
Query by Humming

T. H. Merrett∗

McGill University

April 9, 2008

1

This is taken from [SZ04, Chap. 6]. It is the second of three applications they develop based on
their review of timeseries techniques in the first four chapters.

1. “Query by humming” is a challenging unsolved problem in timeseries matching. Because
matches cannot be exact, dynamic time warping (DTW) is needed but this is slow, even when we
use dynamic programming (see timeseries.pdf, Note 7). Shasha and Zhu find an approximation
which excludes false negatives (failed alarm) and speeds up the matching process substantially.

The problem is to match, from a database of tunes, the tune that somebody hums, maybe quite
inaccurately. The melodic contour approach (a melody is represented as a sequence of u, - and d

as the pitch goes up, stays the same or goes down—or maybe, more refined, as U, u, -, d and D)
discriminates only very poorly among the many possible entries in the database. It also requires the
identification of individual notes from the hum-query, which is a difficult problem. (The database
entries can be derived from the written score, which provides the individual notes, so there is no
problem there.)

So Shasha and Zhu represent the hum-query as a timeseries of pitches, sampled regularly, say every
10 ms, without concern about individual notes. They also store the scores in the database as
timeseries of pitches.

2. Let’s start with a database entry, “Hey Jude” (John Lennon, Paul McCartney, 1965) From the
score

we can extract the following sequence of (pitch,duration) pairs

(60,4),(57,10),(57,2),(60,2),(62,2),(55,8),(-,4),(55,2),(57,2),

(58,4),(65,6), (65,2),(64,2),(60,2),(62,2),(60,1),(58,1),(57,8)

∗Copyleft c©2008 Timothy Howard Merrett
1Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear
this notice and full citation in a prominent place. Copyright for components of this work owned by others than T. H.
Merrett must be honoured. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or fee. Request permission to republish from: T. H.
Merrett, School of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the taxpayers of Québec and of Canada who have paid his
salary and research grants while this work was developed at McGill University, and from his students (who built the
implementations and investigated the data structures and algorithms) and their funding agencies.

1

where the pitch is given in units related to (but not the same as) the note frequency—on the treble
cleff, G is 55, A is 57, B[is 58, C is 60, D is 62, E is 64 and F is 65 (the frequency for A, for
example, is 440 Hertz, and A an octave higher is 880Hz, so the intermediate notes have frequencies
that are multiples of powers of 12

√
2 times each other). I’ve used - to mean a rest.

The durations are in units of semiquavers (16th notes), which are the quickest notes in the score.
The four bars need 4×16 = 64 units, and this is the sum of all the durations.

To convert this sequence of tuples (duples) to the timeseries that can be compared with the hum-
query, we assign one time unit to each semiquaver, and so

(60,4),(57,10),..

becomes

60,60,60,60,57,57,57,57,57,57,57,57,57,57,..

Here is the plot (the rest is assigned a pitch of zero)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

3. The hum-query is taken from a microphone and converted by a pitch-tracking algorithm [T
Tolonen and M Karjalainen IEEE Trans Speech & Audio Processing, 2000] directly to the same
sort of timeseries of pitches. The units in the plot are 10ms, so the eleven minutes need 1102 units.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

2

I took the following data from Shasha and Zhu’s version of this plot on p.131 using a ruler and
then scaling to 11.02 seconds.

(-,.34),(58,1.03),(52,.96),(-,.56),(54,.4),(56,.41),(58,.41),(47,.48),

(-,1.03),(50,.41),(52,.41),(53,.68),(58,.14),(62,.89),(-,.41),(61,.34),

(60,.35),(59,.48),(58,.75),(56,.27),(55,.21),(54,.05),(-,.01)

(So it is not very accurate, but then neither was the hum they recorded.)

In turn, I converted the sequence of (pitch,duration) tuples to the timeseries that is in the plot
above.

4 We will need to do three things with these two timeseries before trying to match them. First we
remove all the rests. This eliminates the hesitations we see in the hum-query and rests from the
score, which hummers might ignore. It brings the database entry down to 60 semiquavers and the
hum-query down to 867 10-ms entries.

Second we shift both series so that their average is zero. This allows the hum-query to be off true
pitch, since few people have perfect pitch. We do not, however, complete the normalization process
by scaling the timeseries: most people have reasonable relative pitch and can hum intervals fairly
well. Here is what the database entry looks like after these two operations.

0 10 20 30 40 50 60
−6

−4

−2

0

2

4

6

Third, we time-scale the timeseries so they both have the same length. This is normally done by
finding the least common multiple of the number of units, 60 and 867, of the two series, but to keep
things small for this discussion I just reduced the 867 points of the hum-query to 60 by sampling the
first, the last and every round(867/60) in between. Here are the two series ready to be compared.
The hum-query is in green.

3

0 10 20 30 40 50 60
−10

−8

−6

−4

−2

0

2

4

6

8

5. Now we can match the two series. In general we need dynamic time warp (DTW) because the
hum tempo is likely neither to be the same as the specified tempo (although timescaling largely
takes care of this) nor to be as regular as the timeseries representation of the written music.

Since dynamic time warp is slow, Shasha and Zhu find an approximation to it which is lower-
bounding, i.e., the distance between two series given by the approximation is never greater than
the DTW distance. This means that, if some threshold distance is specified, that the DTW must
be less than for two series to be considered similar, the approximation will never miss two series at
this distance or less, even though it may cause some false alarms. The alarm will not fail: we have
no false negatives even though there may be false positives.

The approximation must be dimension-reducing in order to do the comparisons faster than full
DTW. Shasha and Zhu pick the piecewise aggregation approximation (PAA) [SZ04, p.46] because
it is a linear transformation all of whose coefficients are positive: this plays an important role in
the proof that the approximation is lower-bounding.

PAA simply divides the points of the timeseries equally into groups and replaces the series by
the average for each group. This is in the spirit of the Haar wavelet but simpler. (PAA has a
very pretentious name for such a simple reduction.) Here it is applied to a slight modification of
the eight-point timeseries we used to illustrate wavelets (see elasticBurst.pdf): the last two terms
have been replaced by 1 and 2, respectively, so as to have no zeros, which are rests in our melody
timeseries.

1

2









1 1
1 1

1 1
1 1

































1
3
5
11
12
13
1
2

























=









2
8

12.5
1.5









The eight-dimensional timeseries has been reduced to four dimensions by averaging in pairs.

Similarly we could reduce our 60-dimensional vector to five by averaging in dozens.

6.To get the approximation to DTW distance between two series we need, Shasha and Zhu introduce
envelopes. A k-envelope is simply a running min and a running max over the range [−k, k] of the
timeseries. The second and third vectors in the following 8-by-3 matrix are the min and max,

4

respectively, of a 1-envelope for the series. (Note that we take averages over shorter intervals at
the two ends.)

1

2









1 1
1 1

1 1
1 1

































1 1 5
3 1 5
5 3 11
11 5 12
12 11 13
13 1 13
1 1 13
2 1 2

























=









2 1 5
8 4 11.5

12.5 6 13
1.5 1 7.5









In this expression, I’ve repeated the PAA reducing transformation on the original timeseries as well
as on the lower and upper bounding timeseries of the envelope.

Notice that the transformed envelope is an envelope of the transformed series.

This is a property that Shasha and Zhu prove for the PAA transform (and they derive a more
general envelope-transforming procedure for any linear transform).

The importance of envelopes is that the distance from a timeseries to the envelope of another
timeseries lower-bounds the DTW distance between the two timeseries.

For the 4-term reduced timeseries and its envelope that we just calculated above (green), here is
a picture of the distances from the series 12, 6, 4, 2 (blue). The distances are shown as areas:
the horizontally-shaded area is the distance to the original series, and the vertically-shaded area
is the distance to the envelope (and implicitly defines what is meant by this distance). We can
see that the horizontal area contains the vertical area, and hence that the distance to the envelope
lower-bounds the distance to the timeseries.

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

With this, we can return to Hey Jude and show the hum-query and its envelope (in green) and the
database timeseries (in blue).

5

0 10 20 30 40 50 60
−10

−8

−6

−4

−2

0

2

4

6

8

Here they are again, both PAA-reduced to five-point series from the sixty points we last had. The
distance is evidently close, and the distance from the envelope to the database entry is even closer,
so we expect that this entry (among the thousands of others in the database) will be identified and
retrieved.

1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

The five-point timeseries form points in a five-dimensional space, and we can index all the timeseries
in the database in this space after suitable PAA reduction, and use the index to retrieve only points
within a certain distance of the hum-query.

If the distances are first calculated from the hum-query envelope, this will be fast and will not miss
any candidates once we have identified the potential candidates and done full DTW between each
one and the hum-query.

7. Aldat We write the Aldat implementation in five parts. First we eliminate rests, then shift
and timescale. Second we convert from duration representation to timeseries representation. (Note
that it is faster to do the three operations of the first part in duration representation. I believe
we will be able to do the whole job in duration representation but I haven’t tried it yet.) Third
we calculate the envelope of the hum-query. Fourth we find the PAA reduction. And finally we

6

calculate distances from envelope to selected database entries.

Instead of working with the Hey Jude series we take a shorter example. The database entry, D,
consists of five points (it’s a database of only one entry: extension to many is straightforward) and
the hum-query, Q, has ten.

D(s v d) Q(s v d)
1 12 1 1 1 1

2 6 1 2 3 1

3 0 1 3 5 1

4 4 1 4 0 1

5 2 1 5 11 1

6 12 1

7 13 1

8 0 1

9 1 1

10 2 1

The attributes are s (sequence number), v (value) and d (duration). The durations are all 1, to
keep the next steps simple. Since this is simplistic, we will occasionally show examples with a
variety of durations.

The code to remove rests (v = 0) and to shift to series averages of zero is
let vav be (red + of v × d)/(red + of d);
let v1 be v− vav ;
let v be v1 ;
let s1 be fun + of 1 order s;
let s be s1 ;
Dshift <− [s, v, d] in [s1, v1, d] where v > 0 in D;
Qshift <− [s, v, d] in [s1, v1, d] where v > 0 in Q;

Dshift(s v d) Qshift(s v d)
1 6 1 1 −5 1

2 0 1 2 −3 1

3 −2 1 3 −1 1

4 −4 1 4 5 1

5 6 1

6 7 1

7 −5 1

8 −4 1

We do timescaling the proper way: we find the least common multiple of the total durations of the
two series and stretch both to that length. This is easy with durations.

m <− [red + of d] in Dshift ;
n <− [red + of d] in Qshift ;
` <−m × n/gcd[m,n];
let d1 be d × `/(red + of d);
let d be d1 ;
Dscale <− [s, v, d] in [s, v, d1] in Dshift ;
Qscale <− [s, v, d] in [s, v, d1] in Qshift ;

In our example this just doubles the durations in Dshift.

7

Dscale(s v d) Qscale(s v d)
1 6 2 1 −5 1

2 0 2 2 −3 1

3 −2 2 3 −1 1

4 −4 2 4 5 1

5 6 1

6 7 1

7 −5 1

8 −4 1

A In another example, such as ((v, d) given, s implied)
Dshift = [(0,3),(1,2),(−1,2),(0,3)]
Qshift = [(0,2),(1,2),(2,3),(0,2),(−2,2),(−1,4)]

we get m = 10, n = 15 with a gcd of 5, so ` = 30 and
Dscale = [(0,9),(1,6),(−1,6),(0,9)]
Qscale = [(0,4),(1,4),(2,6),(0,4),(−2,4),(−1,8)]

8. The second operation is to convert from durations to the kind of timeseries we have been plotting
above. Let’s use an example with a variety of durations, say, Dshift, above.

In relational form, we need to go from Dshift to Dts:

Dshift(s v d) Dts(s v)
1 0 3 1 0

2 1 2 2 0

3 −1 2 3 0

4 0 3 4 1

5 1

6 −1
7 −1
8 0

9 0

10 0

We can do it with an update event handler.
comp post:add:Dshift() is
{ let d1 be (equiv min of d by s) − 1;

let d be d1 ;
temp <−[s, v, d] in [s, v, d1] where d1 > 0 in Dshift ;
update Dshift add temp;

};
If we start this off with

temp <− pick Dshift ;
update Dshift delete temp;
update Dshift add temp;

we get the following iterations on temp:

Dshift temp temp
(s v d) (s v d) (s v d)
1 0 3 1 0 2 1 0 1

2 1 2 2 1 1 2 1 0

3 −1 2 3 −1 1 3 −1 0

4 0 3 4 0 2 4 0 1

and the fourth iteration of temp has d = 0 or −1 everywhere and the update stops.

To get Dts
let s1 be fun + of 1 order s, d;

8

let s be s1 ;
Dts <− [s, v, d] in [s1,v,d] in Dshift ;

Of course, all this operation would be performed on Dscale and Qscale, but for the example these
would require as many as nine iterations, so I worked with Dshift instead.

9. The third implementation step is to find the envelope of the hum-query. We revert to the main
example of our Aldat implementation discussion, in which Qscale and Qts are

Qscale(s v d) Qts(s v)
1 −5 1 1 −5
2 −3 1 2 −3
3 −1 1 3 −1
4 5 1 4 5

5 6 1 5 6

6 7 1 6 7

7 −5 1 7 −5
8 −4 1 8 −4

We must adjust redwin() (week7p1) a little to calculate the lower, `, and upper, u, pieces of the
k-envelope. The adjustment, which I am not completely happy with, is to allow negative widths
for w in redwin(w) and to interpret these to mean “take a full window width of −w starting at
the current tuple, but ignore values until the end of the relation”.

let s1 be (red max of s) − s;
let w be if s1 ≥ 2 × k then 2 × k + 1 else

if s1 ≤ k then s1 + 1 else −(2 × k + 1);
let `1 be redwin(w) min of v order s;
let u1 be redwin(w) max of v order s;
let ` be fun pred(k) of `1 order s;
let u be fun pred(k) of u1 order s;

For k = 1

Qts(s v) s1 w `1 u1 ` u
1 −5 7 3 −5 −1 −5 −3
2 −3 6 3 −3 5 −5 −1
3 −1 5 3 −1 6 −3 5

4 5 4 3 5 7 −1 6

5 6 3 3 −5 7 5 7

6 7 2 3 −5 7 −5 7

7 −5 1 2 −5 −4 −5 7

8 −4 0 −3 −5 −3 −5 −4
Qenv <−[s, v, `, u] in Qts;

gives the hum-query and its envelope.

10. The PAA dimension reduction can be done by matrix multiplication and we don’t attempt to
refine it here although there are better ways for this very special matrix.

PAA(s′ s c) Qenv(s v ` u)
1 1 0.5 1 −5 −5 −3
1 2 0.5 2 −3 −5 −1
2 3 0.5 3 −1 −3 5

2 4 0.5 4 5 −1 6

3 5 0.5 5 6 5 7

3 6 0.5 6 7 −5 7

4 7 0.5 7 −5 −5 7

4 8 0.5 8 −4 −5 −4

9

And the result of the matrix multiplication is, after renaming attributes,

Qred(s′ v ` u) Dred(s v)
1 −4 −5 −4 1 6

2 2 −2 5.5 2 0

3 5.5 0 7 3 −2
4 −4.5 −5 1.5 4 −4

There is a similar result for Dred, except that it does not need the envelope. This is also shown
above.

11. To compute the distance between Dred and the envelope of Qred, the last implementation step,
we join the two relations after renaming, say v of Dred to, say vD, and use

let d2e be red + of if vD > u then vD −u else
if vD < ` then `− vD else 0;

The spatial indexing method to retrieve only those database points that are within a certain distance
of the hum-query would work like the grid index of elasticBurst.pdf. We can suppose that this is
built into the implementation of Aldat.

References

[SZ04] Dennis Shasha and Yunyue Zhu. High Performance Discovery in Time Series: Techniques
and Case Studies. Springer Verlag, New York, 2004.

10

