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Object-Oriented Relations

“Object-orientation’” is about instantiation.

Instantiation is needed for programming lan-
guage ‘“functions” with state.

Such states are values of stored variables, or
attributes.

Database relations are stored values: a state
could be a tuple.

It could also be a tuple of a nested relation; or
a Ssubrelation.

Thus, nesting is usually a part of OODB, called
complex objects.

Aldat has nesting, in ways efficient for second-
ary storage.

Aldat also can instantiate, in bulk, computa-
tions with state.

Instances form classes.

Classes may contain each other: inheritance
can save code.
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Relations as Classes

relation Couch(Id, Length, Width);
relation Chair(ld, Base);

relation Furniture(ld, Manuf );
Couch i1sa Furniture,

Chair isa Furniture,

Now the projection,
[Manuf ] in Couch
IS syntactic sugar for
[Manuf ] in (Couch natjoin Furniture)
and similarly for any other use of Manufin Couch
or Chair

Furniture Couch
(Id Manuf) (Id Length Width) Manuf
1 Mobel 1 15 5 Mobel
2 Furn 2 17 5 Mobel
3 Mobel 3 18 6 Mobel
21 Mobel
22 Furn Chair (Id Base) Manuf
21 4 Mobel
22 5 Furn
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Inheritance as join

e Inheritance could also be implemented as a
join,

e but most such O-O uses are low activity op-
erations,

e and best implemented with pointer dereferen-
cing instead of the full join.

e SO the special case of O-O gets a special im-
plementation:

e another example of syntactic sugar hiding spe-
cialized algorithms and data structures,

e although defined in terms of the general oper-
ator.
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Inheritance as join
Here is a variant.

relation Couch(Id, Length, Width);
relation Furniture(Fid, Manuf);
Couch [Id isa Fid] Furniture;

[Manuf] in Couch
IS syntactic sugar for

[Manuf] in (Couch [Id natjoin Fid] Furniture)

e SO Isa translates directly into a precise, if pos-
Sibly complex, specification for natural join.

e Inclusion dependence,

[Id] in Couch C [Fid] in Furniture
IS not guaranteed: this would move isa from

a purely syntactic specification to a semantic
constraint.
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Attaching Computations to Classes—
Polymorphism (a sketch)

comp PolyArea(Area) is
{ comp Area(A) is

{A <— Lengthx Width;}; << public variables
} also
{ comp Area(A) is

{A <— Base**2;}; << —not hidden

¢

FurnMethod <— Furniture natjoin PolyArea,
Couch isa FurnMethod;

Chair isa FurnMethod,

let FootPrint be Area{}

CouchPrint <— [Id, FootPrint ] in Couch;
ChairPrint <— [Id, FootPrint ] in Chair;
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FurnMethod
(Id Manuf Area)

1 Mobel
2 Furn
3 Mobel
21 Mobel
22 Furn
CouchPrint ChairPrint
(Id FootPrint ) (Id FootPrint)
1 75 21 16
2 85 22 25
3 108
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