths] in Articles

Q4 Find the structural differences between my new and old articles.
let path be self/attr ;
let path ′ be self/path;
let paths be [path] in ((transpose(attr))

[path union path ′] (path ′ in [red union of paths] in .));
([red union of paths] in my article) diff

[red union of paths] in my old article

Q5 Find the attributes defined in articles whose value contains the string “final”.
attr in grep(attr) "final" in Articles/*

Q6 Return pairs of documents referencing each other, given that the title of the first document
contains the word “digital”. (We suppose that the title and the set of authors suffice to
identify a document, to keep things brief: we do not have object identity, but we can test two
relations for equality using the join written “=”. Hint: start by thinking of this problem for
the flat binary relation cites(article,citation); the query, and even its extension to arbitrary
depths of reference, then becomes trivial in Graphlog, for instance.)

let ctitle be cites/citation/title;
let cauthors be cites/citation/authors;
let title ′ be title;
let authors ′ be authors;
let ctitle ′ be ctitle;
let cauthors ′ be cauthors;
selfcite2 <− [title,authors,ctitle,cauthors]

where title=ctitle ′ and authors=cauthors ′ in
((where ([] in grep "[Dd]igital" in title) in Articles)
[ctitle,cauthors join title ′,authors ′]
[title ′,authors ′,ctitle ′,cauthors ′] in Article

A.7 From Relations to Semistructured Data and XML

Abiteboul, Buneman, and Suciu [1] offer interesting examples starting in Chapter 4 and based on
the following bibliographic database (we show, with them, data for the initial queries, and we add
some data to illustrate further queries, but do not cover all the queries we discuss below).

59

DB(biblio
(book)
(authors date title)
(author)
Roux 1976 Database Systems
Combalusier
Smith 1999 Database Systems
(paper)
(authors title year refers to)
(author) (authors cite)

(author)
Suciu Semi-Databases 2001 Roux RC76

Combalusier
Smith Sm77
Smith Sm99
Suciu Su01

Jones Smith’s DB Work 2000 Smith Sm77
Smith Sm99

This can be formulated as the nested relations
domain authors(author);
domain book(authors,date,title);
domain refers to(authors,cite);
domain paper(authors,title,year,refers to);
domain biblio book |paper ;
relation DB(biblio);

Here are the queries, identified by their numbers where provided and by letters otherwise.

Q1 Find the set of book authors.
DB/biblio/book/authors

Q2 Find documents written by Smith.
let row be biblio/.;
row where authors/author="Smith" in DB

Q2 ′ Find documents about databases.
where ([] in grep "[dD]atabase" in title) in DB/biblio

Q3 Find the set of book authors, retaining the distinction between books.
let row be authors in biblio/book ;
DB/row

Q4 Find books including Roux as an author, and split into separate entries for each author.
let row be authors union title;
row where authors/author="Roux" in DB/biblio/book

Qa Find authors who are referred to at least twice in some paper with “Database” in the title.
[We use a QT-selector again here.]

let multcite be author quant (#>1)cite in red union of (authors join cite);
refers to/multcite/author where [] in grep "Database" in paper) in DB/biblio

Q5 Find authors of 1997 papers.
authors/author where year=1997 in DB/biblio/paper

Q6 Find titles of papers written after 1989.
title where year>1989 in DB/biblio/paper

60

Qb Find all occurrences of “Shakespear”.5

[author,attr,val] in grep "Shakespear" in DB/biblio/.*

Qc Create publication(type,title) where type is “book” or “paper”, for documents after 1989.
let type be "book";
B <− [type,title] in DB/biblio/book ;
let type be "paper";
P <− [type,title] in DB/biblio/paper ;
B union P

(This solution can be made more general: see the next query.)

Qd Group papers under their year of publication. (The objective is to convert data, namely the
values of year, to attributes. This was also the objective of the previous query, but we now do
it generally, using attribute metadata, casting to type attribute, and the metadata operator,
eval.)

let titles be equiv union of relation(authors,title,refers to) by year ;
let (attr)eval year be titles;
next <− [year,titles] in DB/biblio/paper ;
[(attr)year in next] in next

Qe Find the path from the root to the string "[Ss]emi".This requires us to include a grep
operation in the recursion given to find all paths in section 3. Note that this code will
produce DB/biblio/paper/title, but, should there be a reference back to Suciu’s pa-
per by some other paper, the code will not provide the extended additional path, say,
DB/biblio/paper/title/ref/paper/title: see the discussion in the book [1].

let path be self/attr ;
let spath be ([path,attr] in transpose(attr)) comp

grep(attr) "[Ss]emi" in .;
let path′ be self/spath;
let paths be [path] in (([path] in transpose(attr)) [path union path ′]

[path ′] in [red union of paths] in .);
[red union of paths] in company

Qf Find books published by Morgan Kaufmann.
answer <− [author,title] where publisher/name="Morgan Kaufmann"

in DB/biblio/book ;

Qg Find title and price of all books (assuming price is optional: this makes no difference to the
nested relational formulation).

let booktitle be title;
let bookprice be price;
result <− [booktitle,bookprice] in DB/biblio/book ;

Qh For all authors, group under each the titles he/she published.
let titles be equiv union of relation(title) by author ;
let authTitl be authors join title;
result <− [author,titles] in DBbiblio/./authTitl ;

Qi Find all titles in French. This is a query on attributes of XML tags. We treat attributes on a
par with nested tags, that is, as attributes. So suppose the XML is <book language="French">
for Roux & Combalusier, and that other books may or may not have languages specified.

title where language="French" in DB/biblio/book

5The mispelling is deliberate; Abiteboul, Buneman and Suciu themselves sometimes used it.

61

Qj Find all authors who have published at least two books. We use authTitl from query Qh.
result <− author quant (#>1)title in DB/biblio/book/authTitl ;

Qk Find all publications published in 1995 for which Smith is either an author or an editor.
title where date="1995" and

(editor="Smith" or authors/author="Smith") in DBbiblio/book ;

Ql Using the recursively nested part(name,brand,part), find the name of every part element that
contains a brand name equal to “Ford”, regardless of the nesting level of that part.

let nameFord be name where brand="Ford" in part ;
(nameFord)* in part ;

Qm Retrieve all persons whose last name precedes the first name. Since relations have no implicit
ordering, we must suppose that the data was extracted from marked-up text, and we have,
as in section 7.2, also extracted an explicit Pos attribute. Then the relation is
person(firstname,fpos,lastname,lpos) and the result is easy.

where lpos<fpos in person

Qn Reverse the order of all authors in a publication. Again, we suppose the data has been
extracted, together with postions, from marked-up text. Roux and Combalusier might appear
in the string J.P. Roux and T.H. Combalusier, starting at position 122, and so the relation
authors for this work in DB/biblio/book would show

author pos
Roux 127
Combalusier 141

We swap the positions (this code will reverse any number of authors, but not necessarily swap
any positions exactly) and then actualize.

let revpos be (red + of pos) − pos;
pub <− [author,revpos] in DB/biblio/book/authors;

A.8 Web Query Languages

We reformulate queries given for WebSQL [16] and WebLog [15] in terms of the hypertext in
section 7.2.

WebSQL represents hypertext as two flat relations, Document(url,title,text,type,length,modif)
and Anchor(base,href,label), where the attribute names make their functions pretty self-evident:
type, length and modif are from the HTTP headers mentioned at the end of section 7.2; href and
label appear in the anchor tag label, and base connects Anchor to Document.
Here are the queries in terms of the recursively nested relation in section 7.2. Note that we assume,
as do the WebSQL authors, that the search is of all documents reachable from a set to which we
have access through, in our case, HTML.

Ex.1 Find all HTML documents about “hypertext”.
where A/format="html" in grep "hypertext" in HTML/Body(/A/Body)*

Ex.2 Find all links to applets from documents about “Java”.
[A.content, href] where ([] in grep "applet" in A.content in A) in

where [] in grep "Java" in HTML/Body(/A/Body)*

Ex.3 Starting from the Department of Computer Science home page, find all documents that are
linked through paths of length two or less containing only local links. Keep only documents
containing the string ”database” in the title. [We have modified the definition of local to take
two steps, through both Body and A.]

62

let local be grep "^[^/]" in href in Body/A;
where ([] in grep "database" in Head/Title) in (local)?(/local)?

where href="www.cs.toronto.edu" in HTML

Ex.4 Find all documents mentioning “Computer Science” and all documents that are linked to
them through paths of length two or less containing only local links.

CS <− grep "Computer Science" in HTML(/Body/A)*;
CS union CS (/local)?(/local)?

Weblog is based on Prolog via Datalog and SchemaLog. It is thus structured as a sequence of
Horn clauses, with the usual semantics of universal quantification of variables defined by the clase
and existential quantification of variables linking the defining predicates. The examples given all
refer to leyurl, so we define it beforehand.

let leyurl be "http://www.informatik.uni-trier.de/~ley/db/index.html";
Some of the WebLog queries claim to generate html results, but the paper does not show what they
look like, and so we do not attempt to duplicate this result structuring.

Q.1 We are interested in collecting all citations (hyperlinks) referring to HTML documents, that
occur in the Database Systems & Logic Programming page. We would also like this collection
to contain the title of the document the citation refers to. (One level of traversal.)

let title be "all citations";
let hlinks be red union of relation(href, Title);
[title,hlinks] in [hlinks] in [href,Body/A/Head/Title] where

href=leyurl and [] in grep "\.html$" in Body/A/href) in HTML;

Q.2 Find all documents in the Ley server that have information relating to ‘Interoperability’. [To
match this query, we introduce a relation synonym(source,syn), which contains a dictionary of
synonyms: WebLog, of course, introduces a predicate for this. We also reuse local from above.
Our formulation of this query follows all paths all of whose documents refer to interoperability.]

let Ley be where href=leyurl in HTML;
let Interop be grep(source where syn="Interoperability" in synonym)

in local ;
Ley(/Interop)*/href ;

Q.3 Suppose we know that a paper on Coral has appeared in the VLDB Journal. We do not know
which year this paper appeared, but would like to find this information. [We suppose that
the HTML Body contains a non-HTML tag, <year>, which, of course, becomes an attribute.]

Body.content/year where [] grep "VLDB Journal" in Body.content and
lowercase(../Head/Title)="coral" in Ley/Body(/A/Body)*

Q.4 We would like to compile the citations of all CFP’s of conferences having ‘interoperability’ as
a topic of interest. We would also like to include information on the submission deadline in
this compilation. [We make the same rather special assumptions about the structure of Calls
for Papers as do the WebLog authors. The WebLog query includes the synonym predicate
applied to "submit", which we can do, but it is easier to read just "papers due".]

let submit be grep(;x) "papers due: \x" in Body.content ;
let submitDate be "submission date: " cat submit/x;
let title be "allcfps";
cfp <− [title,../href,submitDate] in grep "Conference in Ley/Body(/A/Body)*;

Q.5 Suppose we would like to restructure the newly generated cfp further in such a way that
all conferences having a deadline in the same week are grouped together in a page. [We
implement the WebLog dates2weeks predicate using a relation months(m#,#days) giving the
number of days in each month, and we suppose the date format to be yy/mm/dd, which we
convert to yy/ddd.]

63

let monthend be fun + of #days order m#;
let monthbase be if m#=1 then 0 else fun pred of monthend ;
let m# be(intg) x;
let day be(intg) y;
let submitmd be [m#,day] in grep(;x, y) ".*/\x/\y" in submitDate;
let yd be monthbase + day ;
let ddd be yd in (submitmd comp [monthbase,m#] in months);
let julian be ddd/yd ;
let week be julian mod 7;
[week,href,title,submitDate] in cfp;

A.9 XQuery

XQuery queries XML data and, like SQL before it, has become a de facto standard. Here are the
queries from [8], formulated for nested relations.

Except for query Q5, the example database is the on-line auction represented by the two nested
relations

items.xml
(items)
(item status)
(itemno seller description reserve-price end-date)

bids.xml
(bids)
(bid)
(itemno bidder bid-amount bid-date)

Q1. List the descriptions of all items offered for sale by Smith.
description where seller="Smith" in items.xml/items/item

Q2. List all description elements found in the document items.xml.
items.xml//description

Q3. Find the status attribute of the item that is the parent of a given description.
status where item/description=descr in items.xml//

Qa. Items with reserve-price > 1000.
where reserve-price > 1000 in items.xml/items/item

Relational semantics dictate that a scalar attribute such as reserve-price is either null or a
singleton, but never multiple. For multiplicity, we need a non-scalar, i.e., nested, attribute
such as reserve-prices(reserve-price). With this, we can accommodate all the syntactic varia-
tions discussed on p.603 of the paper. For instance, item[reserve-price > 1000] in XQuery is

where reserve-prices/singleton & reserve-prices/reserve-price > 1000
in items.xml/items/item

and item[reserve-price gt 1000] in XQuery is
let singleton be 1 = red + of 1;
where reserve-prices/reserve-price > 1000 in items.xml/items/item

Furthermore, we can find, for example, any item node with exactly four reserve-price child
nodes whose value is greater than 1000:

let count1000 be red + of if reserve-price > 1000 then 1 else 0;
where reserve-prices/count1000 = 4 in items.xml/items/item

Qb. Fifth item
where seq = 5 in items.xml/items/item

Note that relations abstract over ordering, so a seq attribute must be put in explicitly. This
is done automatically by a generator such as mu2nest in section 7.2.

64

Qc. Items containing a reserve-price
let count be red + of 1;
where reserve-prices/count > 0 in items.xml/items/item

which tests the nested attribute reserve-prices, from above, for non-emptiness. (We can also
find items containing, say, 6 reserve-prices.)

Qd. Node identity: $node1 is $node2, $node1 isnot $node2
Relational semantics do not distinguish identity from value, so identity information must be
explicitly represented as an extra attribute. The paper does not give an example for us to
work.

Qe. Order: $node1 < $node2
let startJoe be red + of if seller/content + "Joe" then start else 0;
let startSue be red + of if seller/content + "Sue" then start else 0;
where (seller/content = "Joe" or seller/content = "Sue") and

startJoe < startSue in items.xml/items/item
using the content and start attributes generated by mu2nest.

Qf. Not function: item[not(reserve-price)]
where not [] in relation(reserve-price) in items.xml/items/item

Qg. Namespace: auction = "items.xml/items"
let auction be quote items.xml/items;
where reserve-price > 1000 in auction/item;

using the metadata quote operator.

Qh. Constructor: constants
relation highbids(status,itemno,bid-amount) <− {("pending",4871,250.00)};

Qi. Constructor: evaluated (1)
let maxbid be red max of if itemno = i then bid-amount else −1;
let status be s;
let itemno be i;
highbid <− [status,itemno,bid-amount] in [maxbids] in bids;

where i and s are parameters, which might be arguments to a procedure containing the above
code.

Qj. Constructor: evaluated (2)
highbid <− [status,itemno,bid-amount] in b;

Qk. Computed element constructor
This would use metadata and casting as illustrated for the next example.

Ql. Computed attribute constructor
let (attr) if sex = "M" then "father" else "mother" be name;

Father and mother attributes are mutually exclusive: polymorphism takes care of the “null
values” of the absent one when the other is present.

Q4. For each item that has more than ten bids, generate a popular-item element containing the
item number, description, and bid-count.

let countBids be equiv max of par + of 1 order bidder by itemno
by itemno;

popular-item <− ([itemno,description] in items.xml/items/item) join
[itemno,countBids] where countBids > 10 in bids.xml/bids/bid ;

Note also that the relational and domain algebras abstract over looping, so we do not need
the for construct.

65

Q5. Given a sequence of emp elements, replace their salary, commission, and bonus subelements
with a new pay element containing the sum of the values of the original elements, and order
the resulting sequence in ascending order by the value of the pay element.

let pay be salary + commission + bonus;
let empNP be [name,pay] in emp;
update emps change emp <− empNP ;

assuming the database
emps(emp(name,salary,commission,bonus))

Again, ordering is not explicit in relations. A fun .. order pay expression in the domain
algebra suffices to order by pay when needed.

Q6. Construct a new element named recent-large-bids, containing copies of all the bid elements in
the document bids.xml that have a bid-amount of more than 1000 and a bid-date after January
1, 2002.

relation cutoff (year,month,day) <− {2002,1,1};
recent-large-bids <− where bid-amount > 1000 and

dateGT (bid-date,cutoff) in bids.xml/bids/bid ;
using the boolean dateGT method of an abstract data type for dates (construction not shown
here), since date comparisons are not built-in to the language.

Qm. Items with no bids.
items.xml//item diff bids.xml//bid

Qn. Union of a/b, a/c.
let bc be b union c;
a/bc/d

Qo. Conditional expression.
let price be if discounted then wholesale else retail ;

Q7. Generate a report containing the status of bids for various items. Label each bid with a status
“OK”, “too small”, or “too late”. Enclose the report in an element called bid-status-report.

let status be if dateGT (bid-date,ebd-date) then "too late" else
if bid-amount < reserve-price then "too small" else "OK";

ans1 <− [itemno,bidder,bid-amount,status] in (bids.xml//bid join items.xml//item);
let bid be equiv union of relation(bidder,bid-amount,status) by itemno;
bid-status-report <− [itemno,bid] in ans1 ;

Qp. Existential quantification.
let some be red or of n > 10; rel/some

Qq. Universal quantification.
let every be red and of n > 10; rel/every

Q8. Find the items in items.xml for which all the bids received were more than twice the reserve
price. Return copies of all these item elements, enclosed in a new element called underpriced-
items.

underpriced-items <− [itemno,seller,description,reserve-price,end-date] where
equiv and of (bid-amount > 2×reserve-price) by itemno
in (bids.xml//bid join items.xml//item);

66

Qr. Function to find largest bid-amount recorded for a given item.
comp highbid(item#,maxbid) is
{ maxbid <− [red max of bid-amount] where itemno=item#

in bids.xml//bid
};
highbid ["1234"];

Qs. Function to return an element, or a default value if it is missing.
comp defaulted(attr,default,result) is
{ result <− if [] in attr then attr else default
};

Qt. Recursive function to determine depth of hierarchy.
comp depth(rel,d) is
{ let xpose be transpose(attrib);

d <− if not [] in rel then 1 else
1 + red max of depth[[attrib] in rel/xpose]

};

Qu. Treat billing address differently according to type.
let a be customer/billing-address;
let result be if typeof(a)=USAddress then a/state else

if typeof(a)=CanadaAddress then a/province else
if typeof(a)=JapanAddress then a/prefecture else "unknown";

B Glossary

<− (relational operator) 1.1.4.

/ (attribute path constructor) 2.

| (union type constructor) 5.

coex (semistructured link label) 5.

comp (relational operator) 1.1.2.

DC (null value) 1.1.5.

equiv (domain algebra operator) 1.2; (nested attributes) 1.3.

grep (pos,attr) 1.1.3; (val,type) 1.1.5. (Not recursive: 2.)

igrep (<pattern>, pos1,pos2,val1,val2) 7.1.

is (relational operator) 1.1.4.

join (relational operator) 1.1.2.

lowercase (string operator) 1.1.3.

metadata 1.1.3

mu2nest (marked-up text operator) 7.

67

pattern (strings) 1.1.3, 7.1; (attributes) 3.

red (domain algebra operator) 1.2; (nested attributes) 1.3.

relation (domain algebra operator) 1.3.

self (system attribute) 1.3.

sep (relational operator) A.1.

subex (semistructured link label) 4.

sup (relational operator) 1.1.2.

text2attr (text operator) 7.1.

transpose (attr,type,val) 1.3. (Not recursive: 1.3.)

union (relational operator) 1.1.2.

update (relational operator) (add, delete, change, insert, remove) 1.1.5.

uppercase (ˆ string operator) 1.1.3.

68

