Copyright ©1998, 1999 Timothy Howard Merrett

Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
full citation in a prominent place. Copyright for components
of this work owned by others than T. H. Merrett must be
honoured. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or fee. Re-
quest permission to republish from: T. H. Merrett, School
of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the tax-
payers of Québec and of Canada who have paid his salary
and research grants while this work was developed at McGill
University, and from his students (who built the implement-
ations and investigated the data structures and algorithms)

and their funding agencies.

T. H. Merrett ©98/11

Concurrent Relational Programming
The Sequential (--) and Parallel (||) Combinators

relation CommonRel(attr) <— {(0)};
update CommonRel change attr <— attr 41 ||
update CommonRel change attr <— attr —1;

This executes the two statements in any order
(“parallel”), and leaves CommonRel unchanged
because the operations cancel.

relation CommonRel(attr) <— {(0)};

(LocalRell <— CommonRel --
update LocalRell change attr<— attr+1 --
CommonRel <— LocalRell

) |

(LocalRel2 <— CommonRel --
update LocalRel2 change attr<— attr—1 --
CommonRel <— LocalRel2

);

This has 20 possible interleavings. Two give the
right result, 0; 9 give -1; and 9 give 1.

T. H. Merrett (%98/11

Concurrent Relational Programming

Svynchronization

Synchronization is by a blocking T-selector:

if the result of an ordinary T-selector would be
empty, the process blocks until the operand is
changed to make the result not empty.

The where is replaced by when.

T. H. Merrett ©99/11

Svynchronization

This idea from Linda
(Carreiro & Gelernter, CACM 32 (1989) 444):

out("a string", 15.01, 17, "another string")
. puts a “tuple” into “tuple space’.
rd("a string", ? f, ? i, "another string")
. reads it, assigning values to the variables;
blocks if no corresponding tuple;
nondeterministically returns one, if many tuples.
in("a string", ? f, ? i, "another string")
. like rd but consumes the tuple.

T. H. Merrett ©99/11

Svynchronization

relation tSpace(S1, N1, N2, S2) <—

{("a string", 15.01, 17, "another string")};
synch <— when S1="a string"

and SI1="another string" In tSpace;

N.B. Does not consume; reads all.
(Nondeterminism is from another operator, an-

other syntax, pick).

T. H. Merrett ©99/11

Semaphores (Dijkstra, CACM 11 (1968) 341)

P(s) “proberen” if s.cnt=0 then WAIT
dec(s.cnt)
V(s) ‘“vrijgeven” inc(s.cnt)

waken waiters

R e
—e N\

— P V —

T. H. Merrett ©99/11

Semaphores
Here is a semaphore,

relation SEMAPHORE(Sem_name, Sem_count);
proc I(sema) is { SEMAPHORE <+ sema; };
proc P(sema) is
{ § <— when Sem_count > 0 In
(SEMAPHORE ijoin [Sem_name] in sema);
update SEMAPHORE change Sem_count <—
Sem_count — 1 using ([Sem_name] in sema);
b
proc V(sema) is
{ update SEMAPHORE change Sem count <—
Sem_count 4+ 1 using ([Sem_name] in sema);

e

T. H. Merrett ©98/11,99/11

Semaphores
and here we use it as a mutex.

relation Semi1(Sem_name, Sem_count)<—
{("semt", 1)};
I(in Sem1);
relation CommonRel(attr) <— {(0)};
(P(in Sem1) --
LocalRell <— CommonRel —-
update LocalRell change attr<— attr+1 --
CommonRel <— LocalRell --
V(in Sem1)
) |
(P(in Sem1) --
LocalRel2 <— CommonRel --
update LocalRel2 change attr<— attr—1 --
CommonRel <— LocalRel2 --
V(in Sem1)
)

T. H. Merrett (%98/11

A Brief History of Concurrency Mechanisms

Coroutines

SIMULA 67
Semaphores

"THE" multiprogramming system
(Conditional) Critical Region
(replaced by Monitors)

Monitors

Guarded Commands

Path Expressions

(limited, but cf. ALGOL 68)
CSP (Communicating Sequential
Processes

DP (Distributed Processes)

T. H. Merrett

Conway, 1963
Dijkstra, 1968

Brinch Hansen, 1972
Hoare, 1972

Brinch Hansen, 1973
Hoare, 1974
Dijkstra, 1975
Campbell

& Haberman, 1974

Hoare, 1978, 1985
Brinch Hansen, 1978

©99/11

