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While it is impossible to improve on the worst case performance of O(log N) for a search
for one record in N using comparisons, we can expect a search to cost less if we do not use
comparisons. This is the secret of direct access: instead of comparing the search key to
values already in the file, use the search key to calculate the address where that record is to
be found.

Unfortunately, hardly any such calculation is completely accurate, and collisions arise in
which two different search keys are mapped to the same address. So direct access techniques
consist of two steps: the key-to-address transformation, and the collision resolution.

We look at two kinds of key-to-address transformation, hash functions, and tidy functions.
We will consider collision resolution in the context of hash functions, because it is easier to
understand collision resolution once we have a particular key-to-address transformation in
mind.

Before we start, we should look at the problems inherent in key-to-address transform-
ations. Consider the nine-digit social insurance numbers (SINs) used in a country of 107
people, and suppose that, on secondary storage, blocks will hold 100 records. The blocks will
be the addresses, and so there will be 10° of them for the 10° possible keys. The objective is
to map all these key values to addresses in such a way as to minimize collisions.

Figure 1 shows three key-to address transformations for this example. The first is straight
scaling: divide each SIN by 10*, to reduce the range from 10° values to 10% block addresses.
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Figure 1: Key-to-Address Transformations



This simple approach would be fine if each SIN were a multiple of 10%: every address
would be occupied and every SIN would have a unique address. However, data (including
SINs) are usually clustered in irregular ways. This is shown by an (artificial) distribution
curve in the key space. The scaling transformation would just squeeze these clumps by the
factor of 10, leaving a lot of empty space and a lot of collisions in the address space.

One way of smoothing out the clumps while doing the transformation is to attempt to
generate a uniform distribution in the address space. This can be done by a randomizing
transformation, which is shown second in figure 1. This method is known as hashing.

Hashing unfortunately does not preserve order, a useful requirement for high activity,
particularly range queries. So figure 1 finally shows an order-preserving transformation.
This is called tidying.

1 Hashing

The goal of hashing is to spread the keys uniformly over the address space. It is difficult
enough to achieve uniform distributions with a single random number generator; doing it for a
set of keys with an arbitrary distribution of its own is particularly challenging. The choice of
hash function requires a blend of theoretical considerations and experience with actual files.
For primary memory, hash functions have been extensively studied ([Knu73], sect. 6.4).
For secondary memory, requirements are less stringent: speed is of less concern, because
calculating an address is negligible in comparison with seeking the block so designated; and
the ability of the hash function to resolve collisions is also less important, because the statistics
of large block sizes reduces the severity of collisions when they happen.

So we will discuss only two of the most successful hash functions, division-remainder, and
multiplicative. Both assume the hash key is an integer: this is not a limitation, because any
key can be represented as an integer after a little manipulation (such as exclusive-oring the
bytes of the hash key, or treating letters as integers to base 26).

The division-remainder method is the basis for random number generators, and so we
hope it will also smooth a set of keys into a uniform distribution. The hash function,

h(k) = k mod n

generates n addresses, 0 ... n — 1, and works best for a prime value for n. A prime number
is chosen because a number with factors, particularly small ones, tends to preserve the regu-
larities that are found in most data, thus causing collisions. For instance, if n is a multiple of
2, k mod n will map even ks into even addresses and odd ks into odd addresses: an imbal-
ance of evenness and oddness among the keys will appear among the addresses, with more
collisions for whichever class has more keys. If n is a multiple of f, the keys and addresses
will be partitioned into f classes, with no crossover, and with similar problems in the case
of imbalances.

Multiplicative hashing was originally invented for computers with hardware multipliers
but no division hardware, a common early design. It remains useful when file sizes are powers
of 2, which is the other extreme from files with a prime number of blocks. The hash function,

h(k) = ((Ak) mod w) | m

returns the first m bits of (Ak) mod w, which is the first m bits of the less significant word
of Ak, since w is meant to be the word size, e.g., w = 232. A is a large, predefined number,
advisedly related to the “golden ratio”, i.e., near (v/5—1)w/2 (see [Knu73], sect. 6.4). (This



is written with the mod operator for a semblance of formality, but of course it is computed by
bit masking. The product, Ak, of two numbers occupying one word each needs two words,
say lg w bits each, and all we do is return the most significant m bits of the less significant
word.)

We will also discuss only two methods of collision resolution, linear probing and separate
chaining. In primary memory, these represent two extremes of performance, with linear
probing being simple to implement but having relatively high cost, especially when the file
is quite full. On secondary storage, however, the large blocksize reduces the severity of the
collisions and the performance of two methods is much more close than in RAM.

Linear probing simply backs along the file, one block at a time, until the record is found
(or, when inserting, a place is found to put it). If a record is not found on its home block,
at address h(k), then block h(k) — 1 is tried, then block h(k) — 2, and so on. (The reason
for decrementing instead of incrementing is also historical, and may be changed: register
hardware is able to decrement, with a test for 0.) The decrementing is cyclical: when block
0 is reached, the next block is n — 1.

A problem arises for linear probing when the file gets full, or almost full. The overflow
probing can work its way all, or almost all, the way around the file, accessing n blocks in
the worst case. Thus, the collision resolution gives hashing linear (O(n)) complexity, even
though the expected cost is order 1.

Separate chaining is more elaborate. In each block, pointers are maintained to (usually
separate) overflow blocks, and a collision on the home block causes the pointer chain to be
followed until the record is found, or can be placed. The coding makes a straightforward
pointer, or double-pointer, chain. But it is more involved than linear probing, which requires
no additional data structures.

Even separate chaining suffers from O(n) complexity, because every key might happen to
hash to the same home block. This happens to linear probing, too, but is much less likely to
arise than the case of probes to the whole file, discussed above.

With these two methods of collision resolution, we have six algorithms: three each for
search, insertion, and deletion.

e Algorithm SS (Hash search with separate chaining)

Algorithm SI (Hash insert with separate chaining)

Algorithm SD (Hash delete with separate chaining)

Algorithm LS (Hash search with linear probing)

Algorithm LI (Hash insert with linear probing)

Algorithm LD (Hash delete with linear probing)

These are all straightforward except for algorithm LD, and we leave them as exercises. In
algorithm LD (figure 2), once the target record has been deleted, we must move up all
overflow records in the chain for its home block, as long as we encounter full blocks on our
way down from the home block. This is because deletion leaves an empty location, which
is taken by the search and insert algorithms as indicating the end of the overflow chain. We
must be sure we have really come to the end of the overflow chain. As step LD2 works down
the blocks below the home block, decrementing f on its way, it is not restricted to moving
up only records that hash to the original home block. It is free to move up any record, r, on
current block f, as long as h(r), its home block, does not lie between f and the block, oldf,
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1. Original deletion

N I I
0 f  h(r) n-1

2. Working downwar ds

N I S O I I A
f h(r) oldf

LD1 (Remove record) £ <— loc(r); oldf <—f; mark £ on oldf empty

LD2 (Move later records up)

If block f not full (apart from deletion, if any, just made by LD1), stop.
f<—if f=0thenn —1else f —1.
If f = original home block, stop. /* else full file can thrash */
For each record, r, on block f

if ncycle(f, h(r), oldf)

/* h(r) not cyclically between f, oldf or = oldf; i.e., h(r) at or beyond
oldf */

then {copy r to £ on oldf, goto LD1}.

Goto LD2.

Figure 2: Algorithm LD: Delete Record r Found on Block f



Example: delete 10 from

| | 3,1 9,16/17,10| | 3 1 5 s 1o
0 1 2 3 4 5 6 h(r) 2 2 3
oldf 3 1

Figure 3: Algorithm LD: Delete Record 10

where the empty location has been left. For such a record lies on an overflow chain which
includes both f and oldf.

Figure 3 shows the example of deleting 10 from a 7-block file in which only one record,
3, overflows, with a chainlength of 2 extra probes. The sequence of values of f, and, corres-
pondingly, h(r) and oldf, are shown in the table. The end result is that 3 is moved to where
10 was.

If block 4 had been full (say, with 18 and 25), and block 1 had 4 instead of 3, the 4 would
have moved up to replace 10, even though it is not on the chain from the block (3) where the
original deletion of 10 had been done.

1.1 Volatility: Virtual and Linear Hashing

Algorithms SI, SD, LI, and LD permit a hash file to grow and shrink, but this volatility is
limited by the number of addresses, n, specified in the hash function. To grow beyond this
limit, the file requires another hash function. An unsatisfactory way of using a second hash
function would be to rehash the entire file once all addresses allowed by the original hash
function are full (or once some specified load factor, oy, has been reached). Such a complete
rehash is tantamount to changing the access structure, and thus violates the strategy we
already laid down for dynamic files, preserve the access method (see section 1.1 of chapter
1.2, on B-trees).

The tactic we also discussed at that time, split the blocks on growth, also helps us here. If
we had a hash function, h(k) = k£ mod n, and a second hash function which allows the file to
double in size, h'(k) = k mod 2n, then any key, k, hashed by h(k) to an address, a, will be
hashed by h'(k) to either of @ or a + n. Thus, rehashing block a using h'(k) as a new hash
function, will split @ into a and a + n. Similarly, on deletion, rehashing blocks a and a + n
with h(k) would merge them into block a.

The search tactic is thus to use h(k), somehow determine if the block a has been split,
and if so try again with A'(k).

For continued growth, we will eventually need a further hash function, say h”(k) =
k mod 4n, which allows the file to double again. In order that matters not get out of hand,
we impose the rule that no more than two hash functions may be operative at any one time.
That is, we must split every block in the file, and so complete the doubling of the file size,
and retire the first hash function, before we may introduce a third hash function.

Before we discuss systematic ways of doing all this, we should examine the criteria under
which we split a block. One such criterion could be: when the block overflows. However,
any one block may have very bad statistics and overflow repeatedly, or may not be split in
half by the new hash function, while the new blocks created by splitting may reduce the load
factor, «, to an unacceptably low percentage. Furthermore, if this split criterion wants us to
split the same block twice in a row, we must not because of the rule limiting us to two hash



e Initially, j = 0,p = 0,n = v and, for any k, h_ (k) = —1.

LHI1 (Hash.) a < if p=0or h;j (k) < p then h;(k) else h;_1(k). If not already there, store
r in block a or as an overflow to block a. N + +.

LHI2 (Split disallowed.) If N/(n + 1)b < « then terminate.

LHI3 (Allocate.) If p = 0 then j + +. Allocate block p + 2/ "1v. n + +.
LHI4 (Split.) Rehash block p, including overflows, using h;.

LHI5 (Increment pointer.) p < if p > 297!y then 0 else p + 1.

Figure 4: Algorithm LHI: Linear Hash Insert. Insert Record r with Key &

functions at a time; so we may have to split some other block.
We discuss two split criteria which use global considerations instead of being tied to
particular blocks. One depends on the load factor, o, defined in section 2 of chapter 1.2.

The other depends on the probe factor, m = tetalno. probes (or on the optimistic probe factor,

N
Top = 1 + totaloverllows “which assumes that any record which overflows its home block can be

found in exactly one further probe).
e (Lazy): split if 7 > mg;
e (Greedy): split unless this makes « < .

The first tests the probe factor every time an insertion causes a new overflow, and if it now
exceeds some threshold, m, allows a split. The second tries to split after every insertion,
unless this would make the load factor drop below a predetermined threshold, ay.

The first is difficult to evaluate. We must keep track of the total number of overflows
to date, and the total number of records, and modify these on each insertion and on each
split. Moreover, it has the difficulties encountered above: splitting a block may not affect
the probe factor at all, if its statistics are bad, but yet the load factor will be reduced in an
uncontrolled way.

The second is easy to evaluate. o = . After an insertion it will be X and after

nb nb ?
insertion and split it will be (flv :ﬁb. Furthermore, it affects a exactly as the appropriate one

of these expressions says, and it is as likely to have a beneficial effect on the probe factor as
the lazy criterion.

We prefer the greedy split criterion. But neither one dictates the particular block to be
split. So we can just split them in some systematic way, such as block 0 first, then block
1, and so on up to block n — 1. This is called linear hashing, and requires us to store,
in addition to the data, only a pointer to the next block to be split. Figure 4 shows the
algorithm to insert using the greedy criterion. Here, p is the number of the next block to be
split, and is (re)set to 0 as soon as the file size has doubled and the splitting cycle is starting
again. v is the original file size. The hash function, h;(k) = k mod 27v, is an anomaly, using
division-remainder based on an address size with a power of 2 as a factor. The powers of 2
permit the doubling, and the division-remainder permits the splitting.

Figure 5 shows an example of linear hash growth, with a blocksize b = 2 and inserting
the keys 3, 7, 2, 5, 6, 11, 4, 1, 9 in that order.
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n j p k hi(k) hj(k) a
1 00 3 0 0 o3 1/4<0.8
7 0 0 3,7 2/4<0.8
2 0 0 3,7 ]2 3/4<0.8
5 0 0 3,7 |2,5 4/4>0.8
2 10 o2 |1]3,7 |5
6 0 0 02,6 43,7 |5 5/6 > 0.8
321 0 13,7 |5 92,6 |
11 3 1 1 13,7 15,11 12,6 6/8 < 0.8
4 0 0 0 o4 ]43,7]5,1142,6 7/8 > 0.8
4 0 04 |15 |42,6 [43,7 |11
1 1 1 1 o4 ]45,1|o2,6 [43,7 |11 8/10 > 0.8
5 3 1 0 15,1 (22,6 33,7 [11 44 |
9 1 I 1 5,1 1942,6 |33,7 [1144 | 9/12<0.38

Figure 5: Example for Algorithm LHI

e Initially, 7, p, and n are as they were left by the last call to LHI or LHD.

LHD1 (Hash.) a < if p =0 or h;j_1(k) < p then h;(k) else h;_1(k). If found, remove r from
block a or from the overflows to block a. N — —.

LHD2 (Merge disallowed.) If N/nb > «aq then terminate.

LHD3 (Decrement pointer.) p < if p = 0 then 27'v — 1 else p — 1.

LHD4 (Merge.) Rehash blocks p and p + 29~ 'v using h;_;.

LHD5 (Deallocate.) Deallocate block p+2/~'v. n — —. If p =0 then j — —.

Figure 6: Algorithm LHD: Linear Hash Delete. Delete Record r with Key &

To delete, we reverse the process, merging instead of splitting. The merge criteria are the
converse of the split criteria: greedy becomes lazy, and vice versa.

e (Greedy): merge unless this makes 7 > m;
e (Lazy): merge if o < ay.

We are either trying to keep m below (but near) 7o, or a above (but near) oy, as before. And,
as before, the « criterion is easier and more effective. Figure 6 shows the merging algorithm
under this criterion.

Figure 7 shows an example of linear hash shrinkage, with a blocksize b = 2 as before and
deleting the keys 7, 6, 2, 1, 11 in that order.

Linear hashing [Lit80] was preceded by wvirtual hashing, in which a block is split not
because its turn has come in a simple linear order, but because an insertion was being made
in it when the split criterion was satisfied (still subject to the rule that no more than two

no split
no split
no split
split!
split!

no split
split!

split!

no split



n j p k hijk) hj—i(k) a
5 3 1 7 7 3 1 15,1 1942,6 |53,11 |44 8/10 > 0.8 no merge
6 6 2 2 9 115,1 |9 92 313,11 | 44 7/10<08 merge!
0 o4 /5,1 |9 92 313,11
4 2
2 2 0 2 o4 15,1 92\ \33,11 6/8 < 0.8  merge!
1 Ja 15,1 ]9, 3,11,
3
1 1 ol4 15,9 3,11 5 5/6 > 0.8 mno merge
11 3 1 ol 4 15,9 32‘ ‘ 4/6 < 0.8  merge!
0 Ja |.5,9 |3
2 1

Figure 7: Example for Algorithm LHD

hash functions may be operative at once). So new blocks are created in any order, generally
leaving gaps in the second half of the doubling file, until all blocks in the first half have been
split. Not only is this inelegant, but also a bit map of the whole file is needed to determine
which blocks have been split (n bits in RAM) instead of a simple counter (log n bits in
RAM).

1.2 Symmetry: Multidimensional Hashing

Since a hash function can work on only one key, it would appear to be difficult to use hashing
for multidimensional queries such as partial match. In fact, we can hash independently on
each of several keys, to get a coordinate for each one. We can then use these coordinates
to address an array of blocks, using the usual “row-major” or “column-major” addressing
functions to convert the multiple coordinates to a single, one-dimensional address.

Figure 8 shows a two-dimensional and a three-dimensional array and the correspondence
between coordinate pairs or triples and the disk address of each block. The row-major
addressing functions are a(i,j) = wj + i (2D) and a(i,j, k) = hwk + wj + i (3D). Here,
w is 4 and h is 3, so in any column the jump is 4 between rows, and the jump between
corresponding positions in the three-dimensional planes is 12.

This figure illustrates an exact-match search for the two-dimensional key, (21, 35), and
partial-match queries for (37, *) and (¥, 23), where * means “any value”. These hash,
respectively, to (1, 2), (1, *), and (*, 2), using division-remainder. The last two are
identified as “segment”s in figure 8, and the first is the intersection of these two segments. So
the exact-match query can be done in one access (apart from overflows), the partial-match
query for (37, *) requires four accesses, and the partial-match queries for (*, 23) needs
three accesses.

(An asymmetry is introduced in that blocks 8, 9, 10, and 11, for the first partial-match
query, are contiguous on disk, while blocks 1, 5, and 9, for the second partial-match query,
are not. With luck, we could save seek times after block 8 in the first case, and the four
blocks could be retrieved faster than the three in the second case. But in both cases, only
the blocks needed will be retrieved, and this is much more symmetrical than fetching, say,
only four for the first query, but all blocks for the second.)



8l 9 10| 17| Segment

Segment

(0,0,2) {(0,1,2) |(0,2,2) |(0,3,2)
8 9 10 11
(0,0,1) {(0,1,1) |(0,2,1) |(0,3,1)

(0,0,0) |(0,1,0) {(0,20) {(0,3,0)

102 (1,12 (122 [(132)
20 21| 22| 23

w0 (1LY @21 (131
16 17| 18 19

1,00) |(1L,10) [(120) |(1,30) (i K)
12l 13 14 15 . a

_______

Figure 8: Array Addressing Functions in Two and Three Dimensions
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1.3 Activity: Hash Merge

Hashing is clearly good for low activity, but suppose we want to retrieve many records from
a hash file. The simple-minded approach is to hash repeatedly, once for each record. Because
many records are stored at any addresss (block), we run the risk of accessing the same block
repeatedly, leading to inefficiency factors of up to b, the number of records per block.

How can we organize our search so that repeated accesses are not made to the same
block? We need to group the queries according to the blocks to which they will be directed.
This could be achieved by sorting the queries into block order, which is hash-function order.
Then the queries and the file can be merged, comparing block addresses to hash values. If
the set of queries is too large for RAM, such a merge will be an especially effective way of
doing the high-activity search.

Two difficulties with this approach are: (1) that it is messed up by overflows, especially
if they are stored downwards from their home block by linear probing; and (2) that it cannot
work for range queries, in which not every key sought is explicitly provided, but only the
first and last keys in the ordered range.

2 Tidying

For range queries and other kinds of high-activity processing, especially when values sought
are not present in the file, we need to preserve order. Can we have Order-Preserving Key-to-
Address Transformations? We could call them tidy functions, as opposed to hash functions.
In the 1936 edition of Roget’s Thesaurus of English Words and Phrases, “tidy” falls under
the category of “reduction to order”. Since key-to-address transformations usually reduce a
key spece to a smaller address space, and tidy functions will be designed to preserve order,
this meaning of the word seems to capture our intention. Besides, we must avoid unwieldy
appelation, such as the acronym “OPK2AX”.

Figure 9 illustrates the two key-to-address transformations and how well they do with a
range query. The range of key values requires us to look everywhere in the hash file, but only
at a fraction of the blocks in the tidy file. So even if we could anticipate all the values in the
range, and do an explicit hash merge, as discussed in the previous section, the tidy function
would beat the hash function by several times.

The question is, how can we do this? The scaling key-to-address transformation at the
beginning of this chapter is a possibility, but we saw that it does not smooth out lumps in
the key distribution. If we think of the key-to-address transformation as a function plotted
with the keys distributed along the abscissa and the addresses along the ordinate, we see
from figure 10 that the cumulative distribution makes a perfect tidy function.

The interpretation of the cumulative distribution function for a field, A, is

D 4(a) = probability(A < a)

. As a probability, D 4(a) increases monotonically from 0 to 1. To scale this up to the integer
addresses for n blocks, we must first multiply by n and then take the ceiling. This gives the

tidy function
t(a) = [nDa(a)]

Of course, the practical solution is not so simple. To store the cumulative distribution
would require as much space as to store all the key values. So we must approximate.

11
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Figure 10: Cumulative Distribution as Tidy Function

The easiest approximation is piece-wise linear, using straight lines. To motivate the
following discussion, we anticipate. Figure 11 shows the optimal fit of four linear pieces to
33 key values, which happen to be the first two digits of a set of telephone numbers. We see
that the cumulative distribution is a step function, increasing one unit up the ordinate every
time it passes the value on the abscissa of an actual key.

The tidy function of figure 11 consists of four pieces, so we must be able to fit in RAM the
five endpoints of all the pieces, at two coordinates each (the page number, and the key value
of the last record on that page). They must be stored in RAM, otherwise the tidy function
does not support direct access. (On secondary storage, we have the advantage that, although
the tidy function may take much longer to calculate than hash functions, for instance, do,
this is usually negligible compared to doing the accesses to secondary storage for the data.)

To design such a tidy function for given data, we must determine how much room we can
allow in RAM for coordinate pairs, use this to decide how many linear pieces we can have in
the approximation, then find the best approximation using this many pieces.

The question is, how do we find the best approximation?

We now proceed to investigate this, starting with a simple case. The ordinate of figure 12
shows six records stored in three blocks, two per block: 1, 4, 9, 16, 25, 36. The cumu-
lative distribution is the parabola shown as a dotted line. It is approximated by the straight
line.

A perfect tidy function, the parabola itself, would show that blocks end at keys 4,16, and
36. But this would need an index entry for each block. To save space, we sacrifice accuracy.
The linear approximation is fine for queries in the ranges 0-4, 13-16, and 25-36; but queries
for keys in the ranges 5-12 and 17-24 will be incorrectly directed.

13



Figure 11: Optimal Approximation to Cumulative Distribution of Phone Numbers
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Figure 12: A Simple Key Distribution with Linear Approximation
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Figure 13: The Error o< the Area Between the Curves

These errors may be called “overflows”, although no records are out of place in the blocks
of the file, and although “overflows” will also include searches for records that are not in
the file. Figure 12 makes it clear that incorrectly directed query ranges can be answered
by (linear) probing upwards in the file. Thus, a search for key 5 will be directed by the
approximation to block 0, while it could only be found, if at all, on block 1.

The number of these “overflows” is proportional to the length of the heavy horizontal lines
shown between the true curve and the approximate curve. We can see from figure 13 that these
are in turn proportional to the area between the curves = (I1/2+ (I; +13)/2 + I3 /2)h = hXl;.

In many cases, more than one probe may be needed before we find any of the records
that the approximation says are on the page. Figure 14 shows cases of up to triple overflows,
indicated by thicker horizontal lines. The error is still essentially the area between the true
curve and the linear approximation. Where horizontal lines overlap, they do not count twice.
The upper lines may be thought of as being shadowed by the lines below. On top of each
bottom line, we build a number of blocks of height h equal to the number of overflows
represented by the line (in the figure, indicated by the thickness of the line). We can see that
hx the number of extra probes =~ the area between curves.

As well, figure 14 shows a case where the overflow probes must go downwards, and we
see that probes go up if the exact curve is above the approximation and down if it is below.

In some cases, we must do more than one probe before we find the page the record might
be on. To save the extra probes, we store a pointer on each page showing how far down to
skip before the search can possibly succeed.

We could even store a second pointer on each page showing where the probes must stop.
Then, instead of linear searches on the pages between the two extremes, we could even do
binary searches, since the records are always ordered. This reduces the worst-case complexity
to O(log n) from O(n), and speeds up the average search.

We have used single straight lines to approximate curves and have shown that the overflows
incurred are proportional to the area between the two lines. Now let us see if we can find the
combination of more than one linear piece that minimizes this area, and will thus be optimal.
Figure 15 shows a parabolic cumulative distribution mapping to six pages, and two different
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Figure 14: The Error Still oc the Area Between the Curves

optimal approximations, one of two pieces, and one of three.

To construct an optimal approximation of p linear pieces to n pages requires a search
through all possible ways of connecting point 0 to point n with p — 1 intermediate stops at
the n — 1 remaining points. Since we must explore all possible linear pieces, we need to know
a(i,j), the difference in area between the exact curve and a straight line, between point i

and point j. For the parabola of figure 15, this area is (v/7 — v/4)® and we get a matrix of

1
% values.

a(i

-~
—

Hlo 1 2 3 4 5 6

0 1.0 28 5.2 8 11.2 14.7
1 0.07 04 1 1.9 3.0
2 0.03 02 06 1.1
3 0.02 0.1 04
4 0.01 0.1
3 0.01
6

(In practice, we would not have an analytical formula for the areas, but we can always
calculate numbers like these.)

For p = 2, we can work directly from this table of a(, j)s. We need the minimum of the
five ways of getting from 0 to 6, stopping at 1, 2, 3, 4, or 5, respectively.

m(2,7) = minga(0,k) + a(k,j)
m(2,6) = min(1.0+3.0, 2.8+ 1.1, 5.2+ 0.4, 8.0 + 0.1, 11.2 + 0.01)
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= 3.9 via point 2

where m(p, j) is the minimum cost of breaking 0..j into p pieces; and where we must remem-
ber, when we find this minimum, how we got there.

More generally, we must construct a table of m(p, j)s. We can start with all the 1-piece
costs, m(1,j) = a(0, 7). For p =3 and n = 6, for instance, we could write recursively

m(3,6) (10 subproblems) = min:

m(2,5) +a(5,6)
(4 subproblems) = min:
m(1,4) + a(4,5)
m(1,3) +a(3,5)
m(1,2) + a(2,5)
m(1,1) +a(1,5)

m(2,4) +a(4,6)
(3 subproblems) = min:
m(1,3) + a(3,4)
m(1,2) + a(2,4)
m(1,1) +a(l,4)

m(2,3) +a(3,6)

(2 subproblems) = min:
m(1,2) +a(2,3)
m(1,1) + a(1,3)

m(2,2) +a(2,6)
(1 subproblem) = min:
m(1,1) +a(1,2)

Such a recursive approach requires

5, (,52)=(571) =00

k=p—2

calculations, an exponential. But many of these calculations are repeated, so we could re-
use the results (a process called memoizing) and reduce the cost. This is called dynamic
programming and reduces the complexity from exponential to cubic, a gain which makes the
difference between impossibility on one hand and, on the other, feasibility for problems small
enough to fit into RAM. (For a big problem on secondary storage, we will have to reduce the
cost further, which we discuss later.)

Here are the first two rows of the table for m(p, j). The first row is the same as the first
row of a(i,j). The second row is m(2,j) = ming<r<;m(1, k) + a(k,j). We subscript each
result with the point that gave the minimum cost. We see that m(2, 6) is 3.9 via point 2, as
we found before. So the optimal 2-piece partition bends at point 2.

m(p\j) |0 1 2 3 4 5 6
1 1.0 2.8 5.2 8 112 147
2 1.07y 14y 27 2.9 3.9

The remaining entries in the second row are needed to go on to build the third row, which
we now do: m(3,5) = mini«x<;m(2, k) + a(k, 7).
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m(p\j) |0 1 2 3 4 5 6

T 1.0 2.8 52 8 1.2 147
2 1.07, 1.4, 2, 2.9, 3.9,
3 1.1, 1.27, 1.5; 1.8,

From this we see that m(3,6) is 1.8 via point 3, which we got to (m(2,3)) via point 1. The
optimal 3-piece partition bends at points 1 and 3.

We could continue with further rows if we wanted to investigate approximations of more
than 3 pieces. (Note that the diagonal, m(i, 1), is just the cumulative sum of the diagonal of

";1) - ("_p)(g_pﬂ) different m(i, j)s, and is at

a.) The calculation for p pieces must find n(
worst cubic in complexity.

Practical problems do not have analytic cumulative distributions (which is why we cannot
use calculus to find the minimum area), but the procedure is the same once the a(, j)s are
found. For figure 11, the areas are 2x | step — triangle |, and are shown for the eleven pages
in the upper part of the table below.

28 34 37 46 23 63 66 69 74 84 93

1 23 o6 221 380 662 767 890 1121 1649 2188

12 3 114 231 453 540 645 846 1314 1799

34| 1398 3 o4 129 291 360 447 618 1026 1457

37 4o 1634 3 36 138 189 258 399 747 1124

46 | 5937 737 1937 9 33 66 117 228 516 839

93 | 9237 4037 1645 2846 18 3 30 111 339 608

63 | 19437 924 4046 3453 4653 3 12 63 231 446

66 | 24537 9553 4353 1953 3ls3 4963 3 18 126 287

69 | 31437 12253 7053 4666 2265 3466 9266 9 39 146

74| 44946 20353 11366 6les 3766 3leg 4369 6l 12 41

84 | 71953 3539 161g9 109¢9 7374 4974 4374 5574 7374 1
93 | 98853 460g9 24474 15474 10274 74gs 50g4 44gq 56g4  T4gy

The lower part of this table is the transpose of the m(p, j)s, with m(1, j) omitted because it
is the same as a(0, 7). It is calculated by dynamic programming, and goes all the way up
to 11 pieces (cost 74). From this we see that the optimal four-piece approximation shown in
figure 11 is via points 74 (cost 244), 53 (cost 203), and 37 (cost 92).

The cubic dynamic programming problem is still too big. n is the number of pages, which
could be in the millions.

We might divide the whole problem into a number of equal-sized smaller problems, then
run the optimizing algorithm on each of these. For example, a 1 Gbyte file of 1 Kbyte pages
would have n = 10% pages. Dividing this into 10,000 subproblems of 100 pages each would
require 10,000 O(100%)-sized optimizations, instead of one O((10°%)3)-sized optimization.

2.1 Symmetry: Multidimensional Paging

As with hashing, tidying can be applied to more than one field at once by simply tidying
the axes of the multidimensional space. Because n'/¢ is significantly smaller than n, even
for d=2 dimensions, we can suppose that the complete tidy function along each axis will fit
into RAM and there is no need to approximate. If this supposition is not true, we can make
optimal linear approximations as in the one-dimensional case.

The problem of finding the partitioning of points (records) in multidimensional space that
puts an equal number of points in each page, is constrained by the need to keep the partitions
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V=12 N=18 (®=2-Drecord)
f=2 Xs n=2*3=6

In d dimensions,
fi= n%’.

The d axial indexes,
each of size n%',

might fit in RAM.

axial indexes V=14

Figure 16: Rectilinear Partitioning for Efficient Addresing

rectilinear, so that the addressing can be done entirely via the axes. Figure 16 shows a two-
dimensional distribution of records and a three-by-two rectilinear partitioning, requiring 3
+ 2 = 5 index entries for the 3x2 = 6 pages (dashed lines). This partitioning is probably
not optimal, and certainly does not have exactly three records per page, which would be the
equalized number. An attempt to equalize page contents might split one of the pages further,
as shown by dotted line, or even shift the boundary of only one page, also shown by dotted
line. However, this would mess up the addressing altogether, because the pages would have
to be addressed by a map (index) with size proportional to n instead of to dn'/¢.!

Before going on to discuss the construction of multidimensional tidy functions (“multipa-
ging”), we review the straightforward retrieval process.

Algorithm MPS (Multipage Search)
MPS1 Use axial indices to find coordinates for page(s) that can hold the data requested.

MPS2 For each page needed (coordinates i, j, k, ..), use an array addressing formula to give
the page address. (See section 1.2.)

We discuss the multipage construction algorithm (figure 17) step by step. The quantities
N,n, and « have their usual meanings, and f; and Vj, the partition factor and the number of
different field values, respectively, for axis ¢, are illustrated in figure 16.

LA technique derived from multipaging, “grid files”, missed this insight and uses the larger map. It
accordingly requires two accesses to retrieve any record. In its favour, it guarantees two accesses, while
multipaging access costs will be seen to depend on how the records are distributed in the space. On the other
hand, multipaging storage overhead is negligible, while grid file storage requirements are sensitive to data
distribution and can become enormous.
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MP1 For each axis, i = 1..d, find axial distributions and V;. (d sorts: O(dN log N))

MP2 Given approximate values for b (blocksize) and « (load factor), choose partitioning
factors, fi,i =1..d. (O(1))
n = I{f;

... Vi
heuristic :— = const
i

MP3 For each axis, i, find candidate(s) for axial partition (scan forward then back, cost 2V;)

MP4 Build histograms for all combinations of axial partitions by 1 pass of the data. Do 7-«
comparisons to find the best. (O(N))

Figure 17: Algorithm MP: Construct Multipage Tidy Function Given N Records

The philosophy behind this algorithm is to find a good partitioning for a file in reasonable
time and to assess the result in terms of 7 and «. In this way, if the file distribution makes
an acceptable result impossible, it has not cost us too much to find out. The most expensive
step is MP1. The critical steps are MP3, a linear-time dynamic programming search, and
MP4, which embodies the heuristic that the optimal partitions found for each axis in MP3
will combine to give a good partition of the whole space.

The example we use is the two-dimensional file of toys and manufacturers shown in
figure 18. This figure shows a record distribution (1s in the two-dimensional space) which is
something of a challenge to multipaging.

This figure also illustrates step MP1. The two axial indices are shown, which count the
number of records for each different value of Toy and of Maker, respectively. In general the
process of finding these is straightforward, but is the most expensive step of algorithm MP.
For each axis, the file must be sorted and scanned to get the counts.

Step MP2 needs a few iterations to determine the number of partitions, f;, into which we
wish to split the ¢th axis. We are given N, the number of records, and we have an idea, from
other considerations, what values we would like for b, the blocksize, and «, the load factor.

These three then yield a value for n, the number of blocks, n = [N/ba], and we thus
have a constraint on the f;s, IIf; = n. This is one equation in d unknowns, and we need a
heuristic to provide the other d — 1.

The heuristic we use is V;/f; = ¢, a constant. This has the attraction of making the shape
of the address space, fi X fo X..X f4, the same as the shape of the value space, V; x Vo x .. x V.
It also gives optimal expected retrieval time for certain categories of query.

We now have d equations in the d unknowns, f;, and we can determine ¢, the constant,
and then, using V;, f;.

fi = Vi
n = ¢y
¢ = (IV;/n)'/
Unfortunately, this does not give integer values for f;, and if we round them all, or take

the floor or ceiling of them all, the resulting product may be nowhere near n. The best we
can do is search the 27 possibilities of taking the floor of some and the ceiling of the others
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Figure 18: Toys and their Makers

to see which product comes closest to n. There will likely be a new n as a result, with
corresponding adjustments for b or a.

All these operations take place in RAM, or in the head of the designer, and do not add
to the computational cost of algorithm MP.

For example, in the toys distribution of figure 18, N =32,V; =9, and V5, = 9. If we took
b =2 and a = 1.0, we would have n = 16. Since Vi = V5, then f; should = f,. The solution
is a 4 x 4 partition. There would be 4 segments of toys, with 8=N/ f1,, records each, and 4
segments of makers, also with 8 records each.

Step MP3 is performed independently for each of the d axes. The objective is to divide
the V; different values up into f; partitions. This means placing f; + 1 partition boundaries
in the V; 4+ 1 positions to the left or right of each value. Since there is a boundary at each
end, the number of ways we can do this is

(721)=00%).

1

However, a systematic approach reduces this to 2/ ~', and this is susceptible to dynamic
programming, as figure 19 shows.

We sum the axial distribution from step MP1, looking for multiples of N/ f;. For instance,
for the Toy axis, with fr,, =4 and N = 32, we would be looking for partial sums 8, 16, and
24. If we found these values, we would immediately have our optimal boundaries between
segments. Instead, for the Toy axis, we have partial sums 3, 6, 12, 21, 25, 27, 29, 31, 32. So
the closest we can come to placing boundaries is either side of the closest partial sums: 12,
21, 25. This reduces the O(V; ) problem to 2/ 1.

However, we can do much better than that. Figure 19 shows the process stretched out
vertically for ease of understanding. Continuing our discussion of the Toy axis, we see the
four potential segments mapped out vertically, with the candidate boundaries between each
positioned horizontally under the appropriate gap in the axial distribution. The algorithm
for step MP3 works from top left to bottom right of this graph and back again. On the way
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Figure 19: Optimal Partitions of Toys and Maker Axes

down, it records the costs of choosing any given candidate and how those costs were arrived
at. On the return, it uses this information to choose the boundaries that gave the minimum
cost.

We break the downward pass into three components to make the discussion easier. First,
a number is written on each edge of the graph, its cost, which is the number of overflows
resulting if the two ends of the edge had been chosen as boundaries. Thus, the edge that spans
the values with 3, 3, 6 records represents a segment that would store 3+3+46=12 records.
Now suppose that the page capacity were two, as discussed for this example in step MP2,
and the segments have eight records each. Then 8 of the 12 records would fit and 4 would
overflow, so the cost is 4 for this edge.

Next, the lowest cumulative cost is recorded for each boundary placement, and a short
arrow is placed to indicate how this cost was arrived at. Thus, the edges leading to the
second candidate for the boundary between segments S2 and S3 would give it a cost of 0 + 7
or 4 + 1, respectively, and the cheaper is 4 + 1, so 5 is recorded and the arrow points along
the edge labelled 1. The next boundary candidate down from this, between S3 and S4, costs
5, which can be arrived at from either direction, so there are two short arrows.

These two considerations produce the cheapest value for the partition, and the algorithm
needs only follow the short arrows back again to determine the choice of boundary candidates.

However, if we get a single answer from each axis, we have no flexibility in putting them
together in step MP4. The final multipaging is determined and step MP4 is not needed.
Since there is no guarantee that combining the best from each axis will give the best overall,
we should keep MP4, and MP3 should offer it some choices. Accordingly, figure 19 shows
long arrows as well as short, and alternative values for the boundary candidates. These give
the next-best solutions for each axis. We will see next that combining the optima does not
give the best overall answer in this example.

MP3 does its work for each axis. Figure 19 shows the results for the Maker axis as well
as for the Toy axis.

Step MP4 looks at the data, for the first time in algorithm MP since MP1 when the axial
distributions were found. It is limited to one pass of the data, and builds a histogram for
each combination of the boundary candidates identified by step MP3. For our example, MP3
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aA aB aC
21351 2131610 5151110
2111115 211124 311114
1711113 1111212 2111112
1711212 11131 212111
a |0.67 1.0 o |0.67 1.0 o |0.67 1.0
Topt | 1.13  1.25 Topt | 1.13 1.25 Topt | 1.16  1.28
bA bB bC
1121410 1121410 3141010
3121216 31244 512124
1711113 1111212 2111112
1711212 11131 212111
a |0.67 1.0 a | 0.67 1.0 a | 067 1.0
Topt | 1.13 1.2 Topt | 1.09  1.25 Topt | 1.13 1.25
cA cB cC
1121410 1121410 3141010
171111 1111210 2111110
2111115 211124 311114
2121315 2121513 413123
a |0.67 1.0 o |0.67 1.0 o |0.67 1.0
Topt | 1.16  1.28 Topt | 1.13 1.25 Topt | 1.09  1.31

Figure 20: Histograms for Candidate Partitionings

returned three possibilities for each axis. We will identify them as A, B, C for the Toy axis
and a, b, ¢ for the Maker axis, as follows.

Toy 33 1] 6] 9| 4| 22 21
A A A
B B B
c ¢ cC
Maker 1 1 2 3 | 4 ] 9 | 6 | 5 1
a a a
b b b
¢ c ¢

These combine into nine possibilities for the global partitioning, and figure 20 shows the
nine histograms, each labelled by the choice from each axis that produced it. The figure also
shows the results calculated for 7., by counting overflows. We supposed that b = 2 and
a = 1.0, and, counting up the excesses over 2 in each histogram, we get the values for myp
shown.

We can easily explore further, however, just by supposing that each page has room for
one more record, in this case b = 3. Then a = 0.67 and counting execesses over 3 in the
histograms gives the values for oy, shown for this «. Figure 21 shows plots of 1/map versus
« in each case. The inverse of 7, is used so that the ideal case is the square, (0..1)x(0..1),
with area 1, and any lesser result has an area smaller than 1.0.
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Figure 21: m-a Analysis of the Histograms

From figure 21, we see that the winner is case bB, whereas, for the individual axes,
MP3 found A best for Toy and a best for Maker. What has happened is that shifting two
boundaries has repaired a diagonal overflow which is invisible to MP3. It is not guaranteed,
though, that even this combination of MP3 and MP4 will produce an optimum result.

There are distributions of records which are pathological and would not be acceptable for
multipaging. One such distribution is a diagonal arrangement of the records. Then step MP3
would find the same partitionings for each axis, and the combination would have much too
full pages on the diagonal and empty pages everywhere else.

If the meanings of the fields on the axes were such that rotating the coordinates were
acceptable, this pathological distribution could be multipaged by rotating the space and
dropping one of the dimensions. Another pathological distribution which cannot be treated
in this way is a ring of records.

2.2 Symmetry and Volatility: Dynamic Multipaging

Since tidying and multipaging are designed to cope with both low and high activity and
low and high symmetry, high volatility is the next target. By remembering to split pages
within a strategy of preserving the access method, we can attain this capability too. Because
the access method requires addressing a whole slab of pages from the axis, we cannot split
individual pages without also splitting all pages in the slab orthogonal to one of the axes.
Figure 22 shows one possible sequence of such splits, with the newly created slabs of pages
outlined in dashed lines.

Before we pursue further the construction of such a variant of multipaging, we should
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Figure 22: Splitting Pages for Dynamic Multipaging

check that there is an access method. The problem, as we see from figure 22, is that the
pages are no longer numbered in simple row-major or column-major order, as in a matrix.
Nonetheless, the pages are systematically ordered, in the sequence of their creation. Since a
whole slab is created at a time, this history can be captured by entries in the axial indexes. In
fact, it suffices to record there the number of the first page in the slab orthogonal to the axis
at that position. Figure 23 shows these entries in two two-dimensional cases, each reflecting
a slightly different splitting history.

If we want to find the number of the page with coordinates (i,7), we can see that the
slab that page is in starts with the page numbered max(p, (%), py(j)), where p, and p, are the
page numbers recorded in the two axial indexes. Where in the slab page (i, j) is found is just
the value of the other coordinate, the one that did not give the maximum. The figure shows
the results for the address a(2,1) for both splitting orders. For the left-hand example, the
calculation is

a(i,j) = max(py(i),py(j))+ the other one
a(2,1) = max(p,(2),py(1))+ the other one
= max(6,2)+ the other one

= 6+j=6+1=7

For higher dimensions, the same process finds the start of the slab as the maximum, for all
coordinates, of the base pages from the axial indexes. The slab is a (d — 1)-dimensional array,
whose addresses are calculated using the usual array indexing formula in d — 1 dimensions.

We have left out something important. Our dynamic multipage array grows at its faces,
but we should be able to split pages in the middle of the space. When an inner page is split,
the new slab created is considered to be a new face, and the axial index that has a new entry
for it is simply re-ordered. (There is no harm in having “pointers” to slabs of pages, or even
to individual pages; it is pointers to individual records that are inefficient.)

We can return to the issue of construction, which is now just a matter of deciding when
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Figure 23: Addressing Dynamic Arrays

and which way to split. Here are six criteria, which we can mix and match into a family of
algorithms.

Split Criteria

1. (m) If m > mp then split.

2. («) Split unless this makes o < ay.
Direction criteria

3. (Shape) Increase f; for the axis, 4, for which V;/f; is largest (in order to equalize all V;/ f;,
as far as possible).

4. (m) Split in the direction so that 7 is minimized. (N.B. Keep a log of overflows in the axial
index for each row, column, ..)

5. (@) Increase f; for the axis, 4, for which f; is largest (to create least number, n/ f;, of new
pages and so decrease « the least).

Shift criterion
6. (m) If m > my and shifting a boundary will make 7 < 7o, shift in the direction so that 7 is
minimized. (See (4).)

Note that shape and « criteria are easy to calculate. The 7 criterion in (1) must be tested
by doing or simulating the shifts or splits, and so is much more expensive. However, the 7
criteria deal directly with what is usually the important consideration, namely keeping the
probe factor down. For determining the direction of the split, criterion (3) is probably more
important than (4), in order to keep the address space the same shape as the data space.
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Algorithm MPI (Multipage Insert)
A collection of alternative algorithms:

e 6,1, 34,5 emphasizes 7

e 6,1,3 54 7, then «

e 6,2 3,54 split emphasizes a

e 6,2 3,4,5 split using «, then 7
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