Copyright ©2005 Timothy Howard Merrett

Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
full citation in a prominent place. Copyright for components
of this work owned by others than T. H. Merrett must be
honoured. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or fee. Re-
quest permission to republish from: T. H. Merrett, School
of Computer Science, McGill University, fax 514 398 38383.

The author gratefully acknowledges support from the tax-
payers of Québec and of Canada who have paid his salary
and research grants while this work was developed at McGill
University, and from his students (who built the implemen-
tations and investigated the data structures and algorithms)

and their funding agencies.

T. H. Merrett ©05/1

Secondary storage must transfer large blocks of
data to and from RAM ..

because of latency, the relative cost, of finding

it.

T. H. Merrett ©05/1
2

CS++4: Reinventing Computer Science
(for Secondary Storage)

1. Algorithms & Data Structures ~Cs420
e variable multidimensional arrays
e finding all substrings
e Vvariable-resolution maps
e data compression
2. Programming Language ~CS612
e software engineering
e parallel algorithms
e expert systems
e Object-orientation
e data mining
e semistructured data

e Internet distributed db

T. H. Merrett §©O5/1

1. Algorithms &

Data Structures

Variable-sized arrays

E.g., a Leontieff matrix for the economy:

1. out\in | C F H | earned

Charles makes Clothes C 2 1 3 6

Fred makes Food F 2 2 3 7

Harry makes Houses H 2 3 4 9

spent | 6 6 10
Woops, we forgot Pete, who supplies Power:
2. out\in|C F H P | earned
Charles makes Clothes C 2 1 3 3 9
Fred makes Food F 2 2 3 3 10
Harry makes Houses H 2 3 4 2 11
Pete makes Power P 1 3 5 1 10
spent |7 9 15 9
Represent these in memory:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
27 | CC CF CH CP FC FF FH FP HC HF HH HP PC PF PH
1. |cC CF CH FC FF FH HC HF HH
21 |¢cc CF CH FC FF FH HC HF HH CF FP HP PC PF PH

i 012 3
oS 012 9 1La=j+3
O O|01 2(|9 22a=j+4
1 3 |3 4 5|10 2! a = max(rowbase(i),colbase(y))
2 6 |6 7 8|11 + the other one, 2 or j
3 12 121314 15

Refs: E. J. Otoo '83; D.

E. Knuth '97

1. Algorithms & Data Structures

Finding all substrings

E.g., Mycobacterium tuberculosis from codon 729

16

letters:

32 bits
16x17/2
letters: 272 bits

S Trie: 174

T. H. Merrett

atgtcatatgtgatcg
tgtcatatgtgatcg
gtcatatgtgatcg
tcatatgtgatcg
catatgtgatcg
atatgtgatcg
tatgtgatcg
atgtgatcg
tgtgatcg
gtgatcg

tgatcg

gatcg

atcg

tcg

cg

g

bits

©05/1

, Trie [ref De la Briandais '59]

0123456789012345
atgtcatatgtgatcg

11
(@ 11 (© (9) 11 (t)

01 11 11 11

01\ (1) O OMN\) @/1N\© (@) 10

12 11 12 11
11 10 01| (t)

9)
01 11

11

11 11

01 11 11 11

01 000100 001110 11 01 11 10

Sequential? cs Logarithmic!

Ref.: J. A. Orenstein '83

T. H. Merrett 6©05/1

1. Algorithms & Data Structures
Variable-resolution maps

o

;

L

\\
\©

L
Y

(l(
\
LS

@) S

Yo JENN ¢ e RN o W< N ->>

@60 ® O ® O

Map zooming (Ref.: H. Shang '94)

emrindex.10 — lextermalfindexesfimaptriefdrawidraw.5

emrindex.10 — /externalfindexesimaptrie/dravrfdraw.5

— Resolution — _ _ K — Resolution —
o
| 256
o — Priority —
1 | |4095
— Priority —
Draw 3 |
Draw |
T. H. Merrett ©05/1

1. Algorithms & Data Structures
Compression by tries

PO NN

AAAMMAAAMMAAAMMMMAMAMMMAMMM2“ |

h h 2 __
hx2hvs (2h—1)x2: 2=2

s

o A~ N

n 103 10° 10° 1012
2719 n 1/5 1/10 1/15 1/20
lossless compression | 80% 90% 93% 95%

Experimental (Ref.: X. Y Zhao '00)

T. H. Merrett ©05/1

2. Programming Language
Software engineering

Manufacturing Costs Subsystem

EQUIPCOST < ([ROUTING @ FIXEDASSETS) @

LABCOST = SALARY OTEAMS ' ROUTING

Y YN R

LAR TEAMS ROUTING FIXED ASSETS

C X N

Ref.: Merrett '84

T. H. Merrett 9©05/1

2. Programming Language
Parallel programming

Matrix multiplication

S5 et ab be equiv + oOf a x b by i, k:
AB <—|[i,k,ab] in (A natjoin B);
Leave ordering to implementation:
already “parallelized”
NB Domain algebra L Relational algebra
T. H. Merrett ©05/1

10

Gaussian elimination

@::
Vi
X

Triangularization Back-substitution
let ¢/ be q; let o’ be q; relation X (4,z);
for row <— 1 to let ax be equiv 4+ of a X x
[red max of i] in A by j;
{ A <—[j,d] where i=row for row <— [red max of i]
in A; in Ato1 by -1
A" <—[i,a"]where j=row { AX <—[az] in
in A; (A natjoin X);
let aa be (a’ x a’)/A[row,row]; let + be (X[row,red max
update A change a <— of i + 1] —ax)/A[row,row];
if : <row then a else a — aa let 5 be row;
using [i, 7, aal in update X add [j,z] in AX
(A” natjoin A’) }

} CsE—

T. H. Merrett 1@%05/1

2. Programming Language

Expert systems

Horn Clauses An Inference Engine

[New]|Facts Horn

(Concl) (Rule# Ante

lays eggs 1 lays eggs
has feathers has feathers
swims flies

is not mammal
is bird
swims

is brown

is bird
swims

is green

is red

is duck

is not tame

is bird

is duck

OO POLWLODNDNDDNDRE

NewfFacts IS Facts union

Concl

is
is
is
is
is
is
is
is
is
is
is

bird
bird
bird
bird
duck
duck
duck
duck
duck
duck
duck

)

migrates
migrates

[Concl] in (NewFacts[Concl O Ante|Horn)

s

Relixpert expands this 1-line inference engine to 50, in a
200-line expert system shell: TDKE 6 (1991) 151

T. H. Merrett

©05/1
12

2. Programming Language
Bill of materials

E.g., a wallplug

N

connector mould

2

screw plate screw plug

3/ 2
2 2
wallplug
let A’ be A: let S’ be S; let Q' be Q: oS
let Q" be equiv + of Q x Q' by A, S’; E.g., wallplug
let Q” be Q + Q"; let Q be Q"; has 4 connectors.

Explo is [A,S,Q] in [A,S, Q"] in (PartOf [A, S union A, S’]
[A, S, Q"] in (Explo [S natjoin A’] [A’,S’, Q'] in PartOf));

T. H. Merrett 05/1
9

2. Programming Language
Object orientation

proc bankAccount (Balance, Deposit) is
state BAL intg
{ proc Deposit(dep) is

{ BAL <— BAL + dep};

proc Balance(bal) is

{ bal <— BAL;

BAL <— 0

Instantiation is join. e

relation accts(acctno, client) <—
{(1729, "Pat"),(4104, "Jan")};
Accounts <— accts natjoin bankAccount,

(accno client Balance Deposit [BAL])
1729 Pat [0]
4104 Jan [0]

T. H. Merrett 1@4)105/1

Object orientation

update Accounts change Deposit(100)
using where acctno=4104;

Ref.: Zheng '02

Inheritance

proc interest(Interest) is
state BAL intg;
{ proc Interest(int) is
{ BAL <— BAL x (1 + int/100.0)};
h

relation intaccts (acctno, intrate) <— {(4104, 3)};

InterestAccounts <— intaccts natjoin interest;

InterestAccounts isa Accounts,

update InterestAccounts change Interest(intrate)
using intaccts,

(accno client intrate Balance Deposit Interest [BAL])
1729 Pat - - [0]
4104 Jan 3 [103]

T. H. Merrett 05/1
€

2. Programming Language

Data mining

E.g., Classification by Decision tree

using Datacube

Training
(Outlook Humidity Windy N P)
sunny high f
sunny high t
sunny normal f
sunny normal t
overcast high f
overcast high t
overcast normal f
overcast normal t
rain high f
rain high t
rain normal f
rain normal t
Humldlty
S O R
- 1029;/,
(25%78’%8% 11°02'20/33/2%/ N
10 0,1 1,0 320423/59/2(
0LOLLO mooziy [
0202 1.2
Windy

T. H. Merrett

2

P OPFRP,PR OOO0OO0OO0OOOK

—= Qutlook

ONORRPRLRRELRLRELRELROO

5805/1

Datacube

let N be totN;
let P be totP;
domain attr attribute;
relation AllAttribs(attr) <— AttribsOf Training;
//Outlook, Humidity, Windy, N, P
relation ClassAttribs(attr) <— {(N),(P)};
relation TotAttribs(attr) <— {(totN), (totP)};
PropAttribs <— AllAttribs diff ClassAttribs ;
LoopAttribs <— PropAttribs
while [] in LoopAttribs
{ Attrib <— pick LoopAttribs;
update LoopAttribs delete Attrib;
let eval Attrib be "ANY" ;
let totN be equiv + of N by (PropAttribs diff Attrib);
let totP be equiv 4+ of P by (PropAttribs diff Attrib);
update Training add [AllAttribs] In
[PropAttribs diff Attrib union TotAttribs] in Training;

}

The decision tree analysis follows directly; “one-rule” and

Bayesian classification methods are special cases.

T. H. Merrett ©05/1

17

2. Programming Language
Semistructured data

Text:

Ted married Alice in 1932. Their children, Mary (1934)
married Alex in 1954 (Joe was born to Mary and Alex in
1956) and James (1935) married Jane in 1960 (James and
Jane had Tom in 1961 and Sue in 1962).

Marked up text (xML):

<Person>
<Name>Ted</Name> married
<Family><Conj>Alice</Conj> in
<Wed>1932</Wed>. Their children,

<Children><Name>Mary</Name> (<DoB>1934</DoB>) married
<Family><Conj>Alex</Conj> in <Wed>1954</Wed>

</Family>
</Children>

</Family>
</Person>

Convert to (recursively nested) relation:

let FAMILY be [Conj, Wed, CHILDREN] mu2nest Family;
let CHILDREN be [DoB, Name, FAMILY] mu2nest Children;
PERSON <— [Name, FAMILY] mu2nest Person;

T. H. Merrett ©05/1
18

Semistructured data

Here's the relation

PERSON
(Name FAMILY
(Conj Wed CHILDREN
(DoB Name FAMILY
(Conj Wed CHILDREN
(DoB Name)
Ted Alice 1932 1934 Mary Alex 1954 1956 Joe
1935 James Jane 1960 1961 Tom
1962 Sue
Queries:
PERSON/Name

Ted
PERSON/FAMILY/CHILDREN/Name
Mary, James
PERSON/FAMILY/CHILDREN/FAMILY/CHILDREN/Name
Joe, Tom, Sue
PERSON/(./)*Name
Ted, Mary, James, Joe, Tom, Sue
Name where FAMILY/Conj="Alice" in PERSON
Ted

T. H. Merrett 05/1
9

N N NN

2. Programming Language

Internet
E.g., aldat protocol
mimi willy
public_aldatp ~jan public_aldatp ~pat

ublic_aldatp privD

El ublic_aldatp privB E5

=]
=]

E2 pPubA E4 F4 E6 pubC E8 F8
E3 F3 E7 F7

Extended names may be used anywhere
permissions allow:

F4 <— aldatp://mimi/~jan/pubA/ES3;
aldatp://mimi/~jan/pubA/F3 <— E2;

aldatp:/ /willy/~pat/pubC/{F7 <— ET7};

Joining E3(A, B) with E7(B,C) by semijoin:

(aldatp://mimi/~jan/pubA/(E3 natjoin
aldatp://willy/~pat/pubC/([B] in E7))) natjoin E7

Ref.: Wang '02
T. H. Merrett 2@805/1

Conclusions
SS different from RAM => new thinking about:

Computer Science:
e Object orientation
e parallel programming
e artificial intelligence
e networking
Applications:
e numerical analysis
e bioinformatics
o G.I.S.
e semistructure

Current work: visualization

Future work:
e constraint databases
e peer-to-peer cooperative work
e agent programming

T. H. Merrett 2@%05/1

