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This is taken from [SZ04, Chap. 7]. It is the third of three applications they develop based on their
review of timeseries techniques in the first four chapters.

1. Bursts are sudden occurrences of high values over a continuous duration of time in a timeseries.

For example, in

1 3 5 11 12 13 0 1

if we specify thresholds for different durations, d, such as

d 1 2 3 4
threshold 15 25 35 45

then we see two bursts: one of length 3 starting at time 3 (counting from 0)
11 + 12 + 13 = 36 ≥ 35

and, contained in that, one of length 2 starting at time 4
12 + 13 = 25 ≥ 25

The new aspect of this problem is that we must discover not only the burst but also the duration
length. This sounds something like a variable window size: [SZ04] call it “elastic windows”, and so
they speak of “elastic bursts”.

However, it does not require us to redefine redwin() (week7p1) for elastic windows, as we shall
see, so I’ll speak of elastic durations and use d for the length of the duration.

We need to look at wavelets first [SZ04, pp.41–2,34–5].

2. The simplest wavelet technique uses pairwise averages to characterize a set of values such as the
timeseries above.
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1
3 2 −1
5

11 8 −3 5 −3
12
13 12.5 −0.5
0
1 0.5 −0.5 6.5 6 5.75 −0.75

The first column is the timeseries itself. The second, fourth and sixth columns are averages: of
pairs of the timeseries, of pairs of the averages in column 4, and of pairs of the averages in column
6, respectively. The third, fifth and seventh columns are differences between the averages and the
values making up the averages: note that we need only one difference for each average because it
is an average of only two numbers, and so the average plus or minus the difference gives back both
of these numbers.

We see from this that we can reconstruct the entire sequence from a sequence made up of the final
average and all the differences: eight numbers in all and so exactly the same size as the original.

1 3 5 11 12 13 0 1
5.75 -0.75 −3 6 −1 −3 −0.5 −0.5

For example, 5.75 ±−0.75 gives back the two next-level averages, the first of these, 5, ±−3 gives
back the two first-level averages, 2 and 8, and so on.

We can see that this “wavelet transform” can be done, either way, in linear time: better than the
Fourier transform, even than FFT.

3. Wavelet transforms in Aldat require a little extension to the user-definable funop computations
of week2p1. We must be able to add further parameters.

Let’s practice first on just finding the first set of pairwise averages.
comp funop average2 (value, accum; seq) is
{ if seq mod 2 = 0 then

{ sum <− value;
accum <−DC }

else
{ sum <− sum + value;

accum <− sum/2 };
}

Ths would be invoked on the relation

TS (sq ts) av2
0 1 DC
1 3 2
2 5 DC
3 11 8
4 12 DC
5 13 12.5
6 0 DC
7 1 0.5

as
let av2 be fun average2 (sq) order sq ;

(And we could do it for groups of any size, gp by replacing 2 by gp in the two places it occurs, and
making gp a fourth parameter.)

Here is specialized code for finding the wavelet transform of the above timeseries. It is specialized
to timeseries of length 8. There is one further trick: the accumulator of the funop is a nested
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relation.
comp funop avergeWave(value, accum; seq) is
{ state sq2 <− 4, sq4 <− 2, sq8 <− 1, sum2, sum4, sum8 ;

if seq mod 2 6= 1 then
{ sum2 <− value }
else
{ sum2 <− sum2 + value

let sqW be sq2 ;
let tsW be sum2/2 − value;
accum <+ [sqW, tsW ] in DC;
sq2 <− sq2 + 1;
if seq mod 4 6= 3 then
{ sum4 <− sum2/2 }
else
{ sum4 <− sum4 + sum2/2;

let sqW be sq4 ;
let tsW be sum4/2 − sum2/2;
accum <+ [sqW, tsW ] in DC;
sq4 <− sq4 + 1;
if seq mod 8 6= 7 then
{ sum8 <− sum4/2 }
else
{ sum8 <− sum8 + sum4/2;

let sqW be sq8;
let tsW be sum8/2 − sum4/2;
accum <+ [sqW, tsW ] in DC;
sq8 <− sq8 + 1;
let sqW be 0;
let tsW be sum8/2;
accum <+ [sqW, tsW ] in DC;

}
}

}
}

(Ordinary recursion will generalize this to timeseries of length any power of 2, and an arbitrary
timeseries can be padded to make its length a power of 2.)

The value of the accumulator corresponding to the highest value of seq is the final result. The
invocation is

let wavelets be fun avergeWave(sq) of ts order sq ;
ans <− (where sq = red max of sq in [sq, wavelets] in TS)/wavelets

4. This wavelet transform and its inverse can be written as matrices

W = WT

and
T = W−1W
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where T is the timeseries and W is its wavelet transform.

You can check for the example that

W =

























1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
1/8 1/8 1/8 1/8 −1/8 −1/8 −1/8 −1/8
1/4 1/4 −1/4 −1/4

1/4 1/4 −1/4 −1/4
1/2 −1/2

1/2 −1/2
1/2 −1/2

1/2 −1/2

























and

W−1 =

























1 1 1 1
1 1 1 −1
1 1 −1 1
1 1 −1 −1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1

























In fact, these are usually normalized : the first two rows of W are multiplied by 2
√

2 and the first

two columns of W−1 are divided by 2
√

2, the third and fourth rows/columns by 2, and the last

four rows/columns by
√

2.

Then both transforms are orthonormal and have good properties such as preserving the “energy”
(the sum of the squares of the terms of either T or W).

Thus, the wavelet transform can be used to compress a timeseries, at the cost of becoming only an
approximation, by omitting all but the most significant terms in W after W has been found.

Under normalization, the table of averages and differences above becomes

1
3 2.8284 −1.4142
5

11 11.3137 −4.2426 10 −6
12
13 17.6777 −0.7071
0
1 0.7071 −0.7071 13 12 16.2635 −2.1213

making the final W

1 3 5 11 12 13 0 1
16.2635 -2.1213 −6 12 −1.4142 −4.2426 −0.7071 −0.7071

If we pick the four terms of W with the largest magnitudes, namely 16.2635, 12, −6 and −4.2426,
we get an energy of 462.5 instead of the true energy of 470.

We can also approximate in another way, by taking so many coefficients at the beginning of W, say
the first four. This has the effect of showing the timeseries at reduced resolution.

Going back to the unnormalized version, the approximate W is

5.75 -0.75 −3 6 0 0 0 0
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Figure 1: Haar wavelets (cont. next page)

and the timeseries T′ that we get by transforming this back again is just the first set of averages:

2 2 8 8 12.5 12.5 0.5 0.5

We will take advantage of this variable resolution capability when we get back to looking at elastic
bursts.

5. To prolong the discussion of wavelets just a little further, we should see why they are called
“wavelets”.

Compare figures 1,2 with the rows of the normalized matrix W : match the first blue figure with the
first row, the first red figure with the second row, and the remaining red figures with the remaining
rows. Compare the normalizations. The equations of the blue figures are φjk(x) = 2j/2φ(2jx− k)
where

φ(x) =

{

1 if 0 ≤ x < 1
0 otherwise

and of the red figures are ψjk(x) = 2j/2ψ(2jx− k) where

ψ(x) =







1 if 0 ≤ x < 1/2
−1 if 1/2 ≤ x < 1

0 otherwise

We can see that the scaling functions (blue) are orthonormal within each value of j: try integrating
the products of pairs of functions (i.e., multiply the two magnitudes and check the area under the
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Figure 2: Haar wavelets (cont.)
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result). We can also see that the wavelet functions are orthonormal over all values of j and k, and
are also orthogonal to all of the scaling functions.

These step-function wavelets are called Haar wavelets. There are many other kinds. Here, for exam-
ple, is one of the family of Daubechies wavelets (from en.wikipedia.org/wiki/Daubechies wavelet).

6. Now we can return to elastic bursts. We needed an ability to inspect durations of many different
sizes simultaneously and the hierarchical, multiresolution nature of wavelets seems to be helpful.

What wavelet multiresolution gives us is durations of sizes that are powers of 2. How many durations
of arbitrary size can we cover with these?

Let’s characterize durations by their size and starting position, (s, p).

A wavelet of size 20 will give any duration of size 1, (1, p) for any p.

A wavelet of size 21 will give any duration of size 1 but only those durations of size 2 that start at
odd-numbered positions, (2, p) where p mod 2 = 1 (counting from 1).

A wavelet of size 22 will give any duration of size 1 but only those durations of size 2 that do not
start at multiples of 3, (2, p) where p mod 3 6= 0, and only those durations of size 3 that start at
multiples of 3 plus 1, (3, p) where p mod 3 = 1.

We need not go further to see that this is not good enough. There are no durations of size > 1
that can all be contained in any of these wavelets. Shasha and Zhu introduce a shifted aggregate
tree (they call it a “shifted binary tree”) to allow containment and reasonable approximations.

The idea is almost to double the tree size by adding shifted rows. Here are the original rows (the
wider rows, and, where paired, the upper row of each pair) together with the shifted rows (the
lower row of each pair) for a timeseries of 16 points.
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(The dashed arrows show how a cell in each row can be constructed from cells in the previous
original row. This applies to each cell in the row.)

Now we can see that durations of any size at any position is covered by at least one of these (pairs
of) rows.

A wavelet of size 20 will give any duration of size 1, (1, p) for any p, using the first row.

A wavelet of size 21 will give any duration of size 2, (2, p) for any p, using the second row (pair).

A wavelet of size 22 will give any duration of size 3, (3, p) for any p, using the third row (pair). It
will also give some, but not all durations of size 4: those starting at even-numbered positions will
be missed.

A wavelet of size 23 will give any duration of sizes 4 and 5, (4, p) and (5, p) for any p, using the
fourth row (pair). (It will also give an increasingly small proportion of durations of sizes 6 to 8, so
we had better not try to take a chance on them.)

The final wavelet, of size 24, contains all remaining durations, of sizes 6–16, for any p, using the
final, single-aggregate row.

Instead of calculating averages and differences, as for wavelets, we calculate sums for burst detection.
The third and fifth columns are the two shifted “rows” (they were rows in the figure above).

1
3 4
5 8

11 16 20
12 23
13 25 41
0 13
1 1 26 46

Let’s use this to detect the burst, 11–12–13. Our threshold sums for specified durations, d, were,
in Note 1

d 1 2 3 4
threshold 15 25 35 45
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We see nothing ≥15 in the first column. There is one entry ≥25 in the second and third columns, so
we’ve identified a burst of duration 2. Finally, the 41 in columns 4 and 5 includes 35, the threshold
for a burst of duration 3.

When we check the original timeseries we find that the 3-burst contains the 2-burst, so we report
only the longer burst.

7.Other aggregates besides sum can be used. The criterion that admits an aggregate is that it must
be monotonic. This is true for sums only of positive numbers, which we have because bursts are
likely to be counts of occurrences. (Note that the timeseries being aggregated must therefore not
be normalized.)

Because the sum is monotonic, above, we know that we will not miss a burst by checking a wavelet
which is longer than the duration we are looking for: there are no negative values among the
neighbours to reduce the sum indicating a burst to a smaller sum which we might ignore. Thus
there are no false negatives (failed alarms).

Other monotonic quantities are counts, maxima, minima (which are monotonically decreasing) and
spreads (max − min).

Here is an example of counts: eighty events happen in 30 seconds.

0 5 10 15 20 25 30
−1

0

1

We will look for bursts with thresholds (durations, d, in seconds)

d 1 10
threshold 10 50

So we must convert the counts to monotonic sums anyway.

We do this by tallying the events in a histogram with bin width of one second. The result is

1 0 1 0 0 1 0 10 1 0 1 0 10 0 3 7 8 2 0 10 0 10 1 1 10 0 1 0 1 1

We can immediately see five 1-second bursts, each just at the threshold of 10.

We can build a shifted aggregate tree to see if there are any 10-second bursts. (This is built
horizontally this time, so we are back to rows. To keep the spacing simple, I’ve written “a” instead
of “10” in the first row. Note that I’ve padded the 30 seconds with two 0-entries to make a power
of 2.)

1 0 1 0 0 1 0 a 1 0 1 0 a 0 3 7 8 2 0 a 0 a 1 1 a 0 1 0 1 1 0 0

1 1 1 10 1 1 10 10 10 10 10 2 10 1 2 0

1 1 1 11 1 10 3 15 2 10 11 11 1 1 1

2 11 2 20 20 12 11 2

2 11 11 20 20 12 3

13 22 32 13

13 40 23

35 45

54

80
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We must look for bursts of 10-second durations in the last level. (Check that the next-to-last level
can only reliably detect 6- to 9-second durations.) However, most of the 10-second durations can
be found in that next-to-last level (check which ones get missed) and so that 54 in the shifted part
of level 5 is worth looking into, and reveals a 10-second burst from times 12–21, including three of
the five 1-second bursts we saw at the beginning.

8. Two dimensions Two-dimensional wavelets may also be built, using a base unit of four
wavelets in a square (which may be combined in pairs, say first horizontal then vertical, in order
to continue writing only single numbers, e, for the differences ±e between the average and two
components).

Here we look at one example of two-dimensional burst detection. We’ll use the same thresholds as
in our first example

d 1 2 3 4
threshold 15 25 35 45

and we’ll be looking for rectangle-shaped bursts.

Here is the data to be summed. The bursts we should discover are marked in red: one square of 4
and two rectangles of 3.

12

12 13

16

1 0 2 17

1

3 10 5

211

11

We already see two 1-cell bursts of 16 and 17.

Here is the shifted aggregate tree. Note that there are three shifts at each level (except top and
bottom levels) instead of one: one horizontal, one vertical and one both horizontal and vertical.

107

17

29

29

32
46 40 38

25

31

In the first row (which is actually the second row, since the previous figure should count as the first
row), the first, unshifted, grid shows that we may have three 2-cell bursts. Checking confirms only
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two: 12,13 and 16,12. These 2 by 2 squares cannot contain any 3-cell bursts (which would have to
be 3 by 1 or 1 by 3 rectangles), and do not in this case contain any 4-cell bursts.

Of the three shifted grids in the first row, the horizontal-vertical shift gives 46 for the central square,
which must be a 4-cell burst. The vertical shift may have two 2-cell bursts: it does, but we already
found them. The horizontal shift may also have 2-cell bursts, but they turn out to be part of the
4-cell burst we found already.

For 3-cell burst, we are obliged to check the whole original data (the bottom level in the shifted
aggregate tree), and we find the 3-cells 11–12–13 and 16–12–11. These incorporate the 2-cell bursts
we found before, which we forget about. They also overlap the 4-cell burst in the centre, but we
cannot do anything about that since we must report rectangles, not arbitrary hexonimos.

So we report one 4-cell and two 3-cell bursts, as we expected we should.

Note that this 2D discusssion is really a 3D discussion, because neither dimension is the time
dimension, whereas in the 1D case the one dimension is the time dimension. There is an intermediate
“1D” (really 2D) case with one spatial and one time dimension.

9. Bursts in Streams With an indefinite-sized stream of data, we can do the computing of Note
3 in the context of redwin(). But it would be nice not to redo it all at every window position.

In fact, we need only update the last entry at each level each time we slide the window (i.e., acquire
one more time point).

window
seq (sq ts)
0 371 1

1 372 3

2 373 5

3 374 11

4 375 12

5 376 13

6 377 0

7 378 1 1 13 26 41 46
8 379 4 5 1 18 36 49

380 2 6 5 7 26 48

where the vlaues of the current window are given in typewriter font and seq is the virtual
attribute defined let seq be (fun + of 1 order sq) − 1 within this window.

Here is how we get these new numbers. Suppose the initial set of entries is given by

entries
(pow2 shift val)
1 0 1

1 1 13

2 0 26

2 1 41

3 0 46

and the seq positions in the window whose values must be added to or subtracted from this current
set of values are

entries
(pow2 shift add subtr)
1 0 8 6

1 1 7 5

2 0 8 4

2 1 6 2

3 0 8 0
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Then we can define
toAdd <− [pow2, shift, ts] in (positions[add :icomp:seq ][seq, ts] in window);
toSubtract <− [pow2, shift, ts] in (positions[subtr :icomp:seq ][seq, ts] in window);

giving

toAdd toSubtract
(pow2 shift ts) (pow2 shift ts)
1 0 4 1 0 0

1 1 1 1 1 13

2 0 4 2 0 12

2 1 0 2 1 5

3 0 4 3 0 1

This combines with window
let tsp be ts;
let tsm be ts;
let val ′ be val + tsp − tsm;
let val be val ′;
entries <− [pow2, shift, val ] in [pow2, shift, val′] in (entries ijoin [pow2, shift, tsp] in toAdd

ijoin [pow2, shift, tsp] in toSubtract);
giving

entries
(pow2 shift val)
1 0 5

1 1 1

2 0 18

2 1 36

3 0 49

To reconcile all ths with redwin(), which is a domain algebra operator, we must recast relations
entries, toAdd and toSubtract as nested virtual relations: the <− assignments above are replaced
by let .. be. Then window can be defined, also as a virtual nested relation

let window be redwin(9) ujoin of relation(sq,ts) order sq ;
and the above code used.

The whole calculation can be done in a computation of two alt-blocks, the first alt-block containing
the code of Note 3, generalized and extended to create the first entries, and the second alt-block
containing the above code, using entries.

(Relation positions can be a top-level relation, and can be generated from the single parameter p2
giving the power of 2 that is the size of the sliding window (in this case p2 = 3), remembering to
extend it to 2p2 + 1 for the update process so that item 0 can be subtracted from the 2p2 entry.)

Of course, we do not necessarily need to calculate or recalulate the entries for all levels. A restricted
range of elastic durations limits the number of levels needed. For instance, durations d = 1, 2 and
3 only for our 8-item window would not need level 23.

This is [SZ04]’s “online” algorithm, which guarantees a response time of one unit. They also
describe a “batch” algorithm which waits until all input data is available for the entry at any given
level. This does less calculating at the expense of a longer response time—but the response time
amortizes to two time-units.
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