
Excursions in Computing Science:

Book 11d. Forces and Invariants

Part V. Functional Integrals

T. H. Merrett∗

McGill University, Montreal, Canada

August 2, 2024

∗Copyleft c©T. H. Merrett, 2017, 2018, 2019, 2021, 2022, 2024. Permission to make digital or hard copies of
part or all of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and full citation in a prominent place.
Copyright for components of this work owned by others than T. H. Merrett must be honoured. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or fee. Request permission to republish from: T. H. Merrett, School of Computer Science,
McGill University, fax 514 398 3883.

1



Part I. Electrostatics and Electromagnetism

1. Central Forces.

2. Gravity vs. Electricity.

3. Energy and momentum scales.

4. Divergence, gradient and ~div ~grad.

5. Electrodynamics departs from gravitation.

6. Invariants, cross-products and convention.

7. Electromagnetic waves.

Part II. Partial Slope Equations and Quantum Mechanics

8. Partial Slope Equations: Laplace’s Equation.

9. The Wave Equation.

10. The Schrödinger Equation I: Physics.

11. The Schrödinger Equation II: Animating in 1D.

12. The Schrödinger Equation III: Animating in 2D.

Part III. Quantum Electromagnetism

13. The electromagnetic Schrödinger equation.

14. Simulating a charged wavepacket moving near a current.

15. Links with geometry.

16. Local action versus action-at-a-distance.

17. Other symmetries, other forces.

Part IV. Quantum Field Theory: Matrix Quantum Mechanics

18. Introduction to Quantum Fields.

19. Small matrices.

20. Tensor products.

21. Spin.

22. Vectors and spinors,

23. Multiple and independent systems.

24. A simple field.

25. The Yukawa potential.

26. Perturbation approximations.

27. Fermions.

28. Slopes and antislopes of 2D numbers, etc.

29. Charge conservation and antimatter.

30. Relativistic quantum field theory redux, so far.

I. Prefatory Notes

31. Path amplitudes. Quantum field theory in Part IV provides important insights not available
before Dirac’s integration of special relativity and quantum physics. But it did not make easy the
calculations that challenged physics in the 1940s, such as the “Lamb shift”, a tiny difference in the
energy levels of the hydrogen atomic states 2S1/2 and 2P1/2 caused by polarization of the cloud of
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virtual electrons and positrons that constitutes the “quantum vacuum”—the higher-order terms in
the perturbation calculations of the U(1) theory, QED—and discovered by Lamb and Retherford
in 1947.

It took a whole new approach to quantum physics to produce by the 1970s a quantum field theory
which could do these calculations reliably. (Well, Schwinger in 1948 calculated the Lamb shift by a
tour de force; and Dirac’s 1966 “Lectures on Quantum Field Theory” does it in five lectures using
the earlier techniques.)

The third formulation of quantum physics (in addition to Heisenberg’s matrix mechanics and
Schrödinger’s wave mechanics) is due to Richard Feynman, starting with his 1942 Ph.D. thesis.

In his own words, “A probability amplitude is associated with an entire motion of a particle as a
function of time, rather than simply with a position of a particle at a particular time” [Fey48]. Feyn-
man goes on (in sections 5 and 6 of that 1948 paper summarizing his thesis) to derive Schrödinger’s
equation from this new approach.

This is a significant departure from earlier views in which the Heisenberg uncertainty principle
forbade a particle to have both a precise position and a precise velocity, i.e., a path. Instead a
particle is now viewed as having a path, but which path is what is uncertain.

A computer program can illustrate what Feynman means, although the actual calculation must be
done analytically. Here are 625 = 54 paths through 1-dimensional space connecting point xa = 0
at time 0 with point xb = 75 at time 5. I’ve allowed the x-values to range from −160 to 160 in five
discrete positions, and six timesteps (two at the endpoints) for the particle to travel from xa to xb.

An example of one path would have x-values [xa,xmin + xstep*[2,3,0,4], xb] with xmin =
−160 and xstep = (160 − (−160))/4
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You can see that the particle is not forbidden any location in space (apart from the finiteness of
the simulation). It can move from xa towards xb or away from it, and similarly for each step until
the last, when it must arrive at xb.

The red line shows the classical path: this is a particle with initial velocity −10 and uniform
acceleration +10. Let’s look at the Lagrangian—we’ll work relative to the mass m (or with m = 1
if you like).

L

m
=

1

2
(ẋ)2 + ax

3



Euler-Lagrange gives the constant acceleration

ẍ = a

so then, taking the antislope, with initial velocity v0,

ẋ = at+ v0

and

x =
1

2
at2 + v0t+ xa

This last gives the path shown in red.

For the other paths, those in the simulation, we must sum up v2/2 + ax for each segment of the
path. We can assume constant v = (x − xold)/tstep where xold is the previous value of x and
tstep is the length of each time interval.

The bar chart, which is the lower plot in the figure, shows the distributions of total phases over all
625 paths, in the range from 0 to 2π. It seems to be effectively uniform: the phase contributions
from each path will cancel each other out. Only the phase changes from the classical path and the
paths near it will have a net effect, which is what we saw, even more crudely than here, in Note 7
of Week 5. If we tinker with the x-ranges to keep all 625 paths very close to the classical path, we
see the very nonuniform distribution of phases.
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This program might be useful if there were a way to extrapolate from a few sample paths to the
continuum of all possible paths, but even so, the cost of refinement is exponential in the number
of x-steps—there is one dimension for each—and the problem gets worse if we want y- and z-steps
as well in three spatial dimensions.

The above illustrations do not show that the “particle” can also move backwards in time. Feynman
also said [Fey49] “The various creation and annihilation operators in the conventional electron field
view are required because the number of particles is not conserved, i.e., pairs may be created or
destroyed. On the other hand charge is conserved which suggests that if we follow the charge,
not the particle, the results can be simplified.” He goes on in that paper to view the creation and
subsequent annihilation of a positron as an electron zig-zagging in time, changing its sign (charge)
as well as its direction in time for the positron “zag”. This trajectory represents the creation of an
electron-positron pair (upper part of the figure below), the positron travelling forwards in time, and
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then annihilating with (another) electron (lower part). Since the photon paths (the wiggly lines)
are invisible in the detector observing these events, this same diagram can also be thought of as
a single particle following the arrows on the lines but changing sign when it is moving backwards
in time. Feynman gives the unforgettable image of a bombardier flying over a zigzag road: at one
point in time there is one road, then there are three roads for a while, then one again.
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32. Functionals. The mathematics that might help us deal with an infinite number of paths
in Note 31 is the calculus of functionals. Whereas a function maps numbers to numbers, e.g.,
x2 : 1 → 1, 2 → 4, · · ·, a functional maps functions to numbers, e.g., F [f ] =

∫ 1
0 dxf

2(x), some of
whose mappings are given by the table

f 1 x x2 xn cos x ex · · ·
F 1 1/3 1/5 1/(2n + 1) (1/4) sin 1/2 + 1/8 (e2 − 1)/2 · · ·

The relationship between a path and the amplitude for the path (or the phase for the path) is
functional. Path integrals become sums over all functionals and so might be approached through
an extension of the idea of an antislope.

We start with slopes. We would be interested in another functional, say f + δf , differing only
slightly from the given function f .

If f were a path between two points, and the functional F [f ] were given by a definite integral, say

F [f ] =

∫ 1

0
dx(3f2(x)− xf(x))

then δf must be zero at x = 0 and at x = 1.
Then the extension of the idea of slope of a functional F [f ] would be

F [f + δf ]− F [f ]

δf

Let’s explore with the example

F [f ] =

∫ 1

0
dx(3f2(x)− xf(x))
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then

F [f + δf ] =

∫ 1

0
dx(3f2(x) + 6f(x)δf(x) − x(f(x) + δf(x)))

if we consider (δf)2 to be negligible. So

F [f + δf ]− F [f ] =

∫ 1

0
dx(6f(x)δf(x) − xδf(x))

Unfortunately, while we can move the difference between F [f + δf ] and F [f ] into the integral, we
cannot move a division by δf(x) into the integral. So we cannot find a “slope” in general.

This is like partial slopes versus slopes of 2-numbers. The latter are defined to be independent of
direction (see Note 28) while partial slopes require a direction (see Note 1 of Book 11c).
We can extend the notion of “direction” from partial slopes by choosing a particular function for
δf(x)

δf(x) = ǫη(x)

with ǫ the small multiplier whose limit we take to zero. The “slope” then is, for example.

F [f + ǫη]− F [f ]

ǫ
=

∫ 1

0
dx(6f(x)− x)η(x)

and we can invert this to say that the antislope in the “direction” η(x) of

∫ 1

0
dx(6f(x)− x)η(x) is

∫ 1

0
dx(3f2(x)− xf(x))

Is there a “direction” which, while it cannot be general, is useful? Let’s try η = δ, the Dirac
delta-function, defined to give

∫ ∞

−∞
dxδ(x) = 0

and
∫ ∞

−∞
dxf(x)δ(x) = f(0)

or
∫ ∞

−∞
dxf(x)δ(x− y) = f(y)

This is the continuous analog of the Kronecker delta, δjk = 1 if j = k but 0 otherwise:

∑

j

δjk = 1

∑

j

fjδjk = fk

Then, using different independent variables x and y,

δF [f(x)]

δf(y)
=

lim
ǫ→ 0

F [f(x) + ǫδ(x − y)]− F [f(x)]

ǫ

This is analogous to the discrete case of independent variables

slopexj
xk = δjk slopef(xj)f(xk) = δ(xj − xk)
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So if F [f ] =
∫∞
−∞ f(x)dx its slope is

∫ ∞

−∞
δ(x− y)dx = 1

and the slope of F [f ] =
∫∞
−∞ f(x)ndx is

∫ ∞

−∞
nf(x)n−1δ(x− y)dx = nf(y)n−1

A slope which will be important for us is (the limits on the integral are ±∞, left out for visual
simplicity)

slopeJ(y) exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

= − i
2

exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

slopeJ(y)

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

= − i
2

exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

∫

dx1dx2 slopeJ(y)(J(x1)∆F (x1 − x2)J(x2))

= − i
2

exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

∫

dx1dx2(δ(x1 − y)∆F (x1 − x2)J(x2) + J(x1)∆F (x1 − x2)δ(x2 − y))

= − i
2

exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

(∫

dx2(∆F (y − x2)J(x2) +

∫

dx1J(x1)∆F (x1 − y))
)

= − i
2

exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)(
∫

dx∆F (y − x)J(x) +

∫

dxJ(x)∆F (x− y)
)

= − i
2

exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

2

∫

dx∆F (y − x)J(x)

I’ve written out in detail the process of taking functional slopes just to show that it is formally the
same as taking ordinary slopes: integrals are transparent to taking slopes, slopes of products are
sums, etc. We make two assumptions: whatever ∆F () is (it is defined in Note 37), it is independent
of J(), and ∆F (−x) = ∆F (x).

We are especially going to be interested in this result when J → 0: it is 0.

But the second slope does not go to zero.

slopeJ(y1)slopeJ(y2) exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

= slopeJ(y1)

(

−i exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)∫

dx∆F (y2 − x)J(x)

)

= − exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)(∫

dx∆F (y2 − x)J(x)

)2

−i exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

slopeJ(y1)

∫

dx∆F (y2 − x)J(x)

7



= − exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

(

(∫

dx∆F (y2 − x)J(x)

)2

+ i∆F (y2 − y1)

)

This becomes −i∆F (y2 − y1) when J → 0.
It should be evident that slopen of this function goes to 0 for any odd n. So the next interesting
power of slopes is the fourth.

slopeJ(y1)slopeJ(y2)slopeJ(y3)slopeJ(y4) exp

(

− i
2

∫

dx1dx2J(x1)∆F (x1 − x2)J(x2)

)

−→
J()→0 −∆F (y1 − y2)∆F (y3 − y4)

−∆F (y1 − y3)∆F (y2 − y4)

−∆F (y1 − y4)∆F (y2 − y3)

(Working this out is an Excursion.)

There is a pattern here which saves us the labour of working out higher orders of slope. It is given by
the possible pairwise connections of 2n points, which works out to (2n−1)!! = (2n−1)(2n−3) · · · 3·1,
the odd factorial. Here are all the graphs for n = 1, 2, 3. Note how the first (n = 1) captures the
slope2 result ∆F (y1 − y2), and the next three (n = 2) capture the slope4 results above.
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The last five (n = 3) represent fifteen graphs: the circled subgraphs become each of the three n = 2
graphs.

It is now easy to construct graphs for higher n and from them write down the corresponding results
for the slopes of order 2n. It is also easy to see how the number of graphs is (2n − 1)!!.

33. Gaussian integrals. The previous Note suggests that there is no general mathematics which
will help us sum up over all possible paths the values associated with each path—i.e., find the
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antislope (sum) of all possible functionals (values from path).

We’ll have to specialize. Fortunately the amplitudes are exponentials of actions and the actions are
sums—well, integrals, which is formally the same thing.

Furthermore, the contributions to the action involve squares—both of velocities in the kinetic
energy, and, for the harmonic oscillators that describe fields, of positions.

Why are these fortunate? Let’s look at one of the 625 possible paths the program of Note 31 was
written to sum over. This is the path 2,3,0,4.

t

1x x2 x3 x4
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x

But each of these numbers is only one selection from the sum over all possible values of x. So we
show these ranges and label them, respectively, x1 (which has value 2 for this example), x2 (value
3), x3 (value 0) and x4 (value 4).

To sum a functional F [f ] over all possible paths (not just the discrete values x = 0, 1, 2, 3, 4) we
must express F [f ] as an integral of f over all possible values of x1, x2, x3, x4

F [f ] =

∫ ∞

∞
dx1

∫ ∞

∞
dx2

∫ ∞

∞
dx3

∫ ∞

∞
dx4f(x1, x2, x3, x4)

Now if f happened to be an exponential of a sum, say,

f = e−a(x2
1+x2

2+x2
3+x2

4)

this becomes a product

F =

∫ ∞

∞
dx1e

−ax2
1

∫ ∞

∞
dx2e

−ax2
2

∫ ∞

∞
dx3e

−ax2
3

∫ ∞

∞
dx4e

−ax2
4

=

(∫ ∞

∞
dxe−ax2

)4

and this is the Gaussian integral we first figured out how to solve in Note 6 of Book 9c (Part I)
(here using the notation of the Excursion Notation of that Book).

F =

(√

π

a

)4

Of course, we will have to do this integral N times and ultimately to take the limit N −→ ∞ so
that the time steps are continuous just like the x-steps.

The problem is that there is no limit. Well, that’s just what happened in ordinary integration,
before we “normalized” it by multiplying by ∆x, when we found there is no limit in the sequence
of series

∑

j=a:1:b

fj ,
∑

j=a:0.5:b

fj , · · ·
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where j = a : s : b means that j runs from a to b in steps of size s.

The analog of weighting by ∆x in the integral, viz

∫ b

a
dxf(x) =

lim
∆x→0

∑

j=a:∆x:b

∆xfj

is to weight each of the Gaussian integrals by, of course,

1

A
=

√

a

π

Thus
∫

· · ·
∫ ∫

dx1

A

dx2

A
· · · dxN

A
e−a(x2

1+x2
2+···x2

N
) = 1

Now we can do a path integral a little closer to the physics. Let’s look at

1

An

∫

dx1dx2 · · · dxn−1 exp



−
n−1
∑

j=0

a(xj+1 − xj)
2





with
a =

π

A2
=

m

2ih̄∆t

so that

a(∆x)2 = − i
h̄

m

2

(

∆x

∆t

)2

∆t = − i
h̄

p2

2m
∆t

which is −i/h̄ times the kinetic energy part of the Lagrangian times ∆t, and which would integrate
over time to give the action for a particle free of forces caused by any potential energy.

Note that x0 and xn will be the fixed endpoints of all the paths, so that there are n−1 integrations.

Now each variable, xj , is tangled with its neighbour, because of the (xj+1 − xj)
2.

The dx1 integral would be

I1 =

∫

dx1e
−a((x2−x1)2+(x1−x0)2)

We can isolate x1 into a completed square, leaving a leftover term in x0 and x2, which we take as
constants in this step.

(x2 − x1)
2 + (x1 − x0)

2 = 2x2
1 − 4x1

x2 + x0

2
+ x2

2 + x2
0

2

(

x1 −
x2 + x0

2

)2

= 2x2
1 − 4x1

x2 + x0

2
+ 2

(

x2 + x0

2

)2

and the difference

x2
2 + x2

0 − 2

(

x2 + x0

2

)2

=
(x2 − x0)

2

2

so, putting y = x1 + (x2 + x0)/2,

I1 =

∫

dye−2ay2
e−a(x2−x0)2/2

=

√

π

2a
e−a(x2−x0)2/2
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Moving on to the second integral

I2 =

∫

dx2e
−a((x3−x2)2+(x2−x))2/2

we can similarly complete the square to get

y = x2 −
2

3

(

x3 +
x2

2

)

and the difference (as above)
1

3
(x3 − x0)

2

So

I2 =

∫

dye−3ay2/2e−a(x3−x0)2/3

=

√

2π

3a
e−a(x3−x0)2/3

and the combination of the two steps is

√

2π

3a

√

π

2a
e−a(x3−x0)2/3 =

1√
3

π

a
e−a(x3−x0)2/3

After n− 1 steps we get the combined result for the integral

1√
n

(

π

a

)(n−1)/2

e−a(xn−x0)2/n

which when multiplied by 1/An = (a/π)n/2 gives

√

a

πn
e−a(xn−x0)2/n =

√

m

2iπh̄n∆t
eim(xn−x0)2/(2h̄n∆t)

=

√

m

2iπh̄(tn − t0)
eim(xn−x0)2/(2h̄(tn−t0))

using n∆t = tn − t0.
Since this is independent of n it is unchanged in the limit n −→ ∞, and is a finite value for the
whole path integral

lim
n→∞

1

An

∫

dx1dx2 · · · dxn−1 exp



−
n−1
∑

j=0

a(xj+1 − xj)
2





Now let’s do something fancier, leading up to “Feynman diagrams”.

Z(ℓ) =

∫

dxe−gx2−fx3+ℓx

=

∫

dx

(

1− fx3 +
1

2!
(fx3)2 − · · ·

)

e−g(x2−(ℓ/g)x)

=

∫

dx

(

1− fx3 +
1

2!
(fx3)2 − · · ·

)

e−g(x−(ℓ/2g))2eℓ
2/(4g)
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where I’ve expanded e−fx3
in the second line and completed the square in the third.

Now note (see Excursion Even moments)

xne−gx2−fx3+ℓx = ∂
(n)
ℓ e−gx2−fx3+ℓx

so we can replace

1− fx3 +
1

2!
(fx3)2 − · · ·

by

1− f∂(3)
ℓ +

1

2!
(f∂

(3)
ℓ )2 − · · · = e−f∂

(3)
ℓ

and we have

Z(ℓ) =

∫

dxe−f∂
(3)
ℓ e−g(x−(ℓ/2g))2eℓ

2/(4g)

= e−f∂
(3)
ℓ eℓ

2/(4g)
∫

dxe−g(x−(ℓ/2g))2

= e−f∂
(3)
ℓ eℓ

2/(4g)
√

π

g

(Of course, replacing x3 by the operator ∂
(3)
ℓ requires us to keep the function of ℓ to its right.)

We’ll go on to work out some of these terms, but first let’s see which ones are possible.

We explore the relationships among powers of g (ignoring the
√

π/g factor), f and ℓ. We note

that powers of f correspond to powers of ∂
(3)
ℓ in the expansion of e−f∂

(3)
ℓ , and that powers of 1/g

correspond to powers of ℓ2 in the expansion of eℓ
2/(4g).

Here’s a table showing what happens to powers of ℓ after operating with powers of ∂
(3)
ℓ .

Vf 0 1 2 3
f0 f1 f2 f3

E ∂
(0)
ℓ ∂

(3)
ℓ ∂

(6)
ℓ ∂

(9)
ℓ

0 g0 ℓ0 ℓ0 — — —
1 g−1 ℓ2 ℓ2 — — —
2 g−2 ℓ4 ℓ4 ℓ1 — —
3 g−3 ℓ6 ℓ6 ℓ3 ℓ0 —
4 g−4 ℓ8 ℓ8 ℓ5 ℓ2 —
5 g−5 ℓ10 ℓ10 ℓ7 ℓ4 ℓ1

Check the pattern: if we call the power of ℓ in the body of the table Vℓ, then

Vℓ + 3Vf = 2E

We finish this exercise by finding the actual coefficients in the two cases fℓ2 and f2ℓ4 (apart, still,
from the

√

π/g).

Vf = 1, E = 3

e−f∂
(3)
ℓ eℓ

2/(4g) = (· · · − f∂(3)
ℓ + · · ·)



· · ·+ 1

3!

(

ℓ2

4g

)3

+ · · ·




= − f

3!(4g)3
∂

(3)
ℓ ℓ6
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= − f

3!(4g)3
(6 · 5 · 4)ℓ3

= − 6!

(3!)2(4g)3
fℓ3

= −20
fℓ3

(4g)3

Vf = 2, E = 5

e−f∂
(3)
ℓ eℓ

2/(4g) =

(

· · ·+ 1

2!
f2∂

(6)
ℓ + · · ·

)



· · ·+ 1

5!

(

ℓ2

4g

)5

+ · · ·




= − f2

2!5!(4g)5
∂

(6)
ℓ ℓ10

= − 10!

2!4!5!(4g)5
f2ℓ4

= 630
f2ℓ4

(4g)5

34. Diagrams and QED. Particle interactions are readily represented as diagrams. Here are six
interactions found in QED (quantum electrodynamics) all repreented by the same diagram.

+

e

a b

time

sp
ac

e

f

c

e
_

e
_

e
_

e
_

e+

e
_

e+

e
_

e+
e+

d

e+
e

A fermion (electron, positron) is represented as a solid line with the arrow on the particle (electron)
going forward in time and that on the antiparticle (positron) going backward in time—explicitly
using Feynman’s ideas quoted at the end of Note 31.

The wiggly line is the photon (massless boson).

(The diagrams observe the direction of time but not the speed of light, or else no line could exceed
45 degrees. The above diagrams are simply 60-degree rotations of each other, which is cute but not
essential.)

Diagram (a) shows an electron giving off a photon and thereby being deflected. Diagram (b) shows
a photon striking an electron and so deflecting it (Compton effect). Diagram (c) shows a photon
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creating a positron-electron pair (pair creation). Diagram (d) is the complement to (b) but with a
positron. Diagram (e) is similarly the complement to (a). Diagram (f) shows electron and positron
annihilating to create a photon—the opposite of (c).

So it is worth our while to study simple diagrams a little. Let’s start generally. Leonhard Euler
related vertices V , edges E and faces F for any1 diagram

V − E + F = 1

Let’s see.

V   4

F   1

V   1

����

����

��

����

�� ��

�
�
�
�

��

��

����

�
�
�
�
��
��
��
��

��

���
�
�
�

E   1
F   0

V   2
E   2
F   0

V   3
E   2
F   1

V   2
E   3
F   1

V   3
E   3
F   0

E   1

We can prove this relationship by induction. We suppose it is true for some existing figure, then
we add something— vertex and an edge, or just an edge—and see that it is still true.

(V,E, F ) + vertex + edge = (V + 1, E + 1, F )

(V,E, F ) + edge = (V,E + 1, F + 1)

where there is an extra face because the new edge has connected two existing vertices (or an existing
vertex with itself).

That’s the induction step. Any of the diagrams shown above could serve as the start step, or just
the diagram consisting of a sole vertex, V = 1.

Now let’s specialize the kinds of vertices allowed. We’ll permit two types: leaves—vertices ter-
minating only one edge, counted by Vℓ; and interior vertices with fixed “fanout”, f , counted by
Vf .

Since each edge is terminated by two vertices, and the f -vertices terminate f edges each, it should
be apparent that

Vℓ + fVf = 2E

We can make a table of possibilities when f = 3.

E

0
1
2
3
4
5

0 1 2 3Vf

1but see the Excursions
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We have seen this table before—in Note 33. It doesn’t there have the diagrams, but the exponents
of ℓ in the body of that table equal the number of leaf vertices in this one.

So the diagrams directly represent Gaussian integrals and can help us find which ones are important
to calculate.

Note that one of these (E = 3, Vf = 1) is the QED diagram (Vℓ = 3) we started this Note with.
Another (E = 5, Vf = 2, Vℓ = 4) is a combination of two of them and might represent an electron
and a positron annihilating into a photon which then creates a new electron-positron pair.

Not every diagram in the above table makes sense physically. The diagrams that do help us calculate
the corresponding integrals.

So far, though, the integrals are only suggestive. But we can see how we might put into the
Lagrangian a cubic term which would give rise to the diagrams we started this Note with. If we
consider the fermion wavefunction ψ of Note 27 (Part IV) to be a field, and the electromagnetic
potential momentum A of Notes 5 (Part I), 13 (Part III), etc. to be the photon field, then a term
ψ̄ψA might be considered, say, to annihilate a positron and an electron and create a photon, or
any other of the six processes given by the 3-way diagrams involving two fermions and a photon.

(Note, though, that the exponent is not the Lagrangian but the action, which is the time-integral
of the Lagrangian or, for fields, the timespace integral of the Lagrangian density. That’s where the
functional slopes of Note 32 come in.)

Let’s see if we can take part of this step. We must combine the photon field, with Lagrangian (I
discuss it a little more in Note 36)

LMaxwell = −1

4
FµνF

µν − jµAµ

where Fµν = ∂µAν − ∂νAµ, and the electron/positron field, with Lagrangian (Note 27 of Part IV)

LDirac = ψ̄(i 6 ∂ −m)ψ

The current, jµ, must be a current of electrons (or positrons) and so must be described by the

Dirac field. In Note 27 we had both aspects of the Dirac equation (with ψ̄ = ψ†d0 and 6 ∂ = ∂µd
µ)

(i 6 ∂ −m)ψ = 0

(i 6 ∂ +m)ψ̄ = 0

Pre- and post-multiplying by ψ̄ and ψ respectively, then adding, cancels the m and gives

0 = i(ψ̄ 6 ∂ψ + ψ 6 ∂ψ̄) = i∂µ(ψ̄dµψ)

This is a continuity equation and implies a current (see Note 29 of Part IV)

jµ = ψ̄dµψ

So the combined Lagrangian now has a cubic term like the x3 term leading to the 3-way Feynman
diagrams of this Note.

LQED = ψ̄(i 6 ∂ −m)ψ − 1

4
FµνF

µν − ψ̄dµψAµ

QED stands for quantum electrodynamics, the relativistic quantum field theory of electromag-
netism, which is everything apart from nuclear physics and gravitation. QED Feynman diagrams,

15



in the hands of professional physicists, provide the guide to the unprecedentedly accurate calcula-
tions that marked the breakthrough of quantum field theory.

Apart from looking at “propagators” in Notes 36 and 37, we won’t attempt any of these calculations.
They require much work and physical intuition based on close familiarity with thousands of particle
experiments from many enormous accelerators.

However, we conclude this Note with a (qualitative) look at the Coulomb interaction of electrostatics
from the point of view of quantum field theory. Here is the diagram.

_

_

e
_

e
_

e

e

35. Chirality and electroweak. The U(1) faze field of QED can be absorbed into a more general
U(1)×SU(2) faze theory of the electromagnetic and weak forces. The kind of phenomenon we’d
like to explain is “beta decay” or common radioactivity. Rutherford distinguished three types of
radioactive emissions: alpha particles, which are helium nucleii of two protons and two neutrons;
beta particles, which turned out to be electrons emitted by neutrons turning into protons; and
gamma radiation, which turned out to be high-energy photons now called gamma rays.

Here is the field theory diagram for beta decay, which this Note will discuss.

proton
u d

u
neutron

νe

d
d

u

_

_

W

e

Neutrons and protons consist of up-quarks and down-quarks, three each. A neutron becomes a
proton by one of its d-quarks becoming a u-quark by emitting a W− boson which then decays
into an electron and an antineutrino. Note that, unlike the photon at the end of the previous
Note, which is neutral, the W− boson carries a (negative) charge, in order that electric charge be
conserved at each vertex.

The neutrino is an elusive particle—no charge, almost no mass—which Pauli in desperation con-
jectured to account for missing momentum, and Fermi later named “little neutral one”. Neutrinos
now play a decisive role in challenging the Standard Model of particle physics.

But we must start with the consideration, suggested by T D Lee and C N Yang (the Yang of WYMH)
and checked experimentally by C S Wu and E Ambler, all in 1956, that the weak interaction does
not conserve parity.

In the first paragraph, “U(1)×SU(2)” means that the Lagrangian will contain a sum of terms from
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both groups. Following Note 17 (Part III)

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

fj

2
W j

µ

which we will expand into a Lagrangian below.

Also in the first paragraph. “parity” means symmetry between right hand and left hand, i.e., in
mirror reflection. We’ll take it as experimentally determined that all neutrinos are left-handed.2

Conversely, all antineutrinos are right-handed.

What do we mean by “handedness”? Since fermions such as electrons and neutrinos have spin 1/2
and so two directions of spin, we can ask if the spin is in the direction of motion of the particle,
or in the opposite direction. (Use the right-hand rule: fingers curve along with spin, thumb gives
“direction” of spin.) We call the particle right-handed if its spin and momentum point in the same
direction, left-handed if the directions are opposite.

The Pauli matrices, fj , j = 1, 2, 3 (from Note 19, Part IV), are each double the 2-by-2 representation
of the generators of the rotation group, and so can be taken as the 3D components of the spin. Thus
~f = (f1, f2, f3) is a vector and its dot product with the momentum ~p will be positive or negative if

the particle is right-handed or left-handed respectively. If both ~f and ~p are normalized

~f · ~p =

(

pz px − ipy

px + ipy −pz

)

is called the helicity and has the values
(

1
−1

)

if diagonalized. This contains the two possible values, ±1, of the helicity.

Recall that this matrix is a reflection, f , and that it produces two projections (see Note 19)

PR =
1

2
(I + F ) =

(

1
0

)

PR =
1

2
(I − F ) =

(

0
1

)

P 2
R = PR P 2

L = PL PR + PL = I PRPL = 0

Unfortunately, helicity is not Lorentz-invariant: an observer moving faster than the particle sees
its momentum, but not its spin, reversed, and so will disagree about the helicity with an observer
who is slower than the particle.

So we need to find a matrix
(

1
−1

)

or analogous to it, in our discussions of right-handed and left-handed particles, but which is Lorentz-
invariant. The property whose values ±1 are distinguished by this is called the chirality of the
particle.

The whole situation is relativistic so we would seem to need a quantity related to the Dirac equation.
It should be a reflection so that we can make a projection from it and so it should square to I.
There are at least four reflections in the algebra, but each has its own meaning. The product of all
four basic matrices does not square to I (see Note 22, Part IV)

(d0123)
2 = d01230123 = −d123123 = d2323 = d33 = −I

2The Standard Model infers from the left-handedness of all neutrinos that they have no mass. But recent ex-
periments say they must have mass. The Standard Model has not been adjusted to accommodate right-handed
neutrinos.
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but id0123 squares to I.

However,

id0123 = i(f3
←−×I)(f31

←−×f1)(f31
←−×f2)(f31

←−×f3)

= if3313131
←−×f123

= −if1
←−×f123

= −i
(

1
1

)

←−×
(

1
1

)( −i
i

)(

1
−1

)

= −i
(

1
1

)

←−×
(

i
i

)

=

(

I
I

)

is not diagonal, although at least it has no i.

Is there another representation, γµ, with (γ0)2 = I and (γj)2 = −I and which anticommute, for
the 4-by-4 matrices in 4D? We try (the chiral representation)

γ0 γj γ5 = iγ0γ1γ2γ3

f1
←−×I −if2

←−×fj f3
←−×I

(

I
I

) ( −fj

fj

) (

I
−I

)

Let’s solve Dirac’s equation for free (plane wave) particles using this chiral representation.

0 = (iγµ∂µ −m)ψ

= (iγµ∂µ −m)ue−ipµxµ

= (γµpµ −m)ue−ipµxµ

= (γ0p0 − γjpj −m)ψ

=

(

−m p0 + ~f · ~p
p0 − ~f · ~p −m

)

(

ψR

ψL

)

where ~f is the vector (f1, f2, f3) of 2-by-2 Pauli matrices, and ψR and ψL are the 2-component
vectors (spinors) with labels R and L, of no particular significance but just to distinguish them.

But we notice the two opposite helicities, ±~f · ~p, in the form, so it is plausible to consider R to
mean right-handed and L to mean left-handed.

So we take γ5 to distinguish right from left handed chirality and use the two projections based on
it to map the field ψ = (ψR, ψL) into its chiral components.

PR =
1

2
(I + γ5) =

(

I
0

)

PRψ = ψR

PL =
1

2
(I − γ5) =

(

0
I

)

PLψ = ψL

Because γ5 anticommutes with γµ, µ = 0, 1, 2, 3, we have

PRγ
µ =

1

2
(I + γ5)γµ = γµ 1

2
(I − γ5) = γµPL

and similarly
PLγ

µ = γµPR
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and because ψ̄ = ψ†γ0 (Note 27 in Part IV)

ψ̄PR = ψ†γ0PR = ψ†PLγ
0 = (PLψ)†γ0 = ψ†

Lγ
0 = ψ̄L

and similarly
ψ̄PL = ψ̄R

The fermion Lagrangian of Note 34 includes current and mass terms

ψ̄γµψAµ and ψ̄ψm

respectively. Here I have switched entirely from the dµ representation of Note 34 to the γµ repre-
sentation of this Note: the formal properties are all that matter, and they are the same for dµ and
γµ. Using projection properties PR + PL = I and PRPL = 0, let’s see what the coefficients of Aµ

and of m become under chiral projection.

Current

ψ̄γµψ = ψ̄(PR + PL)γµ(PR + PL)ψ

= ψ̄PRγ
µPRψ + ψ̄PRγ

µPLψ + ψ̄PLγ
µPRψ + ψ̄PLγ

µPLψ

= ψ̄γµPLPRψ + ψ̄Lγ
µψL + ψ̄Rγ

µψR + ψ̄γµPRPLψ

= ψ̄Lγ
µψL + ψ̄Rγ

µψR

So the current coefficient couples fields of the same chiralities.

Given that neutrinos are left-handed only, this leaves only one term

ψ̄γµψ = ψ̄Lγ
µψL

= ψ̄PRγ
µPLψ

=
1

4
ψ̄(1 + γ5)γµ(1− γ5)ψ

=
1

2
ψ̄γµ(1− γ5)ψ

which has two pieces: Lorentz 4-vector ψ̄γµψ and Lorents pseudo- (or axial) vector ψ̄γµγ5ψ. The
theory of beta-decay, which is a theory of the weak force, is sometimes referred to as V-A, or
vector-axial, theory.

Mass

ψ̄ψ = ψ̄(PR + PL)ψ

= ψ̄(P 2
R + P 2

L)ψ

= ψ̄PRPRψ + ψ̄PLPLψ

= ψ̄LψR + ψ̄RψL

So the mass coefficient couples fields of different chiralities.

But neutrinos have only one chirality. So it is concluded that neutrinos are massless. (The obser-
vation that neutrinos do have mass thus contradicts the assumption of the Standard Model that
there are only left-handed neutrinos. The right-handed neutrinos have not been detected yet.)

We are now ready to write the Lagrangian for the combined electromagnetic and weak forces. This
combines U(1) and SU(2) parts and, as in Note 17 (Part III), we won’t assume the U(1) field is the
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electromagnetic field, Aµ, because we’re going to have to mix things up.

The following discussion gives in hindsight a long process of trial and error by some very smart
people—Fermi, Feynman, Salam, Weinberg—and will have some twists and turns in it which I’ll
try to justify as we go along.

From Note 17 (Part III) the U(1) and SU(2) Lagrangian

L = ψ̄(iγµDµ −m)ψ − 1

4
BµνB

µν =
1

4

3
∑

j=1

W j
µνW

jµν

(summing over repeated indices) where the covariant slope

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

fj

2
W j

µ

gives the interactions of forces Bµ and W j
µ with the fermion fields, and, from Note 15 (Part III),

the parts for the four boson fields, Bµ and W j
µ, use

Bµν = ∂µBν − ∂νBµ

W j
µν = ∂µW

j
ν − ∂νW

j
µ − ig2[W j

µ,W
j
ν ]−

(Bµ is commutative (“Abelian”) but W j
µ is not).

We will look at the interaction part of this Lagrangian, piece by piece: ψ represents the fields νL, eL
and eR for left-handed neutrinos and electrons and right-handed electrons.

First, all the U(1) pieces together:

L = · · · + g1
2

(YL(ν̄Lγ
µνL + ēLγ

µeL) + YRēRγ
µeR)Bµ + · · ·

and we use two different Y for left- and right-handed parts, in case they turn out not to be the
same.

Second, all the SU(2) (only left-handed) pieces together:

L = · · ·+ g2
2

(ν̄L, ēL)

(

W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)

(

νL

eL

)

+ · · ·

= · · ·+ g2
2

(ν̄L, ēL)

(

W 0
µ −

√
2W+

µ

−
√

2W−
µ −W 0

µ

)

(

νL

eL

)

+ · · ·

where the matrix of W j
µ, j = 1, 2, 3, comes from the sum fjW

j
µ with fj being the above reflection

matrices, and where, to keep the expressions to single symbols, we’ve defined

W±
µ = −W 1

µ ±W 2
µ

W 0
µ = W 3

µ

We will be comparing these parts of the Lagrangian with the interaction of the electromagnetic
field and fermions

LEM = · · · − e(ēLγµeL + ēRγ
µeR)Aµ + · · ·

where e is the charge on the proton, and you should be able to avoid confusing e with the fields eL
and eR because the latter are always subscripted.

Let’s look first at the neutrino interactions from both U(1) and SU(2) parts.
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ν̄LνL

g1
2
YLBµ +

g2
2
W 0

µ =
1

2
(g1YL, g2)

(

Bµ

W 0
µ

)

=
1

2
(g1YL, g2)

1√
D

(

g2 g1YL

−g1YL g2

)(

Aµ

Zµ

)

=
1

2
√
D

(0, (g1YL)2 + g2
2)

(

Aµ

Zµ

)

=

(

0,

√
D

2

)

(

Aµ

Zµ

)

This chain of equations is our first twist-and-turn. I said we would not assume the U(1) field Bµ

to be the electromagnetic field Aµ, but Aµ must appear eventually, and furthermore, for neutrino
interactions, must have no effect. The way we do this is to suppose another field, Zµ, such that
Bµ and W 0

µ together are a linear combination of Aµ and Zµ. That linear combination is given
by the matrix above, carefully chosen so that, in the neutrino case, the coefficient of Aµ becomes
0. The matrix is chosen to be orthogonal—its inverse is its transpose—and its determinant is
D = (g1YL)2 + g2

2 .

All these considerations are indpendent of, and the same for, each µ = 0, 1, 2, 3.

The result gives a force between neutrinos mediated by the neutral boson field Zµ.

Now we must look at electron interactions, to bring in the electromagnetic force. In parallel:

ēLeL
g1
2

YL Bµ −
g2
2
W 0

µ

=
1

2
(g1YL,−g2)

(

Bµ

W 0

µ

)

=
1

2
(g1YL,−g2)

1√
D

(

g2 g1YL

−g1YL g2

)(

Aµ

Zµ

)

=
1

2
√
D

(2g1g2YL, (g1YL)2 − g2

2
))

(

Aµ

Zµ

)

ēReR
g1
2

YR Bµ

=
1

2
(g1YR, 0)

(

Bµ

W 0

µ

)

=
1

2
(g1YR, 0)

1√
D

(

g2 g1YL

−g1YL g2

)(

Aµ

Zµ

)

=
1

2
√
D

(g1g2YR, g
2

1
YLYR)

(

Aµ

Zµ

)

Comparing both of these with LEM

(−e, 0)
(

Aµ

Zµ

)

we must have

YR = 2YL

−e =
g2(g1YL)

√

(g1YL)2 + g2
2

Next twist-and-turn: we set YL = −1. We can do this because YL appears only multiplied by g1,
and g1 is the constant parameter giving the interaction strength: we don’t need a parameter YL

too.

So
e =

g1g2
√

g2
1 + g2

2

= g1 cos θW = g2 sin θW
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That’s the next twist-and-turn: θW is called the electroweak mixing angle or the Weinberg angle,
and gives the relative strength, g1 vs. g2, of the electromagnetic and weak forces. You’ll see
the angle if you draw a right triangle of base g2 and height g1. We’ll also use rearrangements
(abbreviating cos(θW ) as cW and sin(θW ) as sW ):

g1 = e/cW

g2
1√
D

= g1sW = e
sW

cW

g2 = e/sW

g2
2√
D

= g2cW = e
cW
sW

Back to ēLeL and ēReR, in parallel:

ēLeL

1

2
√
D

(− 2g1g2, g
2
1 − g2

2)

(

Aµ

Zµ

)

= −e
(

1,
c2W

s2W

)(

Aµ

Zµ

)

= −e
(

1,
1

cW sW

(

1

2
− s2W

))(

Aµ

Zµ

)

ēReR

1

2
√
D

(− 2g1g2, 2g
2
1)

(

Aµ

Zµ

)

= −e
(

1,
sW

cW

)(

Aµ

Zµ

)

= −e
(

1,
−s2w
cW sW

)

(

Aµ

Zµ

)

using c2W = cos(2θW ) = c2W − s2W and s2W = sin(2θW ) = 2cW sW and other games with cos and
sin.

The last of these two can be combined into an expression which generalizes to u and d quarks, of
charges 2/3 and −1/3 respectively:

e

cos θW sin θW

(

1

2
F3 −Qf sin2 θW

)

where Qf is electric charge of the fermion, in units of e, and F3 is the upper or lower eigenvalue of
the fz reflection matrix:

singlets doublets
eR uR dR eL νL uL dL

F3 0 0 0 −1 1 1 −1
Qf −1 2/3 −1/3 −1 0 2/3 −1/3

The Qf can be related to the “hypercharge” of Note 34 (Part IV) of Book 8c.

The electroweak theory for quarks parallels the above discussion exactly so I won’t elaborate on it.

Finally we look at the cross terms coupling neutrinos and electrons.

ν̄Lel : − g2√
2
W+

µ ēLνl : − g2√
2
W−

µ

These lead to the beta-decay diagram we started this Note with.

We have progressed from the boson fields we originally constructed our Lagrangian with, Bµ,W
1
µ ,W

2
µ ,W

2
µ ,

to the linearly related physical force fields, Aµ and Zµ, which are neutral, and W+
µ and W−

µ , which
are charged force carriers.

We have used diagrams as intuitive pictures of particle interactions. But quantum field theory thinks
in terms not of particles but of fields. The diagrams are also guides to the terms in the functional
integral of the action, which is itself an integral of the Lagrangian density over all timespace. We
can label leaves, vertices and edges of a diagram to relate it to the integrals to be calculated. The
leaves are labelled with the field functions for the ultimate incoming and outgoing “particles”. The
internal vertices, of fanout f , are labelled with the interaction terms we’ve been describing for QED
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and electroweak theories in the last two Notes: f is given by the number of interacting fields and
the label is the corresponding term omitting the fields themselves. For internal edges the labels are
the propagators to be discussed in the next two Notes.

36. Green’s functions. An important form of slope equation is

Dxφ(x) = J(x)

where Dx is a slope operator such as Dx = ∂x or Dx = ∂2
x +m2, etc.

This might remind us of a matrix equation

Av = J

which has the solution
v = A−1J

provided that the inverse, A−1, can be found. That inverse has the property A−1A = I or

A−1A = (δjk)

using, for the identity matrix I, the Kronecker delta δjk = 1 if j = k else 0.

The “inverse” of a slope operator is called its Green’s function, G, and has the analogous property

DxG(x) = δ(x)

or
DxG(x− x′) = δ(x − x′)

using the Dirac delta function (see Note 32).

Thus

φ(x) =

∫

dx′G(x− x′)J(x′)

because

Dxφ(x) = Dx

∫

dx′G(x− x′)J(x′)

=

∫

dx′DxG(x− x′)J(x′)

=

∫

dx′δ(x− x′)J(x′)

= J(x)

We can modify this to include initial conditions φ0(x) if this is a solution to the “homogenous
equation” Dxφ0(x) = 0:

φ(x) = φ0(x) +

∫

dx′G(x− x′)J(x′)

(What is the analogous matrix solution?)

So far, this is an impractical formalism. How do we figure out whar G() is?

Try the Fourier transform

G(x− x′) =

∫

dk

2π
e−ik(x−x′)G(k)

(See Notes 1 and 2 of Week 9, and the Excursion Continuous FT in Week 9: in particular note
that

1

L

∑

k

e−i(j−j′)k = δjj′
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extends to
∫

dk

2π
e−i(j−j′)k = δ(j − j′)

where I’ve absorbed the 2π/L of the exponent into k or into the js and where the discrete length
L becomes 2π in the continuous case).

Then

DxG(x− x′) = Dx

∫

dk

2π
e−ik(x−x′)G(k)

=

∫

dk

2π
Dxe

−ik(x−x′)G(k)

on one side, and

δ(x− x′) =

∫

dk

2π
e−ik(x−x′)

on the other side.

Thus
Dxe

−ik(x−x′)G(k) = e−ik(x−x′)

or

G(k) =
e−ik(x−x′)

Dxe−ik(x−x′)

Let’s see with Dx = ∂2
x +m2, for instance.

∂2
xe

−ik(x−x′) = ∂x(−ike−ik(x−x′))

= −k2e−ik(x−x′)

So, for Dx = ∂2
x +m2,

G(k) =
1

−k2 +m2

A small change of direction for the above discussion: physicists find it more convenient to have

G(k) =
1

k2 −m2

so we go back to the beginning and redefine

DxG(x− x′) = −δ(x− x′)

All this extends to the Klein-Gordon equation in four (Minkowski) dimensions.

(6 ∂x· 6 ∂x +m2)φ(x) = J(x)

so
(6 ∂x· 6 ∂x +m2)G(x − x′) = −δ(x− x′)

where x now includes t, x, y, z and the subscript x on 6 ∂x· 6 ∂x = ∂2
t − ∂2

x − ∂2
y − ∂2

z indicates slopes
with respect to t, x, y, z rather than t′, x′, y′, z′.

Since

6 ∂x· 6 ∂xe
−i6k·6x = (∂2

t − ∂2
x − ∂2

y − ∂2
z )e−i(ktt−kxx−k−yy−kzz)

= (−k2
t + k2

x + k2
y + k2

z)e
−i(ktt−kxx−k−yy−kzz)

= (−k2
t + k\ · k\ )e−i6k·6x
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thus

G(k) =
1

k2
t − (k\ · k\ +m2)

=
1

k2
t − E2

using E2 − p2 = m2 from special relativity (with c = 1 and h̄ = 1 in E2 − (h̄kc)2 = (mc2)2).

We want to find (now in four dimensions)

G(x− x′) =

∫

d4k

(2π)4
e−k\ (x\ −x′\ )G(k)

=

∫

d3k

(2π)3

∫

dk

2π
e−k\ (x\ −x′\ )G(k)

Since
1

kt − E
− 1

kt + E
=
kt +E − (kt − E)

k2
t − E2

=
2E

k2
t − E2

G(x− x′) can be linearized to (I’m showing E explicitly as a function, Ek, of k)

1

2Ek

(

1

kt − Ek
− 1

kt + Ek

)

Given
∫

dk

2π
e−ikt = δ(t)

what can we make of
∫

dk

2π

e−ikt

k
?

Let’s find the slope with respect to t of the second.

∂t

∫

dk

2π

e−ikt

k
=

∫

dk

2πk
∂te

−ikt

= −i
∫

dk

2π
e−ikt

= −iδ(t)

What is δ(t) the slope of? Try the Heaviside step function

θ(t) =

{

0 t < 0
1 t > 0

(and, if needed, we can include θ(0) = 1/2 so that θ(t) + θ(−t) = 1).

Then
∫

dk

2π

e−ikt

k
= −iθ(t)

and
∫

dkt

2π

1

2Ek

1

kt − Ek
e−ikt(t−t′) =

1

2Ek

∫

dq

2πq
e−(q+Ek)(t−t′)

= −iθ(t− t′)e
−Ek(t−t′)

2Ek
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while
∫

dkt

2π

1

2Ek

1

kt +Ek
e−ikt(t−t′) = − 1

2Ek

∫

dkt

2π

1

−kt − Ek
e−ikt(t−t′)

= − 1

2Ek

∫

dq

2πq
ei(q+Ek)(t−t′)

= − 1

2Ek

∫

dq

2πq
e−i(q+Ek)(t′−t)

= iθ(t′ − t)e
−iEk(t′−t)

2Ek

In the above, first q = kt − Ek, then, in the second term, q = −kt − Ek. There are other ways to
do this integral as written, but I have glossed over an important subtlety.

We cannot integrate the Green’s function 1/(k2
t − E2

k) because of the pole at kt = Ek—and, for
conservation of energentum kt = Ek for all particles that we can actually observe, even if not
necessarily for “virtual” particles that pop in and out of existence during any physical process.

So Feynman added a small imaginary term, iε, which we can slip into the Ek term: Ek −→ Ek + iε.
Thus we are integrating

1

k2
t − (Ek − iε)2

=
1

2Ek

(

1

kt − Ek + iε
+

1

−(kt − Ek) + iε

)

and we chose the sign of q to agree with that of iε both times because the steps leading to θ(t)
must be refined to include the 2-number plane. (Why can we be sloppy about the exact form of
ε?)

Now we complete the integration.

∫

d3k

(2π)3
∫ dkt

2π
e−ikt(t−t′)eik\ (x\ −x′\ )G(k)

=

∫

d3k

(2π)32Ek

(

−iθ(t− t′)e−iEk(t−t′) + iθ(t′ − t)e−iEk(t′−t)
)

eik\ (x\ −x′\ )

= −i
∫

d3k

(2π)32Ek
θ(t− t′)e−iEk(t−t′)eik\ (x\ −x′\ )

−i
∫

d3k

(2π)32Ek
θ(t′ − t)e−iEk(t′−t)e−ik\ (x′\ −x\ )

= −i
∫

d3k

(2π)32Ek

(

θ(t− t′)e−i6k(6x−6x′) + θ(t′ − t)ei6k(6x−6x′)
)

In the third step we changed the sign on k, the 3D integration variable, thus changing the sign on
d3k. In the fourth step we recombined time and space into 4D timespace.

Note that this expression is time-ordered: it t > t′ the first term applies; if t < t′ the second applies;
and if t = t′ we use both, equally weighted by 1/2.

Or we can speak of particles going forward in time and antiparticles going backward.

This Green’s function, extended into the 2D number plane for the Klein-Gordon equation, is in a
form which we can relate, in the next Note, to propagators.

But first we look at two more examples of Green’s functions.

The Dirac equation (see Note 27 in Part IV) for fermions is

(i 6 ∂ −m)ψ(x) = J(x)
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and its Green’s function must satisfy(in 4 dimensions)

(i 6 ∂ −m)G(x− x′) = δ4(x− x′)

Taking the Fourier transform and going through the above steps

(6 k −m)G(k) = 1

which we cannot invert immediately because k is a (4-by-4) matrix, not a number. But we can get
a number to invert by multiplying both sides by 6 k +m.

(k2 −m2)G(k) = 6 k +m

So

G(k) =
6 k +m

k2 −m2

or, to avoid poles,

G(k) =
6 k +m

k2 −m2 + iε

(We can be a little sloppy about where we put the ε since it ultimately goes to zero.)

This will become
(i 6 ∂ +m)GKG(x− x′)

where GKG is the Klein-Gordon Green’s function derived above.

The third example of Green’s functions is the photon field. Klein-Gordon gives fields of spin 0,
Dirac gives fields of spin 1/2, and Maxwell gives fields of spin 1.

We’ll pick up on Notes 5 (Part I) and 15 (Part III) where Maxwell’s equations wound up as (see
Excursion Maxwell’s tensor and equations)

∂µF
µν = jν

with
Fµν = ∂µAν − ∂νAµ

Here we use “Heaviside-Lorentz” units in which the 4πECq are all absorbed into the charge/current
density jν .

And we resort to co- and contra-variant sub-and super-scripts because the slash notation, which
works well for vectors, seems unwieldy for the tensor Fµν . All we need remember is that moving µ
or ν up or down changes the sign on any component for which either µ or ν is 0. (The sign changes
twice if both are 0, but then F 00 = 0, as do F 11, F 22 and F 33, so there is no issue.) That is, in the
Excursion, Ej = −Ej.

We can rearrange

∂µF
µν = ∂µ(∂µAν − ∂νAµ)

= ∂µ∂
µgνλAλ − ∂ν∂µA

µ

= ∂µ∂
µgνλAλ − ∂ν∂λAλ

= (∂µ∂
µgνλ − ∂ν∂λ)Aλ

= jν

so that the Green’s function is the inverse of the operator on Aλ

(∂µ∂
µgνλ − ∂ν∂λ)Gνα(x− x′) = gλ

αδ(x − x′)
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But note that this is a matrix operator as well as a slope operator. And note that Aλ does not have
four indepndent components, but can be restricted in various ways without changing the physics it
describes.

So we will not be able to find the inverse of the operator

∂µ∂
µgνλ − ∂ν∂λ

We must go back to the Lagrangian that gives rise to the equation

∂µF
µν = jν

and modify it in some way that does not alter the physics but includes the constraints on Aλ so
that the resulting equations can be inverted.

Since ∂µA
µ = 0 (the “Lorentz gauge”) is one way—a Lorentz-invariant way, since ∂µA

µ is a Lorentz
scalar—of constraining Aλ, we’ll try including it in the Lagrangian.

The resulting Lagrangian is

L = −1

4
FµνF

µν − jµAµ −
1

2ξ
(∂µA

µ)2

all of which we must justify by working out from it the equations of motion, using Euler-Lagrange

∂µ∂∂µAν
L = ∂AνL

Let’s try operating on each term of L with the appropriate side of Euler-Lagrange.

∂∂µAν
L(1) = −1

4
∂∂µAν

FρσF
ρσ

= −1

4
∂∂µAν

(· · · + FµνF
µν + · · · + FνµF

νµ + · · ·)

= −1

4
(Fµν ± Fµν − F νµ ∓ Fνµ)

= −1

4
(Fµν + Fµν + Fµν + Fµν)

= −Fµν

where we must carefully use ∂∂µAν
Fµν = 1, ∂∂µAν

Fνµ = −1 and then check signs again, depending
on whether or not µ or ν are 0. (In the second line, the indices in FµνF

µν and FνµF
νµ are not

summed.)

So the first term is
−∂µF

µν

The second term is

∂AνL(2) = −∂Aν j
µAµ

= −∂Aν (· · · + jνAν + · · ·)
= −jν

And the first two terms, without the correction of the third, give Maxwell’s equations as we had
originally

−∂µF
µν = −jν
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Now the new term

∂µ∂∂µAν
L(3) = − 1

2ξ
∂µ∂∂µAν

(∂λA
λ)2

= −1

ξ
∂µ(∂λA

λ)∂∂µAν
(∂λA

λ)

= −1

ξ
∂ν(∂λA

λ)(±1)

= −1

ξ
∂ν(∂λA

λ)

= −1

ξ
∂ν(∂λAλ)

where again we must watch signs in the third step when we narrow the sum over µ to the one µ = ν
that gives a nonzero slope; but raising the ν in the fourth step counteracts the sign issue.

Comparing this with Maxwell’s equations without the “gauge-fixing” term in the Lagrangian

(gνλ∂µ∂
µ − ∂ν∂λ)Aλ = jν

We now have
(

gνλ∂µ∂
µ −

(

1− 1

ξ

)

∂ν∂λ
)

Aλ = jν

The Green’s function now exists:
(

gνλ∂µ∂
µ −

(

1− 1

ξ

)

∂ν∂λ
)

Gνα(x− x′) = gλ
αδ(x − x′)

giving, via Fourier transform

−
(

gνλk2 −
(

1− 1

ξ

)

kνkλ
)

Gνα(k) = gλ
α

Since Gνα(k) is a matrix depending only on k we must have, for coefficients a and b to be determined

Gνα(k) = agνα + bkνkα

So

gλ
α = −

(

gνλk2 −
(

1− 1

ξ

)

kνkλ
)

(agνα + bkνkα)

= −
(

ak2gλ
α − a

(

1− 1

ξ

)

kαk
λ + bk2kλkα − b

(

1− 1

ξ

)

k2kλkα

)

= −
(

ak2gλ
α −

(

a

(

1− 1

ξ

)

− bk2

ξ

)

kλkα

)

Equating coefficients of the matrices gλ
α and kλkα

1 = −ak2

so
a = −1/k2
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and

0 = a

(

1− 1

ξ

)

− bk2

ξ

so

b =
aξ

k2

(

1− 1

ξ

)

=
1− ξ
k4

So finally we have the Green’s function for the spin-1 photon field Aλ(k)

Gνα(k) = − 1

k2

(

gνα − (1− ξ)kνkα

k2

)

(and we would replace the outside 1/k2 by 1/(k2 + iε) to avoid the singularity).

Note that ξ =∞, which would eliminate the gauge-fixing term ∂µ∂λAλ/ξ, messes this up.

However, apart from that, ξ is an arbitrary parameter and we can set it to whatever we like.
Feynman and ’t Hooft chose ξ = 1, which removes a whole term from the Maxwell equations.

Recall from Note 17 that “gauge” is the conventional term for faze theory, which we have had to
invoke to find the photon field.

37. Propagators. The Green’s functions in the previous Note have physical interpretation as
propagators. For example, compare the scalar field Green’s function

iG(x− x′) =

∫

d3k

(2π)32Ek

(

θ(t− t′)e−i6k(6x−6x′) + θ(t′ − t)ei6k(6x−6x′)
)

with the Fourier-transformed simple field of Note 24 (in Part IV)

φk =
1√
L3

∑

k

1√
2ωk

(

eik·ℓ2π/LUk + e−ik·ℓ2π/LDk

)

which we make continuous (L→ 2π, ℓ→ x), recognize ωk = Ek the energy, and redefine slightly so
that instead of 1/

√

(2π)32Ek for each direction of the Fourier transform we have 1/((2π)32Ek) for
the k-to-x transform but just 1 for the x-to-k transform.

φ(x) =

∫

d3k

(2π)32Ek

(

eik\ x\ Uk + e−ik\ x\ Dk

)

To connect these we consider the expression

< 0 | φ(x′)φ(x) | 0 >

where < 0 | and | 0 > represent the “vacuum: state—the state with no excitations. This expression
can be interpreted (from right to left): start in vacuum (| 0 >), create a particle at x (φ(x)),
annihilate the particle at x′ (φ(x′)), resulting again in vacuum (< 0 |).
The “disappear operator can do nothing to the vacuum

Dk | 0 >= 0 | 0 >

but the “uppear” operator can create a particle of momentum k

Uk | 0 >=| k >
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a new way of writing | 0 · · · 010 · · · 0 > with the 1 in the kth position: this notation works if there
is only one particle.

The conjugates are the reverse

< 0 | Uk = 0

< 0 | Dk = < k |

Thus

φ(x) | 0 >=

∫

d3k

(2π)32Ek
eik\ x\ | k >

and

< 0 | φ(x′) =

∫

d3k′

(2π)32Ek′

e−ik′\ x′\ < k′ |

and we can put them together, remembering the orthonormality of momentum states

< k′ | k >= δ(k − k′)

to get

< 0 | φ(x′)φ(x) | 0 >=

∫

d3k

(2π)32Ek
eik\ (x\ −x′\ )

Thus
iG(x − x′) = θ(t− t′) < 0 | φ(x)φ(x′) | 0 > + θ(t′ − t) < 0 | φ(x′)φ(x) | 0 >

and we see the opposite directions of antiparticles, travelling backwards in time, from particles,
travelling forwards in time, as shown in the diagrams at the beginning of Note 34.

So Green’s functions are propagators, and this particular Green’s function is called the Feynman
propagator

G(x− x′) = ∆F (x− x′)
We saw in Note 36 that the Feynman propagator appears in both spin-0 and spin-1/2 fields. And
∆F (x− x′) appears, unidentified, in Note 32.

· · ·

In 1949 Feynman [Fey49] wrote a propagator (Green’s function) equation

ψ(x2, t2) =

∫

d3x1K(x2, t2;x1, t1)ψ(x1, t1)

The idea goes back as far as Christiaan Huygens who in 1678 proposed that every point of a
wavefront of light can be considered as a source of a new spherical wave. Let’s explore this briefly
in the simplest case of a light wave propagating from a spherical front to a spherical front.
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rθ
2 2

1 1(r ,   )
θ(r ,   )

r
rθ

θ

(r ,   )

1

1

2

First, the amplitude for a lightwave a distance r from a source, of amplitude 1, at the origin is

ei
~k·~r

r

where ~r is the vector (r, θ) which we’ll write in Cartesian coordinates as (rc, rs) with c = cos θ,
s = sin θ as usual, and with magnitude r.

We’ll take kx = k = ky in ~k = (kx, ky): light is propagated isotropically (i.e., the same in all
directions).

From this the intensity falls off, as it should, as

ei
~k·~r

r

e−i~k·~r

r
=

1

r2

Now let’s explore the propagation of a ray of light from (r1c1, r1s1) on wavefront of radius r1, to
(r2c2, r2s2) on what we know will in the end be a wavefront of radius r2.

~r = ~r2 − ~r1
= (r2c2, r2s2)− (r1c1, r1s1)

= (r2c2 − r1c1, r2s2 − r1s1)

and note that

r =
√

(r2c2 − r1c1)2 + (r2s2 − r1s1)2

=
√

r22 + r21 − 2r2r1c−
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with cj = cos θj, sj = sin θj and c− = cos(θ2 − θ1) = c2c1 + s2s1.

To find the total effect at (r2, θ2) of all the point sources on the wavefront of radius r1, we must
integrate over all θ1 from 0 to 2π.

∫ 2π

0
dθ1

ei
~k·~r

r

ei
~k·~r1

r1

I can’t do this integral mathematically, but we know the answer from Huygen’s principle

ei
~k·~r2

r2
=

∫ 2π

0
dθ1

ei
~k·~r

r

ei
~k·~r1

r1

Compare this with Feynman’s 1949 propagator equation.

Note that the positions 1 and 2 are arbitrary.We can equally step from, say, position 0.

ψ(x1, t1) =

∫

d3x0K(x1, t1;x0, t0)ψ(x0, t0)

So two or more propagators can be composed into a single propagator.

ψ(x2, t2) =

∫ ∫

d3x1d
3x0K(x2, t2;x1, t1)K(x1, t1;x0, t0)ψ(x0, t0)

I have egregiously warped this discussion and the Huygens integral above is incorrect. See Excursion
Huygens 3D.

38. Quantum Computing.

39. Binary Fourier transform.

40. Quantum Fourier transform.

41. Finding periods.

42. Quantum key distribution.

43. No cloning.

44. Database search.

45. Detecting and correcting errors.

46. Nonlocality: Einstein-Podolsky-Rosen.

47. Building a quantum computer.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Look up Feynman’s 1942 thesis referenced in Note 31 or his summary paper in Reviews of
Modern Physics 1948 [Fey48], both available in [Bro05].

2. The constant-force Lagrangian calculation of Note 31 is an exercise in [FH65, p.28].
If we know xb and the time T when the particle reaches it, but not the initial velocity v0, we
can find v0:

xb =
1

2
aT 2 + v0T + xa

v0 =
xb − xa

T
− 1

2
aT

33



With these we can find the action (relative to mass m as in Note 31):

S

m
=

∫ T

0
dt
L

m

=

∫ T

0
dt

(

1

2
(at+ v0)

2 +
1

2
a2t2 + av0t+ axa

)

=
1

3
a2T 3 + av0T

2 +
1

2
v2
0T

2 + axaT

=
1

3
a2T 3 + a(xb − xa)T −

1

2
a2T 3 +

1

2

(

xb − xa

T
− 1

2
aT

)2

T + axaT

= − 1

24
a2T 3 +

1

2
a(xb − xa)T + axaT +

(xb − xa)
2

2T

This now gives the phase change along the classical path—and the Euler-Lagrange equation,
which told us ẋ = a, guarantees that this phase change is the minimum of all possible
paths. The amplitude that the classical particle follows this path is thus exp(−iS/h̄), and
the probability is the square of the amplitude.

3. Programming path integrals. It would be easy to write four nested loops, 1 to 5 each, to
generate all 625 paths shown in Note 31. But how would we write it in general so that we
can change both the number of loops n− 1 (n = T/tstep, the overall time T for the particle
to travel from xa to xb, divided by the size of each time step), and the number of discrete
x-positions, nx?
We need to be able to extract a set of indices, giving a path, from the variable k of a single
loop

for k = 1:nx(̂n−1)
Write a program

indx = j2indxn(k−1,n−1,nx)
which gives the 1-by-(n − 1) array, indx, of indices for an n− 1-dimensional array of nx-by-
nx-by-nx-by-· · · elements generalizing the following 3-by-3-by-3 example (k − 1 runs from 0
to 26).

in
dx

(3
)

20  23  26
19  22  25
18  21  24

11  14  17
10  13  16
  9  12  15

  2    5    8
  1    4    7
  0    3    6

2
1
0

0    1    2

0

1

2

indx(2)

in
dx

(1
)

Thus j2indxn(10,3,3) is [1,0,1] and j2indxn(17,3,3) is [2,2,1].
Each step in the k-loop gives one whole path from xa to xb so an inner loop

for j = 1:n−1
can add up the phases given by the Lagrangian/h̄ and calculate the amplitude for that path.
The outer, k-loop, sums the amplitude for the total over all paths.
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This Excursion is purely didactic. It cannot be used to find the total amplitude because only
a small, discrete set of paths is explored. But it motivates the analytical calculations that
follow.

4. My sources for the discussion of functionals in Note 32 are Berciu [Ber11], Ryder [Ryd85,
§5.4] and Straub [Str04, p.13]. Although we cannot find a slope of a functional which is
independent of “direction”, we can find extrema of functionals: we don’t need the “slope” but
only the numerator of this slope, which we must set to zero. Thus, for one of our examples,

0 = F [f + δf ]− F [f ] =

∫ 1

0
dx(6f(x) − x)δf(x)

which, if true for any “direction”, δf(x), implies

6f(x) = x

or f(x) = x/6. Berciu explores the trial-and-error approach to solving this problem, and goes
on to discuss its application to deriving the Euler-Lagrange equations (see Note 37 of book
8c (Part IV)) and other applications.
The idea of using the delta-function as a specific direction is in Ryder, and Straub gives the
second- and fourth-order slopes of Note 32. Instead of taking Straub’s advice and working
through the fourth-order slope I have proceeded to higher orders. You might work out the
fourth-order slope, though.
Zee [Zee10, p.13] says of the connection between the “odd factorial” and the diagrams at the
end of Note 32 (although in the different context of Gaussian integrals), “This clever obser-
vation, due to Gian Carlo Wick, is known as Wick’s theorem in the field theory literature.”
Was this historically a refinement of Freeman Dyson’s work reconciling Feynman’s intuitive
diagrams with the field theory work of Schwinger and Tomonaga?

5. Feynman [FH65, §4.1] works out the path integral normalization discussed in Note 33, for
non-relativistic quantum mechanics, to get

A =

√

2πih̄ǫ

m

He also derives Schrödinger’s equation from the path integral

K(b, a) =
lim
ǫ→0

1

A

∫

· · ·
∫ ∫

dx1

A

dx2

A
· · · dxN

A
eiS[b,a]

where S is the action

S[b.a] =

∫ tb

ta
dtL(ẋ, x, t)

using the Lagrangian

L =
mẋ

2
− V (x, t)

6. Matrix Gaussians. We can generalize the multi-variable integral at the beginning of Note
33 to include variable coefficients ak. I’ll follow Zee [Zee10, p.14] by including a factor 1/2 to
make it tidier to complete the square. First, only quadratic terms:

∫

dx1dx2e
− 1

2
(a2

1x2
1+a2

2x2
2) =

√

2π

a1

√

2π

a2
=

√

(2π)2
∏

k ak
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If we think of a1 and a2 as the elements of a diagonalized (2-by-2) matrix A, this becomes

∫

dx1dx2e
− 1

2
x·A·x =

√

(2π)2

detA

and in this formulation it no longer matters if A is diagonal; it need only be diagonalizable,
which is the case if A is symmetric or hermitian. Apart from the expicit mention of dx1dx2

this formulation is also independent of the size of the matrix: if we wrote
∫

dnx, A could be
n-by-n.
Now, include linear terms and complete the squares.

∫

dx1dx2e
− 1

2
(a2

1x2
1+a2

2x2
2)+J1x1+J2x2 =

√

2π

a1

√

2π

a1
eJ

2
1/(2a1)eJ

2
2/(2a2) =

√

(2π)2
∏

k ak
exp

∑

k

J2
k/(2ak)

This becomes, in matrix terms,

∫

dx1dx2e
− 1

2
x·A·x+J ·x =

√

(2π)2

detA
e

1
2
J ·A−1·J

since A−1, if diagonal, has just the elements 1/ak.

Compare the denominator,
√

detA, with the product, An, of weighting factors in Note 33
(also called A but there just a number).

7. The (xj+1 − xj)
2 calculation of Note 33 was first made by Feynman in 1948 [Fey48].

8. The derivation of the free (kinetic energy only) path integral in Note 33 is given by [Str04,
pp.8,9].

9. Even moments. The “odd factorial” of Note 32 can also be generated by the Gaussian
integrals of Note 33.
Let’s find

∫

dxx2ne−ax2

by finding

∂(n)
a

∫

dxe−ax2
= ∂(n)

a

√

π

a

∂a

∫

dxe−ax2
=

∫

dx∂ae
−ax2

=

∫

dx(−x2)e−ax2

∂a

(

π

a

)1/2

=
1

2

(

π

a

)−1/2

∂a
π

a
=

1

2

(

π

a

)−1/2 (

− π
a2

)

= − 1

2a

√

π

a

Then

∂(2)
a

∫

dxe−ax2
=

∫

dx(−x2)2e−ax2

∂(2)
a

(

π

a

)1/2

= −1

2
∂a

(

π

a3

)1/2

=
3

4

(

π

a3

)−1/2 π

a4
=

3

4a2

√

π

a

and so on

(−)n
∫

dxx2ne−ax2
= (−)n

(2n − 1) · · · 3 · 1
(2a)n

√

π

a
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So
∫

dxx2ne−ax2
=

(2n− 1)!!

(2a)n

√

π

a

What happens if a is replaced by a/2?
What happens if we insert an extra x?

∫ ∞

−∞
dxxx2ne−ax2

=?

(I’ve shown the infinite limits explicitly as a hint.)
Zee [Zee10, p.13] uses this approach to calculate even moments < x2n >.

10. Zee [Zee10, pp.42,3] discusses a Z(ℓ) differing from that of Note 33 in that he explores −fx4

in the exponent instead of −fx3. Work out the f -g-ℓ table for Zee’s problem and show that
Vℓ + 4Vf = 2E.

11. Zee [Zee10, p.45] shows that we can expand first in powers of ℓ then in powers of f and get
the same coefficients by using the results of Excursion Even moments.

12. Does the Euler relationship of Note 34 apply to disconnected diagrams? How would you
modify it, given the number, P , of pieces?

13. The Euler relationship of Note 34 pertains to diagrams on a plane, without counting the rest
of the plane as itself a face. How would it change if the diagram were on the surface of a
sphere? A torus?

14. Current from faze invariance. Show that the current, jµ, in the Maxwell Lagrangian of
Note 34

LMaxwell = −1

4
FµνF

µν − jµAµ

can be obtained by fazeing (∂µ → Dµ = ∂µ + (iq/h̄)Aµ as in Note 16) the Dirac Lagrangian

LDirac = ψ̄(i 6 D −m)ψ

= ψ̄(idµ∂µ −
q

h̄
dµAµ −m)ψ

= ψ̄(idµ∂µ −m)ψ − q

h̄
ψ̄dµAµψ

15. Make the E-Vf table for f = 4, as Note 34 does for f = 3. Compare it with your −fx4 table
in the Excursions for Note 33,

16. Show that γµ, µ = 0, 1, 2, 3, in Note 35, anticommute.

17. In Note 19 (Part IV) we saw that any reflection F gives rise to orthogonal projections because
F 2 = I. What other (2-by-2) matrices, which are not reflections, also give rise to two
orthogonal projections? These should be avoided in our discussions of Note 35.

18. For Note 35, confirm that under Lorentz transformation

ψ̄ψ scalar
ψ̄γµψ vector

ψ̄
(

i
2 [γµ, γν ]−

)

ψ tensor

ψ̄γ5γµψ pseudo-vector
ψ̄γ5ψ pseudo-scalar
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19. In Note 35 we found a chiral representation of the Dirac matrices in which the product of
γµ, µ = 0, 1, 2, 3, times i is

γ5 =

(

I
−I

)

Play with reflection algebras in 2D and 3D for both Euclidean and Minkowski spaces to see if
you can find representations in which the product of all the basic matrices is imaginary and
diagonal. For example, 2D Euclidean:

e1 e2 ie12 PR PL
(

1
1

) ( −i
i

) ( −1
1

) (

1

) (

1
)

In 3D the representations are unique: what happens?

20. The discussion of the electroweak unified theory in Note 35 follows closely [Kan93, pp.81–9].
Kane goes on to observe that the bosons in that discussion are faze bosons and so massless (see
Excursion Goldstone and Higgs mechanisms in Part III): this makes the weak force appear
much stronger relative to electromagnetism than it actually is; massive bosons require more
energy to produce and so have smaller amplitudes (and probabilities) than massless bosons,
weakening the force appropriately.

21. The discussion of Green’s functions in Note 36 and of propagators in Note 37 is taken
from [LP01, pp.40–45, 66–67, 143–151]. Look up other discussions, too.

22. Huygens 3D. Correct the math of Note 37 so that it describes a spherical, not a circular,
wavefront of light.

23. Could the inverse A−1 of the matrix in Excursion Matrix Gaussians be a discrete propagator
in the sense of Note 37?

24. You might now appreciate and enjoy the history of QED in [Sch94].

25. Feynman’s program Hamiltonian.
a) In [Fey99, Ch.6], pp.196ff. specifically, Feynman discusses a “program counter” which al-
lows a quantum-mechanical system to sequence through a chain of “sites”. Here is an example
of three sites involving three bits each, labelled 0, 1 and 2, such that the correspondingly
labelled Up and Down operators change a 0-bit to a 1-bit and vice-versa: each bit is a 2-D
vector (1, 0)T for 0 or (0, 1)T for 1 (and they are combined by tensor product but we don’t
need to worry further than that the labelled operator affects only the correspondingly labelled
bit).

1

1  1  0 1  0  1 0  1  1
1  0  00  1  00  0  1

2  1  0 2  1  0 2  1  0
0 1U  D

D  U

U  D

D  U1 0 2 1

2

Note that each site is characterized by exactly one 1-bit. We can consider the program-counter
site to be labelled by the label of its 1-bit, hence the sites are 0, 1 and 2.
Clearly this scheme can be extended to any number of sites and hence, eventually, to a
program any number of steps in length.
The transitions shown allow the system to move from any site to any other site. But we can
suppose the program counter starts with bit 0 set to 1, and hence we start at site 0; and that
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we wish to finish when the last bit is 1, hence at the last site. Like any quantum-mechanical
system this one will follow all possible paths in all directions, but we know that, having
started at 0, if we get at any time to the last site, then we will have executed all the steps of
the program.
So it only remains to stick the program gates themselves somehow into this scheme.
The Up-Down notation may now get confusing, because the program gates themselves will
ultimately be built up of Up and Down operators. So we’ll switch to more conventional
notation with q standing for D and its transpose q† standing for U .
Then we can represent the program gates by p to distinguish them from the program-counter
gates q. And, since program gates must all be reversible in quantum computing, and unitary
so that p† is the inverse of p, we can write a (two-step) program as

p.c.site 2

q   q

q  q

p
p

p
p1  1  0 1  0  1 0  1  1

1  0  00  1  00  0  1

2  1  0 2  1  0 2  1  0

0

0

1

1

2 1

12q   q

q  q

1
1

2
2

p.c.site 0 p.c.site 1

Everything on each lower, left-pointing, arrow is just the Hermitian conjugate of the corre-
sponding upper, right-pointing, arrow. So a Hamiltonian which is the sum of all these pieces,
is Hermitian.

H = q†1q0p1 + q†2q1p2 + Hermitian conjugate

(Note that we don’t need to rearrange the order of the qs and ps because each operates on a
different bit—the bits for the ps having not yet even been shown.)
Furthermore, any loop in a path followed by the time evolution of this quantum system does
nothing. For example, the path from site 0 to site 1, back to site 0, on again to site 1 then

finally to site 2 will perform program step p1 then cancel it with step p†1 then perform p1

again and finally program step p2: the net effect is p1 followed by p2 (i.e., p2p1 as right-to-left
operators) never mind the loop en route.
We can use a Hamiltonian rather than a Lagrangian because we are not trying to be rela-
tivistic. Indeed, we want the time evolution which, for Hamiltonian H, is given by

eiHt = 1 + iHt− H2t2

2
− ..

These arbitrarily large powers of H =
∑

q†j+1qjpj+1+ H.c. generate all the possible paths we
considered above. But the program counter sites automatically sort everything out into the
sequential product of program operators ..pj ..p2p1.
b) The program Feynman gives as an example is the reversible full adder (Week 10, Ex. Matrix
logic, [Fey99, pp.190,195]) made up of CN (controlled-not) and CCN (controlled-controlled-
not, or Toffoli) gates as follows.

c

d a,b ,bc d ,b c a,bp p
a

b

d = 0

a

b

a  +  b  +  c

carry

sum

reversible full−adder

(a  +  b)c   +  ab

p p pab,
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The program is the sequence pa,bpb,cpbc,dpa,bpab,d where the number of subscripts distinguishes
CN from CCN gates and the subscripts give the affected (qu)bits.
Feynman goes on to express CN and CCN gates as ladder operators U and D which, to avoid
subscripts, are better written in terms of the letters for the qubits, e.g., a† for U and a for D.
In Week 10, Ex. Basic matrices for logic, we expressed CN as

CNa,b = Ib
←−×DaUa +Xb

←−×UaDa

= Ib
←−×(Ia − UaDa) + (Ub +Db)

←−×UaDa

= IbIa + (Ub +Db − Ib)(UaDa)

= I + (b† + b− I)a†a

where I’ve rearranged the order of the tensor products—which doesn’t matter as long as it is
done consistently—and finally just stopped writing them; and where the matrix forms of Ex.
Basic matrices for logic in Week 10 justify the products and differences in the projections,
DU = I − UD, and the sum in not, X = U +D.
A similar derivation gives (note that having the qubit labels permits us to rearrange the order
of writing)

CCNab,c = I + a†ab†b(c† + c− I)
The similarity of the two forms justifies the work we’ve just done.
So we can write out in detail, if labouriously, the program pa,bpb,cpbc,dpa,bpab,d, intersperse
the program-control-site operators q0, · · · , q5, write the Hamiltonian, and run the full-adder
program.

26. Any part of the Prefatory Notes that needs working through.
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