
Quad-Edge Data Structures in Two and Three Dimensions

T. H. Merrett∗

McGill University, Montreal, Canada

April 13, 2005

Because Clifford algebra abstracts beyond absolute position, its elements cannot be directly
drawn. They need to be supplemented by a coordinate system. Because numbers, both in such
a coordinate system and in the coefficients for the Clifford elements are subject to round-off or
truncation errors in the computer, both coordinates and Clifford elements also need complementary
topological information. Coordinates and topology make up a data structure representing spatial
data, supplemented by Clifford algebra to quantify angles. We start in two dimensions with the
quad-edge data structure [GS85, MBC+02].

1 Two dimensions

The quad-edge structure exploits the duality of k-dimensional components in d-dimensional space
(0 ≤ k ≤ d): each k-dimensional component has a dual (k − 1)-dimensional component, as we see
in the following table.

v e f
components 1 2 1

hasa1 2 c
←− ←−

hasa2 c 2
−→ −→

Euler v − e + f = 2

In this table, v stands for vertices, e for edges, f for faces, and c for cycles. The first row gives the
number of independent Clifford components in two dimensions: one “point” or scalar; two edge
projections, e1 and e2; and one ”face”, e12.

The “hasa” rows say how many of each type of component can be adjacent to each other type
in a polygon: hasa1 says that any edge has 2 vertices and any face has a cycle of edges; hasa2 says
that any vertex has a cycle of edges and any edge has 2 adjacent faces.

The final row is Euler’s formula relating vertices, edges and faces in any network of polygons.
Check the hasa and Euler relationships in the tetrahedron:

∗Copyleft c©T. H. Merrett, 2005. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation in a prominent place. Copyright for components of
this work owned by others than T. H. Merrett must be honoured. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee.
Request permission to republish from: T. H. Merrett, School of Computer Science, McGill University, fax 514 398
3883.

1

−
1

/r
t3

 e
2

 +
 r

t(
2

/3
)

e
3

−rt3/4 e12

1/2 e1 + 1/2rt3
 e2 + rt

(2/3) e
3

1/4rt3 e12 − 1/rt6 e31

1/4rt3 e12 + 1/2rt2 e23 + 1/2rt6 e31

1
/2

 e1
 −

 rt3
/2

 e21
/2

 e
1
 +

 r
t3

/2
 e

2

1/2 e1 − 1/2rt3 e2 − rt(2/3) e3

1/
4r

t3
 e

12
 −

 1
/2

rt
2

e2
3

+
1/

2r
t6

 e
31

e1(0,0,0) (1,0,0)

(1/2,1/2rt3,rt(2/3))

(1/2,rt3/2,0)

You may wonder why we are using the 3-D tetrahedron to illustrate two dimensions. In fact,
the topological rules we have just given apply to any network of polygons on a plane, supposing
that we always count an external face (containing the point at infinity), or on a sphere. Thus the
tetrahedron can also be seen as the following construct, with F3 labelling the external face instead
of the face underneath the 3-D tetrahedron.

(Note that the Euler formula does not always work if the embedding space is a torus or a space
with a higher number of “holes”. The hasa relationships still hold in such a space.)

2

V0 V1

V2

V3

a

c

F2

F0F1

F3

f

d e

b

The quad-edge data structure results from combining hasa1 with the dual hasa2: if we ask what
vertices or faces an edge has, the answer is 2 each; if we ask what edges a vertex or face has, we
get cycles in both cases. The two pairs from the first question give the name of the data structure:
each edge appears four times, for its start and end vertices and for its left and right faces. The
cycles from the second question give the data structure its one operation for modifying polygon
networks, as we shall see in section 1.1. (It is clear that geographical maps are essentially polygon
networks, so that the quad-edge data structure will be ideal for geographical information systems.)
What stops us from going completely to three dimensions with the ideas so far is that they cannot
handle a network of polyhedra: for example, we cannot so far describe two tetrahedra stuck together
at one face.

Here is the relation giving the quad-edge representation of the tetrahedron. It is grouped by
the cycles, although it could equally well be grouped by the pairs. (For clarity, vertices and faces
are not shown where they are repeated in their column.)

3

QE(vf cycle edge pairs)
V0 1 d 0

2 c 0
3 a 0

V1 1 e 0
2 a 2
3 b 0

V2 1 f 0
2 b 2
3 c 2

V3 1 d 2
2 e 2
3 f 2

(vf cycle edge pairs)
F0 1 b 3

2 f 3
3 e 1

F1 1 c 1
2 f 1
3 d 3

F2 1 a 3
2 e 3
3 d 1

F3 1 a 1
2 c 3
3 b 1

Note that the pairs attribute takes on four different values, even for vertices and odd for faces.
We could have given it just two values, 0 and 1, except that we have combined vertices and faces
into a single attribute, vf. These four values, apart from giving “quad-edge” its name, also have
the significance of directions of the edges: 0 is a start vertex, 2 an end vertex, 1 a right face and
3 a left face. The cycles are also directed, counterclockwise, but note that the back (or external)
face, F3, is counterclockwise only if seen from below.

Relation QE gives only topological information about all the connections among vertices, edges
and faces. For metric information, we add the coordinates. Because our example is a tetrahedron,
we’ll use 3-D coordinates, but note that 2-D coordinates would usually be used for a network of
polygons in the plane. Coordinates are only for vertices: can we add any metrical information for
edges or faces? Yes, this is where Clifford algebra fits in. Each edge and face has a quantitative
expression giving its orientation. In this 3-D case, but in 3-D only, we can take advantage of the
fact that both edges and faces have three components each (see section 2) and show all metric
information as triples.

Metric(vef x yz y zx z xy)
V0 0 0 0
V1 1 0 0

V2 1/2
√

3/2 0

V3 1/2 1/2
√

3
√

3/2
a 1 0 0

b 1/2 −
√

3/2 0

c 1/2
√

3/2 0

(vef x yz y zx z xy)
d 1/2 1/2

√
3

√

3/2
e 1/2 −1/2

√
3 −

√

3/2
f 0 −1/

√
3

√

3/2
F0 1/2

√
2 1/2

√
6 1/4

√
3

F1 −1/2
√

2 1/2
√

6 1/4
√

3
F2 0 −1/

√
6 1/4

√
3

F3 0 0 −
√

3/4
Here, x yz is the attribute that gives the x-coordinate for vertices, the e1 coefficient for edges,

and the e23 coefficient for faces. There are similar interpretations for y zx and z xy.

1.1 Splice

In the 2-D topology (whether it is accompanied by 2-D or 3-D (or 4-D, ..) metric information) a
single remarkable operator provides the ability to modify the structures at will. This is a swapping
operation called splice which both disconnects edges from vertices and connects them to vertices.
(In fact, since it is a swap, it is its own inverse.)

We can practice splice on a simpler example, the triangle shown on the left.

4

bc

a a

bc

V0 V1

V2 V2

V1

F1

F2

F1

Splice

To see what happens, it is easier to look at the “element pair” representation of the cycles than
at the “enumerated sequence” representation we used for the tetrahedron. Here are both for the
triangle (on the left).

QE(vf cycle edge pairs)
V0 1 a 0
V0 2 c 2
V1 1 a 2
V1 2 b 0
V2 1 b 2
V2 2 c 0
F1 1 a 3
F1 2 b 3
F1 3 c 3
F2 1 c 1
F2 2 b 1
F2 3 a 1

Enumerated Sequences

Cycles(edge1 pair1 edge2 pair2)
a 0 c 2
c 2 a 0
a 2 b 0
b 0 a 2
b 2 c 0
c 0 b 2
a 3 b 3
b 3 c 3
c 3 a 3
c 1 b 1
b 1 a 1
a 1 c 1
Element Pairs

Splice does two things:
splice((c, p), (c′ , p′)) is

{ swap1)((c, p), (c′ , p′)) || swap2)((c, p − 1), (c′, p′ − 1)) }
where the subtraction is done modulo 4. Swap1 exchanges the named (cycle,pair) values in the
cycle1, pair1 attributes, and swap2 exchanges the named (cycle,pair) values in the cycle2, pair2
attributes.

The splice to disconnect edge c from its vertex with a is splice((a,0),(c,2)). The two swaps,
which may be done in any order, are shown below as if swap1 were done before swap2.

5

Cycles(cycle1 pair1 cycle2 pair2)
c 2 c 2
a 0 a 0
a 2 b 0
b 0 a 2
b 2 c 0
c 0 b 2
a 3 b 3
b 3 c 3
c 3 a 3
c 1 b 1
b 1 a 1
a 1 c 1

After swap1(a,0),(c,2)

Cycles(cycle1 pair1 cycle2 pair2)
c 2 c 2
a 0 a 0
a 2 b 0
b 0 a 2
b 2 c 0
c 0 b 2
a 3 b 3
b 3 c 3
c 3 c 1
c 1 b 1
b 1 a 1
a 1 a 3

After swap2(a,3),(c,1)
This gives us the opened triangle on the right of the above figure: notice (a) that (a,0) and

(c,2) now each form their own cycle, so that vertex V0 has been replaced by two vertices (not
named); and (b) that the two cycles for faces F1 and F2 have now merged into a single cycle, (a,3),
(b,3), (c,3), (c,1), (b,1), a,1), so there is now only one face. The result is to open the triangle at
the a–c vertex, replacing it by two vertices, and to fuse the two faces that were formerly separated
by the closed triangle.

Obviously, performing splice((a,0),(c,2)) again will close the opened triangle and restore the
original diagram.

To render this a little less magical, let’s look at some cycles and see what happens to them
when we swap source nodes (swap1) and target nodes (swap2).

a c d b e f g a e f g | b c d a e f g b c d

remove

insert

before

remove

insert

after

swap 1 swap 2

a

bc

d a

bc

da

bc

d

a b

c

de

f

g

a b

c

de

f

g

a b

c

de

f

g

S p l i c i n g t h e t r i a n g l e

a

a
swap 1

swap 2

a

cc

a

bc

a

bc

a

cb b c

swap 1 swap 2

The figure has three parts. The top shows how swap1 and swap2 transform two cycles, aefg
and bcd, into a single cycle (and vice-versa) in two ways. The middle part shows what happens
when one of the cycles is a single item: swap1 inserts the item (b) after the other item (a) in the

6

swap, in the sense of the cycle a is in; swap2 inserts the item (b) before the other item (b) in the
swap, in the sense of the cycle b is in. The inverse removes items: swap1 removes the second of the
two items, in the sense of the cycle they are in, while swap2 removes the first.

The bottom part of the figure shows the two swaps that transformed the triangle, above, with
triangle edges shown as vertices of the same names. (The “items” in the sequence are always edges
in the 2-D quad-edge representation.) Swap1 separates the two edges of the 2-cycle corresponding
to vertex V0, while swap2 combines the two cycles of edges corresponding to the faces F1 and F2
(the primed edges give the F2 cycle: note that the order is reversed from the order in the F1 cycle).
Compare the results with the opened triangle shown earlier.

An example with two adjacent triangles shows us the repertoire of operations we can achieve
with this single splice operation.

E4

E1

F1

E2

E3

F3

F2

E5

V2

V4

V3V1

QE(vf cycle edge pairs)
V1 1 E1 0
V1 2 E4 2
V2 1 E2 0
V2 2 E5 0
V2 3 E1 2
V3 1 E3 0
V3 2 E2 2
V4 1 E4 0
V4 2 E5 2
V4 3 E3 2
F1 1 E1 3
F1 2 E5 3
F1 3 E4 3
F2 1 E2 3
F2 2 E3 3
F2 3 E5 1
F3 1 E4 1
F3 2 E3 1
F3 3 E2 1
F3 4 E1 1

Enumerated Sequences

EP(edge1 pairs1 edge2 pairs2)
E1 0 E4 2
E2 2 E1 0
E2 0 E5 0
E5 0 E1 2
E1 2 E2 0
E3 0 E2 2
E2 2 E3 0
E4 0 E5 2
E5 2 E3 2
E3 2 E4 2
E1 3 E5 3
E5 3 E4 3
E4 3 E1 3
E2 3 E3 3
E3 3 E5 1
E5 1 E2 3
E4 1 E3 1
E3 1 E2 1
E2 1 E1 1
E1 1 E4 1

Element Pairs

7

V4

E4

E1

F1

E2

E3

V3

V5

F3

E5

V2

V1
F1

Remove edge E5 from vertex V4, i.e., after E4: splice((E4,0),(E5,2)) = swap1((E4,0),(E5,2)),
swap2((E4,3),(E5,1)).

QE(vf cycle edge pairs)
V1 1 E1 0
V1 2 E4 2
V2 1 E2 0
V2 2 E5 0
V2 3 E1 2
V3 1 E3 0
V3 2 E2 2
V4 1 E4 0
V5 1 E5 2
V4 3 E3 2
F1 1 E1 3
F1 2 E5 3
F1 6 E4 3
F1 4 E2 3
F1 5 E3 3
F1 3 E5 1
F3 1 E4 1
F3 2 E3 1
F3 3 E2 1
F3 4 E1 1

Enumerated Sequences

EP(edge1 pairs1 edge2 pairs2)
E1 0 E4 2
E2 2 E1 0
E2 0 E5 0
E5 0 E1 2
E1 2 E2 0
E3 0 E2 2
E2 2 E3 0
E5 2 E5 2
E4 0 E3 2
E3 2 E4 2
E1 3 E5 3
E5 3 E5 1
E4 3 E1 3
E2 3 E3 3
E3 3 E4 3
E5 1 E2 3
E4 1 E3 1
E3 1 E2 1
E2 1 E1 1
E1 1 E4 1

Element Pairs

8

V4

E4

E1

F1F1

E2

E3

V5

F4V1

V2

V6

E5

V3

F3

Remove edge E5 from vertex V2, i.e., after E2: splice((E2,0),(E5,0)) = swap1((E2,0),(E5,0)),
swap2((E2,3),(E5,3)).

QE(vf cycle edge pairs)
V1 1 E1 0
V1 2 E4 2
V2 1 E2 0
V6 1 E5 0
V2 2 E1 2
V3 1 E3 0
V3 2 E2 2
V4 1 E4 0
V5 1 E5 2
V4 3 E3 2
F1 1 E1 3
F4 1 E5 3
F1 4 E4 3
F1 2 E2 3
F1 3 E3 3
F4 2 E5 1
F3 1 E4 1
F3 2 E3 1
F3 3 E2 1
F3 4 E1 1

Enumerated Sequences

EP(edge1 pairs1 edge2 pairs2)
E1 0 E4 2
E2 2 E1 0
E5 0 E5 0
E2 0 E1 2
E1 2 E2 0
E3 0 E2 2
E2 2 E3 0
E5 2 E5 2
E4 0 E3 2
E3 2 E4 2
E1 3 E2 3
E5 3 E5 1
E4 3 E1 3
E2 3 E3 3
E3 3 E4 3
E5 1 E5 3
E4 1 E3 1
E3 1 E2 1
E2 1 E1 1
E1 1 E4 1

Element Pairs

9

V1

V4

E4 F1

E3

F7

E1
V3

V2

E2

F5

F6

Disconnect E2 from V3 (lose F3): splice((E3,0),(E2,2)) = swap1((E3,0),(E2,2)), swap2((E3,3),(E2,1)).
Connect E2 to V2 (create F5): splice((E3,0),(E2,2)) = swap1((E2,0),(E2,2)), swap2((E2,3),(E2,1)).
Disconnect E1 from V2 (create F6): splice((E2,0),(E1,2)) = swap1((E2,0),(E1,2)), swap2((E2,3),(E1,1)).
Connect E1 to V3 (create F7—was F3): splice((E3,0),(E1,2)) = swap1((E3,0),(E1,2)), swap2((E3,3),(E1,1)).

QE(vf cycle edge pairs)
V1 1 E1 0
V1 2 E4 2
V2 1 E2 0
V6 1 E5 0
V3 2 E1 2
V3 1 E3 0
V2 2 E2 2
V4 1 E4 0
V5 1 E5 2
V4 3 E3 2
F1 1 E1 3
F4 1 E5 3
F1 3 E4 3
F5 1 E2 3
F1 2 E3 3
F4 2 E5 1
F7 2 E4 1
F7 3 E3 1
F6 1 E2 1
F7 1 E1 1

Enumerated Sequences

EP(edge1 pairs1 edge2 pairs2)
E1 0 E4 2
E3 0 E1 0
E5 0 E5 0
E2 2 E1 2
E2 0 E2 0
E2 2 E2 2
E1 2 E3 0
E5 2 E5 2
E4 0 E3 2
E3 2 E4 2
E1 3 E2 1
E5 3 E5 1
E4 3 E1 3
E2 3 E3 3
E3 3 E4 3
E5 1 E5 3
E4 1 E3 1
E3 1 E1 1
E2 1 E2 3
E1 1 E4 1

Element Pairs
Note that this last step can work only if the vertex removed, V2, has an edge cycle of exactly

two. The trouble will arise fourth substep, trying to connect E1 to V3/
While the splice operation is elegantly implemented on element pairs—one pair of (edge1, pairs1)

is swapped, and one pair of (edge2, pairs2)—it has two drawbacks. First, we must re-apply the
names of vertices and faces, which were lost when we went from enumerated sequences to element
pairs. Second, while it is easy to generate element pairs from enumerated sequences, the reverse
process is much harder (but possible: try to figure it out!). (Third, when we go to three dimensions
we will find that we apparently cannot get away with just one, self-invertible operation.) It would

10

be better, if less elegant, to find a way to work directly in the enumerated sequence representation.
Here is the first step, above, which turns the double triangles into a diamond.

QE(vf cycle edge pairs)
V1 1 E1 0
V1 2 E4 2
V2 1 E2 0
V2 2 E5 0
V2 3 E1 2
V3 1 E3 0
V3 2 E2 2
V4 1 E4 0
V4 2 E5 2
V4 3 E3 2
F1 1 E1 3
F1 2 E5 3
F1 3 E4 3
F2 1 E2 3
F2 2 E3 3
F2 3 E5 1
F3 1 E4 1
F3 2 E3 1
F3 3 E2 1
F3 4 E1 1

Enumerated Sequences

QE(vf cycle edge pairs)
V1 1 E1 0
V1 2 E4 2
V2 1 E2 0
V2 2 E5 0
V2 3 E1 2
V3 1 E3 0
V3 2 E2 2
V4 1 E4 0
V5 1 E5 2
V4 3 E3 2
F1 1 E1 3
F1 2 E5 3
F1 6 E4 3
F1 4 E2 3
F1 5 E3 3
F1 3 E5 1
F3 1 E4 1
F3 2 E3 1
F3 3 E2 1
F3 4 E1 1

Enumerated Sequences
The complicated part of calculating this directly will be to open up the sequences for faces F1

and F2 at the right points and link them together by re-sequencing. This is an exercise.

2 Three dimensions

Three-dimensional structures add 3-D components to the 0-D, 1-D and 2-D components if two-
dimensional space. We call these “3-topoi”, from the Greek, topos = place, and use the abbreviation
3t in the table below. (The general term, polytope, includes polygons (Greek: gania = angle) in
two dimensions and polyhedra (Greek: edros = plane face) in three.) The relationship of its faces
to a 3-topos is that they surround it in a ball, which we indicate by b. A vertex in three dimensions
is correspondingly emballed by the edges adjacent to it: vertex and 3-topos are the duals of each
other in 3-space, as are edge and face. The table otherwise resembles the two-dimensional one, but
note that both edges and faces now have three orthogonal projections.

v e f 3t
components 1 3 3 1

hasa1 2 c b
←− ←− ←−

hasa2 b c 2
−→ −→ −→

Euler v − e + f −3 t = 0

Here is a double tetrahedron, showing in black edges and the cycles of edges making up faces,
in blue faces and the cycles of faces making up edges, and in red topoi and their directed links to
each other. Edges and faces are also directed, as before, since they are two-dimensional. Cycles are
shown as directed arcs, counterclockwise about edges and about the normals to faces. The “balls”
have complicated topologies, dictated by the pairs of edges where a face meets a vertex and pairs
of faces where an edge bounds a topos, and are just indicated as “b”, in black for vertices and in
red for topoi.

11

V1

V3

V2

V4

V5

E1

E3

E2

E4
E9

E8

E6

E7

E5F1

F2

F3

F5

F6

T2

T3

T3

T3

T3

T3

T3

T1
F4

F7
bbb

b

b

b

b

Here is an enumerated-sequence representation. Cycles start arbitrarily. Note that the edge
direction with respect to a face, dirE, is 1 if the edge is directed in opposition to the counterclockwise
cycle of edges making up the face, and 3 otherwise. Similarly, the face direction with respect to an
edge, dirF, is 1 if the face is directed in opposition to the counterclockwise cycle of faces making up
the edge, and 3 otherwise. Edge and face directions 0 or 2 are used to indicate if they are outgoing
or incoming, respectively from and to the start and end vertices or topoi.

EF(face dirF seqF seqE edge dirE)
F1 3 1 1 E2 3
F1 3 1 2 E8 3
F1 1 2 3 E3 1
F2 3 1 1 E3 3
F2 3 2 2 E9 3
F2 1 2 3 E1 1
F3 3 1 1 E1 1
F3 1 2 2 E2 3
F3 3 2 3 E4 3
F4 3 1 1 E4 3
F4 3 3 2 E8 3
F4 3 1 3 E9 3
F5 1 2 1 E7 1
F5 3 1 2 E6 3
F5 1 3 3 E9 1
F6 1 2 1 E5 1
F6 3 1 2 E7 3
F6 1 2 3 E8 1
F7 3 3 1 E4 3
F7 3 1 2 E5 1
F7 1 2 3 E6 3

VE(vertex edge dirE)
V1 E1 0
V1 E2 0
V1 E3 0
V2 E2 2
V2 E4 2
V2 E5 2
V2 E8 0
V3 E3 2
V3 E7 2
V3 E8 2
V3 E9 0
V4 E1 2
V4 E4 0
V4 E6 2
V4 E9 2
V5 E5 0
V5 E6 0
V5 E7 0

FT(topos face dirF)
T1 F1 0
T1 F2 0
T1 F3 0
T1 F4 2
T2 F4 0
T2 F5 0
T2 F6 0
T2 F7 0
T3 F1 2
T3 F2 2
T3 F3 2
T3 F5 2
T3 F6 2
T3 F7 2

In this representation, topoi are not directly connected to edges or vertices, and verticies are
not directly connected to faces or topoi. These connections can be inferred by joins:

FT ijoin EF
VE ijoin EF

12

FT ijoin EF ijoin VE
These joins also refine the topologies of the balls of edges around vertices and of faces around topoi.
These are always 2-cycles. For instance, the edges around T1 link pairs of faces: (F1,F2), (F1,F4),
(F1,F3), (F2,F3), (F2,F4) and (F3,F4). Similarly, the faces around V3 link five pairs of edges:
(E3,E8), (E3,E9), (E7,E8), (E7,E9) and (E8,E9).

2.1 Operations

The kinds of connections and disconnections one can make in three dimensions are more intricate
than in two, and there does not appear to be a single, invertible operator for all. We can use a
form of splice for the cycles of edges around faces and the cycles of faces around edges, but we
must interpret what it means. The connections to vertices and topoi involve 2-cycles, as we noted
above, and sometimes 1-cycles, as we shall see. The 1-cycles cannot be handled by swaps, since
these require us to specify the edge (say) before the edge to be disconnected or connected, and
“before” means in some cycle. The 2-cycles are simple enough not to need the full swap machinery.

Within EF, there are two, dual, (dis)connections we can make. In each case, just as with
disconnecting an edge from a vertex in 2-D, a new component is created (vertex in 2-D) and a
component is lost through fusion (faces in 2-D). In 3-D we can disconnect a face from an edge,
creating a new edge and fusing the two topoi formerly separated by the face. Or, trickier to imagine,
but following directly from duality, we can disconnect an edge from a face, creating a new face and
fusing the two vertices formerly connected by the edge.

There also is a special-case operator and its dual. This is the analog of removing a vertex
between two edges in 2-D and so fusing the edges. In 2-D this is special because it won’t work if
more than the two edges meet at the vertex: the vertex must be a 2-cycle of edges. In 3-D, if an
edge is a 2-cycle of faces, we can remove it from a vertex just as we did in 2-D, creating a new
vertex and fusing the two faces. This is because an edge with only a pair of faces is a 2-D construct.
An example would be to remove E3 from V3 in the double tetrahedron, fusing faces F1 and F2 into
a single, four-sided face bounded by E2, E8, E9 and E1.

The dual of this removes a face from a topos if the face is a 2-cycle of edges, creating a new topos
and fusing the two edges. (As was the case when we made a 2-D face out of one edge starting and
ending at one vertex, this supposes that edges need not be straight: in this topological discussion
we have gone beyond the restrictions to straightness imposed by the linear Clifford algebra.)

We must also consider edges which are 1-cycles of faces (we’ll encounter one shortly). We have
already seen a face which is a 1-cycle of edges.

Here is a sequence of three changes. First, we remove face F4 from edge E4, thus creating a
new edge, E10, and merging topoi T1 and T2. Second, we remove this new edge from vertex V2
(this is legal because E10 has only one face, F4, and so its faces form a 1-cycle); this removes face
F4, but leaves E10 hanging in space (a 0-cycle) ending at its new vertex, V6. Finally, we remove
E3 from V3 (which is legal because E3 has a cycle of two faces), creating a new vertex, V7, and
fusing faces F1 and F2. We could remove these dangling edges (E10 in the 3-space of T1, E3 in
the 2-space of F1). We could pull face F1 away from an edge the way we did with F4 and E4, and
then cut or remove that edge to merge topoi T1 and T3 and make a sort of envelope of four 2-D
planes.

13

V1

V3

V2

V4

V5

E1

E3

E2

E9

E8

E6

E7

E5F1

F2

F5

T1

T3

T1 F4F3

E4

E10

F6

F7
b

b

b

b

b

1. Remove F4 from E4.

EF(face dirF seqF seqE edge dirE)
F1 3 1 1 E2 3
F1 3 1 2 E8 3
F1 1 2 3 E3 1
F2 3 1 1 E3 3
F2 3 2 2 E9 3
F2 1 2 3 E1 1
F3 3 1 1 E1 1
F3 1 2 2 E2 3
F3 3 2 3 E4 3
F4 3 1 1 E10 3
F4 3 3 2 E8 3
F4 3 1 3 E9 3
F5 1 2 1 E7 1
F5 3 1 2 E6 3
F5 1 3 3 E9 1
F6 1 2 1 E5 1
F6 3 1 2 E7 3
F6 1 2 3 E8 1
F7 3 1 1 E4 3

F7 3 1 2 E5 1
F7 1 2 3 E6 3

VE(vertex edge dirE)
V1 E1 0
V1 E2 0
V1 E3 0
V2 E2 2
V2 E4 2
V2 E5 2
V2 E8 0

V2 E10 2

V3 E3 2
V3 E7 2
V3 E8 2
V3 E9 0
V4 E1 2
V4 E4 0
V4 E6 2
V4 E9 2

V4 E10 0

V5 E5 0
V5 E6 0
V5 E7 0

FT(topos face dirF)
T1 F1 0
T1 F2 0
T1 F3 0
T1 F4 2
T1 F4 0
T1 F5 0

T1 F6 0
T1 F7 0

T3 F1 2
T3 F2 2
T3 F3 2
T3 F5 2
T3 F6 2
T3 F7 2

14

V3

V2

V4

V5

E1

E3

E2

E9

E8

E6

E7

E5F1

F2

T1

T3

T1

V6

E10

E4

F5

F7

F6

V1 F3b

b

b

b

b

2. Remove E10 from V2.

EF(face dirF seqF seqE edge dirE)
F1 3 1 1 E2 3
F1 3 1 2 E8 3
F1 1 2 3 E3 1
F2 3 1 1 E3 3
F2 3 2 2 E9 3
F2 1 2 3 E1 1
F3 3 1 1 E1 1
F3 1 2 2 E2 3
F3 3 2 3 E4 3

F5 1 2 1 E7 1
F5 3 1 2 E6 3
F5 1 3 3 E9 1
F6 1 2 1 E5 1
F6 3 1 2 E7 3
F6 1 2 3 E8 1
F7 3 1 1 E4 3
F7 3 1 2 E5 1
F7 1 2 3 E6 3

VE(vertex edge dirE)
V1 E1 0
V1 E2 0
V1 E3 0
V2 E2 2
V2 E4 2
V2 E5 2
V2 E8 0

V6 E10 2

V3 E3 2
V3 E7 2
V3 E8 2
V3 E9 0
V4 E1 2
V4 E4 0
V4 E6 2
V4 E9 2

V5 E5 0
V5 E6 0
V5 E7 0

FT(topos face dirF)
T1 F1 0
T1 F2 0
T1 F3 0

T1 F5 0
T1 F6 0
T1 F7 0
T3 F1 2
T3 F2 2
T3 F3 2
T3 F5 2
T3 F6 2
T3 F7 2

15

V3

V5

E1

E2

E9

E8

E6

E7

E5

T1

T3

T1

V6

E10

V7E3
V1

E4

F3

F1
F6

F5

F7

V2

V4

b

b

b

b

b

3. Remove E3 from V3.

EF(face dirF seqF seqE edge dirE)
F1 3 1 1 E2 3
F1 3 1 2 E8 3
F1 1 2 6 E3 1

F1 3 1 5 E3 3

F1 3 2 3 E9 3
F1 1 2 4 E1 1

F3 3 1 1 E1 1
F3 1 2 2 E2 3
F3 3 2 3 E4 3

F5 1 2 1 E7 1
F5 3 1 2 E6 3
F5 1 3 3 E9 1
F6 1 2 1 E5 1
F6 3 1 2 E7 3
F6 1 2 3 E8 1
F7 3 1 1 E4 3
F7 3 1 2 E5 1
F7 1 2 3 E6 3

VE(vertex edge dirE)
V1 E1 0
V1 E2 0
V1 E3 0
V2 E2 2
V2 E4 2
V2 E5 2
V2 E8 0
V6 E10 2

V7 E3 2

V3 E7 2
V3 E8 2
V3 E9 0
V4 E1 2
V4 E4 0
V4 E6 2
V4 E9 2

V5 E5 0
V5 E6 0
V5 E7 0

FT(topos face dirF)
T1 F1 0

T1 F3 0

T1 F5 0
T1 F6 0
T1 F7 0
T3 F1 2
T3 F2 2
T3 F3 2
T3 F5 2
T3 F6 2
T3 F7 2

We see from the third step that the two-dimensional disconnection of E3 separating F1 and F2
does not follow the 2-D splice() operation on a VFE relation (although we could construct such
a relation and apply splice() to it). Instead, the topological changes occur in EF, with a new V7
replacing one of the V3 tuples in VE, and the F2 tuples just deleted from FT. The deletions in
particular are not invertible operations, and it would be worth finding a place for F2 somewhere
so that an inverse operation could put it back. (In step 1, VE had some additions, for which there
might be a similar consideration.)

16

References

[GS85] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the
computation of voronoi diagrams. ACM Transactions on Graphics, 4:74–123, 1985.

[MBC+02] T. H. Merrett, Y. Bédard, D. J. Coleman, J. Han, B. Moulin, B. Nickerson,
and C. V. Tao. A tutorial on database technology for geospatial applications.
www.cs.mcgill.ca/∼tim/geodem/tutorial.ps, 2002.

17

