
BASICS: About Data
Relational Information Systems Chapter 1.1

(Revised 99/9)

October 31, 2006

Copyright c©1999 Timothy Howard Merrett
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation in a prominent place. Copyright for
components of this work owned by others than T. H. Merrett must be honoured. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or fee. Request permission to republish from: T. H. Merrett,
School of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the taxpayers of Québec and of Canada
who have paid his salary and research grants while this work was developed at McGill University,
and from his students (who built the implementations and investigated the data structures and
algorithms) and their funding agencies.

1 Relations

Consider the data in figure 1. A considerable amount of data is represented, and it is not
difficult to see what it means: a Salesman called Hannah Trainman has obtained an order
from the Pennsylvania Railroad for 37 Cars, which has been recorded on Order Number
4; and so on. More inspection will reveal that Order Number 4 also includes 11 Toy Trains
sold by the same Salesman to the same Customer; that Hannah Trainman is involved with
two other Customers via two other orders concerning 13 Locomotives and 48 additional
Cars; that a total of 55 Toy Trains have been ordered, etc.

Notice that we are hampered in making these additional observations because the data
is not ordered in any convenient way. For instance, it might be handy if all rows for a given
Order Number were together and the groups arranged by ascending Order Number. We
might also get rid of some of the duplicated information, such as the fact that each Order
Number involves exactly one Customer and exactly one Salesman. If all the Order Number
4s were together, for example, we need not repeat the Pennsylvania Railroad or Hannah
Trainman. The result of these considerations appears in figure 2.

Note that the representation of the data is now more complicated in that we have added
horizontal lines to distinguish the items pertaining to different orders. These lines correspond
to various implementation devices, such as trailer records, repeating groups, pointers, etc.

1

Orderbook
(Ord# Cust Sales Assembly Qty)

4 Pennsylvania Railroad Hannah Trainman Car 37

3 London & Southwestern Eric Brakeman Car 23

2 New York Central Natacha Engineer Locomotive 1

7 Grand Trunk Railway of Canada Natacha Engineer Locomotive 47

3 London & Southwestern Eric Brakeman Caboose 3

5 New York Central Hannah Trainman Locomotive 13

7 Grand Trunk Railway of Canada Natacha Engineer Caboose 43

8 Great North of Scotland Eric Brakeman Toy Train 37

1 Great North of Scotland Eric Brakeman Locomotive 2

5 New York Central Hannah Trainman Car 31

6 Baltimore & Ohio Hannah Trainman Car 17

4 Pennsylvania Railroad Hannah Trainman Toy Train 11

3 London & Southwestern Eric Brakeman Locomotive 5

1 Great North of Scotland Eric Brakeman Toy Train 7

7 Grand Trunk Railway of Canada Natacha Engineer Car 139

Figure 1: An Instance of the Relation Orderbook (Ord#, Cust, Sales, Assembly, Qty)

Orderbook
(Ord# Cust Sales Assembly Qty)

1 Great North of Scotland Eric Brakeman Locomotive 2

Toy Train 7

2 New York Central Natacha Engineer Locomotive 1

3 London & Southwestern Eric Brakeman Car 23

Caboose 3

Locomotive 5

4 Pennsylvania Railroad Hannah Trainman Car 37

Toy Train 11

5 New York Central Hannah Trainman Locomotive 13

Car 31

6 Baltimore & Ohio Hannah Trainman Car 17

7 Grand Trunk Railway of Canada Natacha Engineer Locomotive 47

Caboose 43

Car 139

8 Great North of Scotland Eric Brakeman Toy Train 37

Figure 2: Orderbook re-ordered 1

2

Orderbook
(Cust Ord# Sales Assembly Qty)
Baltimore & Ohio 6 Hannah Trainman Car 17

Great North of Scotland 1 Eric Brakeman Locomotive 2

Toy Train 7

8 Eric Brakeman Toy Train 37

Grand Trunk Railway of Canada 7 Natacha Engineer Locomotive 47

Caboose 43

Car 139

London & Southwestern 3 Eric Brakeman Car 23

Caboose 3

Locomotive 5

New York Central 2 Natacha Engineer Locomotive 1

5 Hannah Trainman Locomotive 13

Car 31

Pennsylvania Railroad 4 Hannah Trainman Car 37

Toy Train 11

Figure 3: Orderbook re-ordered 2

We could take the process further by grouping together all information for each Customer:
figure 3.

Here there is a second type of horizontal line, separating subgroups for different Order
Numbers within the group for each Customer. This further breakdown is not unique: we
could also group by Salesman : figure 4.

Which of these modifiactions of the data of figure 1 we might choose depends on the
application we have in mind. The information would probably be recorded in sequence of
Order Number, since each Salesman would file heir orders as hey acquires a customer, and
order numbers would be allocated in sequence. A summary of revenues by Customer would
require grouping by Customer, but an analysis of Salesman activity could use a grouping
by Salesman. None of the above would improve on figure 1 for an examination of what
Assemblies were selling well.

What is important is that none of the alternative representations of figure 2 through
figure 4 adds information which is not already present in figure 1, and figure 1 is the simplest
representation in that it uses no extraneous constructs (e.g., horizontal lines). The alternative
representations give us handy ways of viewing the data for particular uses, but they do not
augment the essential information of figure 1. In fact, they can cloud the issue for some
applications by emphasizing inappropriate groupings and orderings.

Thus we take figure 1 to be the essential and simplest form of the data, and will represent
all data in this or analogous forms. Figure 1 is an instance of an m-ary relation (with m = 5)
satisfying the following properties.

1. All rows are distinct.

2. The ordering of rows is immaterial.

3. Each column is labelled, making the ordering of columns insignificant.

4. The value in each row under a given column is “simple”.

3

Orderbook
(Sales Ord# Cust Assembly Qty)
Eric Brakeman 1 Great North of Scotland Locomotive 2

Toy Train 7

3 London & Southwestern Car 23

Caboose 3

Locomotive 5

8 Great North of Scotland Toy Train 37

Hannah Trainman 4 Pennsylvania Railroad Car 37

Toy Train 11

5 New York Central Locomotive 13

Car 31

6 Baltimore & Ohio Car 17

Natacha Engineer 2 New York Central Locomotive 1

7 Grand Trunk Railway of Canada Locomotive 47

Caboose 43

Car 139

Figure 4: Orderbook re-ordered 3

The fourth of these properties is not essential to relations in general, and is vague: what
do we mean by “simple”? If it were interpreted specifically to exclude relations as legal
values, it would characterize relations in first normal form. If it were set aside, the resulting
relations would be non-first-normal-form (N1NF, or NF2), or nested relations. We will
return to these later, but until then all relations will be 1NF, so we have included the fourth
property. In practice, “simple” will mean limited to well-established types such as numeric,
text, or Boolean.

Because we are going to view relations in forms other than tables, we will introduce
terminology which not specific to tables. The rows of figure 1 are called the tuples, or
“n-tuples” of the instance of the relation. This generalizes words such as “quintuples”.

The columns of figure 1 are labelled by attributes. An attribute is associated with a
set of values called a domain. That is, Hannah Trainman, Eric Brakeman and Natacha

Engineer are all elements of the domain associated with the attribute Salesman. A domain
may have several attributes associated with it, in different relations or in one relation. In
this book, we will use typewriter font for all domain values, and italic font for attribute
names and for relation names.

We can be more precise, if still informal, if we define a domain to be a set of values and
an attribute to be a label. Then a tuple is a mapping from attributes to domains, and a
relation is a set of tuples, more specifically, a subset of the Cartesian product of its domains.

2 Decomposition

You may still be bothered by figure 1 because it seems an awkward and verbose way to
describe the information. If you agree that the various ways of grouping and sequencing
the tuples force the data into restricted forms and obscure its general nature, you may
nevertheless feel that these groupings and orderings express some aspects of the “meaning”

4

(Ord# Cust Sales) (Ord# Assembly Qty)
4 Pennsylvania Railroad Hannah Trainman 4 Car 37

3 London & Southwestern Eric Brakeman 3 Car 23

2 New York Central Natacha Engineer 2 Locomotive 1

7 Grand Truck Railway of Canada Natacha Engineer 7 Locomotive 47

5 New York Central Hannah Trainman 3 Caboose 3

8 Great North of Scotland Eric Brakeman 5 Locomotive 13

1 Great North of Scotland Eric Brakeman 7 Caboose 43

6 Baltimore & Ohio Hannah Trainman 8 Toy Train 37

1 Locomotive 2

5 Car 31

6 Car 17

4 Toy Train 11

3 Locomotive 5

1 Toy Train 7

7 Car 139

Figure 5: An Instances of Relations Orders and OrdLine

of the data. I agree with you. But the advantages of the the very simple and symmetrical1

form of figure 1 should not be thrown away. Let us see what we can do to capture the
meaning of figure 1 better within the framework of properties 1–4.

We have observed that each Order Number involves one Customer and one Salesman.
This is, in a sense, a unit of meaning in its own right: an order might be defined as the result
of a deal between a Customer and a Salesman. Since this might be considered an indepen-
dent fact, we might represent it separately, say in a 3-ary (ternary) relation, Orders(Ord#,
Customer, Salesman).

The attributes Assembly and Qty must now be dealt with separately. The “meaning”
that is significant here is that an assembly is part of an order—each order may be for several
assemblies—and the quantity is a descriptive item associated with the assembly and the
order. Thus, Ord# must be linked with Assembly and Qty, say in another 3-ary relation,
OrdLine(Ord#, Assembly, Qty). The attributes Customer and Saleman are not directly
relevant—or, if we need to know their connection with Assembly we have lost no information
by splitting up figure 1 as long as we can somehow use Ord# as a link between Orders and
OrdLine. The result of the split is shown fully in figure 5.

These two linked relations are an example of a database, which we can define in general as
a set of relations. (Codd [1] originally modified “relations” with the adjective “time-varying”.
We will save this aspect until we come to updates, later.)

The process of breaking up the original relation into two is an example of decomposition,
and this is an aspect of database design. Let us call the original relation

OrderBook(Ord#, Customer, Salesman, Assembly, Qty)
and the two that result from the decomposition

Orders(Ord#, Customer, Salesman)
OrderLine(Ord#, Assembly, Qty)

We will soon discuss relational algebra operators which allow us to decompose OrderBook
into Orders and OrderLine, on one hand, and to reconstruct OrderBook from Orders and

1In the sense that no one attribute, such as Ord#, is favoured by the arrangement of tuples.

5

OrderLine, on the other. For the moment, we are content to observe that we can go both
ways: the process of decomposition loses no information. How do we do it in general?

In the 1970’s, database theorists spent considerable energy and ink seeking techniques for
database design, including decomposition. This was a worthy endeavour, but it ended in a
welter of NP-completeness, and even undecidability, results. In the process it also produced
very arcane design problems, which are unlikely to arise in practice. There turned out to
be no silver bullet, no crank one could turn algorithmically, to design a database from some
simple set of basic facts. Here, we will advocate a seat-of-the-pants approach which requires
that the designer understand the application and the data. There are not too many rules,
but we can say some things.

The theoretical strands included normalization theory, decomposition theory, and de-
pendency theory. These are all attempts to capture the semantics of data through formal,
sometimes syntactical, analysis. The problem is that not all semantics can be tamed in this
way. But some of the ideas are powerful and helpful. We look at the simplest aspects of
dependency theory: the basic idea of functional dependence, and the consequent idea of a
key of a relation.

A key of a relation is a minimal subset of its attributes which can be used to identify each
tuple uniquely. That is, we can play a game: you tell me a value for the key, and I will look
in the relation and find the one tuple that has that value (or no tuple at all, since there
may be none). If there is more than one tuple, that attribute or set of attributes that you
claimed was a key, is not.

In Orders, the key is the single attribute, Ord#. We can see this from the data: there are
exactly as many tuples as there are different values of the key. More important, we can see it
from the meaning: an order is understood to be a deal between a Customer and a Salesman,
so it cannot involve a second Customer–Salesman pair. The first approach, inspecting the
data, uses the “extension” of the relation. The second approach, relying on the meaning,
uses the “intension”. This latter shows how the notion of key captures an aspect of the
semantics of the data. We could also speak of the “intention” of the relation; what was
intended in designing it.

In OrderLine, the key is the pair of attributes, Ord#, Assembly. We can see this from
the data, as before, but it is better to think about the intension. An order consists of various
quantities of different assemblies. There is no point in putting any one assembly down more
than once in any given order: were we to do so, we could achieve the same end better by
adding up all the quantities associated with that same assembly in the order, and replacing
all the tuples by one.

Note also, in OrderLine, that Qty is almost a key by extension. If one of the 37s were
changed to a 38, the extension could lead us to believe that Qty is a key. But this makes no
sense, and must be rejected by intension, because, of course, there is no reason why two of
the values of Qty could not be the same in OrderLine. The data shown for OrderLine gives
a counterexample to the supposition that Qty is a key. So also in the extension shown for
Orders there are counterexamples to each of the suppositions that Customer is a key, that
Salesman is a key, and that Customer and Salesman together is a key.

Finally on keys, a “superkey” of a relation is any set of its attributes which can be used
to identify each tuple uniquely. Any superset of a key is a superkey. In particular, the set of
all attributes of a relation is a superkey. Superkeys are not particularly interesting: we refer
to them here to underline the importance of “minimal” in the definition of a key.

Going beyond keys, a functional dependence is the relationship between two sets of at-
tributes, in which, given a value for the first (determining) set, at most one value for the
second (dependent) set can be found in the data. A key is thus the determining set for which

6

the whole set of attributes in the relation is the dependent set. The adjective, “functional”,
comes from mathematics, where a function is defined to be a many-to-one relation. We can
play the same game as before: you give me a value for the determining set, and I will find
in the data at most one value for the dependent set.

In OrderBook, the key is the pair, Ord#, Assembly, the same as for OrderLine: this
is not a coincidence, but the result of the decomposition. There are additional functional
dependences not resulting from this key: Ord# −→ Customer and Ord# −→ Salesman,
where −→ means “functionally determines”. These last can be written as a single functional
dependence, using sets of attributes,

Ord# −→ Customer, Salesman

It is also not a coincidence that this functional dependence becomes the key in Orders.
In fact, noting that a part of the key, Ord#, Assembly, is the determining attribute of
another functional dependence, is a trigger for one of the automated procedures for database
design. (Noticing it is a result of checking the relation for “second normal form”, part
of normalization theory.) But we prefer to detect the need for decomposition in the way
we originally did, by realizing, through understanding the data, that Ord#, Customer and
Salesman have independent meaning which should be recorded separately.

It would be possible to split Orders further, say, into OC(Ord#, Customer) and OS(Ord#,
Salesman), but we have no reason to do so. It would be wrong, however, to split Orders
into OC and CS(Customer, Salesman), because Customer cannot correctly provide the link
between the two components. In trying to reconstruct the original information, we would
have no choice but to form, for example, four tuples involving New York Central, linking
it to both Ord# 2 and 5, and to both Salesman Natacha Engineer and Hannah Trainman.
This would be two more tuples than the original and we would have lost information.

Now that we have talked OrderBook and its decompositions pretty well to death, it is best
to turn to another example to illustrate the database design process. The problem we tackle
is, given a set of attributes and their meaning, find a suitable decomposition. Since we can
specify the “meaning” only loosely, unlike the situation of an analyst conducting extensive
interviews with prospective users of a new database, there will be many correct answers
depending on many valid interpretations and sets of assumptions. It will be important to
elucidate and to demonstrate our assumptions and interpretations. To elucidate, we can
look for keys and functional dependences. To demonstrate, we show sufficient sample data
to eliminate any unintended dependences.

Here is an exercise [2], in which the database attributes are italicised. It is an inter-
esting exercise, in that different decompositions and keys can reflect different assumptions
about the market, retailer, and manufacturer. We will pursue only a few of many possible
interpretations.

An Agent represents a Product with a given Price, made by a Company.
Suppose the Agent is a retailer who sets the Price for each Product, depending on the

Company making it. Then there can be no further decomposition: everything is deeply
intertwingled. The key is Agent, Product, Company. An example is

(Agent Product Company Price)
Joe Widget Acme 1.00

Joe Widget Star 1.00

Joe Gizmo Acme 1.00

Joe Gizmo Star 2.00

Sue Widget Acme 2.00

7

Ord# Sales
1 E
2 N
3 E
4 H
5 H
6 H
7 N
8 E
Table

2
7

N

1
3
8

E

4
5
6

H

Graph

H E N
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1

Matrix

Figure 6: Table, Graph and Matrix Forms of OS(Ord#, Sales)

(Note that we have shown enough tuples that no one attribute of Agent, Product or Company
determines Price; nor do any pair of these attributes.)

Suppose, differently, that the Agent represents the Company, and does not control the
price. Then one decomposition could separate Agent and Company, with Agent as key
(because we assume hey does not work for more than one Company), from Company, Product,
Price, with Company, Product as key.

(Agent Company) (Company Product Price)
Ann Acme Acme Widget 2.00

Joe Acme Acme Gizmo 1.00

Sue Star Star Widget 1.00

A variation on this second supposition is that Agents represent only certain products
for their company, in which case the decomposition will be (Agent, Company, Product) and
(Company, Product, Price), with Agent, Product as the key for the first.

Design examples such as this are simplistic in that they assume that all the attributes
are known and do not conflict. Often the analyst must tease out what the attributes are
going to be. Often what is an attribute in one design is a relation in another, or a value in
yet another. Design problems may be presented “bottom-up”, in which different relations
have been constructed by different units for different purposes, and must be integrated: then
there are questions of “interoperability” and semantic heterogeneity.

3 Other Perspectives on Relations

We have said that representing relations as tables is limiting because relations are an ab-
straction and tables only one concrete way of representing them. We get more flexibility
by looking at relations in other ways. Hence we introduce two new forms, graph form and
matrix form. Figure 6 shows all three forms for a simple binary relation (derived from the
relations of figures 1 and 5, using obvious abbreviations of the data).

In the table form, each tuple is represented by a row, in the graph form by an edge, and
in the matrix form by a 1 entry.

These alternative representations are sometimes much handier than the table form. For
instance, the graph form makes plain the fact that Ord# is a key by the way that the edges
converge from different order numbers to each Salesman. Divergence of any two edges from

8

1

3

8

E

L&S

GNS

1. Three tuples of Orders

L&S

GNS E

3

8

1

2. Special case: revealing key

Figure 7: Exploiting the Graph Form

an order number would violate the supposition that Ord# is a key, and be immediately
apparent. In the matrix form, this is again clear, since each row has only one entry.

What if the relation is not binary? For instance, suppose we must represent Orders(Ord#,
Sales, Cust) in each of these forms. The table form is easy, which is why it is most commonly
used: figure 5 gives it.

The graph form of a ternary relation would in general have “three-ended edges” and
would be a “regular hypergraph”. Figure 7 shows three of the tuples of Orders in this form.
It also shows a much more revealing variant of the graph form for this case, which highlights
that Ord# is a key: the tuples are represented by pairs of edges sharing a common value of
the key, Ord#.

Similarly, the matrix form of a ternary relation is a three-dimensional array. Figure 8
shows four of the tuples of OrderLine in this form. It also shows a more revealing variant of
the matrix form for this case, which highlights that Ord#, Assembly is a key: the tuples are
represented by placing the value of the non-key attribute, Qty, where the 1s were shown in
the general matrix representation.

4 Some Applications

We now explore a variety of different relations to illustrate the flexibility of the data structure
and some other variants of the three representations. Where the graph form is given, we
invite you to formulate the table and matrix forms, and so on.

Figure 9 shows a project evaluation and review technique PERT network, often used by

9

1. Four tuples of OrderLine

Qty
Qty

1
Qty

1

Ord#
1 3

Ord#
1 3

2. Special case, revealing key

Caboose

Locomotive

Toy Train

Assembly

Caboose

Locomotive

Toy Train

Assembly

Qty

1
1

2
3

7
5

2

3

5

7

Figure 8: Exploiting the Matrix Form

10

1

2

3

4

5

6

1 hr

2 hr

1 hr

4 hr

3 hr

2 hr

3 hr

Figure 9: A PERT Network

civil and industrial engineers to plan projects, and particularly to determine the critical path
(the path from start to finish on which any delay would delay the entire project).

Figure 10 is a “bill of materials”, the structure used to represent the components of a
manufactured item, and how many of each subassembly are put together to form the next
level of component. Here, 2 Es make up a C, four Cs go into an A, etc. (So 8 Es are needed
for an A. How many Ds are in an A?) This relation is similar to the PERT network, but it is
one we will come back to.

If each assembly in the bill of materials had a cost associated with it (say the cost of buying
it if it were a base component, or the cost of assembling it from its direct components), this
would add another attribute. How should the database be constructed from the attributes
from theoriginal bill of materials and these costs?

Figure 11 shows one of many posible relational representations of text. Other represen-
tations could reflect the hierarchy of letter within word within sentence within paragraph
within .., or the syntax tree of the text after grammatical analysis. Note that order is im-
portant in a text, and so the order of the words must be induced on the tuples by showing
a sequence number for each word. We do not suggest that this sequence number need be
stored explicitly. Indeed, if the text were represented as a sequence of letters (useful, for in-
stance, in cryptography), the sequence number could increase the amount of storage fivefold.
A suggestive aspect of the representation shown is that, because order does not matter in
relations, the relation is both the text and in a simplistic sense the index to the text: “noise
words” would ordinarily be removed, and, for a proper index, the attentions of a human
indexer would be needed.

Figure 12 shows a more difficult exercise, a diagram consisting of zero-, one-, and two-
dimensional constructs (here a point, a two-piece line, and a hexagon). The challenge is to
represent this whole diagram (and any other diagram containing similar elements) as a single
relation.

A solution is to put one coordinate pair, X, Y , per tuple, with a Sequence number to
show the position of the point in the geometrical construct, a Type to distinguish 0-, 1-,
and 2-dimensional features (the latter are closed lines), and some attribute(s) to group the
tuples into subsets corresponding to each construct. This latter flies in the face of some

11

A

CB

D E

1

2

3 4

2

3

Figure 10: A Bill of Materials

Text
(Word Seq)
Algebraic 1
data 2
processing 3
techniques 4
can 5
enable 6
applications 7
programmers 8
to 9
work 10
with 11
units 12
of 13
data 14
larger 15
than 16
a 17
single 18
computer 19
word 20

Figure 11: A Text Representation

12

Figure 12: A Diagram

conventional wisdom about relations: that they are unable to represent complex objects,
and that, when mapping from the relational to the object-oriented approach, a single tuple
should correspond to an “object”. As this example shows, it is better to represent “objects”
by subrelations. Then we do not have to be pinned down as to what we might mean by
“object”, and we can remain flexible and mean different (and maybe incompatible) things.
In this example, an “object” might be one of the basic constructs, a hexagon, a two-edge
line, or a point; but it might also mean a single vertex in such a construct, or an edge.

References

[1] E. F. Codd. A relational model of data for large shared data banks. Communications of
the ACM, 13(6):377–87, June 1970.

[2] T. Imielinski and W. Lipski, Jr. A systematic approach to relational database theory.
In M. Schkolnick, editor, Proc. ACM SIGMOD Internat. Conf. on Management of Data,
pages 8–14, Orlando, June 1982.

13

