
Abstract data Types and “Objects” in Aldat

T. H. Merrett∗

McGill University

May 9, 2008

1

These notes give an example for Aldat constructs that we have developed earlier (see [Mer99,
“Database programming”]). Specifically, an abstract data type (ADT) is a computation which
returns computations among its (public) parameters, following [AM84], and an object is an instan-
tiated ADT-with-a-state.

1. Abstract Data Type. We use vectors of Booleans for our example. We represent these as
relations, and they may be nested within other relations. Here is such a nested relation.

domain pred strg;
domain val bool;
domain lightNdark(pred,val);
domain subject strg;
relation analogy(subject,lightNdark) <− { ("X",("F",f),("A",f),("H",f),("D",f)),

("Y",("F",t),("A",t),("H",t),("D",f)),

("Z",("F",t),("A",f),("H",t),("D",t))

};

These declarations and initialization produce

∗Copyleft c©2008 Timothy Howard Merrett
1Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear
this notice and full citation in a prominent place. Copyright for components of this work owned by others than T. H.
Merrett must be honoured. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or fee. Request permission to republish from: T. H.
Merrett, School of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the taxpayers of Québec and of Canada who have paid his
salary and research grants while this work was developed at McGill University, and from his students (who built the
implementations and investigated the data structures and algorithms) and their funding agencies.

1



analogy
(subject lightNdark )

(pred val)
X F false

A false
H false
D false

Y F true
A true
H true
D false

Z F true
A false
H true
D true

We see that this represents three vectors on the set of indices F,A,H,D, namely (written as bits)
X: 0000
Y : 1110
Z: 1011

2. We would like to be able to do Boolean operations on these bit vectors without having to write
each operation each time fully out in terms of Boolean operations of the individual elements.

Each operation can be written as a computation which can be defined once for all and then invoked.
For example

comp notV (x, y) is
{ let val ′ be not val ;

let val be val ′;
y <− [pred,val ] in [pred,val ′ ] in x;

} alt
{ let val ′ be not val ;

let val be val ′;
x <− [pred,val ] in [pred,val ′] in y;

};
(where we include the alternative because not is symmetrical).

A binary operation is
comp andV (x, y, z) is
{ let val ′ be val ;

let val ′′ be val and val ′;
let val be val ′′;
z <− [pred,val ] in [pred,val ′′] in (x ujoin [pred,val ′] in y)

};
(where there is no alternative because and has no inverse).

Other binary operations are similar: orV, xorV, etc. (Discuss the alternatives for orV and xorV.)

3. Going further, we should package all these operations together. This brings us to the ADT.
comp vecBool(notV,andV,orV,xorV,nxorV) is
{ comp notV (x, y) is

:
comp andV (x, y, z) is redop
:
comp orV (x, y, z) is redop
:

2



comp xorV (x, y, z) is redop
:
comp nxorV (x, y, z) is redop
:

};
This computation returns only other (“first class”) computations, which provide the “methods” (in
object-oriented terminology).

We have specified redop for the four binary operators that are associative and commutative, so
that they may be used in reduction and equivalence reduction in the domain algebra.

4. Here is an application. First we invoke vecBool to make the methods available.
comp vecBool(out notV, out andV, out orV, out xorV, out nxorV);

Then we use the methods—here, in reductions.
let allV be red andV of lightNdark ;
universal <− [red ujoin of allV ] in analogy ;
let analogV be red xorV of lightNdark ;
conclusion <− [red ujoin of analogV ] in analogy ;

These give
universal
(pred val)
F false
A false
H false
D false

conclusion
(pred val)
F false
A true
H false
D false

(We used red ujoin to raise the level of the answers so that they are no longer nested.)

Universal is all false because red and means “for all”.

Conclusion has an interesting interpretation in terms of analogical reasoning [Kle85]. Consider F

to mean “female”, A “adult”, H “hates” and D “dark” (the complements being, of course, “male”,
“child”, “loves” and “light”, respectively). Then

X is “Boy loves light”,
Y is “Woman hates light” and
Z is “Girl hates dark”.

Pause for a second to think what the conclusion, ? is if we made the analogy
X is to Y as Z is to ?

Now interpret conclusion, above and see if you get the same answer.

5. “Objects”. We have earlier (see [Mer99, “Database programming”]) given good reasons for
“object-orientation”, such as counters or stopwatches, which need a state and hence instantiation
(e.g., we need two different counters to count sheep and goats). Here we illustrate the ridiculous
extreme to which object-orientation is sometimes taken.

A class is an ADT with state, and an object is an instance of a class. We are going to incorporate
the Boolean vector as the state of our ADT (modified from the above). This will mean that to
and one vector with another, we “send a message”, containing one vector, to the other with the
instruction to perform andV.

Here is the ADT with state, showing the new implementations for notV and andV.
comp vecBOOl(X,notV,andV,orV,xorV,nxorV) is
{ comp notV (x) is

{ let val ′ be not val ;
let val be val ′;
x <− [pred,val ] in [pred,val ′] in vec

};

3



comp andV (x, y) is
{ let val ′ be val ;

let val ′′ be val and val ′;
let val be val ′′;
y <− [pred,val ] in [pred,val ′′ ] in (x ujoin [pred,val ′] in vec)

};
:

vec <−X; << constructor: create “object”(s) on invocation>>

};
Note that notV has no alternative bacause it no longer has the symmetry to support an inverse,
and andV cannot be a redop since andV is no longer a binary operator. Similar restrictions apply
to the other operators.

6. This object-oriented variant no longer supports reduction, so we need a different application.
We’ll limit this to notV, although a slightly more elaborate example can illustrate the (formerly)
binary operators.

First, we instantiate vecBOOl by joining it with a relation that contains some vectors, e.g., analogy.
objectSet <− analogy [lightNdark : ijoin :X] vecBOOl ;

Then we can use the “method”.
let vectN be notV [];
negAnal <− [subject, vectN ] in objectSet ;

This gives

negAnal
(subject vectN )

(pred val)
X F true

A true
H true
D true

Y F false
A false
H false
D true

Z F false
A true
H false
D false

Of course, it is a clunky way to use notV, with the argument implicit in the instantiated tuples.
Using andV, supposing another vector attribute, say vect, were available as a result of joining
objectSet with some other relation, is just as painful.

let vectA be andV [vect];
etc.

Attempts such as this to push object-orientation too far are no doubt what have led to the invention
of the oxymoron “stateless object”, which just reverts to ADTs to solve some problems; and many
other aspects.

References

[AM84] M. P. Atkinson and R. Morrison. Persistent First Class Procedures are Enough, volume
181 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1984.

4



[Kle85] Sheldon Klein. The invention of computationally plausible knowledge systems in the upper
paleolithic. Technical Report 628, Computer Sciences, University of Wisconsin-Madison,
Madison, WI, Dec. 1985. Presented at The World Archeological Congress, Southampton
and London, 1–7 Sept. 1986, Allen and Unwin.

[Mer84] T. H. Merrett. Relational Information Systems. Reston Publishing Co., Reston, VA., 1984.

[Mer99] T. H. Merrett. Relational information systems. (revisions of [Mer84]):
Data structures for secondary storage: http://www.cs.mcgill.ca/∼tim/cs420
Database programming: http://www.cs.mcgill.ca/∼tim/cs612, 1999.

5


