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The purpose of Clifford (or “geometrical”) algebra is to describe space without using coordinates
and in such a way as to describe any number of dimensions without changing the formalism.

The denizens of a d-dimensional space include points, edges, faces, volumes and so on: they
themselves are k-dimensional with k ranging from 0 (point) through 1 (edge), 2 (face), 3(volume)
and so on up to d (hypervolume). Furthermore, each class of denizen can be described as a
linear combination of components: points are their own O-dimensional components, edges have d
1-dimensional components, faces have d!2 (“d choose 2”) 2-dimensional components, volumes have
d!3 3-dimensional components, etc. This adds up to

dl0+d1 +d'2 + .. + dd = 2¢

components in all, so a Clifford algebra is a 2¢-dimensional linear algebra to describe d-dimensional
space.

The following is a concrete interpretation of the more abstract discussions in books such as [?]
and [7].

1 Two dimensions

Here are some 1- and 2-dimensional denizens of a 2-dimensional space. Note that they have no
absolute position—all the els are equivalent to each other, as are all the e2s—or shape, in the case
of faces. They do have magnitudes: the diagram shows a 3/4 el as well as all the other els (whose
lengths are thus 1), and a 2/3 e2 as well as all the other e2s; it also shows a 1/2 €12 as well as a
unit-area el2.

The linear combinations appear in the diagonal edge, which is expressed

\/§e1 + \/§e2

(diagrams below will show /2 as rt2, and similarly for other roots). This edge also has no absolute
position, and could be drawn anywhere in the diagram. (This edge is resolved into two orthonormal
components, el and e2. Components need be neither orthogonal nor normalized, but orthonormal
components are easier to use, and we stick with them in this discussion.)

*Copyleft ©T. H. Merrett, 2005. Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation in a prominent place. Copyright for components of
this work owned by others than T. H. Merrett must be honoured. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee.
Request permission to republish from: T. H. Merrett, School of Computer Science, McGill University, fax 514 398
3883.



/

.

el

\V

N

\

Thus we see we can add elements of a Clifford algebra and multiply them by scalars. The other
Clifford operation is a product of elements. For any edge, v, the product vv is defined to be its
length squared, v2. Thus elel=1=e2e2, since these components are normalized. We can add to
this definition by saying ele2=el2. But here a twist comes up: e2el=—ele2, which is to say
that el and e2 anticommute. The reason is that €12 defines the plane el and e2 are in (or rather,
any area=1 part of the plane, since €12 is normalized, t00).

To see this, think of the plane el12 in 3-space: it has two sides. If you pretend to push el into
e2 with the fingers of your right hand, your thumb sticks out of that plane in some direction. But
if you go around the back of the plane and push e2 into el, again with the fingers of your right
hand, your thumb now points in the other direction. So e2el is the inverse of ele2, hence the sign
change.

Although this Clifford product is not commutative, we will define it to be associative. Now we
can see that

el2el2 = —el2e2]1 = —ele2e2el = —elel = —1
so that el2 is “the square root of —17. This “the square root of —1” is a red herring. It is more



important and much more useful to think of €12 as a right-angle rotation. Here is why.

elel2 = e2

e2el2 = —el
So postmultiplying by el2 is a counterclockwise right-angle rotation. (And premultiplying is a
clockwise right-angle rotation.)

To work with arbitrary edges but keep the work simple, we will use the general normalized
edge, cel + se2, where c is short for cos(f) and s is short for sin(#), for some angle 6 (which we
will from now on simply define as the pair (c,s)). Clearly ¢? + s?> = 1 and we can see, by taking
the product, that the edge is normalized:

(cel + se2)(cel + se2) = (c? +s?) + (es — sc)el2 =1
Let’s rotate this by a counterclockwise right angle:
(cel + se2)el2 = —sel + ce2

1.1 Rotation

Now we can experiment with the product of two edges, not the same, and not orthogonal.

(el)(cel + se2) = ¢ + sel2
This rather reminds us of the complex number, ¢ + is, but, again, it is more profitable to think of
it as an operator.

(el)(c + sel2) = cel + se2
It is the operator that turns el into cel + se2. This is easy to see if we consider any two normalized
edges u and v:

uuv = v
and so the operator uv, postmultiplying u, turns it into v. If ¢ + sel2 has the above effect on
every edge in the space, then it is a rotation through angle (¢, s) (counterclockwise if the angle is
positive). Let’s try, for any a, b:
(ael + be2)(c + sel2) = a(cel + se2) + b(—sel + ce2)

which rotates the ael component through (c, s), and likewise the be2 component: ¢ + sel2 is the
rotation operator in 2-dimensional space.

Let’s try it explicitly:

(cel + se2)(cel + s'e2) = ¢ + ss' + (¢s’ — sc)el2 = C + Sel2

where C' = cos((c/, s')— (¢, s)) and S = sin((c/, ') — (¢, s)): the rotation here is through the difference
between the two angles. The diagram shows the generated face, Sel2, with S = ¢s’ — s¢’ being the
area of the parallelopiped made by the two edges and their duplicates. (Note that for clarity the
diagram shows edges starting from a common origin: they could in fact be drawn anywhere in the
plane.) It is obvious that the area of this face is 1 if the two operands of the product are normalized
and orthogonal to each other; in this case, the scalar component, C', is zero. Conversely, if the two
operands are normalized and identical, the area, S, is zero and the scalar component is 1, namely
the length.

We can also use a matrix to describe this rotation. We show it here for two reasons. First,
writing them in matrix form makes complicated calculations, which we will have later, more man-
ageable. Second, matrix multiplication gives us an easy way to remember the trigonometry rules
for combining cosines and sines. Suppose we have an edge xel + ye2 which we want to rotate
through angle (¢, s). We can write

(xel + ye2)(c + sel2) = (cx — sy)el + (sx + cy)e2

(5 7)(5)

as



(cs’ —sc)el2

u=cel + $e2

u (¢, s’)J el

v (c,s)

uv (¢, s)-(c,s)
uvu 2(c’,s)—(c, s)

Now consider two rotations: they produce a third rotation through the sum of the angles,

c —s d -\ _ [(C =S
(v )0 2)=(57)
where the cosine and sine of the sum are C' = c¢¢’ — ss’ and S = ¢s’ + sc/, as we can see by taking
the matrix product.

(Note that = and y give the length, I = /22 + y2, and the direction, (z/l,y/l), of an edge. They
are not the coordinates of a point. If, however, we supplement the Clifford algebra with an origin,
then (x,y) can be seen as the coordinates of a point, and the above matrix form is just the familiar
rotation of the point relative to the axes.)

As an exercise, we use rotations to draw an equilateral triangle in the plane el2 given a side
el. For the second side, we rotate el by a third of a revolution

el(—1/2+/3/2 el2) = —1/2el + /3/2 2
The same rotation again, or just doubling the rotation, gives the third side.
el(—1/2—+/3/2el2) = —1/2el —/3/2 e2
Here is the triangle, shown, again for clarity, as a triangle rather than just as three sets of unit-length
edges.




A\ rt3/4 e12

el
1.2 Reflection

For normalized edges u and v we saw that uuv = v, and similarly uvv = u, so premultiplying v
by uv maps (rotates) it into u. (Thus, premultiplying el by ¢ + sel2 rotates it backwards into
cel —se2.) What does uvu mean? This is the reflection of v in u. Try u=el and resolve v into
parallel and perpendicular components, v = cel 4+ se2. Then

el(cel + se2)el = cel —se2
The perpendicular component changes sign, so the result is the reflection in el.

We can argue that el could be in any direction, and so the result is generally the reflection, as
we said. But it is useful trigonometry practice to spell it out. We set u=c’el + s’e2 and v=cel +
se2, where (¢, s’) and (¢, s) are two different angles. Then

(cel + s'e2)(cel + se2)(cel + s'e2) = Cel + Se2
where C' = cos((c/,s") — (¢,8) + (¢, §')) and S=sin((c/,s") — (¢, s) + (¢/,s")). The result is at angle
2(d,s") — (e, s), which you can see in the diagram on page 77 is the reflection of the inner edge in
the edge written before and after it. These angles, and the reflection, uvu of v in u, are also shown
in that diagram.

We can use another argument to persuade ourselves that uvu is the reflection of v in u.
Postmultiplied, vu rotates any edge by the angle from v to u. Thus uvu is the rotation of u
by this angle, and that makes it the reflection of v in u. (There is a similar premultiplication
argument.) Finally, since uuvuu = v, reflecting twice restores the element.

From a reflection, uvu, we can get the projection of v on u by averaging (uvu + v)/2. If we
write these as operators, F and P, then P = (F + Z)/2, where 7 is the identity operator. Let’s

look at the matrix form of reflection, (el,e2)F v

1 0 52 —cs
f_<0 1)_2( s >_I—27>
The component of v orthogonal to its projection on u can be found by subtraction,
5?2 —cs 1 0
73_I_(—cs 02>_<0 1>

If there were an origin and v were interpreted as a point, then this component is the perpendicular
from the point to edge u and its length is the distance.



1.3 Shear

So far we can rotate by postmultiplying an edge by ¢ + sel2, and we can reflect an edge v in a
normalized edge u to uvu. Reflection is related to projection, which is related, if we add an origin,
to the perpendicular and the distance from a point to a line. There are other transformations which
Clifford algebra cannot do, short of using tricks. These are the shear transformations (and they
include scaling differently in different directions).

A special such shear, which preserves the direction (but not the length) of el 4+ €2, maps any

edge sel + ye2 into
e t T
(el,e2)<t e)(y)

where €2 — t2 = 1. (We can also write this as scaling by factor f along edge el + e2 and by 1/f

along el - e2:
e t\ _ f[(1 1 1 1 -1
(F ) =201 1) (5 7))
soe=(f2+1)/2f and t = (f? —1)/2f.)
How do we describe this shear in Clifford algebra? The trick is to suppose that e2e2=-—1
instead of 1. Then, elel=1 as before, but el2e12=—e2elele2=1. Now let’s express the shear
transformation as a rotation.

e = ()2

(For physics, where Clifford algebra is mostly used, this describes a Minkowski space, as opposed
to Euclidean. The shear transformation we have written is the Lorentz transformation of special
relativity.)

2 Three dimensions

When we add a third dimension, our rotation operator no longer works.

e3(c+ sel2) = ce3 + sel23
(Of course it still works for any edge completely in the el2 plane; but it fails for components
orthogonal to that plane.) We need to try something else.

Let’s think of a rotation as two reflections. To rotate zel + ye2 by an angle (¢, s) we could
reflect it first in el and then in the edge cjel + sje2 which makes angle (¢, s;) with el, half
of (¢,s). (Instead of writing cos(6/2), we invent the abbreviation ¢, since J looks a little like 2
upside-down.) Clearly, such reflections will leave any edge component invariant if it is orthogonal
to the plane containing el and cjel + s;e2, namely el2, and that is what we want. The diagram
shows that, in the plane, the two reflections are indeed the rotation.

The two reflections, applied to xel + ye2, are written

(cjel + sje2)el(zel + ye2)el(csel + sje2)
= (cj — sjel2)(zel + ye2)(cs + sjel2)

~eren (s ) ()

In 3D, this half-angle operator will rotate any edge zel + ye2 + ze3 by angle (¢, s) in any plane
rel2 + pe23 + ge31 (normalized so that p? + ¢ +r2 = 1):

(cg — sj(rel2 + pe23 + ge31))(zel + ye2 + ze3)(cs + sj(rel2 + pe23 + ge3l))
gives, after some algebra and doubling of half-angles,

c —sr sq P x
(ela 62,63) (( ST c —Sp ) + (]‘ - C) ( q ) (pv Cb’r)) ( Yy )
—sq sp c r z
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2.1 Rotations



u=cel + €2

v=xel + ye2
¢’ = X/rt(x%+ y?)
s’ = yirt(x 2+ y?)

el

u (¢ )
v (c,S)

(¢, 8) +(c; §)
v (¢,8)+2(c;5) =(c,8)+(cs)

Furthermore, we can show that this plane, rel2 + pe23 + ge31, is orthogonal to edge

pel + ge2 + re3, which is thus the axis of rotation:

(pel + ge2 + re3)el23 = rel2 + pe23 + ¢e3l
using the 3D volume, €123, to produce the orthogonal element, as we used the 2D area, el2,
earlier. ((p,q,r) is an eigenvector of the above matrix: try it!)

(Well, this argument just extends what we found in 2D to 3D, so to prove the orthogonality of
the face to the edge, we must take the product of two different edges which we know are orthogonal
to pel + ge2 + re3. These could be gel —pe2 and pr2el + g¢r?e2 —r(p? + ¢?)e3 (which are
also orthogonal to each other—but not normalized). Their product gives (1 —r?)r(rel2 + pe23 +
ge31), which is the (unnormalized) plane we started with.)

With some more algebra, we can now get the famous formula for two 3D rotations, first about
pel + ge2 + re3 then about p'el + ¢’e2 + r’e3. We'll write the half-angles as (¢, s) and (¢, ),
respectively, dropping the Js for readability: we must remember that all angles are half-angles in
the rest of this paragraph. The result is a rotation by (¢, s”) about p”el + ¢"e2 + r”e3:



(c+ s(rel2 + pe23 + qe31))(c’ +§'(r'el2 + p'e23 + ¢'e31))
= cc' —ss'(rr' + pp' + qq')

+ (sdr + es'r’ +ss( qp’ — pq’))el2

+ (scp+csp + ss'(rq — qr'))e23

+ (sdq+cs'qd + ss'(pr’ — rp/))e31
/

Note that two 3D rotatlons do not commute: (¢/,s’,p',¢',r’) before (c,s,p,q,r) is different from
what we just did, (¢, s".p/, ¢, 7’) after (¢, s,p, q,r). Check this with 90-degree rotations about (1,0,0)
and (0,1,0)!

This rotation operation applies to faces as well as edges. Here is a complete description of a
rotation (¢, s) in €12 applied to each of the base elements, in matrix form.

1 1
c S el
—s c e2
1 e3d
1 el2
c S e23
—s c e3l
1 el23

Clearly, e3 and el2 are unaltered by the rotation, and €23 and e31 transform together in the
same way el and e2 do.

We can use rotations to extend the equilateral triangle example to a tetrahedron. First, we
must find one of the edges above the plane of the €12 face: call this edge pel + ¢e2 + re3, with
p? 4 q¢® +r? = 1 since we gave all edges unit length. This edge makes a 60-degree angle with the two
edges of the triangle it shares a vertex with, let’s say el and —(—1/2el —+/3/2)e2) (we’ve changed
the direction of the second, so that it starts from the same vertex as el). Since the product of two
edges gives the angle between them and the plane they are in, we get two equations.

el(pel + ge2 + re3) = 1/2 + /3/2(some face)
(el + v/3/2e2)(pel + qe2 + re3)/2 = 1/2 + +/3/2(some other face)
The first gives p = 1/2 and the second gives (p + v/3¢)/2 = 1/2, hence ¢ = 1/2+/3. Normalization
gives two solutions for r, one above and one below the plane of el: r = £,/2/3. We choose the
positive solution, above the plane.

This gives both the new edge, 1/2el + 1/2v/3 e2 + /2/3 e3, and the two faces it shares:
1/4/3 el2 —1/1/6 e31, with el; and —1/4/3 el2 + 1/2v/2e23 —/3/2v/2 e31, with el +
V3/2e2.

We can rotate these in €12 by one third and two thirds of a revolution to generate the other
edges and faces, just as we rotated el to generate the equilateral triangle. (We must use the
half-angle transformation, since none of the edges or faces is in the plane of €12.) The results are
shown in the diagram. This tetrahedron has been derived entirely without coordinates. (Fixing
the origin at some suitable place, such as the lower left vertex, enables us to derive coordinates of
all the other vertices directly from the expressions for the edges.)

2.2 Angles

We already know that the cosine of the angle between two edges is the scalar component of the
product of the edges, and that this product also gives us the face defined by a parallelopiped of the
two edges. In three dimensions, we also have the “dihedral” angle between two faces. Let’s try the
product of two of the faces of the tetrahedron.
—el2(el2 —2v2 e31)/3 = 1/2 + 2v/2/3 e23

The plane orthogonal to both these faces is €23, and in that plane the angle between the two
s (—1/3,—21/2/3), which is an internal angle of just over 70 degrees. Taking all six pair-of-face
products in the tetrahedron gives the same angle each time but different orthogonal planes.



-rt3/4 el2

=1/rt3 e2 + rt(2/3) e3

el

2.3 Reflection

Three-dimensional reflections in faces are analogous to two-dimensional reflections in edges. For
example, we can reflect the edge ael + be2 + ce3 in the face (e1l2 — €23)/v/2, which contains
e2 and falls 45 degrees between el (or el2) and e3 (or e23). (Note the minus sign!) The result
swaps a and c:

(e12 — e23)(ael + be2 + ce3)(el2 — e23)/2 = cel + be2 + ae3.

Reflecting an arbitrary edge, xrel + ye2 + ze3, in the normalized face rel2 + pe23 + qe31
gives
(rel2 + pe23 + ge31)(zel + ye2 + ze3)(rel2 + pe23 + ¢e3l) =

1 P T
ST

Reflecting the face orthogonal to that edge, cel2 + ae23 + bel3 in this same face gives
(e12 — €23)(cel2 + ae23 + be3l)(el2 — €23)/2 = ael2 + ce23 + bel3.
We could specify this reflection in another way, by building from the base edges, as el < €3, e2
— €2, and swap pairs (because it is a reflection): el2 = ele2 < e3e2 (swap)« e2e3 = €23, and
SO on.



We can also ask what it means to “reflect” an edge, ael + be2 + ce3, in an edge, say el. This

preserves the el coordinate but inverts the other two:
el(ael + be2 + ce3)el = ael + —be2 + —ce3.
A similar thing happens if we “reflect” the face, cel2 + ae23 + bel3, in edge el:
el(cel2 + ae23 + bel3)el = —cel2 + ae23 + —bel3,

and this checks against an alternative prescription: el < el, e2 < — e2, e3 < — €3, and don’t
swap pairs (because it’s an inversion, not a reflection).

Here are transformations of each base component in the base faces and edges. In these special
cases, each transformation agrees with our prescriptions for reflection (in planes) or inversion (in
lines).

element, e el e2 e3 el2 e23 e3l

reflections el2 e el2 el e2 —e3 —el2 e23 edl
e23 ee23 | —el e2 e3 el2 —e23 e3l

e3l e e3l el —e2 e3d el2 e23 —e3l

inversions eleel el —e2 —e3 —el2 e23 —e3l
e2 e e2 —el e2 —ed —el2 —e23 edl

e3d e el —el —e2 e3 el2 —e23 —e3l

2.4 Projection

Using P = (F + Z)/2, we can find the projection of a edge in a face. For ael + be2 + ce3 in

(e12 — e23)//2, average this with cel + be2 + ae3 to get (a+c)/2(el + e3) + be2. Since el and
e3 have the same coefficient, this projected edge clearly lies in the el2 — €23 plane. We can see
it more clearly if we rotate this face 45 degrees in €31 to get the two-dimensional edge (a + c)/v/2
el + b e2.

Projecting an arbitrary edge, xel + ye2 + ze3, in the normalized face rel2 + pe23 + ¢e31

gives
1 P T
(61782,63) (( 1 1 ) - ( q ) (pv q, T)) ( Yy )

To project a face onto another face, we must subtract instead of add: P = (F —7)/2 (remember
the minus sign in €12 — e23). Thus, projecting the face cel2 + ae23 + be31 in el2 — €23 gives
(c—a)/2(el2 — e23), and this clearly lies in face e12 — e23. Rotating it gives (c — a)/v/2e12.

Finally, as an example, let’s reflect the tetrahedron in the plane formed by edge 1/2 el + 1/ 23
e2 + 1/2/3 e3 and its projection on plane e12. This plane is v/3/2 €31 — 1/2 €23 (and the angle
between the two edges in this plane is (1/v/3,1/2/v/3)). It reflects el « 1/2 el + v/3/2 €2, 2 «
\/§/2 el — 1/2 e2, and e3 < e3. As a result, this reflection maps the edges and the faces of the
tetrahedron into the appropriate other edges, or into themselves, with sign reversals as appropriate.
(Reflecting faces give €12 « e12, 23 < 1/2 €23 + 1/3/2 e31, and e31 > v/3/2 e23 + 1/2 e31,
and map, say, 1/4v/3 €12 — 1/v/6 €31 correctly into 1/4/3 e12 — 1/2v/2 €23 + 1/21/6 e31.)
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