BASICS: Domain Algebra
Relational Information Systems Chapter 3.1
(Revised 99/10)

November 30, 1999

Copyright ©1999 Timothy Howard Merrett
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation in a prominent place. Copyright for
components of this work owned by others than T. H. Merrett must be honoured. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or fee. Request permission to republish from: T. H. Merrett,
School of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the taxpayers of Québec and of Canada who
have paid his salary and research grants while this work was developed at McGill University, and from
his students (who built the implementations and investigated the data structures and algorithms) and
their funding agencies.

Alongside, and almost independently of, the relational algebra is an algebra on attributes.
This permits us to fill the obvious gap in the relational algebra that includes its inability to
do, for instance, arithmetic.

This gap is partly filled in ad hoc ways by many commercial database systems, but we seek
a deeper solution. We invoke both the principle of abstraction and the principle of closure
(see Chapter 2.1, on the Relational Algebra). The principle of closure says that operations
on attributes must give attributes. The principle of abstraction says that the context of the
attribute(s) is unimportant. So the algebra on attributes will avoid all mention of specific
relations.

This abstraction of attributes away from relations is the only subtlety in what follows,
which is otherwise straightforward. It is an important subtlety, because it permits us to
separate relational operations from operations on attributes. This in turn leads to important
intellectual simplification, because we can think independently of each of two sides of any
problem.

The algebra on attributes is called the domain algebra, partly because of the alliterative
difficulty of “attribute algebra”, and partly to emphasize its treatment of attributes inde-
pendently of relations.

The domain algebra has two main components (see the figure, A Taxonomy of Aldat, in
Chapter 2.1): scalar operations, and aggregation operations. In the context of the table rep-
resentation of relations, these can be thought of, respectively, as “horizontal” and “vertical”
operations, working, respectively, horizontally within the tuples, and vertically among the
tuples.

1 Scalar Operations

The scalar operations support arithmetic, logic, and string processing on the typed values of
the attributes of a relation. For any data type which is allowed as an attribute, its allowed
operations can be supported by scalar operators. But scalar operators are confined to work
only within each tuple independently, hence the appellation “horizontal”.

An example involving simple arithmetic suffices to give the idea for any operation on any

attribute types.
let Total be Asst + Exam;

Although we might have in mind evaluating this sum given a relation such as

NewMEk
(Student
Smith
Jones
Brown
Hung
Raman

the domain algebra is independent of this or any particular relation.
It is nonetheless convenient to think of the result in the context of, say, NewMk, as long

Asst Ezam)
25. 60.
28. 66 .
20. 50.
24. 58.
24. 66.,

as we note that the sum is not an attribute of this relation:

60.
66.
50.

NewMk
(Student Asst Ezam)
Smith 25.
Jones 28.
Brown 20.
Hung 24.

Raman 24 .

Total is a wvirtual attribute at this stage

attributes of NewMk, not in NewMk.

To actualize a virtual attribute, we use the relational algebra. The most obvious way is
through a projection, but, in general, anywhere in the relational algebra an actual attribute
may be used, a virtual attribute may appear, too. Here is a pair of statements to define and

actualize Total in this way.
let Total be Asst + Exam;

. It is not actualized in any relation.
must ask how we can get it evaluated. Note that it appears outside the parenthesized set of

Result <— [Student, Total] in NewMk;

Here is the result.

Result
(Student

Smith
Jones
Brown
Hung
Raman

58.
66.

Total)
85.
94.
70.
82.
90.

Total

85.
94.
70.
82.
90.

Although the operations are trivial, the consequences of the principle of abstraction are
not always obvious. Since they underly the operations we will look at next, we belabour the
point just a little bit more.

Frequently Asked Questions

e What if Asst and Fzam are also in some other relation?
Nothing s affected: Total could be actualized there, too.

e What if Asst and Fzam each come from different relations?
Use relational algebra to put the relations together before actualizing.

e What if we update NewMk after actualizing Total?
Total is an actual attribute of Result and unaffected by changes to other relations.

A couple of special cases of these horizontal operators are useful. Here is how we can
define a constant attribute, i.e., one with the same value in every tuple.

let One be 1;
And we can rename an attribute.
let Final be Ezam;
We actualize these in NewMk
Course <— [Student, Asst, Final, Total, One] in NewME;

Course
(Student Asst Final Total One)
Smith 25. 60. 85. 1

Jones 28. 66. 94,
Brown 20. 50. 70.
Hung 24. 58. 82.
Raman 24 . 66. 90.

el

2 Aggregation Operations

While the scalar operations work horizontally (in the table form of a relation), within each
tuple, the aggregation operations of the domain algebra work vertically, down the columns.
This permits, for example, summing all the values of an attribute.

There are two classes of aggregation operation, reduction and functional mapping. They
each subdivide into two subclasses.

2.1 Reduction

Totalling is the obvious example of an aggregation operation. In the domain algebra
let TotMk be red + of Total;

sums all the values of the attribute named, Total.
We can aggregate in lots of other ways.

let MaxzMk be red max of TotMk;
let MinMk be red min of TotMk;
let ProdMk be red x of TotMk;

find the maximum and mimimum marks, and, if we should want it, the product of all marks.

3

Each of these aggregate virtual attributes is a constant attribute, in that, in any relation
in which it is actualized, it will have the same value for all tuples. As we did above, for
concreteness, we might think of each in the context of the source relation, for instance,
Course.

Course
(Student Asst Final Total One) TotMk MazMk MinMEk
Smith 25. 60. 85. 1 421 94 70
Jones 28. 66. 94. 1 421 94 70
Brown 20. 50. 70. 1 421 94 70
Hung 24. 58. 82. 1 421 94 70
Raman 24. 66. 90. 1 421 94 70

But any programmer who actualized them in this context would invite complaints of waste.
Class <— [TotMk, MaxMk, MinME] in Course;

Class
(TotMk MaxzMk MinMk)
84.2 94 70

This gives us three of the five aggregate operators usually boasted by comercial database
systems. The other two are count and average.

let Count be red + of One;
let AvgMk be TotMk/ Count;

Note that in the last we have combined two aggregate virtual attributes with a scalar oper-
ation, division. This uses the principle of abstraction, which is what permits us to think of
virtual attributes as values associated with each tuple of any relation they can be evaluated
in. Because attributes are closed under the domain algebra (principle of closure), we can
build expressions.

let AvgMk be (red + of TotMk)/(red + of 1);
Let us replace Class.
Class <— [TotMk, AvgMk, MaxMk, MinMk] in Course;

Class
(TotMk AvgMk MazMk MinMk)
84.2 84.2 94 70

In addition to the conventional aggregations (which are hardwired into the usual database
system, and not derived from a single concept and syntactic construct as here), we can calcu-
late product (above) and two Boolean aggregates corresponding to universal and existential
quantification. The following examples allow us to say that every mark is no more than the
maximum and some mark is the same as the maximum.

let ALLleMaz be red and of Total<MaxMEk;
let SOMEeqMaz be red or of Total=MazMk;

Both these Boolean aggregates will have the value true if actualized from a relation such as
NewMk.

These are six basic operators that may be used by the reduction aggregation: +, X, min,
max, and, or. Operators that are not associative, such as string concatenation, cat, or not

commutative, or both, such as —, /, or mod may not be used, because tuple order does not
matter in relations, but different orders would produce different results. (Two more Boolean
aggregate operators are = and #. What do they mean?)

As well as the basic operators, such as +, min, and max, and constructs based on them
for counting and averaging, which give the conventional aggregations, we may make arbitrary
constructs. For example, the variance is

let VarMk be (red + of (Total—AvgMk)12)/ Countt2;

The term “reduction” originates from the similar operator of APL. Since thisis A Programming
Language for arrays, whose elements are ordered by index value, APL reduction supports
the noncommutative and nonassociatve operators.

Equivalence reduction allows reduction to be applied to groups of tuples within a relation.
These groups are equivalence classes induced by a specified attribute or set of attributes
having the same value within the group. For an example, we can continue in the vein of
course marks, but this time for several courses.

let STot be equiv + of Mark by S#;
let CTot be equiv + of Mark by C#;

StuCour
(S# C# Mark) STot CTot

1 1 73. 233. 213.
1 2 82. 233. 147.
1 3 78. 233. 78.
2 1 64. 64. 213.
3 1 76. 141. 213.
3 2 65. 141. 147.

Once again, we show the virtual attributes in the context of a source relation, but sensible
actualizations would look more like

ByStu <— [S#, STot] in StuCour
ByCou <— [C#, CTol] in StuCour

Note that the capabilities are symmetrical, even though the example relation is presented
above in an order which favours the visualization of S7Tot.

With the machinery that we now have, we can combine domain and relational algebras to
do interesting things. Here are three matrices

1 0 2 110 3 5 2
A(OQl)B(lOO) AB(321>
3 01 1 21 4 5 1

in which AB is the matrix product of A and B. A relational representation of all three
matrices could use triples, with element values and two indices, omitting tuples for elements
with value 0.

A(ValA I J) B(ValB J K) AB(VWAB I K)
1 1 1 1 1 1 3 1 1
2 1 3 1 1 2 5 1 2
2 2 2 1 2 1 2 1 3
1 2 3 1 3 1 3 2 1
3 3 1 2 3 2 2 2 2
1 3 3 1 3 3 1 2 3

4 3 1
5 3 2
1 3 3

The task for the relational and domain algebras is to compute the relation AB given
relations A and B. The nice consequence of the principle of abstraction is that we can divide
the problem into two parts and solve them separately. The product we wish to compute is

AB;\, = Z AijBj-
J

First, we must combine A and B before we can do any calculations. Our reflex should be
to use the natural join, and reflection confirms that this is right: in each row, i, of A, the jth
element must be linked to the jth element of each column, &, of B. We thus have a relation
on attributes VulA, I, J, K, and ValB to work with.

Second, we think about the arithmetic. We must multiply the two values for the common
J, then we must sum over all values of J for a fixed I and K. In the domain algebra, we do
not need to specify that J ranges, but only that I and K are fixed: we need an equivalence
reduction by / and K.

let ValAB be equiv + of VulA x VulB by I, K;
AB <— [VulAB, I, K] in (A ijoin B);

This code is brief, and, with a fairly unsophisticated implementation, is an efficient way
to multiply two sparse matrices (lots of 0s) which may even be too big to fit into RAM.

Here are intermediate steps, shown after the join has been calculated, with ValA B shown
only for (I, K) = (1,1) and (I, K) = (3, 1), for clarity.

A ijoin B
(ValA I J K ValB) ValAxValB ValAB
1 1 1 1 1 1 3
1 11 2 1 1 :
3 3 1 1 1 3 4
3 31 2 1 3 :

2 2 2 1 1 2
2 13 1 1 2 3
2 1 3 2 2 4 :
2 13 3 1 2
1 2 3 1 1 1
1 2 3 2 2 2
1 2 3 3 1 1
1 33 1 1 1 4
1 3 3 2 2 2 :
1 3 3 3 1 1

PartOf(

MOooOoQWwn
D W N WO

Figure 1: A Bill-of-Materials

A related calculation is more elaborate: the “explosion” of a bill of materials into its
full transitive closure plus quantities. A bill of materials is the structure that shows the
components of an artefact, such as a product assembled from various pieces which themselves
are subassemblies. Figure 1 is a reprise of the bill-of-materials shown in section 4 of chapter
1.1, on relations, together with a relational representation. (The term “explosion” refers to
the image that is frequently drawn of the components all separated from each other, but
aligned, with lines connecting the points where they are joined. These lines often terminate
in drawings of the bolts and nuts used to join the components, which look as though they
have been blown out of the assembly.)

Considering domain algebra first, the calculation used in the explosion process must
multiply the quantities on edges that lie in the same path, and sum these products for paths
that terminate in the same (sub)assemblies. Thus, the 3 Bs that make up an A each have 2
Ds. The 4 Cs that make up an A each have 3 Ds. And there is 1 D directly involved in an A.
So, in total 3 x 2+ 4 x 3+ 1 = 19 Ds directly or indirectly make up an A.

This is essentially just the domain algebra that went into multiplying two matrices. We
will return to consider some small variations needed.

The relational algebra is essentially the transitive closure used in the Ancestor calculation
in section 3.4 (recursion) of chapter 2.1 (relational algebra). However, we cannot use the
natural composition to link edges in the same path because of the possibility that two pairs
of edges connect the same two points (such as A and D) and the further possibility that the
products of the quantities may be the same (such as 3 x 2 and 2 x 3, if the 4 on edge AC had
been changed to a 2). To avoid the automatic duplicate elimination, we must use the natural
join instead, to retain the linking nodes (B and C in the above example) that differentiate
the tuples. Because of this, and because of the fact that the natural join of a relation with
itself (PartOf) on different attributes (S on one hand and A on the other) leads to ambiguous
attribute names, the natural join must be accompanied by renaming. This can be done by
domain algebra.

let A’ be A; let S’ be S; let Q' be Q;

let Q" be equiv + of Q x Q' by A, S’;

let Q" be Q + Q"; let Q be Q";

Ezplo is [A, S, Q] in [A, S, Q"] in (PartOf [A, S ujoin A, S']

Sales

(President Year Amount) Cum
Smith 1994 150 150
Smith 1995 175 325
Smith 1996 200 525
Brown 1996 200 525
Brown 1997 210 735
Brown 1998 225 960

Figure 2: Functional Mapping

[A,S5',Q"] in (Ezplo [S ijoin A'] [A",S", Q'] in PartOf));

In the code, the attributes of PartOf are renamed (by adding primes) before joining with
the recursively defined Ezplo. Q" gives the sum of products (the matrix multiplication). Q"
adds to this any values previously generated for shorter paths between the same two nodes.
Finally, @ is renamed from Q" in order that the attributes of Ezplo are the same as those
of PartOf so the recursion can continue. In the domain algebra there seems to be a circular
definition here, @ in terms of @, in terms of () and @", in terms of @ and @', in terms of Q.
But the interplay with the relational algebra is such that the projections always disambiguate
and avoid the circularity.

Despite this interplay, one is easily able to think independently about the domain algebra
and the relational algebra sides of the problem, once familiar with the two algebras and how
they are put together.

2.2 Functional Mapping

Although reductions are restricted to associative and commutative operators because of the
independence of relations from tuple order, non-commutative and non-associative operators
are useful. We could use them if an ordering were induced on the tuples of a relation by the
value of one of the attributes, or of a set of attributes. We could then also obtain cumulative
totals, and similar results for other associative and commutative operators.

Figure 2 shows a relation which combines annual sales totals with information on who
was president of the company at the time. In this context, we can think about cumulative
sales for the company,

let Cum be fun + of Amount order Year;

and the figure shows Cum as a virtual attribute. Note that there is a functional dependence,
Year — Amount, and that a new functional dependence, Year — Cum, is generated. Because
the Amount is the same for the two tuples for 1996, C'um must also not change within this
year. (It is to illustrate this point that the apparently irrelevant attribute, President, is
shown.)

This family of aggregations is called functional mapping because it is a function from one
function (Year — Amount) to another (Year — Cum). Such functions of functions are usually
called functionals. Common mathematical examples of functionals include integration (for
instance, ¢g(y) = [J f(z)dx maps f to ¢g) and differentiation. Functional mapping can be
used to give a form of numerical integration, which is very crude because the data points
are predetermined by the tuples of the relation and cannot be selected for optimality by

(Num Seq) AltS AltP

3 1 3 3
12 2 9 4
20 3 11 5
60 4 49 12
180 5 180 15

Figure 3: Alternating Sum and Product

the integration process. Appropriate applications might be time-series forecasting and data
smoothing, which are simplified forms of numerical integration.

For order-dependent operators (either non-commuative or non-associative) such as —, we
must specify what “cumulative” means. It is best to use — to produce an alternating sum, /
to give an alternating product, and so on. Thus, the value of the virtual attribute in tuple r;
for the ith distinct value of the ordering attribute, z (in ascending order), for operator § is

rilfun g of y order z] = r;[y] B (... B (rs[y] B (r2[y] B r1[y]))--.)

where y is the operand attribute and fun § of y order x is the resulting virtual attribute.
Equivalently, we can specify this in a way which is closer to an implementation.

accum = if 1 = 1 then r; else r;[y] 8 accum

where accum is the accumulator, which gives the value of 7;[fun § of y order z] for each
tuple, r;, 2 =1, ..., N.
Figure 3 shows an alternating sum and an alternating product ordered by Seq.

let AltS be fun — of Num order Segq;
let AltP be fun / of Num order Seg;

We can see that the values of AltS are the sequence, 3,12—3,20—12+3,60—20+12—3, and
180 — 60 + 20 — 12 + 3. Similarly, AltP takes on the values 3,12/3,20/12 x 3,60/20 x 12/3,
and 180/60 x 20/12 x 3.

The usual alternating sum would be 3,3 — 12,3 - 124 20,3 — 12+ 20 — 60, and 3 — 12 +
20 — 60 — 180, but it is easy to convert to this from the result of the functional mapping.
Other definitions of the behaviour of order-dependent operators would not give an alternating
sum at all, for instance

accum = if i = 1 then r; else accum S r;[y].

is the same as r1[y] — SN, r:[y]-

Useful new operators to introduce in the context of functional mapping are pred and
succ. These are defined to give the cyclic predecessor and successor, respectively, of the
value of the operand attribute. (The above definition using an accumulator is overruled for
pred and succ. Pred and succ have no useful scalar meanings.) The reason for cyclicity is
that it is sometimes useful (for example, in geometrical calculations), and that it is easy to
write code to go from a cyclic result to a noncyclic answer, but not the other way around.
Figure 4 shows the successor of each word in a text,

let Nezt be fun succ of Word order Seg;

Partial functional mapping adds a grouping facility to functional mapping in the same
way that equivalence reduction does for reduction. Figure 5 shows the example for

Text

(Word Seq) Next
Algebraic 1 data

data 2 processing
processing 3 techniques
techniques 4 can

can 5 enable
enable 6 applications
applications 7 programmers
programmers 8 to

to 9 work

work 10 with

with 11 units

units 12 of

of 13 data

data 14 larger
larger 15 than

than 16 a

a 17 single
single 18 computer
computer 19 word

word 20 Algebraic

Figure 4: Word Sucssession

DivSales
(Div Year Amount) DCum
A 1997 80 80
A 1998 110 190
B 1997 60 60
B 1998 75 135
C 1997 90 90
C 1998 110 200

Figure 5: Partial Functional Mapping

10

let DCum be par + of Amount order Year by Div;

Sale Amounts are accumulated over the years for each Division.
Partial functional mapping, not surprisingly, is related to partial integration.

A useful idiom allows us to count the number of different values an attribute has in a
relation. One way is to project the relation on the attribute of interest, then do a red +
of 1 to count the tuples. It would be useful to get this result without doing the projection,
especially if the count is to be used for further comparisons or calculations within the relation.
Here is the domain algebra that will do this, for the example of figure 2.

let CountPres be red max of fun + of 1 order President,

This counts the number of different Presidents (2) appearing in the relation. First, we accu-
mulate a count for each different president, then we find the maximum of these accumulating
counts. Here are the results

Sales
(President Year Amount) fun + of 1 red max of ..
Smith 1994 150 2 2

Smith 1995 175
Smith 1996 200
Brown 1996 200
Brown 1997 210
Brown 1998 225

== RN
NNDNDNDN

A similar idiom can find the number of different values of some attribute in groups of
tuples determined by another attribute. For example, in the context of figure 5, we could
count the number of different years reported by each division (2 each: the following idiom
will give this result even if the divisions report quarterly and another attribute told us the
quarter).

let CountYear be equiv max of par + of 1 order Year by Div by Div;

Note the two ‘by Div’s are needed. One could put parentheses from (par to the first by
Div) for clarity.

3 Nested Relations

Several of the relational algebra facilities we have examined so far add little new functionality.
For example, o-joins may be simulated by a combination of domain algebra and natural
join. QT-selectors can mostly be implemented by equivalence reduction and projection.
But we have introduced them separately because they fit into a framework and are useful.
They embody in syntax different ways of thinking about problems. This is valuable because
different people think in different ways.

The present section introduces a further conceptual extension which also adds no new
functionality. It is a new way of thinking inherent in previous ideas, and requires almost no
new syntax.

Nested relations repudiate the fourth characteristic of relations presented in section 1 of
chapter 1.1, on relations. This was the requirement that the value in each row under a given
column is “simple”. This requirement was vague as to what “simple” means, but in practice
it boiled down to excluding relations as values of attributes. This is arbitrary, except that
it stems from implementation difficulties. Now that we have enough “flat” relational and

11

domain algebra in our arsenal, we can see how the restriction can be lifted and the result yet
implemented using flat operations.

The term “nested” relations comes from our willingness, now, to allow attributes in
relations to have values in each tuple that are themselves relations. A motivation for this
liberation comes from programming languages and the ideal that all data types should be
“first-class”. So far, relations have not been first class: they cannot be used anywhere strings,
for instance, are used, specifically within relations. If we allow relations to be attributes, we
promote them, and we permit new ways of thinking about relations containing relations
containing relations, etc.

Because the simplicity requirement enforced by “first normal form” on our relations
hitherto, nested relations are also known as —1nf or nf? (non-first-normal-form) relations.

Apart from some minor new syntax for declarations, we need no syntactic changes but only
an insight. This insight is that we subsume the relational algebra into the domain algebra. If
attributes may now be relations, the language must support operations on relational attrib-
utes. The domain algebra supports attribute operations, and the relational algebra operates
on relations. So all we must do is permit relational operations in the domain algebra.

We now work through a sequence of examples to show the possibilities, starting with
two-level relations (one level of nesting). Here is a declaration (from [JS82]), showing the
only new syntax we will need.

domain Authors(authors);

domain Descriptors(descriptors);

relation Books(Authors, title, price, Descriptors) <— {
({("Al") , ("A2")}, nwTqn , npqn ,{("Dl") , ("DQ")}) ,
({ ("AQ")}, o , npou , { ("Dl") , (”DQ") }) ,
({("Al")}, nr3n , npqn ,{("Dl") , ("DQ") , ("DS")})

b

It is useful to think of Books as a relation of three structured tuples, as shown below.

Books

(Authors title price Descriptors)
(authors) (descriptors)

Al D1

A2 T1 P1 D2

D1

A2 T2 P2 D2

D1

Al T3 P1 D2

D3

This is reminiscent of the structured relations we rejected in chapter 1.1 as adding no
new information. Note, however, that the flat version of this relation would need nine tuples
instead of three. Four of these would expand the first tuple, because every combination in
the Cartesian product of {(A1), (A2)} with {(D1),(D2)} must appear. (Any other choice
would add new information, for instance, that D2 is not used to describe A1.)

Now we pose a query on Books.

Find all titles whose authors contain A2 and whose descriptors contain D1 and D2.

relation A2(authors) <— {("A2")};
relation D1D2(descriptors) <— {("D1"), ("D2") };

12

A2D1D2 <— [title] where Authors sup A2 and Descriptors sup D1D2 in Books;

First we create two relations with the query data, then we compare the relation-valued at-
tributes to them in a T-selector. Note that the comparisons are o-joins that produce nullary
results, and hence are Booleans. It is these two o-joins that are now done in the domain
algebra. We could spell this out

let Authl be Authors sup A2;
let Des12 be Descriptors sup D1D2;
A2D1D2 <— [title] where Authl and Des12 in Books;

but it is not necessary to use let and invent temporary names.

So far we have shown how we can nest relations and pose queries on them with no new
syntax or concepts. But we have not shown that it could all be done with flat relations. Here
is a representation of the nested relation, Books.

Books(Authors title price Descriptors)

0 Ti P1 0
1 T2 P2 1
2 T3 P1 2
.Descriptors
.Authors (.id descriptors)
(.id authors) 8 gé
0 Al
0 A2 1 D1
1 A2 1 D2
2 Al 2 D1
2 D2
2 D3

We label each Authors set by an identifier, and each Descriptors set similarly. In fact,
these identifiers can just be tuple numbers for Books, as shown here; but usually they are
independently generated surrogates. The Authors attribute is typed so that its values are
represented by the identifiers, and the same with Descriptors. Then we create one new
relation for each of these two attributes, containing all three sets of values, discriminated by
a new .id attribute.

To formulate the same query as above, we translate the and to ijoin and the where to
ijoin or to icomp.

A2D1D2 <— [title] in Books [authors icomp .id|
((.Authors sup A2) ijoin (.Descriptors sup D1D2));
The implementation of nested relations follows just these two steps.

1. For each nested attribute, create a single relation containing its attributes, plus a set-
identifying attribute, and replace each nested relation in each tuple by the surrogate
value linking to this new attribute.

2. For each query, translate relational operations expressed in the domain algebra to top-
level relational operations on these new relations. Because the new relations represent
all the relations for the attribute, operations in the relational and domain algebras
may need to add grouping attributes. (Generally, reductions and functional mappings
translate respectively to equivalence reductions and partial functional mappings, for
example.)

13

In the example above, the nested relations are simple sets. Here is an example (from
[DL87]), again with two levels, but with full relations.

Employee
(ENo name Children Training)
(name date sex) (CNo date)
105 John Jane 800510 F 314 791010
Eric 821005 M 606 810505

714 820620
123 Anne Maria 751112 F 315 810613
423 820711
153 Bruce 314 791010

205 Ian Bob 701016 M 314 791010
Steve 750115 M

Let us
find employees without children.
NoKids <— [ENo| where not ([] in Children) in Employee;

Here we have used the nullary projection, [| in Children (“something in Children”), as a
domain expression to give the Boolean value that is used in the top-level T-selector.

Find names of children of employees who took course 314.

let C be [name] in Children,
CN314 <— [C] where ([] where CNo="314" in Training) in Employee;

We must note that the result is itself a nested relation, CN314(C(name)). It has the value

CN314
(C)
(name)
Jane
Eric

Bob
Steve

3.1 “Nest” and “Unnest” Operators.

It seems plausible that the intention of the query is to obtain the simple set of names, {Jane,
Eric, Bob, Steve}, in which case we must remove the nested structure of the result so far.
This is called unnesting, and can be achieved in two steps.

First, the three relations in the three tuples must be reduced to one, the single desired
set. This is easily done, within our new framework of subsumption of the relational algebra
in the domain algebra, by reduction.

red ujoin of [name] in Children

Note that ujoin is a commutative, associative operator, and so is legal in reduction.
Projecting the red ujoin still gives a nested relation, but a singleton. So the second step

is to remove a level of nesting. This we can do unambiguously in a singleton relation. (In

a relation of more than one tuple, containing a nested subrelation, removing a level would

14

require the system to make a decision about how to combine the different tuples; but the
programmer should do this explicitly.)

The way we lift a level is through anonymity, i.e., simply not giving it a name. CN314,
above, contains a nested relation named C' because we created C' in a let statement. We can
avoid this by just writing the expression in the projection list, instead of in a let statement.

Here is the new code to give a flat result, CN314.

CN314 <— | red ujoin of [name| in Children|
where ([| where CNo="314" in Training) in Employee;

Since we find ourselves doing a lot of projections to create unary relations while processing
nested relations, and since there is a frequently used syntax for this sort of operation, we
introduce “syntactic sugar” as a shorthand.

Children.name = [name| in Children]
So, finally,

CN314 <— | red ujoin of Children.name|
where ([| where CNo="314" in Training) in Employee;

This code will unnest a relation with several nested attributes, but the resulting single
sets must be combined into flat tuples by Cartesian products. A sequence of ijoinss of the
results of the red ujoins will do the job, with renaming if the nested relations have common
attributes.

For completeness, if we can unnest from a nested relation to a flat relation, we should be
able to nest a flat relation into a nested one. We also do this in two steps.

The first step is to add a level by giving a name to the new relation attribute. We
have already shown domain declarations to structure an attribute leading to initializing a
new nested relation. We can use the same mechanism to give a collective name to a set of
attributes, but it reads better if we couch it in the domain algebra.

let Training’ be relation (CNO, Date);

would define a nested attribute for, possibly, a flat relation, Employee(ENo, CNo, Date).

This first step does not tell us how to group the tuples of the flat relation into tuples of
the nested result. In fact, each instance of Training’, in each tuple of Employee, will be a
singlton relation. For this, equiv ujoin is needed.

let Training be equiv ujoin of Training’ by ENo;

would combine the singleton Training’s into a multi-tuple relation for each different ENo.
We show the nesting of EmployeeFlat in figure 6 to give the above nested relation, Em-
ployee.

let Training be equiv ujoin of relation (CNo, date) by ENo;

let name be Cname;

let date be Cdate;

let Children be [name, date, sez] in equiv ujoin of relation (Cname, Cdate, sex)
by ENo;

Employee <— [ENo, name, Children, Training| in EmployeeFlat;

In the above code, ENo is singled out from the other attributes for the group by, for obvious
reasons. We can write more general code than this if we include in the syntax a way to
express “all attributes in the relation except ...” Here is code to do the same job without

15

EmployeeFlat

(ENo name Cname Cdate sex CNo date)

9]

105 John Jane 800510 F 314 791010
105 John Jane 821005 M 606 810505
105 John Jane 821005 M 714 820620
105 John Eric 800510 F 314 791010
105 John Eric 821005 M 606 810505
105 John Eric 821005 M 714 820620
123 Anne Maria 751112 F 315 810613
123 Anne Maria 751112 F 423 820711
153 Bruce DC DC DC 314 791010
205 Ian Bob 701016 M 314 791010
205 1Ian Steve 750115 M 314 791010

Figure 6: An Unnested Version of Employee

referring to any attributes except the ones involved in the nesting.

let Training be equiv ujoin of relation (CNo, date) by !{ CNo, date};

let name be Cname;

let date be Cdate;

let Children be [name, date, sex] in equiv ujoin of relation (Cname, Cdate, sex)
by !{ Cname, Cdate, sex};

Employee <— [{ Cname, Cdate, sex, CNo, date}, Children, Training] in
[l{CNo, date}, Training] in EmployeeFlat,

The first line, above, gives the same Training relation for each combination of John, Jane
and John, Eric, and the rightmost projection in the last line replaces the attributes CNo,
date by this new relation on these attributes. The fourth line and the second projection give
the Children relation including Jane and Eric for John, and replace Cname, Cdate, sex by
Children(name, date, sex).

Unnesting is likely to be more useful than nesting. There is an further asymmetry in
that nest does not always invert unnest. A simple example is an attempt to nest the final
form we had for CN814: this could only re-introduce the extra level, C(name), but the three
tuples in the original CNS314 could never be reconstructed. More elaborate examples have
additional attributes to distingush the tuples, but two or more tuples have the same value
for this attribute in the nested relation.

On the other hand, unnest is always the inverse of nest.

Because these two transformations behave in this difficult way, and are not very important
to boot, we do not define special operators. It is more useful to add the simple syntax of the
relation grouping and the semantics of level lifting through anonymity. With the general
subsumption of the relational algebra into the domain algebra, these give us nesting and
unnesting if we want them. We also get a general method for formulating queries, which are
much more interesting.

16

3.2 Deeper Nesting

Without more ado, we can move on to deeper nesting. Here is a nested relation with four
levels.

Faculty
(dept Profs)
(name sal office Students)
(name office Courses)
(numb grade)
CS Pat 56 312 Kim 300 612 A

617 A-
James 300 612 B+
617 A-

Sue 42 322 Chris 328 506 A

Luc 48 319 Kim 300 612 A

617 A-
EE Pat 556 312 Kim 300 612 A
617 A-
James 300 612 B+
617 A-

Denis 52 412 Joe 425 530 B+
Peter 426 531 A-

It is a little strange, in that data is repeated, but this helps us make some points in the
following query.

Find depts with two A grades.

Note that this query crosses from the lowest level (grade) to the highest (dept). Here is the
formulation.

let CA be red + of if grade = "A" then 1 else 0;
let SCA be [name, [CA] in Courses] in Students;

let PSCA be [red ujoin of SCA] in Profs;

let ct be red + of CA;

Ans <— [dept] where ([cf] in PSCA) > 2 in Faculty;

Figure 7 follows the workings step by step. In this example, for legibility, most virtual
attributes are shown as they would be actualized by intermediate projections. Also, the eight
relations PSCA (one for each of the four tuples of Profs for Dept=CS, and one for each of
the four tuples of Profs for Dept=EE) are shown as two, so that the redundancies of the three
repetitions of each different value are not shown.

Note the three lifts via anonymity. The first is for CA when it is actualized in SCA.
The second and third are for PSCA and ct when they are used in the where clause of the
T-selector on Faculty. This eliminates the three intermediate levels in the query.

Throughout this formulation of the query, the rule must be kept in mind that no lifting
can be done except in a singleton relation. Thus, CA, PSCA and ct are each defined as
reductions.

17

Faculty
(dept Profs

(name sal office Students) SCA PSCA
(name office Courses) (name CA) (name CA)
(numb grade) CA
CS Pat 56 312 Kim 300 612 A 1 Kim 1 Kim 1
617 A- 1 James 0
James 300 612 B+ 0 James 0 Chris 1
617 A- 0
Sue 42 322 Chris 328 506 A 1 Chris 1
Luc 48 319 Kim 300 612 A 1 Kim 1
617 A- 1
EE Pat 556 312 Kim 300 612 A 1 Kim 1 Kim 1
617 A- 1 James 0
James 300 612 B+ 0 James 0 Joe 0
617 A- 0 Peter 0
Denis 52 412 Joe 425 530 B+ 0 Joe 0
Peter 426 531 A- 0 Peter 0

Figure 7: A Nested Query Across Four Levels

3.3 Recursive Nesting

The ultimate nested relation defines a recursive data type, in which nesting is permitted to
arbitrary depth. Here is a reformulation of the cost problem for a bill-of-materials from this
point of view.

relation Assembly(ld, Assembly, Cost) <—{ ("A", {("A1", {("A11", dc, 6),
("A12", dc, 57}, 3),
("A2", dc, 2D}, 4)

5
Assembly is recursively defined in terms of itself. The depth of nesting is controlled by
the data, with DC used to halt the recursion. Cost is interpreted at the lowest levels as
the purchase cost of the raw materials. At higher levels, it is the cost of assembling the
component.
The calculation of the total costs is written recursively in the domain algebra.

let CalCost be if Assembly=DC then Cost else Cost + Assembly.SumCost,
let SumCost be red + of CalCost,
TotalCost <— Assembly.SumCost,

Here are the workings of this query in this case. Since the recursion stops with CalCost
at the lowest levels, CC (CalCost) is the same as C' (Cost) whenever Assy (Assembly) equals
DC. SC (SumCost) is the reduction of this, and its level is then lifted by the anonymity
of Assembly.SumCost and added to Cost the next level up. So, working from the centre
rightwards, we have ((8 + 5) + 3 + 2) + 4 = 20.

18

NN

o e

Assembly
(Id Assembly c) cCc SC
(Id Assembly C) CcC SC
(Id Assy C) CC SC
A A1 A1l dc 6 6 11 3 14 16 4 20 20
Al12 dc 5 5 11
A2 dc 2 2 16

References

[DL87] V. Deshpande and P.-A. Larson. An algebra for nested relations. Technical Report

CS-87-65, University of Waterloo Computer Science Department, Waterloo, Ont.,
Dec. 1987.

[JS82] G. Jaeschke and H.-J. Schek. Remarks on the algebra of non first normal form
relations. In Proc. ACM Symposium on Principles of Database Systems, pages 124
38, March 1982.

19

