
IMPLEMENTATION: Data Structures
Relational Information Systems Chapter 1.2

(Revised 99/9)
Files and Secondary Storage

January 26, 2007

Copyright c©1999 Timothy Howard Merrett
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation in a prominent place. Copyright for
components of this work owned by others than T. H. Merrett must be honoured. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or fee. Request permission to republish from: T. H. Merrett,
School of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the taxpayers of Québec and of Canada
who have paid his salary and research grants while this work was developed at McGill University,
and from his students (who built the implementations and investigated the data structures and
algorithms) and their funding agencies.

All implementations in this book will use secondary memory. The primary memory of
a computer is “random access memory” (RAM): the time to find an item of data in RAM
is comparable to the time to transfer it to the processing unit of the computer. Secondary
memory, on the other hand, sacrifices access time to save money: the time to find an item of
data is usually orders of magnitude greater than the time to transfer it to primary memory.
(This transfer time for secondary memory, however, is often nearly the same as that for
RAM.) In terms of turn-of-the millenium technology, figure 1 shows the tradeoff between
these two characteristics for various types of device. We see that the access/transfer ratio
increases as the cost decreases.

A significant aspect of secondary memory is size. We will be considering applications
for which the data requirements potentially exceed RAM capacity by many times. Most of
the secondary memory technologies in figure 1 allow the medium to be removed from the
recording equipment, so that the storage capacity is effectively unlimited.

Secondary memory thus gives us the facility for large (because cheap) permanent databases.
Despite the plummetting cost of RAM, magnetic medium costs have dropped even more
rapidly, and application demands have grown even faster than the primary memory capacity
of any computer. For example, a LandSat satellite images the earth in terabytes (1012 bytes,
or a million megabytes), high-energy physicists talk about database capacities of petabytes
(1015 bytes, or a thousand terabytes), and the genome of a single human is a record of about

1

Hard Disk
20G
12ns

e
n
t
s

e
r

C

p

y

e
t

B

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Access/Transfer Ratio

RAM
100M
4ns

Tape

110ns
20G

Floppy
1.4M
22000ns

Recordable CD

60ns
650M

Figure 1: Cost vs. Access/Transfer Ratio for 1998 Memory Technology, Showing Typical
Unit Capacities and Transfer Times per Byte.

2

e.g., Disks

• have been around a long time

• recently improved faster than other
technologies

Platter

Track

Head

Arms

Cylinder

• – Latency @ 7200 rpm: λ = 1/(2 × 120) ∼ 4 ms.

– Arm movement, say, µ = 8 ms.

• Access time λ + µ = 12ms.

• With, say, β = 100, 000 bytes/track, transfer is 1/τ = 12Mbytes/sec

So access/transfer ρ = (λ+µ)/τ = 144, 000 (bytes which could have been transferred during
time spent seeking the data).

Figure 2: The Difference Between Primary and Secondary Storage

a gigabyte; the file for all humanity is1 six exabytes (6 × 1018 bytes). It is reasonable to
suppose that there will always be a demand for secondary memory.

Figure 2 shows how one form of secondary storage, the magnetic disk, is put together,
and, consequently, shows the large access/transfer ratio which is the price we pay for the
monetary cheapness of secondary storage.

Based on figure 1, the book assumes that the price to be paid for cheapness and per-
manence is a high access/transfer ratio. This ratio is central to our treatment of data
on secondary memory. Because access is expensive while transfer is cheap, data must be
transferred from secondary to primary memory in blocks (or pages: we will use the words
synonymously) of hundreds or thousands of bytes, and it must be organized so that each
block is used as fully as possible while in RAM.

Transferring a block in order to learn the contents of only a few bytes is not economical
if a great deal of information is to be examined in this way. Thus, much of the processing
that we discuss in this book will require data to be clustered so that the data can be read
and written with a minimum number of accesses to each block.

Because of this fundamental difference in memory organization between secondary and

1as of Oct. 12, 1999

3

primary memory, new data structures, new algorithms, and even new languages are required.
In a significant sense, computer science must be reinvented for secondary memory.

We next examine in more detail the characteristics of available types of secondary mem-
ory. Then we discuss the logical organization of data into files. Finally, we devote a section
to each of the three categories of data structures for secondary storage, according to their
access complexity: sequential, logarithmic, and direct.

1 Secondary Storage

Figure 1 shows the types of memory we will consider in this book. There are three categories:
RAM, which we are not concerned with; tape; and circulating memories. This last includes
the disk memories (hard, floppy, and optical), drum, and even technologies which have not
panned out commercially such as magnetic bubble memory. It is a category which has been
important since the 1940s and which shows no sign of being bypassed.

1.1 Circulating Memories

Circulating memories each have a characteristic rate of revolution, which may be a visible
revolution as for the disks (300–7200 r.p.m.) or a circulating current of magnetic “bubbles”
(∼ 7500 r.p.m.). They therefore have a latency time, which is how long one must wait before
the data comes around. The mean latency time is the time for half a revolution (50–4.2
msec. for disks, ∼ 4 msec. for bubbles).

Drums (and bubbles) have no further delay: they are “head-per-track” devices in which
many revolving loops of data are examined in parallel. The disk devices, on the other hand,
rely on a single head to handle many tracks: each track is a circular band on the spinning
platter, and the head is a reading/writing device on a mechanical arm which can move in
and out between the concentric tracks. For disks there is thus a delay associated with the
motion of the arm from one track to another. The averge arm delay for disks can be from
7.8 to 95 msec. Hard magnetic disks usually have a more complicated structure than floppy
or optical disks, with several disk surfaces on a common spindle, and a rake of arms moving
simultaneously from one set of tracks (one track per surface) to another. Thus the natural
grouping of tracks is not in terms of the few hundred on each surface, but in terms of tracks
of common diameter on the ten or so surfaces. This group of tracks is called a cylinder, and
the mechanical arms are considered to move from cylinder to cylinder.

The track is thus a notion common to all circulating memories, namely the loop of data
that can be read or written by one head in the period of revolution. The track length limits
the size of the blocks of data that can be transferred to and from primary memory. This
can run from a few thousand bytes on a floppy to hundreds of thousands on a hard disk or
optical disk. In most cases, this size is so great that other considerations limit the block size.
One such consideration is sectoring of the track into smaller units, as is usually done with
floppy disks and other media for small computers.

Blocks of data are normally transferred to and from a buffer in primary memory, and
buffer capacity is a limiting factor on the blocksize. The most important consideration is the
tradeoff between the amount of data transferred with each block and the number of accesses
required.

To fix our ideas for the discussion and calculations of this book, we will describe two
magnetic disk devices and one optical disk whose specifications, given in figure 3, are about
state-of-the-art for 1999. One is a removable hard disk, DISK2000, one is a two-sided 3 1/2"
floppy, FLOPPY2000, and one is an optical disk, RCD2000.

4

τ ρ σ λ µ
TRANSFER ACCESS/ ROTATION AVERAGE AVERAGE
TIME/BYTE TRANSFER SPEED LATENCY ARM DELAY

RATIO
DISK2000 8.3nsec. 1,440,000 7200 rpm 4.2ms 7.8ms
RCD2000 0.7µsec. 240,000 600–300 rpm 75ms 95ms
FLOPPY2000 22µsec. 4,000 600 rpm 50ms 38ms

β γ ν TOTAL
BYTES/ TRACKS/ CYLINDERS CAPACITY
TRACK CYLINDER /UNIT

DISK2000 1,000,000 10 20000 20GB
RCD2000 140,000–280,000 1 3095 650MB
FLOPPY2000 4608 2 160 1.4MB

Figure 3: Specifications for Magnetic Disk Units to be Used in This Book

The critical quantity for each of these disks is the access/transfer ratio, which is the
abscissa of figure 1. It is the ratio of the time required to find the data (rotation latency
plus arm movement) to the time required to transfer a byte of data,

ρ = (λ + µ)/τ,

and may be thought of as the number of bytes that could be read while the disk is searching
for the beginning of the block.

Circulating memories are often called “direct access storage devices”, because the heads
can move to any cylinder and start reading or writing once the data has come around.
(They must not be abused by being treated as RAM: we have seen the great differences in
access/transfer ratio.)

Exercise 1.2-1 Confirm that the following relationships hold in figure 3:
λ = 1000× 60/(2× σ); τ = 60× 106/(σ × β), or τ = 60× 109/(σ × β); ρ = 1000× (λ +
µ)/τ, or ρ = 106 × (λ + µ)/τ .
What is their significance?

Exercise 1.2-2 How do we calculate the total capacities of DISK2000, FLOPPY2000, and RCD2000?

1.2 Tape

Magnetic tape is in a category of its own. It does not have the direct-access capability of
circulating memories; the avereage wait to access data somewhere on a 300-foot reel of tape
at 80 inches per second is half the tape, or 45 seconds. It is a sequential memory, and
characterized by a very high access/transfer ratio. Once the data has been found, however,
the transfer rate is very good and can compete with any of the circulating memories. With
a recording density of 10 megabits per inch, a nine-track tape (which transfers 9 bits in
parallel to give a full byte plus a parity bit) at 80 inches per second transfers 800 megabytes
a second, a transfer time of 12.5 nanoseconds per byte. Tapes are simple and cheap, which,
together with their data transfer rate, makes it likely that they will continue to be used
whenever sequential processing is appropriate.

Tape imposes no limits on the block size of data written on it, except that between each
block on the tape there is a gap of empty tape required to accommodate the deceleration of

5

τ ρ σ λ
TRANSFER ACCESS/ TAPE AVERAGE REWIND
TIME/BYTE TRANSFER SPEED LATENCY TIME

TAPE2000 12.5nsec. 20 G 80 ips 25 sec. 25sec.

δ ι φ TOTAL
RECORDING INTER- TAPE CAPACITY

DENSITY BLOCK GAP LENGTH
TAPE2000 1MBpi 0.2 in. 3250 ft. 40 GB

Figure 4: Specifications for Magnetic Tape Units to be Used in This Book

the tape when it stops between blocks and the acceleration when it starts up again. Such an
interblock gap could be about 0.2 inches, or the equivalent of 2 megabytes. Thus a blocksize
of less than this many bytes will result in a half-empty tape. The longer the block the more
economical the usage of tape.

As with DISK2000, RCD2000, and FLOPPY2000, we invent a tape unit, TAPE2000, for
the discussion of this book. Figure 4 describes the device.

Exercise 1.2-3 Confirm that the following relationships hold in figure 4:
λ = 12 × φ/(2 × σ); τ = 106/(δ × σ); ρ = 106 × λ/τ = 12 × φ × δ/2.
What is their significance?

Exercise 1.2-4 How do we calculate the total capacity of TAPE2000

2 Files

Figure 5 shows the basic concepts and quantities associated with files. Logically, a file is a
set of records. Physically, the records are grouped into blocks or, synonymously, pages. The
example shows a completely full file, with no wasted space (or space available for future
insertions): the load factor = 1.0. It also shows a file of fixed-length records, with an exact
integer number (2) of them occupying a block. For such fixed-length records, which are
mainly what we will consider in the book, we can work with simple quantities:

N number of records in the file
n number of blocks in the file
b number of records in each block
α load factor = N/nb

The block is the unit of access, and its size is determined by considering the access-
transfer ratio, the RAM available for buffers, the characteristics of the secondary storage,
and the nature of the application.

The records are divided into fields, such as Ord#, Cust, and Sales in figure 5. Often one
or more of these fields is used to identify which record(s) will satisfy a search. For instance,
Ord# could be used to identify the unique record with Ord# = 1, or Cust could be used to
identify the two records with Cust = NYC. A field, or set of fields, which identifies a unique
record is called a key. A key or any set of fields used in a search is often called a search key.

6

File

Record

Page/

Block

{

{
{

Ord# Cust Sales
1 GNS E

2 NYC N

3 L&S E

4 PR H

5 NYC H

6 B&O H

7 GTRC N

8 GNS E

N =
8 records

n = 4 blocks
blocksize

b = 2
load factor

α = 1
n = dN

bα
e

Figure 5: Characteristics and Quantities for Files

2.1 Access Speed

Apart from these notions and quantities which are common to all files, there are four dif-
ferent classifications which one can make on files. These classifications characterize the file
structures and the algorithms used to create, search, and modify them. They also character-
ize applications which require file structures, and so can be used to identify good structures
for any particular application.

The first classification is according to access speed. Files may be grouped by access
complexity: linear, logarithmic, and constant. These groupings correspond to sequential,
tree, and direct files, respectively.

Sequential files distinguish the first record, following which all subsequent records may
be accessed only by reading sequentially through the file: the cost to read all N records is,
of course, to read all n blocks; the cost to read only one record can vary from 1 (to read the
first) to n (to read the last), with a mean of n/2 (on average, half the file must be read).
(This mean cost depends on aspects of the sequential file, and will be refined later.)

Magnetic tape is a good medium for sequential files, but so is circulating memory. A
sequential file on disk need not be stored as a sequence of contiguous blocks: the sequence
could be maintained by storing addresses (pointers) for subsequent blocks (but not pointers
to individual records).

Logarithmic files structure the blocks as a tree, which in a search for any one record
need only be read from root to leaf (at most), a cost of some log n accesses. Figure 6 shows
a popular example, the B-tree. In this example, the blocksize is 2 records, and the fanout
could vary from 2 to 3. The maximum number of accesses in any search for a single record
is 3, which happens to be dlog

2
ne for the n = 6 blocks holding the N = 8 records. Later

analyses will quantify costs much more precisely.
On secondary storage, the base of the logarithm is significant (in RAM it is always 2)

and B-trees and other logarithmic files are used with large bases.
Another logarithmic file is the digital tree, or trie, in which the decisions about which

subtree to go to, in searching from the root for a particular record, are made by looking at the

7

1 GNS E 3 L&S E 7 GTRC N
8 GNS E

4 PR H

2 NYC N 6 B&O H

5 NYC H

Figure 6: Logarithmic Files: a B-tree

bits of the search key, instead of by comparisons with key values stored in the nodes. Thus,
tries have almost no storage overhead, and, because many keys have common prefixes, and
therefore share paths from the root, tries can offer tremendous data compression. Figure 7
shows a trie which has been paged for secondary storage, that is, divided into blocks.

Another property of tries is their capability for variable resolution when the bits are
ordered with the most significant bit at the root. Figure 8 shows a “kd-trie” used for spatial
data and the variable-resolution images that result when the trie is scanned to variable
depths from the root.

Tries were originally proposed for text data, and figure 9 shows a “truncated” trie and a
“PATRICIA” trie representing all the substrings of the (very brief) text, mocha.

The third and last group of file structures in the category of access speed is direct-access
files. An example is multipaging, which views records as points in a space, and attempts to
partition the space rectilinearly so that the same number of records fall in each partition,
or page. Figure 10 shows a two-dimensional partitioning of eight records into two pages
(N = 8, n = 4). The records are abbreviated from, say, 1 GNS E, to 1 in the row headed
GNS and in the column labelled E. The row headings give all the values for the second field,
and the column labels give all the values for the third field. In figure 10, there should be
two records per page (b = 2), but only two of the four pages have two records; one page has
three and the fourth page has one. So either the page size will have to be bigger, b = 3, or
one of the pages will have to overflow in an implementation.

Access to a single record is easy in multipaging, because the partition is rectilinear: look
up the desired values along the axes (e.g., GRTC and N), and retrieve the indicated page.
Multipaging also supports “partial match” queries, such as for GRTC only: retrieve all the
pages in the row; other pages are irrelevant and need not be retrieved.

Finally, files can be hybrids. The multipaging of figure 10 does not readily permit
retrieval on the first attribute, 1, 2, ... Figure 11 shows a B-tree “index” to this attribute
in the multipage file. Instead of data, the index contains pointers to the page numbers.

Another way of hybridizing is to combine one file structure with ideas from another. For
example, z-order is the one-dimensional ordering of multidimensional data that is induced
by traversing a kd-trie from left to right. This idea can be combined with a one-dimensional

8

Sample data:

00000011

00101100

10000000

10000101

10001000

10100000

10101100

11000000

0

0

2

2

5

8

5

1T = 0

B = 0

4

7

X

(Digital trees Information retrieval)

Figure 7: Logarithmic Files: a Paged Trie

1

2

3

4

7

6

1

3

2

4
5

2 3 6 7 5 4 1

Figure 8: Kd-Tries and Variable Resolution

9

1

cha ha ochamocha a cha ha ochamocha

1) Truncated Trie 2) PATRICIA Trie

4

a

Sample “text”:
mocha : 0110110101101111011000110110100001100001 with “starts” every eight bits.

Figure 9: Truncated Tries and Text Data

B&O 6
GNS 1,8
GTRC 7
L&S 3
NYC 5 2
PR 4

E H N

Figure 10: Direct Access Files: Multipaging

10

5

3

1
2

4 7

0 1 2 3

6

8

B&O 0 6 1

GNS 1,8
GTRC 7
L&S 3 2 3

NYC 5 2
PR 4

E H N

Figure 11: A Hybrid of B-Tree and Multipaging

11

access method, such as a B-tree, to give it multidimensional capability.

In this book we will use this spectrum of access speeds to organize the discussion of files.

2.2 Activity, Volatility, and Symmetry

The remaining three classifications are simpler. Activity, often known as selectivity, which
we take to be a synonym, is a precise quantity, the ratio of how many records are needed to
satisfy a particular query or transaction to the total number of records in the file. Thus, if a
student file contains 30,000 records for 30,000 students, and an application wishes to know
the particulars for one student, the activity is 1/30,000, or 0.003%. Another application,
using the same file, may need to calculate the mean GPA (grade point average) for all
students: here the activity is 1 (100%), since all records are needed. Thus, a file designed to
support both of these needs must be capable of both low activity and high activity.

The practical distinction between low and high activity is to consider that a sequential
file supports high activity while a direct file supports low activity. It is remarkable that the
break-even activity, at which both types of file are equally good, is only a small fraction of a
percent, a result we will show as soon as we can analyze both file structures. This says that
sequential files are better than anything else over a surprisingly large range of activity; it is
a fortunate fact, if obscure to many professionals, because sequential files are also by far the
easiest to build.

Volatility is less quantifiable. It refers to the rate of additions to, deletions from, or
changes in the file required by an application. We can loosely characterize volatility as
low or high, and even suggest that “low” often means “zero” and “high” means anything
else (because file structures are sometimes either completely intolerant of volatility or else
entirely flexible). But this is simplistic, and there is no silver bullet that we can use to avoid
thinking about the particular circumstances of file and application. For instance, a file of
stock market prices may grow rapidly (high volatility) as end-of-day prices or daily highs and
lows are added, but the application may require only a running average, in which case a very
simple file structure could be used which would not normally be thought of as a structure
which supports high volatility.

Symmetry pertains to the number of different search keys supported by a file structure,
and their search costs. For example, a printed telephone book is not symmetrical because it
may be searched by name logarithmically, but may be searched by address or by phone num-
ber only linearly. (This difference is enough to make the latter two impossible in practice.)
A single file structure which would support equally rapid access by both name and phone
number, independently, would have higher symmetry. This measure is also not quantifiable
and we tend to distinguish only low and high symmetry, with “low” usually meaning that
the file is accessible on only one key (which may be a single field or a combination of fields),
and “high” meaning that more than one key may be used with equal effectiveness. Clearly,
file structures such as multipaging and kd-tries play a role here.

12

