
Copyright c©2006 Timothy Howard Merrett
Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
full citation in a prominent place. Copyright for components
of this work owned by others than T. H. Merrett must be
honoured. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or fee. Re-
quest permission to republish from: T. H. Merrett, School
of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the tax-

payers of Québec and of Canada who have paid his salary

and research grants while this work was developed at McGill

University, and from his students (who built the implemen-

tations and investigated the data structures and algorithms)

and their funding agencies.

T. H. Merrett c©06/11

1

Semistructured data

1. I Path expressions

(a) Paths of attributes

(b) Paths of conditions

(c) Paths for updates

2. II Irregular and Unknown structure

(a) III Schema query and update

(b) Missing and multiple values

(c) Wildcards

(d) Schema discovery

3. Markup and Data on the Web

T. H. Merrett c©06/11
2

Path expressions:
paths of attributes

Family

(Ma Pa Wed Children)
(Name DoB)

Alice Ted 1932 Mary 1934

James 1935

Mary Alex 1954 Joe 1956

Jane James 1960 Tom 1961

Sue 1962

FamChildren <− [red ujoin of Children] in Family ;

FamChildren

(Name DoB)
Mary 1934

James 1935

Joe 1956

Tom 1961

Sue 1962

Syntactic sugar: path expression

FamChildren <− Family/Children;

T. H. Merrett c©06/11
3

Paths of attributes (cont.)

It also works for virtual attributes:

let ChildN be [Name] in Children;

Family/ChildN

(Name)
Mary

James

Joe

Tom

Sue

Special consideration for leaves:

Family/Ma

(Ma)
Alice

Mary

Jane

? [red ujoin of Ma] in Family No!

! [red ujoin of relation (Ma)] in Family

T. H. Merrett c©06/11
4

Part I Relations and path expressions

Paths of attributes

Family tree example 3
Person)
(Name Family)

(Conj Wed Children)
(Name DoB Family)

(Conj Wed Children)
(Name DoB Family)

Ted Alice 1933 Mary 1934 Max 1956 Sue 1957 —
Tom 1958 —

James 1935 Ann 1959 Joe 1960 —
Sal 1930 Pete 1932 —

Person/Family/Children/Name ≡

[red ujoin of

[red ujoin of Mary

[Name] in James

Children] in Pete

Family] in

Person

T. H. Merrett c©06/2

5

Part I Relations and path expressions

Paths of attributes (cont.)

(Family tree example 3.)

Option

Person(/Family/Children)?/Name ≡
Name in Person ujoin
[red ujoin of Ted

[red ujoin of Mary

[Name] in James

Children] in Pete

Family] in
Person

Kleene Star (recursive domain algebra)

Person(/Family/Children)*/Name ≡
let Nom be Name ujoin Ted

[red ujoin of Mary

[red ujoin of James

Nom] in Pete

Children] in Sue

Family ; Tom

[red ujoin of Nom] in Person Joe

T. H. Merrett c©06/2
6

Part I Relations and path expressions

Paths of conditions

(Family tree example 3).

Name where Family/Children/Name = "Mary"

in Person ≡

Name where

([] where

([] where Name = "Mary" in

Children) in

Family) in

Person

T. H. Merrett c©06/2

7

Part I Relations and path expressions

Paths of conditions, cont.

Recursive path expression

Name where (Family/Children/)*Name = "Mary"

in Person ≡

func mary is

{ Name = "Mary" or

([] where

([] where mary in Children)

in Family)

};

Name where mary in Person

NB and, xor, etc. have no syntactic sugar.

T. H. Merrett c©06/2

8

Part I Relations and path expressions

Paths for updates

(Family tree example 3).

update Person/Family/Children change

DoB <− if Name = "Mary" then "1933"

else DoB; ≡

update Person change

update Family change

update Children change

DoB <− if Name = "Mary" then "1933"

else DoB;

T. H. Merrett c©06/2

9

Part I Relations and path expressions

Paths for updates, cont.

Recursive path expression

update Person(/Family/Children)* change

DoB <− if Name = "Mary" then "1933"

else DoB; ≡

proc mary33 is

{ DoB <− if Name = "Mary" then "1933"

else DoB;

if [] in Family then update Family change

if [] in Children then

update Children change mary33;

};

update Person change mary33;

T. H. Merrett c©06/2

10

Irregular and unknown structure

• Schema query and update.

Transpose metadata

operator, originally devised

for association data mining.

• Missing and multiple values.

• Wildcards.

• Schema discovery.

T. H. Merrett c©06/2

11

Part II Irregular and unknown structure

Schema query and update.

Union type
Family tree example 4.

domain DoB strg|intg;
Child(Name DoB Pa Ma)

Mary intg:1934 Ted Alice

James strg:1935 Ted Alice

Transpose operator
domain att attr;
domain typ type;
domain val any;
let xpose be transpose(att, typ, val);
transposeChild <−

[Name, DoB, Pa, Ma, xpose] in Child;

transposeChild

(Name DoB Pa Ma xpose)
(att typ val)

Mary intg: Ted Alice Name strg strg:Mary
1934 DoB intg intg:1934

Pa strg strg:Ted
Ma strg strg:Alice

James strg: Ted Alice Name strg strg:James
1935 DoB strg strg:1935

Pa strg strg:Ted
Ma strg strg:Alice

T. H. Merrett c©06/2
12

Part II Irregular and unknown structure

Schema query and update, cont.

Query on structure

Find all integer dates of birth

intgDoB <− where xpose/att = quote DoB and

xpose/typ = intg in Child;

intgDoB

(Name DoB Pa Ma)
Mary intg:1934 Ted Alice

Update on structure

domain DoB strg|intg;

Child(Name DoB Pa Ma)
Mary intg:1934 Ted Alice

James strg:1935 Ted Alice

update Child change DoB <− (strg)DoB

using where xpose/att = quote DoB and

xpose/typ = intg in Child;

Child(Name DoB Pa Ma)
Mary strg:1934 Ted Alice

James strg:1935 Ted Alice

T. H. Merrett c©06/2
13

Part II Irregular and unknown structure

Missing and multiple values

I By union type
domain child strg;
domain DoB intg;
domain Name strg;
domain chiln(Name, DoB);
domain Children child|chiln;
domain Conj strg;
domain Wed strg;

Family(Conj Wed Children)
Alice 1933 child:Bernice

relation Chiln(DoB,Name) <−
{(1934,"Mary"),(1935,"James")};

update Family/Children add Chiln ≡
update Family change

update Children add Chiln;
Family(Conj Wed Children)

Alice 1933 child: Bernice

chiln:
(Name DoB)
Mary 1934
James 1935

T. H. Merrett c©06/2
14

Part II Irregular and unknown structure

Missing and multiple values, cont.

II By polymorphic relation
domain Conj strg;
domain Wed strg;
domain Child strg;
let Name be Child;
let Children be relation(Name);

Family(Conj Wed Child) Name Children

(Name)
Alice 1933 Bernice Bernice Bernice

update Family change
replace Child with Children;

update Family/Children add Chiln

Family(Conj Wed Children)
Alice 1933 (Name)

Bernice
(DoB Name)
1934 Mary

1935 James

T. H. Merrett c©06/2

15

Part II Irregular and unknown structure

Wildcards

Family tree example 5.

FamEmp

(Name Family Employer)
(Conj Wed) (Boss Conj Subord)

Ted Alice 1933 Pete Alan Carole

famEmp/./Conj ≡

[red ujoin of

[red ujoin of Conj] in

.] in FamEmp

...should give Alice, Alan:

T. H. Merrett c©06/2

16

Part II Irregular and unknown structure

Wildcards, cont.

Transpose analyses leaves only:
transposeAll(att,typ) for non-leaf

as well as for leaf attributes.
let nonleaves be transposeAll(att) djoin

transpose(att);

FamEmp

(Name Family Employer) nonleaves

(..) (..) (att)
Family

Employer

let FE be [red ujoin of eval att] in nonleaves;

famEmp/./Conj ≡ famEmp/FE/Conj ≡

[red ujoin of

[red ujoin of Conj] in

FE] in FamEmp

(Conj)
Alice

Alan

T. H. Merrett c©06/2
17

Part II Irregular and unknown structure

Recursion and wildcards

Person//Name ≡ Person(/.)*/Name ≡

let Nom be Name ujoin

[red ujoin of Nom] in .;

[red ujoin of Nom] in Person;

Family tree example 3
Person)
(Name Family)

(Conj Wed Children)
(Name DoB Family)

(Conj Wed Children)
(Name DoB Family)

Ted Alice 1933 Mary 1934 Max 1956 Sue 1957 —
Tom 1958 —

James 1935 Ann 1959 Joe 1960 —
Sal 1930 Pete 1932 —

(Name):{(Ted), (Mary), (James), (Pete), (Sue), (Tom), (Joe)}

T. H. Merrett c©06/2

18

Part II Irregular and unknown structure

Schema discovery

Person

(Name Family)
(Conj Children)

(Name Family)
(Conj Children)

(Name)

let attrib be self;

let schema be transpose(attrib) union

[attrib, schema] in .;

Schema <− [attrib, schema] in Person;

Schema

(attrib schema)
(attrib schema)

(attrib schema)
(attrib schema)

(attrib schema)
(attrib)

Person Name

Family Conj
Children Name

Family Conj
Children Name

T. H. Merrett c©06/2
19

Part III

Markup and Data on the Web.

Semstructure/text

• Specialized operator, mu2nest:

marked-up → nest, including order

information.

• Text querying: metadata relational operator,

grep.

Other applications

• Multimedia?

www.cs.mcgill.cs/∼tim/semistruc/rel2semi.ps.gz

www.cs.mcgill.cs/∼tim/semistruc/recnest.ps.gz

T. H. Merrett c©06/11
20

