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13. The electromagnetic Schrödinger equation.
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15. Links with geometry.

16. Local action versus action-at-a-distance.
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I. Prefatory Notes

18. Introduction to Quantum Fields. We have been following Schrödinger in describing particles
as wavefunctions, whose values in time and space are amplitudes, the squares of which are the
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probabilities that a particle is present at the given time and place. Schrödinger says nothing about
how the particle came into existence in the first place or what happens to it in the end.

At sufficiently high energies, special relativity comes into play and particles can be created or
destroyed. This is because E = mc2 says that energy and mass are equivalent and so if there is
sufficient energy, E, a particle of mass m can come into being. Particle physics, or high-energy
physics, is largely about the appearance and disappearance of particles.

Here are some bubble-chamber tracks of electrons and positrons appearing at the point of disap-
pearance of photons.

Since the photon is not charged it leaves no track in the bubble chamber. But at the vertex of each
V in the image, a photon has disappeared and an electron-positron pair appears. They are charged
and so make tracks. Their charges are opposite and since a magnetic field has been applied to the
bubble chamber, these tracks curve in opposite directions. Since they have the same masses and
velocities, and the same charges but with opposite signs, these curvatures are equal but opposite
(wherever the magnetic field is uniform).

Evidently we are going to need some operators which make particles appear or disappear. Let’s
call them U for “uppear” and D for “disappear”. (My reason for distorting the terminology will
become clear in the mathematics of the next section.)

Historically these have been called creation and annihilation operators, respectively, or emission
and absorption operators, respectively. (You can see that using A instead of U might be confusing.)

We can begin to explore the properties of the operators U and D. They will need subscripts to
identify the particles they apply to, and we’ll see that they will also need symbols to distinguish
which types of particle they apply to—e.g., photons are a different type from electrons or positrons.

Feynman [FLS64, pp.III-4-1 f.] shows that, because quantum physics deals in amplitudes rather
than probabilities, all particles must come in one of two types: those whose amplitude signs change
when two identical particles are swapped, and those whose signs don’t. (See also Week 5, Notes 8
and 9.) Or, we could reflect a single particle: the amplitude on reflection might change by a phase
factor eiθ, but the square of this phase factor must be 1 because two reflections give the identity.
Thus eiθ = ±1 for which there are two possibilities, hence two basic types of particle.

If we create two identical particles, we could use either U1U2 or U2U1, applied to something,
to generate amplitudes. (I’ve distinguished the particles by subscripting the Uppear operator,
although physically they are not distinguishable.) Then for the +1 type of particle

U2U1 = U1U2
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but for the −1 type of particle
U2U1 = −U1U2

We can express this difference by using commutators

[U (−)1, U (−)2]−
def
= U (−)1U (−)2 − U (−)2U (−)1

and anticommutators

[U (+)1, U (+)2]+
def
= U (+)1U (+)2 + U (+)2U (+)1

And I’ve labelled the U operators with the corresponding signs.

This same discussion applies to distinguish D(−) from D(+).

All particles described by the commuting operators are called Bose-Einstein particles or bosons.

All particles described by the anticommuting operators are called Fermi-Dirac particles or fermions.

Commuting operators such as U− could possibly be represented by ordinary numbers—although
we’re about to meet other aspects which do not commute—but the anticommuting operators are
new. The mathematical objects we know that come closest to this are matrices. although we have
yet to explore anticommuting matrices.

Commutators first: what arises is the question, how do different operators interact, e.g., U with
D? We start by looking at H and A, and at X and P .

Before Schrödinger formulated quantum mechanics as a slope equation

ih̄∂tu = − h̄2

2m
∂2
xu+ V u = Hu

(Notes 10 and 11 above), Heisenberg had already worked out a form of matrix mechanics. So we
should look at that. Schrödinger puts the time dependence into the state vector (or function) u,
which we’ll now call uS . Heisenberg puts the time dependence into the operators, leaving what
we’ll call uH independent of time. Formally, then,

uS = e−iHt/h̄uH

as we saw in Note 11: since ∂tuH = 0, this solves the Schrödinger equation

ih̄∂tuS = HuS

So the time dependence is all contained in the operator in the Heisenberg picture. Thinking of an
operator A as a matrix, the transformation corresponding to that for the vector u, is

AS = e−iHt/h̄AHe
iHt/h̄

or
AH = eiHt/h̄ASe

−iHt/h̄

The time dependence of a Heisenberg operator, given ∂tAS = 0, is

ih̄∂tAH = AHH −HAH = [AH ,H]−

So ∂tAH = (i/h̄)[H,AH ]−. This is the Heisenberg equivalent, for operator A, to the Schrödinger
equation for wave function u.

Commutators are beginning to seem important. Here’s another. In Note 10 we used the equivalence
p = −ih̄∂x (one dimension is enough for this discussion). So [x, p]− applied to some u is

[x, p]−u = [x,−ih̄∂x]−u
= −xih̄∂xu+ ih̄∂xxu

= −xih̄∂xu+ ih̄u+ xih̄∂xu

= ih̄u
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or, in short
[X,P ]− = ih̄

I’ve capitalized P and X because they are both operators.

So what do they look like as matrices?

Here’s a trick. Let’s replace P and X by two linear combinations from which we can easily get P
and X back. And let’s replace the constant h̄ by 2 just to make the math really simple: we can
always put h̄/2 back at the end.

D
def
=

1

2
(X + iP )

U
def
=

1

2
(X − iP )

So

[D,U ]− =
1

4
((X + iP )(X − iP )− (X − iP )(X + iP ))

=
i

4
(PX −XP + PX −XP )

=
−i
2

[X,P ]−

= I

Why am I doing this? Bear with me one more step. If we suppose D and U are “ladder” matrices,
written respectively as a single superdiagonal and a single subdiagonal

DU =













a
b

c
.
.





























A
B

C
.
.

















=













aA
bB

cC
.
.













UD =

















A
B

C
.
.





























a
b

c
.
.













=













aA
bB

.
.













giving aA = 1, bB = aA+ 1 = 2, cC = 3, ...

So if we try a = 1 = A, b =
√

2 = B, c =
√

3 = C, etc., then we have

X = U +D =



















1
1

√
2√

2
√

3√
3

.
.



















P = i(U −D) =



















−i
i −i

√
2

i
√

2 −i
√

3
i
√

3
.
.


















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and this is a solution to the commutator problem

[X,P ]− = 2i

(or ih̄ if we unswap, 2→ h̄).

The matrices are infinite, but they have the right property.

Let’s check out the Heisenberg equations of motion

i∂tX = [X,H]−

What is the Hamiltonian, H? That depends on the physical system, so let’s take something familiar,
the harmonic oscillator. In Note 39 of Book 8c (that’s in Part IV) we found the Hamiltonian

HHO =
kx2

2
+

p2

2m

and we worked in energy units h̄ω = h̄
√

k/m. Let’s ignore the physics of k, m, ω and h̄ and focus
on the essential math. So we’ll pretend

HHO =
1

2
(x2 + p2)

Back to D and U

UD =
1

4
(X − iP )(X + iP )

=
1

4
(X2 + P 2 + i[X,P ]−)

=
1

4
(X2 + P 2 + 2)

=
1

2
(
1

2
(X2 + P 2) + 1)

=
1

2
(HHO + 1)

The time rate of change of X (with h̄ replaced by 2 as before, to turn the physics into math) is

∂tX =
i

2
[HHO,X]−

= i[UD − 1

2
,X]−

= i[UD,U +D]−
= i(UDU − UUD + UDD −DUD)

= i(U [D,U ]− + [U,D]−D)

= i(U −D)

= P

And ∂tP = −X.

So ∂2
tX = −X which is what we expect for an oscillator. The Heisenberg matrix equations of

motion work with no need to take slopes.

Note, though, that this matrix approach is more abstract than the slope-equation approach: we
are not drawing pictures of wavefunctions as in Notes 11, 12 and 14 above, or, for the QHO, as in
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Note 39 of Book 8c.

So UD is important and worth looking at in matrix form.

UD =

















0
1

2
3

.
.

















When multiplied by energy units h̄ω this gives the energy levels at various states of excitement of
the oscillator. For instance, here are some state vectors and the corresponding energy levels: check
these by multiplying by UD.

0 1 2 ..








1
0
0
:

















0
1
0
:

















0
0
1
:









Generally speaking the Hamiltonian will contain UD.

Note that although the energy (Hamiltonian) has discrete values 0, 1, 2, .., P and X can have
continuous values. Trying to solve Xu = λu,



















1
1

√
2√

2
√

3√
3

.
.































a
b
c
d
:













= λ













a
b
c
d
:













gives

b = λa√
2c = (λ− 1)a√
3d = λc−

√
2b

:

which can be solved for any λ

It is not a coincidence that I’ve named the new operators U and D. These are ladder operators,
going up and down, respectively, in the following sense.

j = 2 j + 1

U | j >=
√
j + 1 | j + 1 > e.g.,

















0
1 0√

2 0√
3 0

.
.





























0
0
1
0
:













=
√

3

















0
0
0
1
0
:

















j = 2 j − 1

D | j >=
√
j | j − 1 > e.g.,













0 1
0
√

2
0
√

3
.

.

























0
0
1
0
:













=
√

2













0
1
0
0
:












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The “ket” notation, | j >, is a convenient way of writing the jth state vector.

From this notation follows
UD | j >=

√

jU | j − 1 >= j | j >
so UD, DU and [D,U ] = I are diagonal as we have seen.

Note in particular that UD is now the number operator N : UD | j >= j | j >= N | j > counts
the number of excitations present in state | j >.

Matrices such as U and D are going to play the respective roles of Uppear and Disappear, or create
and annihilate, when we come to particles.

They will be interpreted differently, though. A particle must be in some state of energentum, which
we can label, say, k. So to put a particle in this state we use the creation operator Uk. To remove
it from that state we use the annihilation operator, Dk.

So to accelerate a particle from k to k′ we would use

Uk′Dk

To annihilate a photon γ altogether and create an electron e and a positron p we might write

Upk”U
e
k′D

γ
k

with suitable constraints relating k, k′ and k”—which will turn out to be impossible to satisfy in
this simplistic attempt, but you get the idea. Furthermore, if these combinations of operators just
give the counts of particles as the output of the math, we can multiply these numbers by energy
units to get the energy and hence the Hamiltonian.

So each energentum state will have its own U and D operators. This is much more elaborate than
the single U and single D for a single quantum harmonic oscillator. Each energentum state is
modelled as a separate QHO—at least for bosons. The commutator relationships are

[D(−)k,D(−)k′ ]− = 0

[U (−)k, U (−)k′ ]− = 0

[D(−)k, U (−)k′ ]− = δkk′

because different states don’t influence each other (the linearity of quantum mechanics), but when
k = k′ the D(−) and U (−) don’t commute but [D(−), U (−)]− = I.

That’s for bosons, and we’ve explored the QHO basis already. For fermions we had anticommutators
at the beginning of this Note, and it is plausible that we’ll find

[D(+)k,D(+)k′ ]+ = 0

[U (+)k, U (+)k′ ]+ = 0

[D(+)k, U (+)k′ ]+ = δkk′

We’re going to have to explore the matrices that have these properties. That’s in the next Note.

How does all this relate to “fields”? So far we’ve discussed only particles. Well, how can we imagine
what’s going on when a “particle” is created or annihilated? It may be useful to think of it as an
excitation of some sort of field.

There is a precedent in crystal lattices. When they vibrate, quantum mechanics limits the levels
of energy each excitation can have—they are exactly analogous to the energentum states we’ve
just been discussing. Crystals are thought of as regularly spaced atoms connected by springs, so
this is just a set of harmonic (and maybe some anharmonic) oscillators. The excitations are even
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named—phonons—as if they were particles. Or, you can think of “mattress dynamics”—a regular
lattice of springs—only in three dimensions.

There is a “vacuum” or null state, | 0 >, in which the mattress is quiescent and has no excitations.
An excitation can be created by putting enough energy into the mattress to make it vibrate. The
vibration can travel across the mattress, and has a certain energy (frequency) and momentum
(wave number).

19. Small matrices. To explore fermion operators we don’t need infinitely large matrices. Two-
by-two matrices, and some logical extensions of them, will do. But we can do a lot with 2-by-2
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matrices and will meet much new math. Here’s a synopsis.

Category

Rotation

�
�
�

�
�
�

c,s

General Form

(

c −s
s c

)

=

cI + s

(

−1
1

)

→ c+ is = eiθ

(

c −s
s c

)

=

(

c s
s −c

)(

1
−1

)

c2 + s2 = 1

Commutation, etc.

[R,R′](−) = 0

detR = 1

Squares

(

c −s
s c

)2

=
(

c2 −s2
s2 c2

)

R2
90 = −1

Cross-refs.

Week iv Note 8
Week 4 Note 5
Week 7c Notes 7,8

*d

Shear

c,s

*1/d
(

c2d+ s2/d cs(d− 1/d)
cs(d− 1/d) c2/d+ s2d

)

= 1
2
((d + 1/d)I +

(d − 1/d)

(

c2 s2
s2 −c2

)

[Sc,s, S
′
c,s](−) = 0

detS = 1
Week iv Notes 9,10
Week 3 Note 7

Reflection

����

����c,s

(

c2 s2
s2 −c2

)

=

c2

(

1
−1

)

+ s2

(

1
1

)

= c2f1 + s2f2

[f1, f2](+) = 0

detF = −1

trF = 0

F 2 = I

f2f1 = R90 Week 7c Notes 6–11

Projection

��
��
��
��

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

c,s

P± =
1

2
(I ± F )

e.g., Px =

(

1 0
0 0

)

Py =

(

0 0
0 1

)

[P+, P−](−) = 0

detP = 0

trP = 1

P 2 = P

P+P− = 0 Week 7c Note 8

Ladder

D(+) =
1

2
(fj + ifk)

U (+) =
1

2
(fj − ifk)

[D(+), U (+)](−) = I

detD(+) = 0

detU (+) = 0

trD(+) = 0

trU (+) = 0

D+2 = 0 = U+2

e.g., D(+) =
(

0 1
0 0

)

U (+) =
(

0 0
1 0

)

D(+)U (+) = Px

U (+)D(+) = Py

Book 8c

Notes 29, 30, 39

There is a lot of information here (and some of the cross-references to these Excursions in Computing
9



Science are a little sketchy) so let me draw out one highlight.

Reflections are fundamental. Everything is either based on reflections or can be related to reflec-
tions. And reflections anticommute, so we should look to them, and to ladders which are based on
reflections, en route to those anticommuting fermion operators.

Let’s reinforce the importance of these 2-by-2 matrices by outlining the math and physics each
category leads to.

Rotations lead to 2-dimensional (“complex”) numbers, as indicated. They also lead to all of
trigonometry: c is cosine and s is sine. Finally, I’ve used rotation to calculate the general forms of
shear and reflection from special cases.

(

c −s
s c

)(

d
1/d

)(

c s
−s c

)

=

(

c2d+ s2/d cs(d− 1/d)
cs(d− 1/d) c2/d+ s2d

)

(

c −s
s c

)(

1
−1

)(

c s
−s c

)

=

(

c2 s2
s2 −c2

)

Shears exemplify symmetric matrices, that equal their transposes, and lead us to eigenvalues (e.g.,
d and 1/d) which are ordinary, one-dimensional (“real”) numbers for any symmetric matrix

S →
(

s1
s2

)

detS = s1s2 tr S = s1 + s2

We also have the two significant matrix invariants, that remain the same if the matrix is transformed
by rotation or reflection: the determinant is the product of the eigenvalues, the trace is the sum of
the eigenvalues—or of the diagonal of any matrix representing the operator with those eigenvalues.

The special case, a 45-degree shear (c = s)

S45 =

(

a b
b a

)

a2 − b2 = 1

leads to the Lorentz transformation of special relativity

1√
1− v2

(

1 −v
−v 1

)

Reflections are another example of symmetric matrices. They lead to a generalization when the
matrix elements can be 2D numbers: Hermitian matrices. Here is a third 2-by-2 reflection

f3 =

( −i
i

)

Its square is I, it anticommutes with the other two basic reflections f1 and f2, its determinant is
−1 and its trace is 0. It can be combined with f1, f2 and I, using four parameters, to give the
most general Hermitian 2-by-2 matrix

wI + xf2 + yf3 + zf1 =

(

w + z x− iy
x+ iy w − z

)

The eigenvalues of Hermitian matrics are also 1D (“real”) numbers, and so physically measurable.
For this reason, Hermitian matrices are essential to quantum mechanics: they represent measurable
quantities and contain as their eigenvalues all the possible outcomes of any measurement.

We saw an example of this in the previous Note: the quantum harmonic oscillator, QHO, has an
infinity of energy levels, 0,1,2,.., all contained in the Hamiltonian matrix—which is already diagonal
and so Hermitian.

The three basic reflections (or two of them) lead to the reflection (“Clifford”) algebra. We can
abbreviate f1f2 = f12, etc. because the subscripts and their order tell us everything we need to
know.
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× 1 f1 f2 f12

1 1 f1 f2 f12

f1 f1 1 f12 f2

f2 f2 −f12 1 −f1

f12 f12 −f2 f1 −1

⇒

[]± 1 f1 f2 f12

1 − − −
f1 + +
f2 +
f12

(The second table is another way of looking at the products of different elements.)

For example, f1f12 = f1f1f2 = f2 can be seen as f112 with the rule that adjacent same indices
eliminate each other.

Or f2f12 = f2f1f2 = −f1f2f2 = −f1 can be seen as f212 with the rule that swapping two not-same
indices changes the sign.

Note that the double reflection f12 is just a 90-degree rotation, whose square is −1. Note also
that f1 is the reflection in the horizontal axis while f2 is the reflection in the 45-degree line. Their
combination

f21 =

(

1
1

)(

1
−1

)

=

( −1
1

)

is the 90-degree rotation. This half-angle (90-degree rotation from 45-degree reflection), indicated
also in the table by the difference between

rotation

(

c s
s −c

)(

1
−1

)

and

reflection

(

c2 s2
s2 −c2

)

is going to be significant for quantum mechanics.

Ladders lead to the anticommutator (Grassmann) algebra with

[Dj , Uk]+ = δjk

[Dj,Dk]+ = 0 implying D2
j = 0

[Uj , Uk]+ = 0 implying U2
j = 0

which is just what we want. Unfortunately we have only one D and one U so far, so we don’t have
an example of the full algebra.

However, f3 gives the nicest ladder operators and we’ll use them.

D =
1

2
(f2 + if3) =

(

0 1
0 0

)

U =
1

2
(f2 − if3) =

(

0 0
1 0

)

20. Tensor products. To find multiple Ds and Us we’ll extend the set of basic reflections. It is
clear that the reflection (Clifford) algebra based on n reflections has 2n elements. We so far have a
2-by-2 matrix representation for the 8 elements of an algebra with n = 3. This is as far as we can
go with 2-by-2 matrices, which have 2× 2× 2 = 8 numbers (including both parts of 2D numbers)
as coefficients. For instance in our algebra based on f1, f2 and f3, we had Hermitian matrices

wI + xf2 + yf3 + zf1

11



and we can add to that the anti-Hermitian matrices (A† = iA)

w′f123 + x′f31 + y′f12 + z′f23

To get bigger matrices we introduce the tensor product

(

a c
b d

)

←
×
(

e g
f h

)

=









ae ag ce cg
af ah cf ch
be bg de dg
bf bh df dh









The notation reflects the asymmetry of the operation: the second matrix is transferred four times
into the first and multiplied each time by the corresponding element of the first.

Note that a complementary notation is not needed:

A
→
× B = B

←
× A

An important property is

(A
←
× B)(C

←
× D) = (AB)

←
× (CD)

where adjacency means the usual matrix multiplication.

This means that we can combine 2-by-2 base reflections into a larger set of 4-by-4 reflections, and
also hope to get a bigger set of ladder operations.

Let’s try the following combination of f1, f2 and f3. Only I’m going to rename them to be more
conventional, to fz, fx and fy respectively. Then, for example

wI + xfx + yfy + zfz =

(

w + z x− iy
x+ iy w − z

)

I’ll also reuse the fjs as the basis “reflections” in an n = 4 algebra with 16 elements, starting at 0
to match the usual convention in relativity.

f0 f1 f2 f3

fz
←
× I fx

←
× fx fx

←
× fy fx

←
× fz

Clearly the last three anticommute among themselves: the products are I
←
× fxy, etc., and their

commuted forms are I
←
× fyx = −I

←
× fxy. The first anticommutes with the last three, having the

form fzx
←
× fx, etc., added to fxz

←
× fx, etc..

This solution is far from unique, but there are combinations that do not anticommute: you should
experiment with a few yourself.

The squares are all I (which in this context stands for the 4-by-4 identity matrix).

We can now get two down and two up ladders, e.g.,

D1 =
1

2
(f0 + if1)

U1 =
1

2
(f0 − if1)

D2 =
1

2
(f2 + if3)

U2 =
1

2
(f2 − if3)

12



So tensor products of reflections give us multiple down and up ladder operators which we can use to
annihilate or create fermions. We won’t need to work with the resulting matrices—the properties
of the operators suffice—but it is nice to know that we can write matrices for them if we want.

Tensor products of matrices with themselves give results which simplify in useful ways.

(

a c
b d

)

←
×
(

a c
b d

)

=









aa ac ca cc
ab ad cb cd
ba bc da dc
bb bd db dd









There are identical elements in the second and third rows and again in the second and third
columns. If they were subtracted from each other we could get some zeros—maybe enough to
block-diagonalize the 4-by-4 matrix.

Let’s write a transformation which adds and subtracts these elements. Here’s one which is its own
inverse (it is based on reflections).











1
1√
2

1√
2

1√
2
− 1√

2
1











Pre- and post-multiplying, then swapping rows 3 and 4, and columns 3 and 4, gives









a2 ac
√

2 c2

ab
√

2 ad+ bc cd
√

2
b2 bd

√
2 d2

ad− bc









Note that the singleton entry, ad − bc is the determinant of the original 2-by-2, and could be
something simple such as 1, −1 or 0.

We can take the 3-by-3 block and combine it with the original matrix again to get a 6-by-6. The
top row is

a3 a2c a2c
√

2 ac2
√

2 ac2 c3

and similar relationships in the last row and in the first and last columns.

This suggests a transformation containing blocks

1√
3

√
2√
3√

2√
3
− 1√

3

and

√
2√
3

1√
3

1√
3
−
√

2√
3

which, when applied and the result rearranged, gives a 4-by-4 block

a3 a2c
√

3 ac2
√

3 c3

a2b
√

3 a2d+ 2abc bc2 + 2acd c2d
√

3
ab2
√

3 b2c+ 2abd ad2 + 2bcd cd2
√

3
b3 b2d

√
3 bd2

√
3 d3

and a 2-by-2 block which is ad− bc (that determinant again) times the original 2-by-2 matrix.

There are two ways we can take the next step to a 5-by-5: either take the tensor product of the
4-by-4 above with the original 2-by-2 and block diagonalize

4⊗ 2 = 5⊕ 3

13



or use the tensor product of the earlier 3-by-3 with itself

3⊗ 3 = 5⊕ 3⊕ 1

In each case, the “5”s are the same, the “3”s are ad− bc times the “3” we first generated, and the
“1” is (ad− bc)2.
The notation I’ve used, with the circles and the × and +, just keeps track of the dimensions of the
spaces. Thus when we tensor-product two 3-D spaces the result decomposes into blocks of 5-D,
3-D and 1-D spaces.

21. Spin. The shear and reflection categories in the big table at the beginning of Note 19 both
have angle (c2, s2)—indeed the role this angle plays in shear is exactly the reflection matrix.

The significance is that if we rotate a two-sided mirror (one which reflects both ways, which is what
the matrix describes) through 180o we’ve returned the system to its starting point. This is also
true of any shear.1

A system which is symmetrical in this way under half a full rotation can be described as having
spin 2.

By contrast, a system with no particular symmetry must be rotated all the way around, and would
have spin 1.

A system with two mirrors, though, generates a rotation. The one we showed had a mirror
(

1
−1

)

along the horizontal axis, and a mirror

(

c s
s −c

)

at half the angle (c, s) from the

horizontal one: note that the reflection from a mirror at angle (c, s) is described by c2 and s2.

So in principle to return the 2-mirror system to its unchanged starting point would require a 720-
degree rotation of the second mirror. This is a little hard to visualize for mirrors but the math is
clear.

Such a system, which needs a double rotation to restore it, has spin 1/2.

This situation is beyond our everyday experience. But the math says reflections are fundamental
and, in particular, a rotation by (c2, s2) is two reflections separated by half the angle, (c, s). One
might believe that if the math says something is fundamental then we will see it in nature. And
we do: spin 1/2 is essential for fermions, An Excursion in Week 7a lets you work through Pauli’s
reasoning that a relativistic observer cannot distinguish swapping two fermions from rotating one
fermion through 360 degrees. In both case the sign of the amplitude changes. This sign only comes
back to +1 if you do 360o twice.

Half-angles will be sufficiently important that they need notation. Since capital “J” looks sort of
like an upside-down “2”, I’ll take that as the subscript indicating the half angle—cJ and sJ—just
as c2 and s2 indicates the double angle.

(

cJ −sJ
sJ cJ

)2

=

(

c −s
s c

) (

c −s
s c

)2

=

(

c2 −s2
s2 c2

)

Spin 1/2 is probably goiing to be fundamental. Let’s approach it via spin 1 and spin 2 in three
dimensions.

Spin 1 is just ordinary rotation and in 3D there are three independent directions we can rotate in.
So spin 1 will be represented by a 3-by-3 matrix.

For spin 2 in 3D we must think about 2-sided mirrors or about shears. Indeed, gravity waves,
predicted by general relativity and detected directly in 2015 a century after Einstein published his

1Note that the two independent reflections are 45o apart, not 90o.
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first paper on GR, are shear waves and have spin 2.

Here are three shears along the three pairs of axes possible in 3D, matrix representations of them,
and their relationships.

+

x

z

y =





0
ǫ
−ǫ



 =





ǫ
0
−ǫ



+





−ǫ
ǫ

0





We’ve had to use shear generators rather than matrices representing the shears themselves. If we
let

d ≈ 1 + ǫ and
1

d
≈ 1− ǫ

for very small displacements ǫ, then, say




1
d

1/d



 = I +





0
ǫ
−ǫ



 = I + ǫ





0
1
−1





The upshot of the above combination of the three shears is that only two of them are independent.

In addition, though, there are three shears at 45o between each pair of axes and they re all inde-
pendent of each other and of the previous two.

y

x

z

So spin 1 has three independent directions in 3D and spin 2 has five independent directions.

This might remind us of how we combined two 3-by-3 matrices in Note 20 to get a 5-by-5 plus
change: 3 ⊗ 3 = 5 ⊕ 3⊕ 1. We might draw these combinations schematically and that would give
us a way of visualizing the 5 dimensions of spin 2, the 3 dimensions of spin 1 and the 1 dimension
of spin 0..

spin 0

+ +=
1 1

1

1 1

1

2 2
2
2

2

spin 2 spin 1
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It also suggests 2 dimensions for spin 1/2, showing the first combination we did in Note 19 as

spin 1

=

spin 0

+

1
1

1

1/2

1/2

So we must look for a 2-dimensional representation of 3D rotations. (And a 3-dimensional repre-
sentation, which will be trivial, .., and a 5-dimensional representation, etc.).

To do this we’ll consider rotation generators and find some interesting math. First 2D rotations.

A very small rotation is

Rθ =

(

cθ −sθ
sθ cθ

) −→
θ → 0

(

1 −θ
θ 1

)

= I − iθJ

with

J =

( −i
i

)

(We don’t need the two is, which oppose each other after all, but it is conventional to have them.)
Now consider, since J2 = I,

e−iθJ = I − iθJ +
1

2
(−iθJ)2 − 1

3!
(−iθJ)3 + ..

= I(1− θ2

2!
+
θ4

4!
− ..)

−iJ(θ − θ3

3!
+
θ5

5!
− ..)

= I cos θ − iJ sin θ

=

(

cθ −sθ
sθ cθ

)

So now for any angle θ, given the generator J , we can get back the rotation

Rθ = e−iθJ

This works for 3D rotations which, together with their corresponding generators, are

Rx Ry Rz




1
c −s
s c









c s
1

−s c









c −s
s c

1





J ′x J ′y J ′z




0
0 −i
i 0









0 i
0

−i 0









0 −i
i 0

0





It will be instructive to transform all of these matrices so that one of them—say Jz—is diagonal.
Say Jz = XJ ′zX

−1. Try

X =
1√
2





1 −i
−
√

2
−1 −i




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and confirm that X−1 is the Hermitian conjugate, X† = X−1.

The results, Jx = XJ ′xX
−1, Jy = XJ ′yX

−1 and Jz = XJ ′zX
−1, are

Jx Jy Jz

1√
2





1
1 1

1





1√
2





−i
i −i

i









1
0
−1





These eigenvalues, 1, 0 and −1 correspond nicely to the symbolic pictures we drew for spin 1 above
in this Note. They are also the eigenvalues for Jx and Jy and we could have diagonalized either of
them instead of Jz .

Note that no two of the original J ′x, J
′
y and J ′z can be diagonalized simultaneously. This means that

no two of them commute. Indeed, the commutators of these Js are very significant.

[Jx, Jy ]− = iJz

[Jy, Jz ]− = iJx

[Jz, Jx]− = iJy

[]− Jx Jy Jz
Jx iJz −iJy
Jy iJx
Jz

But we decided that spin 1/2 would need 2-by-2 matrices. Can we find 2-by-2 matrices with the
same commutators?

Analogy helps. How about

Jx

1

2

(

1
1

)

Jy

1

2

( −i
i

)

Jz

1

2

(

1
−1

)

This is great. We’ve seen these matrices before. They are 1/2 of the basic 2-by-2 reflections. They
satisfy an algebra, the commutator (Lie) algebra

[Jj , Jk]− =
∑

ℓ

ℓjkℓJℓ

where in this case the coefficient ℓjkℓ = iǫjkℓ, being i if j, k, ℓ are an even permutation of 1,2,3, −i
if the permutation is odd, and 0 otherwise.

The eigenvalues of each of these matrices (and of any combination pJx+qJy+rJz with p2+q2+r2 =
1) are 1/2 and −1/2. These also match the symbolic pictures we drew earlier in this Note for spin
1/2.

Because Jk = fk/2 and f2
k = I for the 2-by-2 matrices, k = x, y, z, we can expand

e−iθkJk = e−i(θk/2)fk = I cos(θk/2) − ifk sin(θk/2)

Note the half angles!

So

e−iθxJx =

(

cx −isx
−isx cx

)

e−iθyJy =

(

cy −sy
sy cy

)

e−iθzJz =

(

cz − isz
cz + isz

)

=

(

e−iθz/2

eiθz/2

)
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where, here, cx = cos(θx/2), sx = sin(θx/2), and similarly for y and z.

With these we can find the 2-by-2 matrix for any 3D rotation. Often, to go from one axis system,
x, y, z, to another, x′, y′, z′, the Euler angles are used: rotate by angle β about the z-axis, then by
angle α about the x-axis, then finally by angle γ about the z-axis (which is of course no longer the
original z-axis).

(

e−iγ/2

eiγ/2

)

(

cα/2 −isα/2
−isα/2 cα/2

)

(

e−iβ/2

eiβ/2

)

=

(

cα/2e
−i(β+γ)/2 −isα/2ei(β−γ)/2

−isα/2e−i(β−γ)/2 cα/2e
i(β+γ)/2

)

We can now use the tensor product
2⊗ 2 = 3⊕ 1

to go from the spin-1/2 rotation above to the spin-1 rotation, but I did that and discussed it in
Note 10 of Week 6.

We can also use ladder operators

J+ =
1√
2
(Jx + iJy)

J− =
1√
2
(Jx − iJy)

to construct the J matrices in higher dimensions, supposing that Jz follows the patterns established
above

Jz =

(

1/2
−1/2

)

,





1
0
−1



 ,









3/2
1/2

−1/2
−3/2









But I did that in Note 29 of Book 8c (in Part III).

22. Vectors and spinors. In practice, we are interested in 2D, 3D and 4D space, so here is the
16-element full reflection algebra2 for 4D. I’ve shown the squares down the diagonal and, above the
diagonal, whether the products commute (−) or anticommute (+). Below the diagonal is the special
case of eight elements in 3D (but without f0). You can extract from this the four 2D elements (no
f3).

2The usual name honours William Kingdon Clifford, 1845–79
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I f0 f1 f2 f3 f01 f02 f03 f23 f31 f12 f123 f023 f013 f012 f0123

I I I − − − − − − − − − − − − − − −
d0 f0 I + + + + + + − − − + − − − +
d01 f1 − I + + + − − − + + − + − − +
d02 f2 − + I + − + − + − + − − + − +
d03 f3 − + + I − − + + + − − − − + +
d1 f01 −I + + − + + + + − − −
d2 f02 −I + + − + + − + − −
d3 f03 −I + + − + − − + −
−d23 f23 − − + + −I + + − − + + −
−d31 f31 − + − + + −I + − + − + −
−d12 f12 − + + − + + −I − + + − −
−d0123 f123 − − − − − − − −I + + + +
−d023 f023 −I + + +
−d013 f013 −I + +
−d012 f012 −I +
−d123 f0123 I

I’ve also written a column of new names and called them d0, ..., for Dirac. Here’s what we can do
with the fs in 2D and 3D Euclidean space and with the ds in 4D Minkowski space.

In 3D, given a vector ~a = (a1, a2, a3), we can write a\ = a1f1 +a2f2 +a3f3. Then the Gibbsian dot

product between ~a and ~b is

~a ·~b =
1

2
[a\ , b\ ]+ = a1b1 + a2b2 + a3b3

while the cross product is, effectively

~a×~b =
1

2
[a\ , b\ ]−

In particular,

a\ a\ = (a1f1 + a2f2 + a3f3)(a1f1 + a2f2 + a3f3)

= a2
1 + a2

2 + a2
3

= ~a2

This works in 2D too. Let’s look at

1

2
[a\ , b\ ]− = (a1b2 − a2b1)f12

We interpret f12 as the xy plane, and we could think of it as a vector perpendicular to that plane
if we want. That’s the Gibbs interpretation in 3D.

We could extend this notation to 4D, but for relativity and 4D Minkowski space we find we should
use the “Dirac” symbols, d, from the above table instead of the reflections f . We write

6 a = a0d0 + a1d1 + a2d2 + a3d3

Again,
1

2
[6 a, 6 b]+ = a0b0 − a1b1 − a2b2 − a3b3

and this has the right signs for the invariant scalar product of two 4-vectors. Again in particular

6 a 6 a = a2
0 − a2

1 − a2
2 − a2

3 = a2
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for Minkowski space.

We can define the “dot product” for both Euclidean 3D and Minkowski 4D

a · b def
=

1

2
[a, b]+

The commutator generalizes the cross product to 4D but is not used

1

2
[6 a, 6 b]− = (a0b1 − b0a1)f1 − (a2b3 − a3b2)f23

+(a0b2 − b0a2)f2 + (a1b3 − a3b1)f31

+(a0b3 − b0a3)f3 − (a1b2 − a2b1)f12

Just as the backslash notation, a\ , releases us from limitation to 3D (and 2D) of Gibbs vectors,
so the slash notation, 6 a, releases us from needing the Minkowski metric, diag(1,−1,−1,−1), and
the consequent distinction between co- and contravariant indices. We must make one distinction:
although aµ, say, represents (a0, a1, a2, a3), for slopes ∂µ represents (∂t,−∂x,−∂y,−∂z). This is
because, in the up, down notations of contra-, co-variance, ∂µ = ∂/∂xµ and ∂µ = ∂/∂xµ, so, in
that notation aµ is (a0,−a1,−a2,−a3), but ∂µ is (∂t, ∂x, ∂y, ∂z).

So slopes are opposite. The net effect is

1

2
[6 a, 6 b]+ = a0b0 − ~a ·~b

1

2
[6 ∂, 6 a]+ = ∂ta0 + ~▽ · ~a

6 a 6 a = a2
0− | ~a |2

6 ∂ 6 ∂ = ∂2
t −▽2

with conventional meanings, ~a ·~b = a1b1 + a2b2 + a3b3, | ~a |2= a2
1 + a2

2 + a2
3 and ▽ = (∂x, ∂y, ∂z).

(That is, ~a ·~b = 1
2 [a\ , b\ ]+, | ~a |2= ~a · ~a = a\ a\ and ~▽ · ~a = 1

2 [∂\ , a\ ]+).

In Note 9 of Week 7c we exploited the fact that a rotation is two reflections to write a rotation in
a 3D plane, P , of a vector v by and angle (c, s) as

(cJ − sJP )v(cJ + sJP )

For instance (the general result is in Week 7c)

v = yf2 + zf3

P = f23

(cJ − sJf23)(yf2 + zf3)(cJ + sJf23) = (f2 f3)

(

c −s
s c

)(

y
z

)

which gives the 2D special case.

This also works in 4D and in 4D Minkowski space using the d elements, e.g.,

v = yd2 + zd3

P = d23

(cJ − sJd23)(yd2 + zd3)(cJ + sJd23) = (d2 d3)

(

c s
−s c

)(

y
z

)
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Is the reversal of sign surprising?

The result in all cases involves only the full angle, (c, s), of rotation, even though the operation,
because of reflection, is written using the half angle, (cJ , sJ).

The term, cJ − sJf23, is analogous to the 2D-number representation of a rotation, c+ is, and this
is also another way to represent a vector.

But because of the half angle it does not return to itself on full rotation of 360o, but to the negative
of itself. So it is called a spinor—the reference being of course to spin 1/2.

Note that, since f23, d23 and any special plane P square to −1, (cJ − sJP )(cJ + sJP ) = c2J + s2J = 1
and the two spinors are inverses of each other. The rotation of a vector v given by a spinor S is
SvS−1.

Since the reflection algebra has matrix representations—essentially unique in 3D but varied in
4D—vectors and spinors become matrices in this approach.

In 3D, the vector

a\ =

(

a3 a1 − ia2

a1 + ia2 −a3

)

and the spinor, say cJ + sJf23 is

cJ + sJf23 =

(

cJ isJ
isJ cJ

)

because

f23 = f2f3 =

( −i
i

)(

1
−1

)

=

(

i
i

)

For 4D we use the Dirac representation in Note 20.

f0 f1 f2 f3

f3

←
× I f1

←
× f1 f1

←
× f2 f1

←
× f3

d0 d1 d2 d3

f3

←
× I f31

←
× f1 f31

←
× f2 f31

←
× f3

Here’s the 4-vector.

6 a = a0d0 + a1d1 + a2d2 + a3d3

=









a0 a3 a1 − ia2

a0 a1 + ia2 −a3

−a2 −a1 + ia2

−ia1 − ia2 a3









and here’s the spinor cJ + sJd23 with

d23 = −f23 = −(f1

←
× f2)(f1

←
× f3) = −I

←
× f23

(the contexts make clear when “f23” means a 4-by-4 and when it means a 2-by-2).








cJ −isJ
−isJ cJ

cJ −isJ
−isJ cJ









23. Multiple and independent systems. In Note 18 we worked out a system of two matrices,
D(−) and U (−) such that

[D(−),D(−)]− = I
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We have not addressed how to move from this single system to a multiple system in which

[

D(−)j,D(−)k

]

− = 0
[

U (−)j , U (−)k

]

− = 0
[

D(−)j , U (−)k

]

− = δjk

as we indicated in Note 18 that we would need. The tensor product of Note 20 is the way. Here
are two sets, j, k = 1, 2

D(−)1 = D(−)

←
× I U (−)1 = U (−)

←
× I

D(−)2 = I
←
× D(−) U (−)2 = I

←
× U (−)

To demonstrate the commutation relationships we need a second property of the tensor product

A
←
× C +B

←
× C = (A+B)

←
× C

and vice versa
C
←
× A+ C

←
× B = C

←
× (A+B)

From these we have
[A
←
× C,B

←
× C]− = [A,B]−

←
× C

and vice versa. (And also for anticommutators.)

So

[D(−)1, U (−)1]− = [D(−), U (−)]−
←
× I = I

←
× I

[D(−)2, U (−)2]− = I
←
× [D(−), U (−)]− = I

←
× I

[D(−)1, U (−)2]− = (D(−)

←
× I)(I

←
× U (−))− (I

←
× U (−))(D(−)

←
× I)

= D(−)

←
× U (−)−D(−)

←
× U (−)

= 0

and similarly for [D(−)2, U (−)1]−.

Thus we can easily go from D(−), U (−) to an arbitrary number of D(−)j, U (−)j for j = 1, .., n.

1 2 j n

D(−)j = I
←
× I

←
× ..

←
× I

←
× D(−)

←
× I

←
× ..

←
× I

U (−)j = I
←
× I

←
× ..

←
× I

←
× U (−)

←
× I

←
× ..

←
× I

The composite operators are a kind of vector with the basic operators D and U appearing in ony
one place.

Fortunately we don’t have to write all this out, and especially we don’t have to multiply out the
tensor products. This is because a combination such as (the repeated js are not summed)

Ajbj = (I
←
× ..

←
× A

←
× ..

←
× I)(1

←
× ..

←
× b

←
× ..

←
× 1)

= 1
←
× ..

←
× Ab

←
× ..

←
× 1
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where, if b is a matrix, “1” is just I, but if b is a vector, “1” is the same-size vector of all 1s.

The result is that only the jth components are affected and we could write, simply,

Ajbj = (Ab)j

Then a mix would sort itself out automatically.

A1A2b1b2 = (A1b1)(A2b2)

So we need only label these commuting operators to distinguish them from one another, and write
them in sequence.

This is a fortunate simplification, especially since the basic D(−) and U (−) of Note 18 are themselves
infinite matrices.

The original D(−) and U (−) described a quantum harmonic oscillator, QHO. We are now seeing a
boson field as a collection of QHOs, one for each energentum state (not one for each boson, in case
that may be a confusion). Instead of counting energy levels in the single QHO, the number operator
U (−)D(−) must now be interpreted as counting the number of particles in the state described by the
QHO. For bosons, any number of particles can occupy the same state—the more the merrier.

While we are simplifying notation, boson states in particular need simplifying. A QHO excited to
its nth energy level, or a boson state containing n bosons, would be written as an infinite vector of
0s with a single 1, in the n + 1st position (we must permit n = 0). It is more compact to replace
this by

| n >
Then the number of bosons in each of many independent states, instead of being

| n1 >
←
×| n2 >

←
× ..

←
×| nk >

←
× ..

would be
| n1n2..nk.. >

Both notations presuppose a way of enumerating all the independent states. With discrete energy
and momentum values, all states might form a 4D lattice (I show a 2D example below). Then some
variant of “Z-order” might be used. Here is a 2D example.

��

��

�� ��

��

��

�� ��

��

�� ��

��

��

����

0 1 2 3

0

1

2

3

*

The position in the ordering is given by interleaving the bits of the coordinates. Thus, the position
of, say, (2,1)—starred in the diagram—is

(2, 1) = (1201, 0413)→ 12040113 = 9

(I’ve labelled each bit to show the interleaving. The least significant bits are on the right for each
number.)

But we will work with examples too simple to need such generalization.

Note that two such “kets” are orthogonal unless identical.

| n1n2..nk.. >⊥| n′1n′2..n′k.. >
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if nk 6= n′k for any k.

The way to express this as a form of inner product is to cast one as a “bra” (thus “bra|ket”)

< n1n2..nk.. | n′1n′2..n′k.. >=
∏

δnkn
′
k

and this also shows that the bras and the kets are normalized.

We are also going to have to mix up D(−) and U (−) for bosons with the finite D(+) and U (+) for
fermions.

We showed in Note 21 (well, it is an Excursion to Note 21) that two matrices are simultaneously
diagonalizable—i.e., by the same transformation—if and only if they commute.

Since Heisenberg quantum mechanics interprets (Hermitian) matrices as quantities and their eigen-
values as possible outcomes of measurements, we must suppose that independent quantities can be
measured simultaneously and so that they commute with each other as matrices.

Hence the multiple D(−)s and U (−)s we’ve just discussed can either describe different states of a
single boson (different energentum values, for instance) or states of completely different bosons, say
a photon and an electroweak W boson.

When we come to fermions, the multiple D(+) and U (+) operators may apply to different states of
the same fermion, in which case they anticommute.

[

D(+)j,D(+)k

]

+ = 0
[

U (+)j , U (+)k

]

+
= 0

[

D(+)j , U (+)k

]

+ = δjk

or they may apply to different fermions, in which case everything commutes.

The former situation we addressed in Note 20, using tensor products to extend the 23-element
reflection algebra, with one ladder each way (D(+) and U (+)) to the 24-element reflection algebra
with two ladders, and so on.

Independence of multiple sets of such ladder systems can be generated by combining them into
commutative tensor products just as we did for boson ladders D(−) and U (−) above.

The abstract space in which these ladders reside and can be distinguished from each other is called
a Fock space.

24. A simple field. Before Schrödinger wrote down his equation, based on

E =
p2

2m
+ V

and the wave equivalents (Note 10)

E = h̄ω → ih̄∂t
pj = h̄kj → −ih̄∂xj

he considered the relativistic equation

E2 − P sc2 = m2c4

and the same wave equivalents.

Using notation from Note 22, and working in units with c = 1 and h̄ = 1 (see Excursion Waves in
Week 7c) this becomes ω2 − k2 = m2 and (the “Klein-Gordon equation”)

(6 ∂· 6 ∂ +m2)φ = 0
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since

6 ∂· 6 ∂ =
1

2
[6 ∂, 6 ∂]+ = ∂2

t − ∂2
x − ∂2

y − ∂2
z

(and don’t forget the i in the transitions from E and p to ∂.)

A solution to this is

φ =
1√
L3
e−i6k·6x

with

6 k· 6 x =
1

2
[6 k, 6 x]+ = ωkt− kxx− kyy − kzz

and the multiplying constant involving the volume of a cubical box with sides of length L, which
we’ll come to later. (I’ve written the k explicitly in ωk because ω2

k = k2 +m2 is a function of k.)

We could interpret this φ(t, x, y, z) as a wave function but doing so gave Schrödinger sufficient
problems that he abandoned it for the wavefunction of the Schrödinger equation (Note 10).

Besides, the wavefunction interpretation does not allow creation or annihilation of states, which we
found in Note 18 to be important.

Instead we will interpret φ(t, x, y, z) as a field, the excitations of which will be particles which we
can create and annihilate. The creation and annihilation operators will work in momentum-space,
or k-space, and will add and remove particles of a specified momentum. So we will be needing
Fourier transforms (Week 9) to map from energentum space (ω, kx, ky, kz) to timespace (t, x, y.z).

As we discussed in Book 8c, Notes 36 and 37 (Part IV of Book 8c) calculations are simplified if we
can capture all the physics in a simple function, rather than working with vectors, etc. (of, say,
force and momentum). The simple functions we considered there started with potential energy,
V (x, y, z), and advanced to the Lagrangian, L, and the Hamiltonian, H.

(

L
H

)

=

(

T − V
T + V

)

=

(

1 −1
1 1

)(

T
V

) (

T
V

)

=
1

2

(

H + L
H − L

)

=
1

2

(

1 1
−1 1

)(

L
H

)

with T being the kinetic energy.

In Notes 38 and 39 of Book 8c we found a direct connection between Lagrangian and Hamiltonian via
“generalized coordinates” q (generalized position) and p (generalized momentum) and a “Legendre
transformation”

H = pq̇ − L
with p defined

p = ∂q̇L

We could get equations of motion of a system in two ways, one from the Lagrangian (the Euler-
Lagrange equations)

∂t∂q̇L = ∂qL

or from the Hamiltonian
∂qH = −ṗ ∂pH = q̇

Both Lagrangian and Hamiltonian, like potential energy, are simple functions and so independent of
the coordinate system chosen. But the Hamiltonian, being the total energy, is not Lorentz-invariant:
Lorentz invariance has the form

E2 − p2 = m2
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which does not change under a Lorentz transformation between energy and momentum (just as
x2 + y2 = r2 does not change under a rotation).

The Lagrangian, while not necessarily Lorentz invariant (e.g., in the nonrelativistic simple harmonic
oscillator L = (mv2 + kx2)/2) it can be, and should be to describe a relativistic system. In fact,
once we have a Lorentz-invariant Lagrangian, anything derived from it will obey special relativity.

So we will work with Lagrangians and with generalized coordinates. With the latter we can derive
a Hamiltonian, which is useful when we want to discuss energy in some particular coordinate frame.

Our field equation so far gives us only one “coordinate”, φ. This is also going to be an operator,
because it will be formed from the Fourier transform of creation and annihilation operators. It will
need a complementary “coordinate”, π, to satisfy the Lagrangian/Hamiltonian formalisms. We will
also find commutation relationships between φ and π, analogous to those between X and P in Note
18.

But moving from discrete coordinates such as X and P or even such as the generalized coordinates q
and p, to fields which have values throughout timespace, will require us to elaborate the Lagrangian
formalism, especially the Euler-Lagrange equations. We are going from function L(q, p) of coordi-
nates to functions L(φ, π) of fields which extend throughout timespace or energentum space, and
will have to be taken as densties, per unit volume.

So we change notation from L (and H) (which I’ve used only temporarily in this Note) to L (and
H) (which I used in Book 8c but not there meaning densities).

And we must elaborate the Euler-Lagrange equations. The new ones can be derived by a variational
principle, as Feynman does for L, cited but not discussed in Book 8c. I’ll just give the results and
then work an example for familiarization.

The conjugate momentum is
π = ∂∂tφL

It is only part of the extended Euler-Lagrange

∂µ(∂∂µφL) = ∂φL

with repeated index summed µ = 0, 1, 2, 3.

Let’s see how it works. Here is a Lagrangian

L(φ, ∂µφ) =
1

2
(6 ∂φ 6 ∂φ−m2φ2)

(Physicists sometimes pull Lagrangians out of the air, like this one, with the intention of arriving
at a known equation, or they may derive a Lagrangian systematically.)

Let’s see that this gives the Klein-Gordon equation. Expand the Lagrangian

1

2
(6 ∂φ 6 ∂φ−m2φ2) =

1

2
((∂tφ)2 − (∂xφ)2 − (∂yφ)2 − (∂zφ)2 −m2φ2)

Expand each side of the Euler-Lagrange equation.

∂µ∂∂µφL = ∂t(∂∂tφL) + ∂x(∂∂xφL) + ∂y(∂∂yφL) + ∂z(∂∂zφL)

= ∂t∂tφ− ∂x∂xφ− ∂y∂yφ− ∂z∂zφ
= 6 ∂φ 6 ∂φ

∂φL = −m2φ

Equate the two sides
(6 ∂φ 6 ∂ +m2)φ = 0
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which is the Klein-Gordon equation.

The conjugate momentum is
π = ∂∂tφL = ∂tφ

just the time slope of φ.

To find the commutator [φ, π]− we must construct φ, and hence π, from its momentum states.

φℓ =
1√
L3

∑

k

1√
2ωk

(eik\ ·ℓ\ 2π/LU (−)k + e−ik\ ·ℓ\ 2π/LD(−)k)

Here I’ve discretized the wavenumbers

kx =
2π

L
νx

etc., for integers νx, νy, νz, with L the length of the side of the containing volume of space in each
dimension. This way φk is zero on any side of the L3 box:

0 L

ν=1 ν=2

And I’ve discretized the spatial positions so we are calculating φℓxℓyℓz instead of a continuous
φ(x, y, z). That way we can use the discrete Fourier transform (DFT) of Week 9, Notes 1, 2 and
especially Excursion FT with vector k, ℓ. Note that k\ and ℓ\ are three-dimensional, not four,
and represent the spatial components. The time component is fixed to one instant so ω plays the
role given kx in the last paragraph of that Excursion. In particular, we can multiply the Fourier
coefficients by any function of ω, and for reasons which will become clear we choose the inverse
square root.

We just found out that

π = ∂tφ =
i√
L3

∑

k

√

ωk
2

(−eik\ ·ℓ\ 2π/LUk(−) + e−ik\ ·ℓ\ 2π/LDk(−))

The Dk(−) and Uk(−) are just ladder operators, occupying different parts of Foch space for different
values of k. Thus we have the commutators

[D(−)k,D(−)k′ ]− = 0 = [U (−)k, U (−)k′ ]−
[D(−)k, U (−)k′ ]− = δkk′

Then

[φℓ, πℓ′ ]− = φℓπℓ′ − πℓ′φℓ
=

i

2L3

∑

k,k′

√

ωk′

ωk
(ei(k

′·ℓ′+k·ℓ)2π/d[U (−)k′ , U (−)k]−

+ ei(k
′·ℓ′−k·ℓ)2π/d[U (−)k′ ,D(−)k]−

+ ei(k·ℓ−k
′·ℓ′)2π/d[U (−)k,D(−)k′ ]−

+ e−i(k
′·ℓ′+k·ℓ)2π/d[D(−)k′ ,D(−)k]−)

=
i

2L3

∑

k

(

eik·(ℓ
′−ℓ)2π/d + e−ik·(ℓ

′−ℓ)2π/d
)

=
i

L3
δℓ,ℓ′
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In the four lines following the second equality, the first and last vanish because of the commutators
and the middle two require that k′ = k because those commutators equal δk,k′ . Thus the ωk and
ωk′ cancel out in the third equality, justifying our use of 1/

√
ωk at the beginning.

The final result comes from the property of the Fourier transform that we developed in the Notes
1 and 2 of Week 9.

This result is essentially the commutator of position and momentum that we saw in Note 18 on
the quantum harmonic oscillator. It is missing the factor of h̄ but that can be put back in after
fizzmezh analysis. And it has an inverse factor of L3. This is essentially the volume of the space
(once we take the argument over to continuous variables), which is appropriate because we’ve called
both φ and π probability densities, that is to say, per unit volume.

Similar arguments show that [φℓ, φℓ′ ]− = 0 = [πℓ, πℓ′ ]−, completing the position-momentum com-
mutation relations. (Instead of there being a sum of two equal terms when ℓ = ℓ′ there is a
difference.)

25. The Yukawa potential. What new physics can we extract from the field theory we have so
far? How about the force between two objects? Yukawa in 1935 worked out the effective potential
due to the exchange of a field excitation (a particle) between two nucleii: the excitation is created
at one nucleon and annihilated at the other.

We need some preliminary work with the Klein-Gordon equation. First the static case, ∂tφ = 0

(6 ∂· 6 ∂ +m2)φ = 0→ (−∂\ · ∂\ +m2)φ = 0

Now ∂\ · ∂\ = ∂2
x + ∂2

y + ∂2
z = ▽2, the last being the conventional symbol. For a spherical system

we can write ▽2 in two ways, the first being the usual form in spherical coordinates

▽2φ =
1

r2
∂r(r

2∂rφ)

=
1

r
∂2
r (rφ)

which we can show to be equivalent to each other via

▽2 =
2

r
∂r + ∂2

r

Then the static Klein-Gordon equation

(▽2 −m2)φ = 0

is
∂2
r (rφ) = m2(rφ)

and has the solution

φ(r) =
e−mr

r

This is the form taken by the Yukawa potential, but we must see why it is a potential.

A more general solution to the Klein-Gordon equation makes use of a formal “inverse”, called
a “Green’s function”: the δ(x)δ(y)δ(z) plays the role of the identity matrix in this continuous
function.

(−▽2 +m2)G(~x) = δ(x)δ(y)δ(z)

We will need the Fourier transform of G(~x)

G(~x) =

∫

d3k

(2π)3
eik\ ·x\ G(~k)
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(See Excursion Continuous FT in Week 9 for the conversion from discrete to continuous Fourier
transforms.)

Since

▽2eik\ ·x\ = (∂2
x + ∂2

y + ∂2
z )e

i(kxx+kyy+kzz)

= −(k2
x + k2

y + k2
z)e

i(kxx+kyy+kzz)

putting the two equations for G together gives

(k2 +m2)G(~x) = 1

(the converse Fourier transform has been used) so

G(~x) =

∫

d3k

(2π)3
eik\ ·x\
k2 +m2

I’m now going to be sloppy and equate these two results, with the constant of integration being the
additional divisor, 4π. This is to avoid getting into calculating contour integrals in the 2D number
plane. (It is done properly in Note 28.) So

∫

d3k

(2π)3
eik\ ·x\
k2 +m2

=
e−mr

4πr

Now let’s look at what a field excitation between two nucleii does to the energy of the field. Because
we are calculating energy differences we’ll need to use the Hamltonian. But we’ll need only the
energetically small interaction Hamiltonian, HI , giving the change in the field as it interacts with
the two nucleii, not the original Hamiltonian, H0, of the field alone.

The next Note describes the “perturbation” we’ll now use for the slightly perturbed Hamiltonian
H0 + ǫHI . Here we just plunge in because only one result from the next Note is needed and the
discussion here will motivate the discussion there of perturbation.

Since the unperturbed field, φ(x), contains creation and annihilation operators for the excitations,
it must form part of the interaction Hamiltonian, together with an indication of the positions of
the two nucleii, and a “coupling constant” g which gives the strength of the interaction and, of
course, the right fizzmezh to make HI an energy. We’ll use delta functions to locate the nucleii at
x1 and x2.

ǫHI = g(δ(x − x1) + δ(x− x2))φ(~x)

=
g√
V

∑

k

1√
2ωk

(U (−)k(e
ik\ ·x1\ + eik\ ·x2\ ) +D(−)k(e

−ik\ ·x1\ + e−ik\ ·x2\ ))

(The ǫ is just a very small number, used in the next Note, which may be considered part of g.)

Now we must think of HI (and ǫHI) as a matrix of elements linking the states | .., nk, .. > to each
other. Remember that the one term, nk, represents an infinite vector representing the number of
excitations in the kth quantum harmonic oscillator by a 1 in the nkth position.

D(−)k and U (−)k operate only on this one term, with the effect (Note 18) that

< .., nk + 1, .. | ǫHI | .., nk, .. >=
g√
V

√

nk + 1

2ωk
(e−ik\ ·x1\ + e−ik\ ·x2\ )

and

< .., nk, .. | ǫHI | .., nk + 1, .. >=
g√
V

√

nk + 1

2ωk
(eik\ ·x1\ + eik\ ·x2\ )
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(for each different position, k, in the bras and kets, of course) and all the other matrix elements
are zero.

Before and after its excitation by the nucleii the field will be in its ground state | 0 >=| 0, 0, .. >.
So nk + 1 = 1 for each k.

The next Note will consider first and second order perturbations of the field, giving energy changes

∆E =< 0 | ǫHI | 0 >

to first order—and you can see from the above that this must be 0—and, to second order,

∆E =
∑

k

< 0 | ǫ2HI | 0, .., nk, 0, .. >< 0, .., nk, 0, .. | ǫ2HI | 0 >
−ωk

where nk = 1 for each k and the sum is over all positions k in the Fock vector | 0, .., nk, 0, .. >.
That is,

∆E = < 0 | ǫ2HI | 1, 0, 0, .. >< 1, 0, 0, .. | ǫ2HI | 0 > /(−ω0)

+ < 0 | ǫ2HI | 0, 1, 0, .. >< 0, 1, 0, .. | ǫ2HI | 0 > /(−ω1)

+ < 0 | ǫ2HI | 0, 0, 1, .. >< 0, 0, 1, .. | ǫ2HI | 0 > /(−ω2)

+ · · ·

=
−g2

V

∑

k

1

2ω2
k

(eik\ ·(x1\ −x1\ ) + eik\ ·(x2\ −x2\ ) + eik\ ·(x1\ −x2\ ) + eik\ ·(x2\ −x1\ ))

Since we are interested for now in the interaction between the nucleii at x1 and x2 we’ll ignore the
“self-energy” terms involving x1 − x1 and x2 − x2. (These caused serious problems historically,
since the sums they produce are infinite, requiring “renormalization”, but we’ll pass them by.)

So we have two terms left, involving the separation ∆x = x2 − x1 between the two nucleii.

∆E =
−g2

2V

∑

k

1

ω2
k

(eik\ ·∆x\ + e−ik\ ·∆x\ )

=
−g2

V

∑

k

1

k2 +m2
eik\ ·∆x\

→ −g2

(2π)3

∫

d3k
eik\ ·∆x\
k2 +m2

= −g2 e
−mr

4πr

where line 2 notes that the sums over k and −k are both the same and that ω2
k = k2 +m2; line 3

converts the discrete to the continuous Fourier transform (Excursion Continuous FT of Week 9);
and line 4 uses the result earlier in this Note, with r2 = ∆x2 + ∆y2 + ∆z2 being the distance in
space between the two nucleii.

The two terms involving x1 − x2 and x2 − x1 can be interpreted respectively as the creation of an
excitation at nucleus 2 and its annihilation at nucleus 1, and vice-versa.

This energy difference is the Yukawa potential—it generalizes the classical Coulomb and gravita-
tional 1/r potential to “force carriers”—the field excitations—of nonzero mass m. Thus it has a
short range, dictated by the size of m, as opposed to the infinite range of the 1/r forces—which
have carriers of 0 mass, the photon and the “graviton”. This is the beginnings of an explanation
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of the short ranges of the nuclear forces. From the field point of view, all forces are mediated by
particles, massless in the case of the long-range forces, massy in the case of short-range forces.

The Yukawa potential gives rise to an attractive force because of the minus sign. What we have
worked out here pertains to an excitation of “spin 0”: it is described by a scalar which is symmetric
under any rotation of the axes. Field theory can also go on to show that a spin-1 excitation must
be repulsive between like charges—e.g., the electromagnetic force—and a spin-2 excitation—e.g.,
the graviton—must be attractive again.

Next, however, we will move to spin-1/2. After first looking into perturbations.

26. Perturbation approximations. The negative sign that makes the Yukwa potential attrac-
tive comes directly from the second-order perturbation. So we must examine the perturbation
approximation at least that far.

Suppose we have some matrix, H), whose eigenvalues, E
(0)
n , n = 1, 2, .., and eigenvectors, φn, we

know. (I’m using notation which suggests Hamiltonians, energies and wavefunctions, but H0 can
be any hermitian matrix, say a 2-by-2 shear matrix.)

Now suppose that a small matrix, ǫHI , is added to H0 (with the smallness captured by the very
small number ǫ), and that we want to find the eigenvalues, En, of the sum H = H0 + ǫHI .

We expand En in a series of powers of ǫ, starting with the original eigenvalues E
(0)
n .

En = E(0)
n + ǫE(1)

n + ǫ2E(2)
n + ..

We’ll need the new eigenvectors, ψn. Since the original eigenvectors, φn, give an orthonormal basis
for the space of eigenvectors, we can write ψn as a linear combination of the φn

ψn =
∑

k

c′nkφk

Since we expect ψn to be close to φn we’ll rewrite this as

ψn = φn +
∑

k 6=n
cnkφk

(or just omit the k 6= n and restrict cnn = 0). Actually, for the ψn to be normalized we must
multiply the sum on the right by a normalizing constant. But this will cancel out on both sides of
the equations to follow, and anyway can be shown to be 1 to within order ǫ2.

We expand the coefficients cnk also in powers of ǫ

cnk = ǫc
(1)
nk + ǫ2c

(2)
nk + ..

(Why is there no c
(0)
nk ?)

So
Hψn = Enψn

expands into products of infinite series

(H0 + ǫHI)(φn +
∑

k 6=n
cnkφk) = (E(0)

n + ǫE(1)
n + ǫ2E(2)

n + ..)(φn +
∑

k 6=n
cnkφk)

where we know
H0φn = E(0)

n φn

and
φj · φk = δkj
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By equating on both sides the coefficients of each power of ǫ, we can work our way up the chain to

whatever power of ǫ we wish. We’ll go to ǫ2: we’ll need E
(1)
n and for E

(2)
n we’ll need c

(1)
nk .

First, ǫ0. Equating the infinite series gives

H0φn = E(0)
n φn

which we already knew.

Next, ǫ1.

HIφn +H0

∑

k 6=n
c
(1)
nkφk = E(1)

n φn + E(0)
n

∑

k 6=n
c
(1)
nkφk

Note that the cnk (to all orders) are just coefficients multiplying vectors φk. They do not form a
matrix which operates on φk the way, say, H0 does. So we can take H0 into the sum, e.g.,

H0

∑

k 6=n
c
(1)
nkφk =

∑

k 6=n
c
(1)
nkH0φk =

∑

k 6=n
c
(1)
nkE

(0)
k φk

We can pick out the E
(1)
n and the c

(1)
nk by using the dot product with φn and φj , j 6= n, respectively.

φn ·HIφn + φn ·
∑

k 6=n
c
(1)
nkE

(0)
k φk = E(1)

n + φn ·
∑

k 6=n
c
(1)
nkE

(0)
n φk

so
E(1)
n = φn ·HIφn

φj ·HIφn + φj ·
∑

k 6=n
c
(1)
nkE

(0)
k φk = E(1)

n φj · φn + φj ·
∑

k 6=n
c
(1)
nkE

(0)
n φk

so
φj ·HIφn + c

(1)
nj E

(0)
j = c

(1)
nj E

(0)
n

or

c
(1)
nj =

φj ·HIφn

E
(0)
n − E(0)

j

Finally, ǫ2.

H0

∑

k 6=n
c
(2)
nkφk +HI

∑

k 6=n
c
(1)
nkφk = E(1)

n

∑

k 6=n
c
(1)
nkφk + E(2)

n φn

Taking the dot product with φn removes the sums after H0 and E
(1)
n leaving

E(2)
n = φn ·E(2)

n φn

= φn ·HI

∑

k 6=n
c
(1)
nkφk

=
∑

k 6=n
(φn ·HIφk)c

(1)
nk

=
∑

k 6=n

(φn ·HIφk)(φk ·HIφn)

E
(0)
n − E(0)

k

This is the result we used in Note 25 with E
(0)
n = 0 and E

(0)
k = ωk giving the −ωk denominator

and the numerator as the sum of products of dot products, which we wrote, e.g.,

φ0 ·HIφk →< 0 | HI | 0, .., nk, 0, .. >
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There, the resulting energy, to second order, was

E
(0)
0 + ǫ2E

(2)
0

27. Fermions. The Klein-Gordon equation can be factored

0 = −(6 ∂· 6 ∂ +m2)ψ

= (i 6 ∂ −m)(i 6 ∂ +m)ψ

(or 6 ∂· 6 ∂ +m2 = (6 ∂ − im)(6 ∂ + im) but the above is the convention).

Let’s see what happens with (the Dirac equation)

(i 6 ∂ −m)ψ = 0

First, it is related to the other factor

0 = ((i 6 ∂ −m)ψ)† = ψ†(i
←−6 ∂ −m)†

= ψd0(id0
←−
∂0 − idj

←−
∂j −m)†

= ψd0(−id†0
←−
∂0 + id†j

←−
∂j −m)

where the
←−
∂ indicates that the slope must be applied to the left, allowing us to reverse the order

of the terms when we took the transpose; and where it is useful to define

ψ
def
= ψ†d0

Multiplying on the right by d0 (and recalling d2
0 = 1, d0dj = −djd0 for j = 1, 2, 3, and d†0 = d0,

while d†j = −dj), we continue

0 = ψd0(−id†0
←−
∂0 + id†j

←−
∂j −m)d0

= −ψ(id†0
←−
∂0 − id†j

←−
∂j +m)

= −ψ(i
←−6 ∂ +m)

The Lagrangian
L = ψ(i 6 ∂ −m)ψ

gives us back the Dirac equation using Euler-Lagrange with respect to ψ

0 = ∂µ(∂∂µψ
L) = ∂ψL = (i 6 ∂ −m)ψ

since the 2D-number slope (see the next Note) ∂x+iy(x− iy) = 0 and ψ = ψ†d0 with ψ† transposing
ψ and changing the sign of i in it: so ∂ψψ = 0 and ∂µ(∂∂µψ

L) = 0 above.

The “momentum” corresponding to ψ is essentially ψ†:

π = ∂∂0ψL
= ∂∂0ψψ

†d0(id0∂0 − idj∂j −m)ψ

= iψ†

But now we’ll find that it is not the commutator [ψ, π]− which is significant but the anticommutator

[ψ, π]+
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We’ll see this in the context of the Fourier transform of these functions with anticommuting creation
and annihilation operators as coefficients: the fields now describe fermions.

The argument parallels that for the simple field in Note 24 but is complicated by the fact that the
Dirac equation involves 4-by-4 matrices d0, dj , j = 1, 2, 3, and of course the identity matrix I in
what must now be mI. So there will be four solutions, each a 4-element vector.

(That 4D timespace gives rise to 4-by-4 matrices and 4-element vectors is something of a coincidence:
a 5D “timespace” would also give rise to 4-by-4s, etc., just as both the 2D and 3D space give rise
to the 2-by-2 Pauli matrices.)

If we introduce plane waves and let

ψ(x) =















u1(p)e
−i6k·6x

u2(p)e
−i6k·6x

v1(p)e
i6k·6x

v2(p)e
i6k·6x

then the Dirac equation becomes, for s = 1, 2 and j = 1, 2, 3 and repeated js summed

0 = (i 6 ∂ −m)use
−6k·6x

= (id0∂0 + idj∂j −m)use
−ik0x0+ikjxj

= (k0d0 − kjdj −m)us
= (6 k −m)us

0 = (i 6 ∂ −m)vse
6k·6x

= (id0∂0 + idj∂j −m)vse
ik0x0−ikjxj

= (−k0d0 + kjdj −m)vs
= −(6 k +m)vs

So the Fourier transform has four pieces, involving u1, u2, v1 and v2, and there are four Fourier
transforms, one for each component of the vectors.

ψα(x) =
1√
V

∑

k

1√
2ωk

((D(+)1k(u1k)α +D(+)2k(u2k)α)e−i6k·6x + (U (+)1k(v1k)α + U (+)2k(v2k)α)ei6k·6x)

and similarly for the four components of the conjugate momenta

ψ†α(x) =
1√
V

∑

k′

1√
2ωk′

((D†(+)1k′(u1k′)
∗
α+D†(+)2k′(u2k′)

∗
α)ei6k

′·6x+(U †(+)1k′(v1k′)
∗
α+U

†
(+)2k′(v2k′)

∗
α)e−i6k

′·6x)

where the ∗ on a number reverses the sign of i in that number (2D-conjugate or complex conjugate)
and † on a matrix is the usual Hermitian transpose.

The D(+) and U (+) are the ladder operators—annihilation and creation, respectively—and, as we
found in Note 20, we can have two of each for 4-by-4 matrices, just what we need here.

The Hermitian conjugates
D†(+) = U (+)

so, of course,
U †(+) = D(+)

and they obey the anticommutation relationships

[D(+)sk,D(+)tk′ ]+ = 0

[U (+)sk, U (+)tk′ ]+ = 0

[D(+)sk, U (+)tk′ ]+ = δstδkk′
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Here the δst express the anticommutation relationships from Note 20. The δkk′ comes from the valid
assumption that we can extend the Fock space for anticommutators indefinitely so that different
values of k are independent of each other in the same sense.

With this background, we can show, summing over repeated α,

[ψα(x, t), ψ†α(x′, t)]+ =
1

V
δxx′

i.e.,

[ψα(x, t), πα(x′, t)]+ =
i

V
δxx′

the generalized coordinates and momenta for fermions anticommute in exact analogy with the
commutators of the same for bosons.

The anticommutator [ψα, ψ
†
α]+ above is a sum

1

2V

∑

kk′

1√
ωkωk′

(· · ·)

of four components

[(D(+)1k( u1k)α+ D(+)2k( u2k)α) e−i6k·6x, (D†(+)1k′( u1k′)
∗
α+ D†(+)2k′( u2k′)

∗
α) ei6k·6x]+

[(D u D u )e− (U † v∗ U † v∗ )e−]+
[(U v U v )e+ (D† u∗ D† u∗ )e+]+
[(U v U v )e+ (U † v∗ U † v∗ )e−]+

where I’ve left the subscripts off the last three lines to make it easy to spot the differences: the
1k, 2k, 1k′, 2k′ and α are identical to those in the corresponding positions of the first line. Similarly
for the exponents apart from signs.

Now, because of the transposes and commutators, the middle two lines vanish and the outer two
lines produce δkk′ which reduce the double sum

∑

kk′ to a single sum
∑

k containing exponentials

e±ik(x−x
′). These sum to 0 except when x′ = x and everything works out as in Note 24, provided

the “spinors” are normalized

(urk)
†(usk)

† = 2ωkδrs = (vrk)
†(vsk)

†

(vrk)
†(usk)

† = 0 = (urk)
†(vsk)

†

28. Slopes and antislopes of 2D numbers, etc. Note 27 said that ∂x+iyx− iy = 0 and Note 25
mentioned contour integrals. This Note backtracks to look at these ideas.

Considering functions of 2D numbers, it would make sense to say that a slope exists only if a
function is a continuous transformation of the number. That is because slopes are approximated
by ratios of differences involving the functional values at some point and a nearby point, with
“nearby” taken to be arbitrarily close.

A rotation, cos θ + i sin θ = eiθ, or a rotation-plus-expansion, a(cos θ + i sin θ) = aeiθ. are obvious
examples of continuous transformations: θ can be made arbitrarily small. A reflection is not
continuous.

The 2D conjugate operation
x+ iy → x− iy

is a reflection in the x=axis. Other reflections can be written easily. In the y-axis

x+ iy → −x+ iy;
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in the x = y line
x+ iy → y + ix.

For reflections, especially the conjugate operation, we would not expect a slope to be defined. This
says it better than our earlier assertion that the slope is 0.

We can harden up the above discussion by saying that the “slope” of a 2D function of 2D numbers
is defined only if the slope gives the same number (which can itself be 2D) for every direction of
“nearby”. This is going to turn out to be a very restrictive condition mathematically, but one
satisfied by many functions which describe physical things, and so very useful for physics.

So if we write

z = x+ iy

f(z) = u(x, y) + iv(x, y)

and so

∆z = ∆x+ i∆y

∆f = ∆u+ i∆v

and if we insist that ∆f/∆z is independent of the direction of ∆z, then we can look at two examples,
(i)

∆y = 0

∆f

∆z
=

∆u

∆x
+ i

∆v

∆x

i.e.,
∂zf = ∂xu+ i∂xv

and (ii)

∆x = 0
∆f

∆z
=

∆u

i∆y
+ i

∆v

i∆y

i.e.,
∂zf = −i∂yu+ ∂yv

And we’re asking these to be the same

∂yv = ∂xu

∂yu = −∂xv

Let’s look at the relationship between ∆z and ∆f in matrix form (the “Jacobian” matrix).

(

∆u
∆v

)

=

(

∂xu ∂yu
∂xv ∂yv

)(

∆x
∆y

)

=

(

∂xu −∂xv
∂xv ∂xu

)(

∆x
∆y

)

=

(

∂yv ∂yu
−∂yu ∂yv

)(

∆x
∆y

)
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Both of these equivalent matrices have the form of rotation-plus-expansion.

So generalized rotations are the only legal functional mapping, given our constraint on direction
independence. (I said it was restrictive.)

The constraints are known as the Cauchy-Riemann equations. Functions obeying these constraints
are called “analytical” functions. They are very special. They lead, by the way, to the result that
both u(x, y) and v(x, y) must be solutions to the 2D Laplace equation

▽2u = ∂x∂xu+ ∂y∂yu = 0

▽2v = ∂x∂xv + ∂y∂yv = 0

What kind of functions satisfy these constraints? Well, z = x + iy does for a start. And then
multiplying it by z = x + iy, to give z2, is effectively to rotate-and-expand it, so z2 satisfies the
constraints. So does z3, etc.

Thus, any series
a0 + a1z + a2z

2 + a3z
3 + · · ·

will satisfy the Cauchy-Riemann equations, and hence so will any function expressible as such a
series. This includes exponential functiona ez and eiz, and so the trigonometric functions cos(z)
and sin(z), etc., and hyperbolic functions cosh(z) and sin(z), etc. And so on.

An exception must be made for the logarithmic functions ln(z), log(z), lg(z), etc.: these have
1/z-like poles and those poles introduce interesting new considerations. I’ll skip over the full
development of “functions of complex variables” but we will encounter 1/z-type poles and their
usefulness very soon.

If the slopes of analytical functions don’t care about directions, it is plausible that their antislopes
don’t either.

We’re going to have to switch to more conventional notation and vocabulary because we’re working
in two dimensions. Ordinarily in 1D

antislopexf(x) ≈
∑

f(xi)∆x

the area under f(x) over the range of xi summmed, with ∆x = xi+1 − xi, the distance between
successive xi; or, with specific limits,

antislopex=a:bf(x) ≈
xn=b
∑

x0=a

f(xi)∆x

The conventional notation reflects this
∫

f(x)dx = antislopexf(x)

or
∫ b

a
f(x)dx = antislopex=a:bf(x)

The conventional vocabulary calls this an integral. dx has the same meaning a ∆x except shrunk
to infinitesimally small.

In 2D we must specify a curve, C, in the x-y (or z) plane, along which the function, f(z) is
“integrated”.

∫

C
f(z)dz

in general, different curves give different results.

Let’s integrate x− iy over two curves
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1

1 + i

0
C

C
C

x

y
xy

Cx : y = 0, dy = 0
∫

cx
(x− iy)(dx+ idy) =

∫ 1

0
xdx =

x2

2
|10=

1

2

Cy : x = 1, dx = 0
∫

cy
(x− iy)(dx+ idy) =

∫ 1

0
(1− iy)idy = iy +

y2

2
|10= i+

1

2

Cxy : x = y, dx = dy
∫

cxy

(x− iy)(dx + idy) =

∫

xdx(1− i)(1 + i) = 2
x2

2
|10= 1

So going from 0 to 1+i along Cx then Cy gives 1 + i while going straight along Cxy gives 1.

On the other hand, the integral of x + iy does not depend on the paths: both ways give i as the
result.

What are the general conditions for the integral to be independent of the path?

∫

C
(u+ iv)(dx + idy) =

∫

C
(udx− vdy) + i

∫

C
(udy + vdx)

If both of the integrals are exactly the step of some other function φ(x, y), as in

∆φ = ∂xφ∆x+ ∂yφ∆y

then we have, for the first component integral

u∆x− v∆y = ∂xφ∆x+ ∂yφ∆y

so

u = ∂xφ

v = −∂yφ

and therefore
∂yu = ∂y∂xφ = ∂x∂yφ = −∂xv

For the second component integral we can say a similar thing about some other function φ′

v∆x+ u∆y = ∂xφ
′∆x+ ∂yφ

′∆y

so

v = ∂xφ
′

u = ∂yφ
′
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and
∂xu = ∂x∂yφ

′ = ∂y∂xφ
′ = ∂yv

But these two results

∂yv = ∂xu

∂yu = −∂xv

are just the Cauchy-Riemann equations: the condition that slope direction makes no difference is
just the condition that the path of integration makes no difference.

For an analytic function f(y) and any curve C from z1 to z2
∫

C
f(z)dz = antislopez=z2f − antislopez=z1f

and there is a simple relationship between 2D integrals and antislopes.

What’s really remarkable, then, is that for any closed curve, any analytical function integrates to
zero.

∮

f(z)dz = 0

(I said analytical functions were restrictive.)

But if the closed curve surrounds a pole of f(z) then f(z) is not analytical everywhere inside and
the integral is not zero.

Let’s try a curve which is the unit circle with centre at the origin, and the function zn (which we
found above is analytical for any non-negative n).

We write z = re−θ in polar coordinates.

zndz = rneinθ(eiθdr + ireiθdθ)

and on the unit circle r = 1, dr = 0, so

∮

zndz =

∫ 2π

0
dθiei(n+1)θ

=

{

∫ 2π
0 idθ = 2πi n = −1
ei(n+1)θ

n+1 |2π0 = 0 otherwise

where we’ve considered all integer values of n: positive, 0 or negative.

So we’ve seen another remarkable thing:

∮

dz

z
= 2πi

and this will be true for any closed curve surrounding the origin. Somehow the pole at the origin
affects the integral of 1/z on any closed curve around it.

But not just any pole: higher-order poles such as 1/z2, 1/z3, etc., have no effect on integrals around
these poles, which are all zero.

The pole need not be at the origin. We can shift variables.

z′ = z − a dz′ = dz

2πi =
∮ dz

z =
∮ dz′

z′ =
∮ dz
z−a
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so now the pole is at some other point, a. The result is still true as long as the integration path
surrounds a.

Note that 1/z is the slope of the logarithm ln z (in 1D): these first-order poles link to the special
nature, mentioned above, of the logarithm.

This is not all. We can extend these results to any function with a first-order pole. Let’s consider an
analytic function f(z) and a curve which is a circle of small radius ǫ centred at point a: z = a+ǫeiθ,
dz = iǫeiθdθ, so

∮

f(z)

z − adz =

∫ 2π

0
dθf(a+ ǫeiθ)

iǫeiθ

ǫeiθ

=

∫ 2π

0
idθf(a+ ǫeiθ)

−→
ǫ→ 0

∫ 2π

0
dθif(a)

= 2πif(a)

Thus, if we integrate around point a, a function with a simple pole at a, the answer is 2πi times
the function less (i.e., multiplied by) the z − a part, evaluated at z = a.

We can use this to evaluate the “contour integral” which we did sloppily in Note 25. First consider

∮

dz
zeizr

z2 +m2
=

∮

dz
zeizr

(z + im)(z − im)

with the closed curve surrounding the simple pole z = im in the upper half of the z plane.

Now we know that the integral is the value at z = im of

2πi
zeizr

(z + im)
= 2πi

ime−mr

2im
=

2πi

2
e−mr

We can make this curve a “D” along the horizontal axis and with a semicircular roof.

x

y

im

Now if we let the “D” become infinitely large, the contour integral becomes the sum of two parts,

∫ ∞

−∞
dz

zeizr

z2 +m2

and the same integral on a semicircle of infinite radius. But on this semicircle z = x + iy with x
and y both arbitrarily large, so

eizr = ei(x+iy)r = eixre−yr
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becomes infinitely small and we’re left with

∫ ∞

−∞
dz

zeizr

z2 +m2
=

2πi

2
e−mr

Now comes some ordinary work. We must just relate

1

(2π)3

∫

d3k
eik\ ·x\
k2 +m2

to the integral we’ve just solved, and we will have cleaned up the sloppiness of Note 25.

First we switch to polar coordinates in k

d3k = dkkdθk sin θdφ

φ

k

θ

Then, since we’re integrating ~k in all directions and sizes, we can chose the direction of ~x in x\ · k\
to be anything we like, so we choose ~x to lie in the z direction, in which case x\ · k\ = kr cos θ for
r2 = x2 + y2 + z2. Note, for the next step, that if q = cos θ then dq = − sin θdθ, q going from 1 to
−1 as θ goes from 0 to π.

So, here goes.

1

(2π)3

∫

d3k
eikr cos θ

k2 +m2
=

1

(2π)3

∫ ∞

0
dk

∫ 2π

0
dθ sin θ 2πk2 e

ikr cos θ

k2 +m2

=
1

(2π)2

∫ ∞

0
dk

k2

k2 +m2

∫ −1

1
(−dq)eikrq

=
1

(2π)2

∫ ∞

0
dk

k2

k2 +m2

1

ikr
eikrq |1−1

=
1

(2π)2ir

∫ ∞

0
dk

k

k2 +m2
(eikr − e−ikr)

=
1

(2π)2r

∫ ∞

0
dk

k

k2 +m2
2 sin(kr)

=
1

2πr

∫ ∞

−∞
dk

k

k2 +m2

sin(kr)

2π

=
1

2πr

∫ ∞

−∞
dk

k

k2 +m2
Re

(

eikr

2πi

)

=
1

2πr
Re

(

1

2πi

∫ ∞

−∞
dk

keikr

k2 +m2

)
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Here each step should be self-explanatory, apart from the jiggling around from eikr−e−ikr to sin(kr)
to the “real” (x-axis) part of eikr/i; note that we could change the integration limit from 0 :∞ to
−∞ :∞, getting rid of a factor 2, because k sin(kr) is an even function.

We can now change variables from k to z and use the contour integral, giving

1

2πr
Re

(

1

2πi

2πi

2

)

=
1

4πr
e−mr

This is the result I claimed in Note 25: the Yukawa potential.

29. Charge conservation and antimatter. We return to bosons and commutators and the simple
field of Note 24, which we extend to two fields, φ1 and φ2. The Lagrangian is just the sum

L =
1

2
(6 ∂φ1 6 ∂φ1 −m2φ2

1) +
1

2
(6 ∂φ2 6 ∂φ2 −m2φ2

1)

What makes two fields interesting is that they can combine into one 2D-number field.

φ =
1√
2
(φ1 + iφ2)

for which the Lagrangian is
L = 6 ∂φ† 6 ∂φ−m2φ†φ

(Check that these two forms of L are the same.)

There are now two sets of annihilation and creation operators, D(−)1k, U (−)1k,D(−)2k and U (−)2k

(these are much easier to construct than the multiple D(+), U (+) for fermions) with U (−)jk = D(−)
†
jk

and which commute or not as usual

[

D(−)jk, U (−)j′k′
]

− = δjj′δkk′
[

D(−)jk,D(−)j′k′
]

− = 0 =
[

U (−)jk, U (−)j′k′
]

−

They can be combined

D(−)k = 1√
2
(D(−)1k + iD(−)2k) U (−)k = D(−)

†
k = 1√

2
(U (−)1k − iU (−)2k)

D̂(−)k = 1√
2
(D(−)1k − iD(−)2k) Û (−)k = D̂(−)

†
k = 1√

2
(U (−)1k + iU (−)2k)

and you can show

[D(−)k, U (−)k′ ]− = δkk′ =
[

D̂(−)k, Û (−)k′

]

−

and all the other commutators vanish.

The relationship between φ and the ladder operators is by Fourier transform, as for the simple
boson field in Note 24 or the fermion field in Note 27.

φ(x) =
1√
V

∑

k

1√
2ωk

(D(−)ke
−i6k·6x + Û (−)ke

−i6k·6x)

from which

φ†(x) =
1√
V

∑

k

1√
2ωk

(D̂(−)ke
−i6k·6x + U (−)ke

−i6k·6x)
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and we’ll see soon why we’ve mixed the hatted operators with the others.

The benefit of putting these two fields into 2-number form is that we can see a symmetry of the
Lagrangian. If we alter φ to φ+∆φ = φe−iqθ and hence φ† to φ†+∆φ† = φ†eiqθ, for some constant
q and any angle θ, the Lagrangian does not change, ∆L = 0.

This might remind you of the electromagnetic Schrödinger equation which we found and simulated
in Notes 13 and 14.

In Note 38 of Book 8c (Part IV) we saw that symmetries of the Lagrangian imply conservation
laws and conserved quantities. These were simple applications of Noether’s therem for regular
Lagrangians, Now we are dealing with field Lagrangian densities, and the corresponding Euler-
Lagrange equations of Note 24:

∂µ(∂∂µφL) = ∂φL
∂µ(∂∂µφ†L) = ∂φ†L

which we must now apply to both fields. (They will, of course, give two Klein-Gordon equations,
one for each field in Note 24.)

We want to show that something is conserved—and what that something is—because ∆L = 0 when
a transformation such as φ→ φ+ ∆φ causes the Lagrangian L → L+ ∆L.

We can look for something else to become 0, and relate that something to ∆L. An appropriate
“something else” is the 4-divergence of a current density (“density”, i.e., per unit volume, or per
unit area, because the Lagrangians we’re using in field theory are also densities).

For a 4-current density Jµ the 4-divergence is

0 = 6 ∂· 6 J = ∂tJt + ∂xJx + ∂yJy + ∂zJz

where Jt = ρ the density per unit volume of the charge (fizzmezh Q/L3) and Jx, Jy, Jz are compo-
nents of the current density per unit area flowing away from the charge (fizzmezh I/L2 = Q/TL2).

We can see this relationship by looking at a small box in a substance with a charge density ρ and
currrent density (Jx, Jy, Jz).

Q
∆

∆
∆

x

y
z

I

I

I

x

y

zI +   I

I +   I

I +   I∆

∆

∆

x x

y y

z z

(The figure shows charge Q = ρ∆x∆y∆z rather than charge density ρ, and current, Ix = Jx∆y∆z,
etc., rather than current density, Jx, etc.)

To sketch the argument, suppose ∆Ix = 0 = ∆Iy so only the z-current has any effect on the net
charge inside the box. This charge, Q, diminishes because of the net outgoing current (we suppose
∆Iz is positive)

−∂tρ∆x∆y∆z = −∂tQ = ∆Iz = ∆Jz∆x∆y
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so
∂tρ∆z + ∆Jz = 0

i.e.,
∂tρ+ ∂zJz = 0

For currents in all directions
∂tJt + ∂xJx + ∂yJy + ∂zJz = 0

So we need ∆L ∝6 ∂· 6 J for some 4-current density Jµ. Then the conserved quantity will be the
charge Q =

∫

d3x∂tJt.

We need the expansion of ∆L(φ, φ†, ∂µφ, ∂µφ†):

∆L = (∂φL)∆φ+ (∂φ†L)∆φ† + (∂∂µφL)∆∂µφ+ (∂∂µφ†L)∆∂µφ
†

For this we need

∆φ = −iqθφ
∆φ† = iqθφ†

∆∂µφ = −iqθ∂µφ
∆∂µφ

† = iqθ∂µφ
†

for infinitesimal φ so e−iqθ ≈ 1 − iqθ, eiqθ ≈ 1 + iqθ and θ is an internal “angle” which does not
depend on t, x, y or z so ∂µθ = 0.

Finally we will try out
Jµ = −iq((∂∂µφL)− (∂∂µφ†L))

Some algebra, using the Euler-Lagrange equations, expands

6 ∂· 6 J = −iq((∂µ∂∂µφL)φ+ (∂∂µφL)(∂µφ)− (∂µ∂∂µφ†L)φ† − (∂∂µφ†L)(∂µφ
†))

= −iq((∂φL)φ− (∂φ†L)φ† + (∂∂µφL)(∂µφ)− (∂∂µφ†L)(∂µφ
†))

Going back to ∆L and the approximations for ∆φ, etc.,

∆L = −iqθ((∂φL)φ− (∂φ†L)φ† + (∂∂µφL)(∂µφ)− (∂∂µφ†L)(∂µφ
†))

= θ 6 ∂· 6 J
So ∆L = 0 (from the symmetry under the e−iqθ transformation) implies 6 ∂· 6 J = 0 and Jµ is the
conserved 4-current.

The above argument is a step closer to the fully general Noether theorem from the discussion in
Book 8c, Note 38. Here we have used quantum field theory rather than simple one-particle quantum
mechanics.

What does it mean? Now we’ll see why we mixed D(−)k with Û (−)k and D̂(−)k with U (−)k in
expanding φ(x) and φ†(x).

First let’s write the 4-current density for our 2D field Lagrangian

Jµ = −iq((∂µφ†)φ− (∂µφ)φ†)

These are the two terms we must expand as ladder operators in the expression

Q =

∫

d3xJt = −iq
∫

d3x((∂tφ
†)φ− (∂tφ)φ†)

i(∂µφ
†)φ) =

1

V

∑

k

√

ωk
4ωk

(D(−)e− − Û (−)e+)(D̂(−)e− + U (−)e+)

−i(∂µφ)φ†) =
1

V

∑

k

√

ωk
4ωk

(U (−)e+ − D̂(−)e−)(D(−)e+ + Û (−)e−)
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I’ve left out some repeated subscripts and exponentials, and I’ve used k0 = ωk—so that the ωk
factors will cancel out.

Multiplying these out and adding them together we have commutators multiplying exponentials
e±2i6k·6x which go to zero:

[D(−), D̂(−)]− = 0 = [Û (−), U (−)]−

And we have exponentials which cancel to 1 multiplying nonzero anticommutators:

DU + UD = 2UD + 1

and
D̂Û + ÛD̂ = 2ÛD̂ + 1

and these are subtracted from one another so the 1s cancel too. The 2s cancel the 1/
√

4 and
the integral over all space cancels the 1/V , so the final answer, putting back the q we left out
temporarily, is

Q = q
∑

k

(U (−)kD(−)k − Û (−)kD̂(−)k)

From Note 18 we know that U (−)D(−) are just the counting operator N , so

Q = q(N − N̂)

where N counts one type of particle and N̂ counts a second type of particle.

The conserved quantity Q is the difference in total charges: N particles of the first type, each with
charge q; N̂ particles of the second type, each with charge −q.
Dirac eventually interpreted these two types of particle as matter and antimatter.

The original expansion of φ(x) in terms of D(−)k and Û (−)k can be interpreted as removing a particle
of charge q or adding an antiparticle of charge −q: it reduces the overall charge. On the other
hand, φ†(x) increases the overall charge by removing a −q or adding a q.

30. Relativistic quantum field theory redux, so far. Moving from single particle quantum
mechanics to relativistic quantum field theory using annihilation and creation operators has in-
troduced us to important differences between bosons and fermions, to forces mediated by carrier
particles including short-range nuclear forces with massive carriers and hints about whether forces
are attractive or repulsive depending on the spin of the boson carriers, and to antimatter and charge
conservation.

Quantum field theory offers great benefits. But it is also very hard to calculate with—we’ve already
seen some gentle hints about the length of calculations.

This exploration has taken us through the physics of the 1930s. Then there was a 10-year hia-
tus (which included World War II and the Manhattan Project) during which the computational
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difficulties led many physicists to contemplate abandoning quantum field theory.

Part V. Functional Integrals

31. Path amplitudes.

32. Functionals.

33. Gaussian integrals.

34. Diagrams and QED.

35. Chirality and electroweak.

36. Green’s functions.

37. Propagators.

38. Quantum Computing.

39. Binary Fourier transform.

40. Quantum Fourier transform.

41. Finding periods.

42. Quantum key distribution.

43. No cloning.

44. Database search.

45. Detecting and correcting errors.

46. Nonlocality: Einstein-Podolsky-Rosen.

47. Building a quantum computer.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Note 18 discusses bosons and fermions. Refer back to Week 5 and to the Excursion in Week
7a that discusses Pauli’s discovery of the effect of special relativity on quantum phase.

2. Heisenberg uncertainty.Jordan [Jor86, pp.129–32] uses matrices such as P and X of Note
18 to derive Heisenberg’s uncertainty principle from the commutator, namely if [X,P ]− = ih̄
then

√

< (X− < X >)2 >
√

< (P− < P >)2 > ≥ h̄/2. This follows directly from < A2 ><
B2 >≥| (1/2) < [A,B]− >|2 which he shows for “real” matrices A and B. You will recognize
the standard deviations of X and P , which give the uncertainties: see below.
In Jordan’s terms, a matrix represents a quantity, all possible values of which that can result
from a measurement of that quantity are in its set of eigenvalues. If all eigenvalues are real
(which they are for Hermitian matrices) that matrix is “real”. If they are all non-negative,
the matrix is non-negative, and so on.
In chapter 13 Jordan gives rules for mean values, < · · · >, which are sums of the eigenvalues
weighted by probabilities: linearity < aA + bB >= a < A > +b < B > where A and B are
matrices and a and b are numbers; sign < negative matrix > = negative number; commutation
for real B and D, [B,D]− is imaginary and hence < BD >=< DB >∗; for commuting B
and D, (B + iD)(B − iD) = B2 +D2 ≥ 0; and for real matrices and any complex number
w, (K + wL)(K − w∗L) ≥ 0. You should check this last one out: it is used in the proof of
Heisenberg.

3. More uncertainty. With the 2-by-2 reflection matrices representing spin (spinj = (1/2)fj
for j = x, y, z) we can be more concrete than with the infinite matrices of the previous
Excursion. The eigenvalues of fj are 1 and −1 in each case, so let’s say the norm of a matrix
| fj |= max | eigenvalues |= 1
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We can compute the expected values explicitly for an arbitrary state (c, se−iα) (c could be
multiplied by a phase factor, too, but the net effect would be an overall phase factor which
will make no difference).

< fz > = (c, se−iα)

(

1
−1

)(

c
seα

)

= c2 − s2 = c2

< fx > = (c, se−iα)

(

1
1

)(

c
seα

)

= cs(eα + e−iα) = 2cs cosα = s2 cosα

< fy > = (c, se−iα)

( −i
i

)(

c
seα

)

= −ics(eα − e−iα) = −2csi2 sinα = s2 sinα

and we note that the sum of squares of the expectation values < fz >
2 + < fx >

2 + <
fy >

2= c22 + s22(cos
2 α + sin2 α) = 1. This says that if c2 = ±1, say, so s2 = 0 and the

state (c, s) (never mind α) is parallel to the z-axis, then (twice) the spin is certainly ±1 in
the z-direction and completely uncertain (< fx >= 0 =< fy >) in the other perpendicular
directions.
The derivation of the uncertainty principle in the previous Excursion does not depend on
the size of the matrices so we can check out the commutator of, say, fz with some reflection
intermediate between fz and fx, say.

[(

1
−1

)

,

(

c2 s2
s2 −c2

)]

−
= s2

(

1
−1

)

= is2

( −i
i

)

and the norm of this is s2 (the eigenvalues are ±1). Thus the uncertainty is 0 if both matrices
are the same but a maximum if the matrices are orthogonal to each other in the sense that
the two reflections described are at 45 degrees.
For 2-by-2 matrices with eigenvalues ±1 the expectation values and the associated probabil-
ities have a 1-to-1 relationship. Let p−1 be the probability of measuring −1 and p1 be the
probability of measuring 1.

p1 + p−1 = 1

p1 − p−1 = < fj >

(

1 1
−1 1

)(

p1

p−1

)

=
(

1
< fj >

)

1
2

(

1 1−
1 1

)(

1
< fj >

)

=
(

p1

p−1

)

For quantum physics, more fundamental than probabilities are amplitudes and we can get
these from the components of the state. Working in 2D with the intermediate matrix and
state (c′, s′) we transform both to axes in which the matrix is diagonalized.

(

c s
−s c

)(

c2 s2
s2 −c2

)(

c −s
s c

)(

c s
−s c

)(

c′

s′

)

=

(

1
−1

)(

cc′ + ss′

cs′ − sc′
)

=

(

1
−1

)(

c−
s−

)

So the amplitude for this state giving the value 1 on measurement is c− which is the cosine
of the difference between the angle (c, s) of the matrix and the angle (c′, s′) of the state.
The amplitude for finding −1 is s−. The corresponding probabilities are the squares of the
amplitudes.
Alternatively, we can project (c′, s′) onto (c, s) using P = (1 + F )/2 where F is a reflection
and P is the corresponding projection.

1

2

(

I +

(

c2 s2
s2 −c2

))

=
1

2

(

1 + c2 − s2 2cs
2cs 1− c2 + s2

)

=
1

2

(

2c2 2cs
2cs 2s2

)
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=

(

c
s

)

(c, s)

(

c
s

)

(c, s)

(

c′

s′

)

=

(

c
s

)

(cc′ + ss′)

= c−

(

c
s

)

This gives the amplitude c−. Similarly the complementary, orthogonal projection P = (1 −
F )/2 gives amplitude s− for projection on the eigenvector with value −1. Projection in
this way corresponds better to the measurement process in which we measure one particular
outcome (e.g., putting light through a filter which polarizes it in one particular direction),
irreversibly losing information about the original state of the system.

4. Write out the multiplication table for the three base reflections f1, f2 and f3 of Note 19 and
show that it has 8 = 23 elements, including 1, f12 and f123.

5. Persuade yourself that f3 of Note 19 is a reflection in 3D, mapping, say, (x, y, z)→ (x,−z,−y):
( −i
i

)(

x+ iy
z

)

=

( −iz
−y + ix

)

6. Sphere of reflections. a) Show that f = xfx + yfy + zfz (Note 19) is a reflection if
x2 + y2 + z2 = 1, i.e., its square is the identity, f2 = I. That is, the three basic reflections
generate a sphere of radius r =

√

x2 + y2 + z2 = 1, every point of the surface of which also
represents a reflection.
b) Since a point on the surface is a reflection, a point in the interior of the sphere is a mix
of reflections: consider a disc in the plane perpendicular to the radius from (0,0,0) to the
interior point (x, y, z) and bounded by the sphere of radius 1. Any two points at opposite
ends of a diameter of the disc are on the sphere and hence (pure) reflections, say fa and fb.
The interior point at the centre of the disc is thus the “mixed” reflection (fa + fb)/2.
In fact, any disc containing the interior point in question can lead to a pair of pure reflections
which mix, afa+bfb, a+b = 1, to give it. Indeed, any triple of points also mix, afa+bfb+cfc,
a+ b+ c = 1; or any number of points on the boundary of such a disc.
c) Since p = (I + f)/2 is a projection for any reflection f , the sphere of reflections is also a
sphere of (pure) projections, and the interior points represent mixes of projections. (Show
that p2 = p.)
d) The projection onto a normalized vector (c, s) is given by the matrix

(

c
s

)

(c s) =

(

c2 cs
cs s2

)

so a mixed projection is given by, say,

a

(

c1
s1

)

(c1 s1) + b

(

c2
s2

)

(c2 s2)

with a+ b = 1. (Note the difference: a+ b = 1 but c2j + s2j = 1.)
Either of these is called a density matrix: the pure projection is a pure density matrix,
corresponding to, say, a deterministic “probability distribution”; the mixed projection is a
mixed density matrix, corresponding to the more familiar probability distribution a, b with
a+ b = 1 and neither one zero.
e) Show that when (c2, s2) is orthogonal to (c1, s1) (e.g., (c2, s2) = (s1,−c1)), these vectors
are the eigenvectors, and a and b the eigenvalues, of the (symmetrical) density matrix. This
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applies also if a + b is not restricted to unity and the resulting matrix is any symmetrical
2-by-2 matrix.
f) For the non-orthogonal case, explore

a

(

1
0

)

(1 0) +
b

2

(

1
1

)

(1 1)

which has eigenvalues (a+ b±
√
a2 + b2)/2 and eigenvectors (x, y) satisfying 0 = (ax+ by ∓

x
√
a2 + b2)/2; for a = 3/5 and b = 4/5 check that the original matrix equals

6

25

(

2
1

)

(2 1) +
1

25

(

1
−2

)

(1 − 2)

(Note that I’ve made a2 + b2 = 1 just to get rid of square roots: this example is not a density
matrix.)

7. Density matrices and inverse tensor product. The tensor product of two density
matrices is a density matrix and can be decomposed into the two original density matrices
by taking restricted traces.

(

a c
b d

)

←−×
(

a′ c′

b′ d′

)

=









aa′ ac′ ca′ cc′

ab′ ad′ cb′ cd′

ba′ bc′ da′ dc′

bb′ bd′ db′ dd′









Since the 2-by-2 matrices are density matrices, their traces a+d = 1 and a′+d′ = 1; it follows
that the trace of the 4-by-4 is also 1 and so the tensor product is also a density matrix.
The decomposing operators are the “left trace” TrL and the “right trace” TrR which combine
the elements of the 4-by-4 as follows.

R
1      3
  1       3
2      4
  2       4

Tr

1  3
2  4

1  3
2  4

TrL

Show that these give back the left and right operands of ←−× respectively.

8. Certainty and entanglement. In Note 5 of Book 9c (Part I) we introduced density matrices
as a way of representing probability distributions: such a density matrix is diagonal, with
the diagonal elements being the probabilities, and summing, of course, to 1. In the case of
certainty, one of the probabilities is 1 and the rest 0, and the density matrix is a projection.
Generally, for non-diagonal density matrices, a density matrix which is a projection represents
certainty in the following, quantum-mechanical, sense. A quantum-mechanical state, a vector
(c, s) with c2 + s2 = 1, gives a result with certainty when measured in the direction given by
c and s. This is because (c, s) is the eigenvector of the density matrix

(

c2 cs
cs s2

)(

c
s

)

=

((

c
s

)

(c, s)

)(

c
s

)

=

(

c
s

)(

(c, s)

(

c
s

))

=

(

c
s

)

(c2 + s2)

and the density matrix, a projection, represents the measurement (think of a polarizing filter).
For classical probabilities (diagonal density matrices) a 4-by-4 projection will decompose (us-
ing the restricted traces of the previous Excursion) into two projections: certainty decomposes
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to certainty. For example








1
0

0
0









=

(

1
0

)

←−×
(

1
0

)

In general, however, a 4-by-4 which is a projection need not decompose into projections. Here
is a “Bell state”

1√
2









1
0
0
1









× 1√
2
(1, 0, 0, 1) =

1

2









1 1

1 1









which is a projection (it must be, but you can square it to check) but decomposes (using the
templates of the previous Excursion) into

1

2

(

1
1

)

(using TrL) and
1

2

(

1
1

)

(using TrR)

Neither of these is a projection. Each can be made up of a mix of two projections.

1

2

(

1
1

)

=
1

2

(

1
0

)

+
1

2

(

0
1

)

There are four Bell states like this (without the 1/
√

2): (1, 0)←−× (1, 0) ± (0, 1)←−× (0, 1) and
(1, 0)←−× (0, 1) ± (0, 1)←−× (1, 0).
A state such as one of these Bell states is called “entangled”: two particles together form a
state but cannot be separated into two definite states, one for each particle.
Examples of entangled states are: two electrons of opposite spins created from some spin-0
system (note that the − sign makes the state antisymmetrical so that swapping the electrons
changes the sign)

1√
2
((1, 0)←−× (0, 1) − (0, 1)←−× (1, 0));

or two photons polarized in the same direction (symmetrical)

1√
2
((1, 0)←−× (1, 0) + (0, 1)←−× (0, 1)).

9. Can quantum physics be made more complete? (Part II). This Excursion concludes
the discussion started by the Excursion of the same name in Week 1. We now include
entanglement, to fix the hole that we left then. The experimental setup involves a source
of polarized photons entangled in pairs and two polarization detectors whose angles can be
altered at random between the time that the photon pair is created and the time that the
photons arrive at the detectors so that no signal at lightspeed or less can tell one detector
what the other one is doing. We’ll use two angles for each detector and call them A, B, C
and D (say A = π/4, B = 0, C = π/8 and D = 3π/8): A and B are the two angles the left
detector can check and C and D are the two angles for the right detector. So the following
four combinations are possible: AC, AD, BC and BD (say −π/8, π/8, π/8 and 3π/8).
We’ll use expected values of correlations between the polarizations, which can range from −1
to 1, instead of probabilities (as in Week 1), which range from 0 to 1.
a) I am following [Shi09] here but will be a little glib about the quantum physics. We write
the entangled state (see the previous Excursion)

< A |= 1√
2
((1, 0)←−× (1, 0) + (0, 1)←−× (0, 1)).
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and its transpose as

| A >=
1√
2

((

1
0

)

←−×
(

1
0

)

+

(

0
1

)

←−×
(

0
1

))

These bracket the operator which gives the angle between the two detectors, e.g., AB, but
in tensor product, one applied to the second part of the state and the other to the first part.
This operator is the 2D rotation matrix—but we remember to transpose it when applied to
the left. With c2 + s2 = 1:

R =

(

c −s
s c

)

< A | RT(2)R(1) | A > =
1

2

(

(1, 0)←−× (c, s) + (0, 1)←−× (−s, c)
)

((

c
s

)

←−×
(

1
0

)

+

( −s
c

)(

0
1

))

=
1

2
(c2 − s2 − s2 + c2)

= c2

where c2 is double the angle between the detectors.
For many repetitions the overall expected value for each case is given by

<AC> <AD> <BC> <BD>
θ −π

8
π
8

π
8

3π
8

cos2θ 1√
2

1√
2

1√
2

− 1√
2

b) For the entangled version of “key theory” (see Week 1) the Bell inequality is based on a
relationship which holds for any four variables each ranging from −1 to 1. These fall on points
on or in a 4D hypercube centred at the origin. We can represent its corners by a Karnaugh
map (also used in Note 5 of Week 10) on which we record the correlations. It is clearer to
make a separate Karnaugh map for each correlation and then combine them at the end in
whatever way we will wind up finding useful.

AC
D −1 1

B A\C −1 1 −1 1
−1 −1 1 −1 1 −1

1 −1 1 −1 1
1 −1 1 −1 1 −1

1 −1 1 −1 1

AD
D −1 1

B A\C −1 1 −1 1
−1 −1 1 1 −1 −1

1 −1 −1 1 1
1 −1 1 1 −1 −1

1 −1 −1 1 1
BC

D −1 1
B A\C −1 1 −1 1
−1 −1 1 −1 1 −1

1 1 −1 1 −1
1 −1 −1 1 −1 1

1 −1 1 −1 1

BD
D −1 1

B A\C −1 1 −1 1
−1 −1 1 1 −1 −1

1 1 1 −1 −1
1 −1 −1 −1 1 1

1 −1 −1 1 1
What we are going to need is the sum of any three of these minus the fourth.

AC +AD +BC −BD
D −1 1

B A\C −1 1 = 1 1
−1 −1 2 −2 2 −2

1 −2 −2 2 2
1 −1 2 2 −2 −2

1 −2 2 −2 2
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We notice that the absolute value is always 2. So, if we allow intermediate values between
−1 and 1, not just the corners of the hypercube, we have (writing <AC > for the expected
value of AC)

−2 ≤ <AC> + <AD> + <BC> − <BD> ≤ 2

c) But if we calculate the same expression using the expected values derived from quantum
theory in part (a) we get 2

√
2 = 2.83 which violates the above inequality.

d) Again, not every set of angles for the detectors causes quantum theory to violate the
inequality. The expression in part (a) is 3cos2π/8−cos6π/8. Plot 3cos2θ−cos6θ to see when
the violation happens and where the maximum violation is.
e) Bell’s original paper [Bel64] works with electrons. The quantum-theoretical calculation is
similar to that in part (a). The entangled state is

< A |= 1√
2
((1, 0)←−× (0, 1) − (0, 1)←−× (1, 0)).

and its transpose is

| A >=
1√
2

((

1
0

)

←−×
(

0
1

)

−
(

0
1

)

←−×
(

1
0

))

The operator must rotate spin-1/2 particles in 3D, so it is the product of the vector of Pauli
spin matrices with the orientation of the detector, again once fod each of the pair in the
entangled state. Thus

~σ · ~a =

(

az ax − iay
ax + iay −az

)

<A | (~σ ·~b)†(2)(~σ · ~a)(1) | A> =
1

2

(

(1, 0)←−× (bx + iby,−bz)− (0, 1)←−× (bz, bx − iby)
)

((

az
ax + iay

)

←−×
(

0
1

)

−
(

ax − iay
−az

)

←−×
(

1
0

))

=
1

2
(−2azbz − 2axbx − 2ayby)

= −~a ·~b

10. a) For a normalized 3D vector (p, q, r), p2 + q2 + r2 = 1. Think of a way of replacing p, q, r
by cosines and sines. You’ll need two angles: which angles are conventionally used?
b) Show that (−q, p, 0) and (p, q,−(p2 + q2)/r) could be the remaining two of a mutually
orthogonal set of three vectors. How would they be normalized?
c) As a 2-by-1 vector (p, q, r) could be represented as (p+ iq, r). Is it normalized? Write two
2-by-1 vectors orthogonal to it. Hint: i(p + iq) = ip − q is orthogonal to p + iq: what is the
product of the two in a 2-by-2 vector product? (Remember to use the Hermitian transpose.)
d) Re-express the cos-sin answer to part (a) as a 2-by-1 as in part (c).

11. Show that f3 does not generate extra ladder operators to give us the anticommutator algebra
we seek in Note 19. E.g., [D1,D2](+) 6= 0, etc., in

D1 =
1

2
(f2 + if3)

D2 =
1

2
(f3 + if1)

D3 =
1

2
(f1 + if2)
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12. Work out all 16 elements of the n = 4 reflection given as f0, f1, f2 and f3 in Note 20. Work
out the complete multiplication table and note which pairs commute and which anticommute.

13. Confirm that the two down and two up ladders generated in Note 20, from the n = 4 reflection
algebra, satisfy the anticommutator relations given in Note 18.

14. Show that the three pairs of D and U operators arise from the 8-by-8 reflection algebra (based
on Note 20):

f1 = fz
←
× I

←
× I

f2 = fx
←
× fy

←
× I

f3 = fx
←
× fx

←
× fx

f4 = fx
←
× fx

←
× fy

f5 = fx
←
× fx

←
× fz

f6 = fx
←
× fz

←
× I

D1 = f1 + if4

D2 = f2 + if5

D3 = f3 + if6

U1 = f1 − if4

U2 = f2 − if5

U3 = f3 − if6

15. Check that the eigenvalues of Jx and Jy in Note 21 are also 1, 0 and −1, as are the eigenvalues
of pJx+qJy+rJz for any numbers p, q and r such that p2+q2+r2 = 1. Hint. Use MATLAB’s
eig() function and symbolic variables syms p,q,r.

16. Show that if two matrices, M1 and M2, can be diagonalized by the same transformation X,
then they commute. Make the slightly less easy converse argument.

17. Show that the 2-by-2 Jx, Jy and Jz in Note 21 have the same commutator relationships as
the 3-by-3.

18. Unfortunately the exponential notation in Note 21 can be misleading.

e−iθxJxe−iθyJye−iθzJz

is not the same as
e−i(θxJx+θyJy+θzJz)

Why? Hint. Think commutators.

19. Compare the 2-by-2 matrix resulting from using the Euler angles in Note 21 with Feyn-
man’s [FLS64, p.III-6-12]. Hint: Feynman is changing the axes ; I’ve done the rotation with
fixed axes.

20. Calculate the commutator/anticommutator table of Note 22. You can do it with just the
rules of squaring and of swapping indices. Or, if this is tedious and error-prone, you can write
a program: write out the three 2-by-2 reflections (call them px, py, pz for Pauli), use the
MATLAB function kron() (e.g., given the 2-by-2 identity matrix, f0 = kron(pz,I2)) and
matrix multiplication to generate the sixteen. Use a cell array to test the commutator and
anticommutator in a double loop.

21. Feynman [Fey49, p.751] introduces what later becomes his “slash” notation (Note 22) without
the slashes. It would be nice if eventually the slashes were not needed and we just used A, b,
∂, etc. But convention is against this and the slashes are unambiguous.

22. Work out the general spinors, from Note 22, in 3D and 4D (Minkowski). What are the vectors
and spinors in 4D (Euclidean)?
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23. Look up the Weyl, Majorana, Wedderburn, etc. representations of the 4D (16-element reflec-
tion (Clifford) algebra (Note 22)). Look up Weyl, Majorana, etc., spinors and relate them to
these representations.

24. Would the matrix representation of a 5D, 32-element reflection algebra be unique, as is the
(Pauli) representation of the 3D, 8-element reflection algebra?

25. Show that the distributive property of the tensor product A
←
× C + B

←
× C = (A + B)

←
× C

(Note 23) follows from the distributive property of the numerical elements ac+ bc = (a+ b)c.

26. Tensor product transposes. Show that (A
←
× B)T = AT

←
× BT .

27. Check the orthonormality of | n1n2..nk.. > and | n′1n′2..n′k.. > in Note 23.

28. Show that e−i6k·6x is a solution to the Klein-Gordon equation of Note 24.

∂2
t e
−i6k·6x = ∂t(−iωke−i6k·6x) = −ω2

ke
−i6k·6x

∂2
xe
−i6k·6x = ∂x(ikxe

−i6k·6x) = −k2
xe
−i6k·6x

etc.

29. Find the first and second order (Note 26) corrections to the eigenvalue of the shear matrix
(Note 19)

H0 =
1

2

(

d+ 1/d d− 1/d
d− 1/d d+ 1/d

)

with the eigenvectors
1√
2

(

1
1

)

and
1√
2

(

1
−1

)

and corresponding eigenvalues d and 1/d respectively (check these!),
a) if HI = I, the identity matrix;

b) if HI = fx =

(

1
1

)

.

30. Show that the conjugate of the Dirac Lagrangian in Note 27

L† = (ψ(i 6 ∂ −m)ψ)†

= −ψ(i 6 ∂ +m)ψ

so that both components of the Klein-Gordon equation can be derived from the one La-
grangian.

31. Hermitian transposes of reflections, etc. For Note 27 we need Hermitian conjugates of
4-by-4 ladder operators and the dµ.

a) Show that d†j = −dj , j = 1, 2, 3, using dj = ip2
←−×pj for the 2-by-2 Pauli matrices (in Note

23)

xpx + yp2 + zp3 =

(

z x− iy
x+ iy −z

)

b) Show that d†0 = d0, where d0 = p3
←−×I

c) Show that f †µ = fµ, µ = 0, 1, 2, 3 where f0 = d0, fj = p1
←−×pj. Hint. See Excursion Tensor

product transposes.
d) Hence show that D(+)

† = U (+) for D(+) = f + if ′, U (+) = f − if ′ for any two reflections, f
and f ′, from question (c).
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32. For Note 28 show that the Cauchy-Riemann equations oblige ▽2u = 0 = ▽2v

33. Slopes of Clifford functions. Since f1, f2 are basic reflections, different from 1 and i
which are basic rotations, maybe we would get results for functions of Clifford numbers (the
reflection algebra) different from the Cauchy-Riemann equations of Note 28.
a) Show that this is not so. (You must decide on a convention for division, e.g., f1/f2 = f12

(because f2
2 = 1) rather than f2\f1 = f21 = −f12.) Try z = xf1 + yf2 and f = uf1 + vf2

b) For Clifford numbers in 3D the “Clifford-Cauchy-Riemann” condition gives





∂xu −∂xv −∂xw
∂xv ∂xu −∂yw
∂xw ∂yw ∂xu





for the Jacobian. What is this?
c) What about the full 2D reflection (Clifford) algebra?

q = w + xf1 + yf2 + zf12

f(q) = a+ bf1 + cf2 + df12

34. Look up Augustin Louis Cauchy, 1789–1857. It is said he published a major paper every
week in a peak phase: was this during his almost single-handed invention of the calculus of
complex variables?

35. Make the argument in Note 29 that ∂tJt + ∂xJx + ∂yJy + ∂zJz = 0 for a current density in
any direction, not just the z-direction. You may have to find a way of dividing throughout
by δt rather than by ∆z as the text does.

36. Using the Lagrangian of Note 29, show that ∆L and 6 ∂· 6 J each go to zero.

37. Any part of the Prefatory Notes that needs working through.
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