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Path expressions:
paths of attributes

Family

(Ma Pa Wed Children )
(Name DoB)

Alice Ted 1932 Mary 1934

James 1935

Mary Alex 1954 Joe 1956

Jane James 1960 Tom 1961

Sue 1962

FamChildren <− [red ujoin of Children] in Family ;

FamChildren

(Name DoB)
Mary 1934

James 1935

Joe 1956

Tom 1961

Sue 1962

Syntactic sugar: path expression

FamChildren <− Family/Children;
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Paths of attributes (cont.)

It also works for virtual attributes:

let ChildN be [Name] in Children;

Family/ChildN

(Name)
Mary

James

Joe

Tom

Sue

Special consideration for leaves:

Family/Ma

(Ma)
Alice

Mary

Jane

? [red ujoin of Ma] in Family No!

! [red ujoin of relation (Ma)] in Family
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Part I Relations and path expressions

Paths of attributes

Family tree example 3
Person )
(Name Family )

(Conj Wed Children )
(Name DoB Family )

(Conj Wed Children )
(Name DoB Family)

Ted Alice 1933 Mary 1934 Max 1956 Sue 1957 —
Tom 1958 —

James 1935 Ann 1959 Joe 1960 —
Sal 1930 Pete 1932 —

Person/Family/Children/Name ≡

[red ujoin of

[red ujoin of Mary

[Name] in James

Children] in Pete

Family ] in

Person
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Part I Relations and path expressions

Paths of attributes (cont.)

(Family tree example 3.)

Option

Person(/Family/Children)?/Name ≡
Name in Person ujoin
[red ujoin of Ted

[red ujoin of Mary

[Name] in James

Children] in Pete

Family ] in
Person

Kleene Star (recursive domain algebra)

Person(/Family/Children)*/Name ≡
let Nom be Name ujoin Ted

[red ujoin of Mary

[red ujoin of James

Nom] in Pete

Children] in Sue

Family ; Tom

[red ujoin of Nom] in Person Joe
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Part I Relations and path expressions

Paths of conditions

(Family tree example 3).

Name where Family/Children/Name = "Mary"

in Person ≡

Name where

([ ] where

([ ] where Name = "Mary" in

Children) in

Family) in

Person
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Part I Relations and path expressions

Paths of conditions, cont.

Recursive path expression

Name where (Family/Children/)*Name = "Mary"

in Person ≡

func mary is

{ Name = "Mary" or

([ ] where

([ ] where mary in Children)

in Family)

};

Name where mary in Person

NB and, xor, etc. have no syntactic sugar.
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Part I Relations and path expressions

Paths for updates

(Family tree example 3).

update Person/Family/Children change

DoB <− if Name = "Mary" then "1933"

else DoB; ≡

update Person change

update Family change

update Children change

DoB <− if Name = "Mary" then "1933"

else DoB;
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Part I Relations and path expressions

Paths for updates, cont.

Recursive path expression

update Person(/Family/Children)* change

DoB <− if Name = "Mary" then "1933"

else DoB; ≡

proc mary33 is

{ DoB <− if Name = "Mary" then "1933"

else DoB;

if [ ] in Family then update Family change

if [ ] in Children then

update Children change mary33;

};

update Person change mary33;

T. H. Merrett c©06/2

10



Irregular and unknown structure

• Schema query and update.

Transpose metadata

operator, originally devised

for association data mining.

• Missing and multiple values.

• Wildcards.

• Schema discovery.
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Part II Irregular and unknown structure

Schema query and update.

Union type
Family tree example 4.

domain DoB strg|intg;
Child(Name DoB Pa Ma )

Mary intg:1934 Ted Alice

James strg:1935 Ted Alice

Transpose operator
domain att attr;
domain typ type;
domain val any;
let xpose be transpose(att, typ, val);
transposeChild <−

[Name, DoB, Pa, Ma, xpose] in Child;

transposeChild

(Name DoB Pa Ma xpose )
(att typ val )

Mary intg: Ted Alice Name strg strg:Mary
1934 DoB intg intg:1934

Pa strg strg:Ted
Ma strg strg:Alice

James strg: Ted Alice Name strg strg:James
1935 DoB strg strg:1935

Pa strg strg:Ted
Ma strg strg:Alice
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Part II Irregular and unknown structure

Schema query and update, cont.

Query on structure

Find all integer dates of birth

intgDoB <− where xpose/att = quote DoB and

xpose/typ = intg in Child;

intgDoB

(Name DoB Pa Ma )
Mary intg:1934 Ted Alice

Update on structure

domain DoB strg|intg;

Child(Name DoB Pa Ma )
Mary intg:1934 Ted Alice

James strg:1935 Ted Alice

update Child change DoB <− (strg)DoB

using where xpose/att = quote DoB and

xpose/typ = intg in Child;

Child(Name DoB Pa Ma )
Mary strg:1934 Ted Alice

James strg:1935 Ted Alice
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Part II Irregular and unknown structure

Missing and multiple values

I By union type
domain child strg;
domain DoB intg;
domain Name strg;
domain chiln(Name, DoB);
domain Children child|chiln;
domain Conj strg;
domain Wed strg;

Family(Conj Wed Children )
Alice 1933 child:Bernice

relation Chiln(DoB,Name) <−
{(1934,"Mary"),(1935,"James")};

update Family/Children add Chiln ≡
update Family change

update Children add Chiln;
Family(Conj Wed Children )

Alice 1933 child: Bernice

chiln:
(Name DoB)
Mary 1934
James 1935
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Part II Irregular and unknown structure

Missing and multiple values, cont.

II By polymorphic relation
domain Conj strg;
domain Wed strg;
domain Child strg;
let Name be Child;
let Children be relation(Name);

Family(Conj Wed Child ) Name Children

(Name)
Alice 1933 Bernice Bernice Bernice

update Family change
replace Child with Children;

update Family/Children add Chiln

Family(Conj Wed Children )
Alice 1933 (Name)

Bernice
(DoB Name)
1934 Mary

1935 James
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Part II Irregular and unknown structure

Wildcards

Family tree example 5.

FamEmp

(Name Family Employer )
(Conj Wed) (Boss Conj Subord)

Ted Alice 1933 Pete Alan Carole

famEmp/./Conj ≡

[red ujoin of

[red ujoin of Conj] in

.] in FamEmp

...should give Alice, Alan:
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Part II Irregular and unknown structure

Wildcards, cont.

Transpose analyses leaves only:
transposeAll(att,typ) for non-leaf

as well as for leaf attributes.
let nonleaves be transposeAll(att) djoin

transpose(att);

FamEmp

(Name Family Employer) nonleaves

( .. ) ( .. ) (att )
Family

Employer

let FE be [red ujoin of eval att] in nonleaves;

famEmp/./Conj ≡ famEmp/FE/Conj ≡

[red ujoin of

[red ujoin of Conj] in

FE ] in FamEmp

(Conj)
Alice

Alan
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Part II Irregular and unknown structure

Recursion and wildcards

Person//Name ≡ Person(/.)*/Name ≡

let Nom be Name ujoin

[red ujoin of Nom] in .;

[red ujoin of Nom] in Person;

Family tree example 3
Person )
(Name Family )

(Conj Wed Children )
(Name DoB Family )

(Conj Wed Children )
(Name DoB Family)

Ted Alice 1933 Mary 1934 Max 1956 Sue 1957 —
Tom 1958 —

James 1935 Ann 1959 Joe 1960 —
Sal 1930 Pete 1932 —

(Name):{(Ted), (Mary), (James), (Pete), (Sue), (Tom), (Joe)}

T. H. Merrett c©06/2

18



Part II Irregular and unknown structure

Schema discovery

Person

(Name Family )
(Conj Children )

(Name Family )
(Conj Children)

(Name)

let attrib be self;

let schema be transpose(attrib) union

[attrib, schema] in .;

Schema <− [attrib, schema] in Person;

Schema

(attrib schema )
(attrib schema )

(attrib schema )
(attrib schema )

(attrib schema)
(attrib)

Person Name

Family Conj
Children Name

Family Conj
Children Name
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Part III

Markup and Data on the Web.

Semstructure/text

• Specialized operator, mu2nest:

marked-up → nest, including order

information.

• Text querying: metadata relational operator,

grep.

Other applications

• Multimedia?

www.cs.mcgill.cs/∼tim/semistruc/rel2semi.ps.gz

www.cs.mcgill.cs/∼tim/semistruc/recnest.ps.gz
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