Copyright ©1998 Timothy Howard Merrett

Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
full citation in a prominent place. Copyright for components
of this work owned by others than T. H. Merrett must be
honoured. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or fee. Re-
quest permission to republish from: T. H. Merrett, School
of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the tax-
payers of Québec and of Canada who have paid his salary
and research grants while this work was developed at McGill
University, and from his students (who built the implement-
ations and investigated the data structures and algorithms)

and their funding agencies.

T. H. Merrett ©98/11

Object-Oriented Relations

“Object-orientation’” is about instantiation.

Instantiation is needed for programming lan-
guage ‘“functions” with state.

Such states are values of stored variables, or
attributes.

Database relations are stored values: a state
could be a tuple.

It could also be a tuple of a nested relation; or
a Ssubrelation.

Thus, nesting is usually a part of OODB, called
complex objects.

Aldat has nesting, in ways efficient for second-
ary storage.

Aldat also can instantiate, in bulk, computa-
tions with state.

Instances form classes.

Classes may contain each other: inheritance
can save code.

T. H. Merrett (%98/11

Relations as Classes

relation Couch(Id, Length, Width);
relation Chair(ld, Base);

relation Furniture(ld, Manuf);
Couch i1sa Furniture,

Chair isa Furniture,

Now the projection,
[Manuf] in Couch
IS syntactic sugar for
[Manuf] in (Couch natjoin Furniture)
and similarly for any other use of Manufin Couch
or Chair

Furniture Couch
(Id Manuf) (Id Length Width) Manuf
1 Mobel 1 15 5 Mobel
2 Furn 2 17 5 Mobel
3 Mobel 3 18 6 Mobel
21 Mobel
22 Furn Chair (Id Base) Manuf
21 4 Mobel
22 5 Furn

T. H. Merrett ((%98/11

Inheritance as join

e Inheritance could also be implemented as a
join,

e but most such O-O uses are low activity op-
erations,

e and best implemented with pointer dereferen-
cing instead of the full join.

e SO the special case of O-O gets a special im-
plementation:

e another example of syntactic sugar hiding spe-
cialized algorithms and data structures,

e although defined in terms of the general oper-
ator.

T. H. Merrett ((298/11

Inheritance as join
Here is a variant.

relation Couch(Id, Length, Width);
relation Furniture(Fid, Manuf);
Couch [Id isa Fid] Furniture;

[Manuf] in Couch
IS syntactic sugar for

[Manuf] in (Couch [Id natjoin Fid] Furniture)

e SO Isa translates directly into a precise, if pos-
Sibly complex, specification for natural join.

e Inclusion dependence,

[Id] in Couch C [Fid] in Furniture
IS not guaranteed: this would move isa from

a purely syntactic specification to a semantic
constraint.

T. H. Merrett ((298/11

Attaching Computations to Classes—
Polymorphism (a sketch)

comp PolyArea(Area) is
{ comp Area(A) is

{A <— Lengthx Width;}; << public variables
} also
{ comp Area(A) is

{A <— Base**2;}; << —not hidden

¢

FurnMethod <— Furniture natjoin PolyArea,
Couch isa FurnMethod;

Chair isa FurnMethod,

let FootPrint be Area{}

CouchPrint <— [Id, FootPrint] in Couch;
ChairPrint <— [Id, FootPrint] in Chair;

T. H. Merrett ©98/11

FurnMethod
(Id Manuf Area)

1 Mobel
2 Furn
3 Mobel
21 Mobel
22 Furn
CouchPrint ChairPrint
(Id FootPrint) (Id FootPrint)
1 75 21 16
2 85 22 25
3 108

T. H. Merrett ©98/11

