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The use we advocate for relations in systems using secondary storage is as the primitive
units of data, just as integers and reals are the primitive units of data in a numerical cal-
culation in RAM. (This is not to preclude using relations for calculations in RAM as well,
when they apply.) It is not adequate simply to have a way of describing data: we also need
a way to manipulate it. The relational approach is the best of the major data models for
our purpose because it gives us not only the relational form for data but also the relational
algebra to process data with.

The relational algebra is the first of two major systems of operations that we will discuss,
which combine to make up the basis of the algebraic data language, Aldat. Figure 1 outlines
a taxonomy which we shall elaborate on in this and succeeding chapters.

The first essence of an algebraic approach to manipulating relations is that relations are
considered as atomic constructs by the operation. Thus, access to tuples within a relation is
precluded: Aldat has no notion of tuple. This greatly simplifies the ntation and manipulations
that must be done. It may seem unduly restrictive: we aim to demonstrate, however, that an
appropriate selection of relational operations is remarkably flexible in an area of applications
such as information systems.

We even elevate the foregoing into a Principle of Abstraction: the structure and the context
of a relation should be of no concern to the operation.

The second essential aspect of the algebraic approach is that the set of relations is closed
under the operations. Operating on relations gives new relations. This makes possible the
construction of expressions of arbitrary length and complexity, just as numerical expressions
can be built up of numerical operators and a closed set of numbers.
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Figure 1: A Taxonomy of Aldat

This gives the Principle of Closure: operations on relations should produce relations.

An example of violation of the principle of closure would be a system which operates on
relation to produce displays or printouts instead of relations which can be further manipu-
lated.

1 Assignments and Views

It is useful to be able to create new relations from old ones, and we start with a notation for
assignment operators, which assigns a value to a relation. Almost all the rest of the relational
algebra discussed in this chapter is “functional”: there are no “side effects” such as would
be caused by assignment or by updating. But once we have written a functional relational
expression, it is important to be able to tell the system to execute the expression and to put
the result somewhere.

Figure 2 shows four types of assignment operator. The replacement operators completely
replace the left-hand operand, which need not be previously defined, or which can have been
previously defined on completely different attributes from those that will result from the
assignment: the old definition is destroyed, and all the old data. The incremental operators
add new tuples, and the attributes of the relation on the right must be compatible with those
of the relation on the left of the assignment. The renaming assignment allows attributes on
the left to be matched with attributes on the right: all attributes of the left-hand relation
must be specified in the list.

While the assignment operator causes the expression following it to be evaluated and the
result stored in the relation named on the left, it is useful to be able to defer the evaluation
until later. The mechanism for this is called a view in databases, and a function (without



Renaming
Replacement | T'<—R | T|B,C,A <—A,D, FE|S
Incremental | T <+R | T[B,C, A <+A, D, E]S

Initial values:

relation R(A, B,C) <— {("a","b","c")};
relation S(A, D, E) <— {("w","d","e")}
Sequence of assignments:

7

Assignment Result
T(A, B, C)
T <—R a b c
TB,C,A<-A,D,E]S e w d
T <+R a b c
e w d
TB,C,A<+D, FE, A]S a b ¢
w d e
e w d

Figure 2: Four Types of Assignment

fzj;];fb?%%lég) [Item] in Responsibility
Raman Micro (I.tem)
- Micro
Raman Terminal Terminal
Smith V.C.R. V.C.R.

Hung Micro

Figure 3: Unary Operators of the Relational Algebra: Project

parameters) in programming languages. In our notation, is replaces the assignment arrows,
<— and <+. Thus, T is R just defines T to be synonymous with R, and no evaluation is
performed until a subsequent assignment, or other operation such as print, forces it.

All this becomes much more interesting when the right-hand side can be an expression of
the relational algebra, involving relations and operations.

2 Taking Relations Apart—Unary Operations

Unary operations take a single operand, which is a single relation in the case of the relational
algebra. The unary operations of the relational algebra stem from the original operations
proposed by Codd [Cod70], only slightly generalized. Figure 3 shows projection, which
creates a new relation of tuples on a specified subset of the attributes of the operand.

The second unary operation is selection, illustrated in figure 4. This selects tuples of
a relation according to a Boolean condition on the values in the tuples. The Boolean may
involve arbitrary operations on any attributes of the relation or on constant values, but must
be able to be evaluated on each tuple independently of other tuples.



where Iltem="Micro" in Responsibility
(Agent Item)
Raman Micro
Hung Micro

Figure 4: Unary Operators of the Relational Algebra: Select

[Agent] where Item="Micro" in Responsibility
(Agent)

Raman

Hung

Figure 5: Unary Operators of the Relational Algebra: T-Selector

It is useful to combine select and project in a single operation, the T-selector. This is
named to reflect the fact that tuples are selected according to their own values, independently
of other tuples. The syntax shown in figure 5 is evaluated from right to left: the selection
is done first, then the projection. This order of evaluation enables all the attributes of the
operand relation to participate in the selection.

We can define T-selectors generally.

e For a relation, R(X,Y), defined on disjoint sets of attributes, X and Y,
e [X] where <cond(X,Y)>in R= {z | (z,y) € R and cond(z,y)}

e where <cond(X,Y)>in R = {(z,y) | (z,y) € R and cond(z,y)}

e [X]in R = [X] where true in R

Generally, X is a non-empty set of attributes. In the special case that X is empty, the T-
selector, [X] where <cond(X,Y)> in R = || where <cond(Y)> in R, is a Boolean, true
if cond(Y") is satisfied by any tuple in R, false if not. [ ] where <cond(Y)> in R can be
read “there is something where cond(Y') in R”, or “something where cond(Y") in R”. See the
end of section 3.2 for further motivation for this interpretation of nullary relations.

A second category of unary relational operator is the family of editors. This includes
potential interfaces for graphics, spreadsheets, logic languages such as Prolog, array languages
such as APL, etc. Here we look briefly at only a general relational editor.

To understand the approach taken here, we must distinguish between two classes of user.
The programmer user is the person who writes code using the relational algebra. There is no
concept of “tuple” in the relational algebra, in order to keep it abstract and at a high level:
the only base concepts are relation and attribute. The programmer user is not interested
in the detailed data, and so not concerned with the tuples that make up heir relation. The
programmer user’s perspective on editing should be that the editor is a unary operation, like
project, which executes for a while then returns a relation.

The end user, on the other hand, is only interested in the tuples, and not concerned with
how they may be aggregated into relations for the convenience of the programmer user. An

4



1. Programmer-user R <— [X] edit R;
2. End-user tuple-at-a-time (TATI):
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Figure 6: Unary Operators of the Relational Algebra: Edit

editor which presents individual tuples for manipulation and permits addition of new tuples
is what hey wants.

Figure 6 shows the edit operation from both perspectives. For the programmer user, it
looks just like project: the attribute list containing X is an optional indication that the tuples
are to be presented to the end user ordered according to X. The edit operation does not
invoke an algorithm as does project, but opens an edit window for the end user and runs
until told to stop.

3 Putting Relations Together—Binary Operations

The binary operations of the relational algebra are extensions of the binary operations on sets:
relations are special kinds of sets, and so have operators which are specialized versions of the
set operators. Set operators come in two kinds. The first satisfy closure: they produce new
sets. They are intersection, union, difference, and symmetric difference of sets. The second
kind of set operator are comparisons and produce truth values: equality, subset, disjoint, and
their negations.

Relations are closed under both kinds of operator when extended to relations. Figure 7
summarizes the two kinds, called the families of u-joins and o-joins, respectively.



e u-joins ( “set”-valued)
ijoin N natjoin
ujoin U | ljoin
sjoin + | rjoin
djoin — | drjoin
e o-joins ( “truth”-valued)
D i) = C C 8
gtjoin div eqjoin | lejoin | ltjoin sep
O I o - I L.
!gtjoin | !gejoin | !eqjoin | !lejoin | !ltjoin | icomp

Figure 7: Binary Operators of the Relational Algebra

Responsibility Location
(Agent Item) (Item Floor)
Raman Micro Micro 1
Raman Terminal Terminal 1
Smith V.C.R. Terminal 2
Hung Micro Videodisk 2

Responsibility ijoin Location

(Agent Item Floor)

Raman Micro 1

Hung Micro 1

Raman Terminal 1

Raman Terminal 2

Figure 8: The Intersection, or Natural, Join

3.1 u-Joins

We start with the p-joins. The first and most important member of this family extends set
intersection, and is defined, for relations R and S on attribute sets W, X, Y, and Z as follows.

e For relations R(X,Y) and S(Y, Z) sharing a common attribute set, Y’
R ijoin S = {(z,y,2) | (z,y) € R and (y,2) € S}

e For relations R(W, X) and S(Y, Z) sharing no common attribute set
R[X ijoin Y]|S = {(w,z,y,2) | (w,z) € R and (y,2) € S and = =y}

Figure 8 gives an example.

The intersection join, ijoin, is also called the natural join, natjoin, and is the original
binary operator proposed by Codd [Cod70]. It is the fundamental way of combining two
relations, and is also, conversely, related to the decomposition of a relation into two. Figure 9
shows the graph forms of variants of the two relations, Responsibility and Location, in such
a way as also to be the graph form of their natural join: each edge from Agent to a value
of Item must be considered linked to each edge from the same value of Item to Floor. The



figure also shows the matrix form of the natural join: the 1s for each value, v, of Item form a
rectangle of r, x £, tuples, where r, is the number of tuples in Responsibility for that value
of Item and /¢, is the number of tuples in Location.

The natural join connects together any tuples that share a value of the join attribute.

Figure 10 shows how a ternary relation which does not have this rectangular arrangement
of tuples cannot be decomposed into two relations that the natural join can put back together
as the original relation. If there is no connection between Micro, Hung, and floor 2 in the
ternary relaton, we do not know whether or not to connect Micro with floor 2 in Location.

The remainder of the p-joins follow similar lines. The union join, ujoin, sometimes called
the outer join, retains all information in the result, even the tuples that do not match on the
join attribute: the unmatched attribute sets below take on null values, DC, which we discuss
in section 3.5. For Responsibility and Location, above, figure 11 gives an example to start
with.

In general, the union join consists of three disjoint sets of tuples, the centre, the left wing,
and the right wing.

e For relations R(X,Y) and S(Y, Z) sharing a common attribute set, Y’
centre = R ijoin S
left wing = {(x,y,DC) | (x,y) € R and Vz not (y,2) € S}
right wing = {(DC,y,2) | (y,2z) € S and Vz not (z,y) € R}

e For relations R(W, X) and S(Y, Z) sharing no common attribute set
centre = R[X ijoin Y]S
left wing = {(w,z,y,DC) | (w,z) € R and z =y and Vz not (y,z) € S}
right wing = {(DC, z,y,2) | (y,2) € S and z = y and Vz not (z,y) € R}

Using these, and U for set union, we can define, for both cases
R ujoin S (or R[X ujoin Y|S) = left wing U centre U right wing
An application of the union join could be tallying marks for a course. Suppose the marks
for the assignments and the marks for the exam were given as separate relations, each with
student as the key. Then the ijoin would discard any students who did one but not the other,
so they would get no credit at all. The ujoin would retain all the data.

The difference join, djoin, extends set difference.
R djoin S = [X, Y] in left wing
R[X djoin Y]S = [W, X, Y] in left wing
respectively. Note that the attribute set, Z, which has all null values, is not included as an
attribute set of the result. Figure 12 shows the example, with Responsibility and Location,

It is sometimes useful to have a right difference join, S drjoin R = R djoin S.

The symmetric difference join, sjoin, combines the two difference joins, R djoin S and
S djoin R.

R sjoin S (or R[X sjoin Y|S) = left wing U right wing

Figure 13 shows the example, with Responsibility and Location,

The symmetric difference join could be applied to the same mark tallying problem as the
union join. If a student’s name were spelled differently in the two input relations (or there
were a similar discrepancy in i.d. number), the sjoin would serve as an exception report and
could lead to the difference being detected and to correcting the two names to be the same.

Two further joins are sometimes useful although they extend set operations which are
trivial. The left join extends what would be the set operation that simply returns the left
operand. The right join corresponds. As the examples in figure 14 show, this operation is
not so trivial for relations.
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Figure 9: Natural Join and Decomposition
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Figure 10: Natural Join and Non-decomposability



Responsibility ujoin Location
(Agent Item Floor)
Raman Micro
Hung Micro
Raman Terminal
Raman Terminal
Raman Micro
Smith V.C.R.

DC Videodisk

Mgl—smv—sn—w—s

Figure 11: The Union, or Outer, Join

Responsibility djoin Location
(Agent Item Floor)
Smith V.C.R. DC

Figure 12: The Difference Join

Responsibility sjoin Location
(Agent Item Floor)
Smith V.C.R. DC
DC Videodisk 2

Figure 13: The Symmetric Difference Join

Responsibility 1join Location Responsibility rjoin Location
(Agent Item Floor) (Agent Item Floor)
Raman Micro 1 Raman Micro 1
Hung Micro 1 Hung Micro 1
Raman Terminal 1 Raman Terminal 1
Raman Terminal 2 Raman Terminal 2
Smith V.C.R. DC DC Videodisk 2

Figure 14: The Left and Right Joins
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Here are the definitions.
R ljoin S (or R[X ljoin Y|S) = left wing U centre
R rjoin S (or R[X rjoin Y]S) = centre U right wing

In summary, except for djoin (and drjoin), the p-joins all result in a relation whose
attributes are the union of the attributes of the two operands. Here are examples of the
notation used in Aldat for p-joins.

(join = ijoin, ujoin, sjoin, ljoin, rjoin)
1. Assigning the result

Warehouse <— Responsibility ijoin Location;
2. Join on common attributes

R(X,Y), 8(Y,Z) T <-RjoinS; T(X,Y,Z)

T <—R djoin S; T(X,Y)
3. Join on different attributes

QW,X), S(Y,Z) T <-Q[XjoinY]S; T(W,X.Y,2)

(X and Y are aliases in 7.)
N.B. @ ijoin S gives Cartesian product: X,Y are not aliases.
4. Join on several attributes

UAB,C,X,Y,Z), V(X,Y,Z,D, E)
T <-U join V;
T(A B,C,X,Y,Z D, E)

3.2 o-Joins

The o-joins extend the truth-valued comparison operations on sets to relations by applying
them to each set of values of the join attribute for each of the other values in the two relations.
We can show this for the same relations, Responsibility and Location, that illustrated the p-
joins. Figure 15 shows the operands and the result for the superset join, written sup, div,
or D.

All relations are shown in matrix form, with three two-dimensional matrices making up
the “back”, “side”, and “floor” of a box. The “back” is the four tuples of Responsibility, the
“side” is the four tuples of Location, and the “floor” is the result, which we see has only one
tuple. This tuple is arrived at by comparing each of the three sets of Items (the common,
or join, attribute) in Responsibility with each of the two sets of Items in Location: only the
Items that Raman is responsible for form a superset of the Items on Floor 1.

This join may be interpreted as answering the query, “find Agents and Floorp such that
the Agent is responsible for all I[tems on the Floor”. This universal quantifier, all, is what
led Codd [Cod72] to invent the division operator for the relational algebra: it was needed
to make the algebra equivalent to a limited form of the first-order predicate calculus, which
supports universal and existential quantification. Codd’s division is a strictly special case
of the superset join, in which the right-hand operand has no other attributes than the join
attributes.

We can define the o-joins using the following notation. In relations R(W, X) and S(Y, Z), R,
is the set of values of X associated by R with a given value, w, of W, and S, is the set of

11
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Figure 15: The Superset Join, or Division

values of Y associated by S with a given value, z, of Z. If W and X are disjoint sets of the
attributes of R, and Y and Z are disjoint sets of the attributes of S, the following definitions
are general, and even allow for X and Y to be the same set of attributes. X and Y must be
at least compatible attribute sets.

Rsup S={(w,z) | Ry, 2 S,}

The second important o-join is icomp, which extends the notion of set overlap.

R icomp S = {(w, 2) | R,@S,}
where R@AS means RN S # ¢ and introduces a comparison operator meaning that the two
operand sets overlap. Figure 16 illustrates this.

The name natural composition is from Codd [Cod70], who proposed this join to convery
existential quantification. The query answered by the example is “find Agents and Floors
such that the Agent is responsible for some of the Items on the Floor” (or, symmetrically,
“such that the Floor holds some of the Items looked after by the Agent”).

The operations in the p-join and o-join families are not independent of each other, either
within their families or across families. An important link across families is between natural
join and natural composition. Figure 17 shows that projecting the result of the natural join
on the non-join attributes gives the result of the natural composition of the two operand
relations. The projection can be likened to shining a light down through the planes of the
matrix form of the join to give shadows of the 1s.

Natural composition is the obvious operator to use when the join attribute is not needed in
the result, and especially when the natural join is impossible because of attribute ambiguities.
For example, suppose we want to find Grandparent given Parent.

12
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Figure 16: The Overlap Join, or Natural Composition

Parent(Sr
Sam

Pete
Pete

Jr)

Grandparent(Sr
Pete P (
Sam
Sue
Sam
Joe

Grandparent <— Parent[Jr icomp Sr|Parent,
The set overlap symbol used in the natural composition has a bar through it: it is the
complement of disjointness, sep. (Each of the twelve o-joins has a complement, one of the

others.)

Rsep S ={(w,z) | R,RS,}

Jr)
Sue
Joe

Figure 18 shows that the tuples in the result complement the tuples for icomp.
The remaining nine o-joins correspond to the set comparisons D, =, C, C, and comple-
ments 3, 2, #, ¢, and ¢, below and as shown in figure 7.

Rgtjoin S = {(w,z) | Ry D S.}
Reqjoin S = {(w,z) | Ry =85.}
Rlejoin S = {(w,z) | Ry, CS,}

R1tjoin S = {(w,2)| Ry, C S}
Rlgtjoin S = {(w,z2) | Ry, 7S.}
Rlgejoin S = {(w,z2) | Ry, 2S.}
Rleqjoin S = {(w,z2) | R, #S.}
R!lejoin S = {(w,2)| Ry, IS,}

R ltjoin S

{(w,2) | Ry ¢5:}

Syntactically, the attribute set resulting from any o-join is the symmetric difference of
the input attribute sets. The notation parallels that for p-joins, above.

13



Responsibility ijoin Location

ltem
Hung Raman Smith jerminal
~ 1
2
~
Agent Hung Raman Smith AM icro
~ ~ 1
2
Floor
Responsibility icomp Location
[Agent, Floor| in (Responsibility ijoin Location)
Agent Hung Raman Smith
~ ~ 1
2
b Floor

Figure 17: Natural Join and Natural Composition
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Figure 18: Disjointness

Here are examples (join = [!|gtjoin, div, !gejoin, [!|eqjoin, [!]lejoin, [!|ltjoin, sep,
icomp).

1. Join on common attributes
R(X,Y), S(Y,Z) T <—RjoinS; T(X,Z)
2. Join on different attributes
QW X), S(v,Z) T <-QIXjoinY]S; T(W,Z)
3. Join on several attributes
UAB,C,X,Y,Z), V(X,Y,Z,D, E)
T <—U join V;
T(A,B,C,D,E)

As a consequence, we must deal with the special case that both operands have the same
attribute sets. This is the special case of set comparison.

R(Y), SY) T <—RjoinS; T()

The result relation is nullary: it has no attributes. This must be interpreted as Boolean,
because the special case of set comparison is truth-valued. Fortunately, this is an easy
abstraction to make. A nullary relation can have only two values: either it is empty or it is
not empty. So Booleans are relations, and closure is saved for the o-joins.

An important practical consideration when performing a o-join is to remember to project
the operand relations on the relevant attributes only. For instance, referring to section 2 of
chapter 1.1, if we had a relation
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NYPenn( Cust )
Pennsylvania Railroad
New York Central

and we wished to find out which Salespeople had processed orders from both of those railways,
NYPennPeople <— ([Cust, Sales] in Orders) O NYPenn;

would give the right answer,

NYPennPeople( Sales )
Hannah Trainman

whereas
WrongNYPennPeople <— Orders O NYPenn;,
would not:
WrongNYPennPeople( Ord# Sales )
is empty.

3.3 Relational Expressions

The individual operators of the relational algebra support simple queries, such as “what agents
are responsible for micros?” (see figure 5 on page 4). Combining operators permits more
elaborate queries. But the relational algebra is a basis for high-level programming, rather
than for end-user querying, so we must look at at least one simple combination from this
perspective. !

Consider the query “what floors contain the items Raman is responsible for?”. This
requires us to put together two relations, in order to link Agent with Floor, which we will
select and project on, respectively (see figure 8 on page 6). The need to put Responsibility
and Location together should lead us to think first of the natural join, and reflection should
confirm that this is the correct join. Thus, an expression of the query could be

[Floor] where Agent=Raman in (Responsibility ijoin Location)

where the parentheses show that the natural join is performed first, followed by the t-selector.
(A convention of operator precedence might eliminate the need for parentheses.)

This illustrates the closure property of the relational algebra. Expressions may be built
up of independent operations. This is an aspect of programming. The same result may
be obtained by different expressions. Different expressions may execute at different speeds.
Optimization is the process of finding the fastest expression for any given result. We will
discuss the simple optimization a programmer may achieve just by being careful, as hey
would avoid putting an operation inside a loop if it can be done outside.

If we join Responsibility and Location before doing the selection, we may have a quite large
intermediate result: the natural join could have many more tuples than the two operands, and
could in the worst case be their Cartesian product. Doing the selection first always reduces
the number of tuples, and this should be a programming reflex.

[Floor] in (Location ijoin where Agent=Raman in Responsibility)

Now the join will involve only the two tuples from Responsibility that pertain to Raman,
and will have only two tuples instead of four.

!End-user needs are met by the editors that can be provided, and their user interfaces.
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Notice that we did not also move the projection inside the join. We could have, but this
does not guarantee faster exection the way moving the selection inside always does: projection
requires O(n log n) time, for n blocks of data, because it must sort to eliminate duplicates.
To determine whether or not it is faster to do the projection before the join would require an
analysis of the data structures and algorithms underlying the operations, and would depend
on the data in the relations.

However, since the above solution requires three operations (select, then join, then pro-
ject), it could be made more elegant for the programmer, and this is an important concern
in the absence of sure knowledge of execution speeds.

Location icomp [Floor, Item| where Agent=Raman in Responsibility
(We have replaced the natural join by natural composition to save a final projection on Floor.)
(Those used to certain commercial query languages might be tempted to say
[Floor] where Item € ([Item] where Agent=Raman in Responsibility) in Location

replacing the join by a set membership test, €. Such a expression is not a part of first-
normal-form relational algebra. Not only does it mix levels between attribute and relation,
but also it leads to expectations that one may write, say, for relation R(A, B)

where A € Bin R

in which B must be a set of values (of the same type as A). This would violate the restriction
to first normal form. Such notation will reappear legitimately when we consider nested
relations.)

3.4 Relational Recursion

Problems involving repeated applications of relational algebra operators could be solved by
providing a looping construct in the language. But we can go a long way without new syntax
if we allow recursive definitions of relations.
We start with an example. An ancestor is a parent or the ancestor of an parent. This is
a compact way of saying an ancestor is a parent or a parent of a parent (grandparent) or a
parent of a parent of a parent (great-grandparent) or ... It is a recursive definition.
If we are given
relation Parent(Sr, Jr) <— ... ;
relation Ancestor(Sr, Jr);
in which Parent(Sr, Jr) already holds data such as

Parent(Sr  Jr)

Joe Sue
May Sam
Sue Max
Sam Max
Max Ted
Max Ann
Ted Jim
Win Jim
Ted Nan

and the attributes of Ancestor have been declared, then it is easy to specify the contents of
Ancestor as a recursive view.

17



[New|Facts Horn

(Concl Rule# Ante Concl )
lays eggs 1 lays eggs is bird
has feathers 1 has feathers is bird
swims 2 flies is bird
is brown 2 is not mammal is bird
—_— 3 is bird is duck
is bird 3 swims is duck
—_— 3 is brown is duck
is duck 4 is bird is duck
4 swims is duck
4 is green is duck
4 is red is duck
5 is duck migrates
5 is not tame migrates

NewFacts is Facts ujoin [Concl] in (NewFacts|Concl O Ante|Horn)

Figure 19: Horn Clauses: An Inference Engine

Ancestor is Parent ujoin
Parent[Jr icomp Sr|Ancestor;

As we said in Section 1, nothing is evaluated when this view is defined. When an assign-

ment is done from Ancestor, or it is to be printed, the following loop is executed.

Ancestor <— ¢ // empty

repeat Test <— Ancestor

Ancestor <— Parent ujoin
Ancestor{Jr icomp Sr]Parent

until Ancestor="Test
which puts Parent into Ancestor the first time around, adds grandparent the second time,
great-grandparent the third, and so on until the icomp Ancestor with Parent adds no new
tuples and the iteration halts.

(This implementation, which is the actual execution used by Aldat, also repeatedly adds
parent, grandparent, and all the intermediate generations, to Amncestor: it is horribly in-
efficient. It is even worse than what in the literature is termed the “naive implementa-
tion” [BR86]. But it turns out [CLM89] that the recursive view can be rewritten so as to
reproduce the most effective algorithms in the literature, even with this subnaive underlying
implementation.)

An Inference Engine

The o-join is very useful in other relational recursions. Here is a very simple inference
engine, using Horn clauses. These are logical implications in which a conjunction (and) of
antecedents imply a single conclusion. For a conclusion to hold, all the antecedents must hold,
so it seems that a superset join will be involved. Further, disjunction (or) is expressed by
writing two Horn cluases with the same conclusion. In figure 19, Horn(Rule#, Ante, Concl)
contains five examples. The Rule# is necessary to distinguish two or more Horn clauses with
the same conclusion; each Horn clause requires several tuples, one for each antecedent.
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The Facts relation is the first three tuples shown, and gives the starting point for the
inference. The NewFacts relation is Facts after the first itereation, then adds the next two
tuples in two iterations after a rule “fires” on each iteration. So, in this example, we start with
knowing that (it) lays eggs and has feathers and swims. The first two tell us, through
rule 3, that it is a bird. This, with swims, tells us, through rule 4, that it is a duck.

Notice that Horn is a second example of a relation in which individual tuples do not have
much meaning, but must be grouped to be meaningful. The grouping facility of the o-join is
essential to support this kind of interpretation of a relation. If there were no operations on
groups of tuples, the meaning of such groups would be impotent.

(With a little work (one person-month) this one-line inference engine can be expanded
to sophisticated one, together with a full “expert system shell”, Relizpert [Mer91|, which
requires only 200 lines of Aldat, a database language developed with no consideration of
artificial intelligence applications.)

More Logic
If we go back further in time, we find the syllogisms of Aristotle and the medieval church-
men. A syllogism has two premises from which it draws a conclusion. An example is

All philosophers are human
All humans are mortal

All philosophers are mortal

This example can be mapped onto the transitivity of set containment.
PCH

HCM

PCM

Other examples of syllogisms involve the existential quantifier.

All philosophers are clever
All philosophers are human

Some humans are clever

All clever beings play chess
Some humans are clever

Some humans play chess

Such premises and conclusions can be mapped onto set overlap.
HpC
HpPC

Figure 20 shows the full set of rules that govern these two relationships, from which
appropriate closure operations can be used to infer any syllogism or collection of syllogisms.
We leave it as an exercise for the reader to formulate the relationships and the syllogistic
inference engine using the relational algebra.
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A, E Universally quantified

A every XisY XCY Y CcX'

E noXisY YCX XcCVY
I, O Existentially quantified

I some X isY XpY YpX

O some X isnotY XpY' Y'@X

o A, Ecall C isA

rules:

— antisymmetric, transitive: .. closure

e I, O combine with A, E: call @ laps

rules:

— symmetric

— Xlaps Y& Y isA Z = X laps Z
(laps is closed under icomp with isA)

- XisAY& XisAZ= Ylaps Z

— XisA Y= Xlaps Y

Figure 20: Syllogisms

(The churchmen used the four Latin vowels as mnemonic aids, representing each possible
syllogism by a word containing three vowels. For instance, the above three examples are,
respectively, Barbara, Darapti, and Darii. There are a dozen or so more, with many formu-
lations about what combinations are legitimate. Your Aldat syllogism code should replace all
that. [KK62] pp.67-81)

Dodgson [Car96] provides many delightful examples of a special case of the above, re-
stricted to the isA hierarchy. Figure 21 gives one, with the i¢sA formulation and the final
conclusion (which is one of many). As with all of Dodgson’s examples, this forms a chain,
and the interesting conclusion is the one that links the beginning and the end of the chain.
Again, we leave to the reader the construction of the inference engine using the relational
algebra.

3.5 Null Values

The p-joins required the introduction of the DC null value. This has the significancs “don’t
care”. A second type of null value, DK, means “don’t know”. The first describes irrelevance,
the second missing data.

The treatment of null values in this section is approximate. The two null values themselves
are simplifications: an early study [Bet al.62] reported fourteen different types of null value.
We will see that some logical inconsistences arise, but we propose to live with them in the
absence of conclusive simple results on nulls in general.

The “don’t care” null value is taken to behave as a special value whose main property is
that it should have no effect on scalar operations applied to the values of the attributes.

e DC is the right and left identity for any binary operator that preserves type:
e x+DC=2,DC+r=x,2xDC=uzx, ..
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Isa

. (Subj  Obj)
1. No shark ever doubts that it is well fitted out. S F
2. A fish, that cannot dance a minuet, is contemptible. M o
3. No fish is quite certain that it is well fited out, unless it F T
has thre rows of teeth.
4. All fishes, except sharks, are kind to children. S- K
5. No heavy fish can dance a minuet. H w-
6. A fish with three rows of teeth is not to be despised.
T C’
.. No heavy fish is unkind to children. H X

Figure 21: isA Syllogisms

e DC — x =DC + (—x) = —z (by caveat: practice could change this)

e DC+x=DC X (+z) = +x

e Unary operations on DC are ignored: —DC = DC, ~DC = DC

e © k DC is DC for any comparison, k€ {<,<,=,>,>, #}

There are number of consequences of this design which we must watch out for.

e Note that aDC + by = a + by, not by; and ay = a(DC +y) = aDC +ay = a + ay

e Because x = DC = DC, the natural join is not well defined if a join attribute is DC: we
get Codd’s “maybe” join [Cod75].

The stipulation that x k DC is DC, and the consequent maybe join is unfortunate, but

e if we made x k DC false:
true = ~(z < DC) = (v > DC) = false;

e if we made z K DC DC for k € {<, <, >,>},
x = DC false, and x # DC true, (ordinary z):
DC = (z <DC)=(x <DC)A—~(z=DC)
((x<DC)V (x=DC)) N —~(z =DC)
(DC V false) A true
false.

The “don’t know” null value, DK, is less straightforward. It is not a special value, but
is best thought of as a variable with a range of all the non-null values of the domain.

e © k DK=DK, k € {<,<,=,>,>,#} Again, we get the “maybe” join.

e Operators with DK almost always give DK:
—DK = DK, DK — xz = DK, x x DK = DK, x max DK = DK, etc.
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k | £ DC DK re{<,<,=2>,>#}
T DC DK
DC | DC DC DC
DK | DK DC DK
and|[F T DC DK|or | F T DC DK | not |
F F F F F F F T F DK F T
T |F T T DK T T T T T T F
DC |F T DC DK || DC F T DC DK | DC | DC
DK |F DK DK DK |DK|DK T DK DK | DK |DK
+ | « DC DK|| — r DC DK| - |
z r DK z r DK z —
DC|  DC DK|DC| -z DC DK | DC | DC
DK | DK DK DK | DK | DK DK DK | DK | DK
C {z} {z,DC} {z,DK} {z,DC,DK}
2] F T DK T
{z,DC} F F F DK
{z, DK} F DK DK DK
{z,DC,DK} | F F F DK
c {s} {5,DC} {r,DK} {r,DC,DK}
2] T T T T
{z,DC} F DC F DC
{z, DK} DK DK DK DK
{z,DC,DK} | F DK F DK

Figure 22: Null Values as Four-Valued Logic

e true or DK = true,
false and DK = false

Furthermore, each DK ranges independently.
e DIV DK = DK, and is not a tautology.

e So we cannot know that two people have the same age, but not know the age.

A full treatment might use a set of variables for DIC, and take into account partial knowledge,
e.g., “his age is between 25 and 40”.

This is summarized by figure 22, which pretends that DC and DK are extra values which
augment each language type.
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