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Part I. Electrostatics and Electromagnetism

1. Central Forces.
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I. Prefatory Notes

8. Partial Slope Equations: Laplace’s Equation. In Part I, notably Notes 5 and 7, we expressed
electromagnetism using the slope operators ▽2 = ∂2

x + ∂2
y + ∂2

z and ∂2
t . These are partial slope

operators, and the equations using them to describe electromagnetism are partial slope equations
(conventionally called partial differential equations, or PDEs).

We must learn how to solve them, at least far enough that we can visualize the resulting fields.

We’ll do this numerically, and only as precisely as is needed for visualization. Analytical solutions
are possible in the simple cases we’ll discuss, but numerical solutions give the pictures and ani-
mations we’ll need to support our intuitions. And numerical solutions permit us in practice to go
beyond the limited number of analytical solutions known. However, we’ll see that we need to know
these solutions in advance in order to set the “boundary conditions” for the numerical calculations,

In the next five Notes we’ll work from simple examples to more complex. We’ll discover that each
example needs its own solution techniques.

We’ll limit ourselves to two dimensions so that we can draw the pictures.

We start with Laplace’s equation
▽2φ = 0
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which describes not only the central-force field potential (gravity, electrostatics) without sources or
sinks, but also the temperature of a solid in thermal equilibrium and a number of other, apparently
unrelated, physical and engineering phenomena.

The numerical expression of ▽2φ = ∂2
xφ+ ∂2

yφ uses

∂2
xφ = ∂x∂xφ

≈ ∂x
φ+◦ − φ◦◦

∆x

≈
1

∆x

(

φ+◦ − φ◦◦
∆x

−
φ◦◦ − φ−◦

∆x

)

=
1

(∆x)2
(φ+◦ + φ−◦ − 2φ◦◦)

and similarly

∂2
yφ ≈

1

(∆y)2
(φ◦+ + φ◦− − 2φ◦◦)

where the shorthand notation φ+◦, φ−◦, etc., mean

φ+◦ = φ(x+ ∆x, y) φ◦◦ = φ(x, y) φ−◦ = φ(x− ∆x, y)
φ◦+ = φ(x, y + ∆y) φ◦− = φ(x, y − ∆y)

These combine to give, if we set ∆x = h = ∆y,

▽2φ =
1

h
(φ+◦ + φ◦+ + φ−◦ + φ◦− − 4φ◦◦)

The way to solve ▽2φ = 0 can now be written as a matrix equation. Of course, we’ll have to supply
some previously-known values for φ. We’ll start by supposing that the boundary is known. This
would be the case if Laplace’s equation were describing the temperature of a slab of material wth
known temperatures on its boundary.

Let’s try a 5-by-5 grid with known temperatures ai, bi, ci as shown.
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Then ▽2φ = 0 becomes the matrix equation
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The matrix is 9-by-9 because there are 9 unknown values of φ, in the middle of the slab (we don’t
need to know the four corners to find these nine, so the corners are left blank).

We see the 4s on the diagonal, corresponding to the 4φ◦◦ and up to four −1s in each row. Where
a −1 is missing in the matrix, this is because the corresponding φ-value is known, and appears in
the vector on the far right.

In the case of circular (spatial) symmetry, which holds for a gravitational field with a point source
(not included in the equation ▽2φ = 0) the ai are all equal and the bi = ci are all equal.

The above boundary conditions are not sufficient to capture a central-force potential field. This
field, which is −1/r in 3D and ln r in 2D, goes to −∞ at the centre, where r = 0. We must tell
the calculation about this, say by specifying also four values of the field at the closest points to the
centre.

For a 5-by-5 grid the boundary conditions become (now using spherical symmetry)

3  a   c        c   a

1      b   a   b

5      b   a   b

1   2   3   4   5

4  b       c        b

2  b       c        b

The matrix equation for the four values that are now unknown is
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


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


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
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

Of course this is very uninteresting in this toy example, but it becomes more interesting for a larger
grid: under spherical symmetry there will be n possibly different known values around the outer
border for a 2n + 1-by-2n + 1 grid, with one further known value repeated four times around the
centre, as c is above. The matrix of unknowns, without taking symmetry into account, will be
(2n − 1)2 − 5 by (2n− 1)2 − 5.

Such matrices become very large for any reasonably-sized grid. They are also very sparse, so it is
possible to solve the matrix equations iteratively rather than by brute force.

The method we’ll use is Jacobi’s. He observed, in the matrix equation for unknown u

Au = b

that a sparse A can be broken down into diagonal and non-diagonal components

A = D +D′

(where we expect the diagonal elements to be the largest as in the above examples).

So the equation to be solved becomes

Du = b−D′u

or
u = D−1b−D−1D′u
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and this suggests a step between iterations j and j + 1

uj+1 = D−1(b−D′uj)

Putting all this together for a ln r potential we need a suite of programs.

First it is handy to be able to generate the different values of r2 for the boundary of the grid.

bdyvals = centralSym(5)
giving
bdyvals = [5,4,5]

5   4   5

Next we distribute the natural logarithm of r around the boundary
bdypro = symmBdyGen(log(bdyvals)/2)

1 2 b
1 3 a
1 4 b
4 1 b
3 1 a
2 1 b
5 4 b
5 3 a
5 2 b
2 5 b
3 5 a
4 5 b b = 0.8047

        b   a   b

    a                  a
    b                 b
        b   a   b

a = 0.6931

    b                 b

Note that the output of symmBdyGen() is a protor (Book 11c, Note 4). This is the suitable form
for sparse matrix calculations.

In order to capture the inner “boundary” values we can also use symmBdyGen() and then adjust.

bdyproC = symmBdyGen(1)

gives

bdyproC
1 2 1
2 1 1
3 2 1
2 3 1

adjusted to
17-by-17

8 9 1
9 8 1
9 10 1
10 9 1

110

8   9  10

9
8 1

1 1

And I’ve shown the adjustment to place these values at the centre of a 17-by-17 grid.

Of course, we’d be taking the log of the square root of that value, 1, which of course in 0. So now
we should consider that the step size is not 1 but some very small number such as 1/400. The
central part of the calculation becomes

bdyproC = symmBdyGen(log(1/400)/2)

giving, again for a 17-by-17 grid, with a = − ln 400 = −5.9915

8 9 a
9 8 a
9 10 a
10 9 a
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The final boundaries will just be the concatenation of the outer and inner result protors

bdypro = [bdypro;bdyproC]

Third we generate the matrix A and the vector b, also in protor form, which specify the desired
grid and boundary values.

[mat,vec] = pdeMatVec(neighweigh,bdypro)

We discuss the inputs first. We need a protor to capture the numerical form of the slope operator.
For

▽2φ =
1

h
(π+◦ + φ◦+ + φ−◦ + φ◦− − 4φ◦◦)

this is

neighweigh
0 0 4
1 0 −1

−1 0 −1
0 1 −1
0 −1 −1

And we need bdypro which, for this example, I’ll take to be the 5-by-5 result of

bdypro = symBdyGen([5,4,5])

The results we want from the invocation of pdeMatVec are

• mat will be the protor version of the 9-by-9 matrix at the beginning of this Note

mat
2 2 2 2 4
2 2 3 2 −1
:
4 4 3 4 −1
4 4 4 3 −1

where each index is the pair of integers labelling the corresponding cell in the grid.

• vec will be the 9-by-1 vector also given in that matrix equation for ▽2φ = 0, also in protor
form

vec
2 2 10
2 3 4
2 4 10
3 2 4
3 4 4
4 2 10
4 3 4
4 4 10

where the indices are again pairs, and we note that the 3 3 0 entry is omitted because of the
0.
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What pdeMatVec() does is loop through all interior points of the grid (indices j, k), within these
loops add each index pair of neighweigh to j and k, respectively (giving j1, k1) and look up
ji,k1 in bdypro. If it is there,and hence on the boundary, add the coefficient from bdypro to
what (if anything) is already in vec; otherwise create a new row for mat of j, k, j1, k1 and the
coefficient.

Thus pdeMatVec() distributes the coefficents of neighweigh into matrix mat or vector vec (suitably
weighted by bdypro in this case) depending on whether the point is interior or on the boundary.

Now that we have the matrix mat we must extract the diagonal and non-diagonal parts, and find
the inverse of the diagonal.

[D,Dm1,LU] = undiagMat(mat)

where D is the diagonal, Dm1 is its inverse, and LU (lower-upper triangles) is the non-diagonal part;
all these are in the same paired-index protor form. For example

D
2 2 2 2 4
2 3 2 3 4
:

Dm1
2 2 2 2 0.25
2 3 2 3 0.25
:

LU
2 2 3 2 −1
2 2 2 3 −1
:

Finally we use protor routines (Book 11c, Notes 4 and 20) to iterate the Jacobi steps

u1 = D−1b

uj−1 = D−1(b−D′uj)

where D−1 is what we called Dm1 in the MATLAB programs, b is vec and D′ is LU.

The matrix multiplication uses a paired-index version of joinred() (Book 11c, Note 4), e.g.,

U = joinred2(Dm1,[3,4],vec,[1,2])

The matrix subtraction uses mergesum() (Book 11c, Note 20) with numerical weights 1 and −1 in
the first and third parameters respectively.

These are all combined into

result = pdeJacobi(Dm1,LU,vec)

To stop the iteration we need to find the relative difference between two successive steps. For this
we write a new function

mergeProd(wt1,protor1,wt2,protor2)

whichis identical to mergeSum() except it finds the products of corresponding coefficients, in the
form

< protor1 ><wt1> × < protor2 ><wt2>

The code in pdeJacobi() stops the iteration when the minimum of these relation differences exceeds
0.0001, which gives enough accuracy for plotting.

Here is a result from a 17-by-17 grid with step size h = 1/400
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9. The Wave Equation. In Note 7 of Part I we introduced the wave equation. Now it is time to
“solve” it, at least to see how it describes waves.

You would think that we could just add a time dimension and use the same techniques as for the
Laplace equation in Note 8, but this is not so. There will be boundary conditions, this time around
the outer boundary in x-y space, but there will also be initial conditions for the time dimension—in
fact, two layers of initial conditions because the slope with respect to time is second order.

In two spatial dimensions we can discretize

1

c2
∂2

t u = ▽2u

as

1

(∆t)2
(u+◦◦ − 2u◦◦◦ + u−◦◦) = c2

(

1

(∆x)2
(u◦+◦ − 2u◦◦◦ + u◦−◦) +

1

(∆y)2
(u◦◦+ − 2u◦◦◦ + u◦◦−)

)

and, if we set ∆x = ∆y and s = (c∆t/∆x)2, this is

u+◦◦ = −u−◦◦ + s(u◦+◦ + u◦◦+ + u◦−◦ + u◦◦−) + 2(1 − 2s)u◦◦◦

The first subscript in this shorthand refers to time; the second and third to x and y respectively:

u+◦◦ = u(t+ ∆t, x, y)

u−◦◦ = u(t− ∆t, x, y)

etc.

We see from the above that we need the values of u(t, x, y) at all spatial points for two previous
time values in order to calculate u+◦◦. That means that we must start with u(t, x, y) at all spatial
points for t = 0 and t = ∆t: these are the initial conditions.

The MATLAB function
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initMat = initWave2(c,delT,delX,delY,numXs,numYs,kx,ky,stanRtrav)

sets up either a standing wave or a travelling wave in the first two layers of the array (matrix)

initMat(1:2,1:numXs,1:numYs)

The parameters kx, ky give the direction of the wave. With k =
√

(kx)2 + (ky)2 here is the code
for a standing wave.

initMat(1,:,:) = zeros(numXs,numYs);
initMat(2,:,:) = sin(c*k*pi*delT)*

sin(kx*pi*Xvals)*
sin(ky*pi*Yvals)

And here is the code for the travelling wave.

[X,Y] = meshgrid(Xvals,Yvals)
Tdel = ones(size(X))*delT
initMat(1,:,:) = sin(pi*(kx*X + ky*Y - c*0))
initMat(2,:,:) = sin(pi*(kx*X + ky*Y - c*k*Tdel))

To illustrate both cases, here are plots of initMat for

initMat = initWave2(1,1/60,1/60,1/60,50,40,3,4,’s’);
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and

initMat = initWave2(1,1/60,1/60,1/60,50,40,3,4,’t’);
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As with the potential-well example of Laplace’s equation, we must know the solution already, at
least for the initial conditions. But we proceed with the numerical calculation because the spatial
boundary conditions give rise to interesting simulations. There are two cases: cyclic and rigid.

Cyclic boundary conditions essentially make the boundary invisible:

u(t, xMax + 1, y) is matched up with u(t, 1, y)

u(t,−1, y) is matched up with u(t, xMax, y)

u(t, x, yMax + 1) is matched up with u(t, x, 1)

u(t, x,−1) is matched up with u(t, x, yMax)

Effectively, the wave is treated as if it were in infinite space, and it behaves accordingly.

Rigid boundary conditions treat the wave as if it were in a bounded pool:

u(t, xMax + 1, y) = 0

u(t,−1, y) = 0

u(t, x, yMax + 1) = 0

u(t, x,−1) = 0

If the initial wave is a standing wave, a change in boundary conditions makes no difference. But a
travelling wave with rigid boundary conditions sloshes interestingly.

The wave equation solver essentially implements the equation for u+◦◦ at the beginning of this
Note.

solnMat = pdeWaveDirich2D(initMat,c,delT,delX,delY,maxT,bc);

Four cases to illustrate the discussion above arise from two initial waves.

initMatS = initWave2(1/sqrt(2),1/60,1/60,1/60,41,31,3,4,’s’);
initMatT = initWave2(1/sqrt(2),1/60,1/60,1/60,41,31,3,4,’t’);

These are each supplied to pdeWaveDirich2D(), e.g.,

solnMatSC = pdeWaveDirich2D(initMatS,1/sqrt(2),1/60,1/60,1/60,55,’c’)
solnMatTC = pdeWaveDirich2D(initMatT,1/sqrt(2),1/60,1/60,1/60,55,’c’)
solnMatTR = pdeWaveDirich2D(initMatT,1/sqrt(2),1/60,1/60,1/60,55,’r’)
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The resulting 55-by-41-by-31 matrices can be plotted as an animation with

animMatrix(solnMat)

This uses surfc() to plot the initial values, pauses five seconds (using pause(5)) to give time
to click on the figure, then uses surfc() repeatedly, followed by pause(0.2), to display each
subsequent step in turn.

The resolutions given reveal the numerical approximations in the code. Higher resolutions behave
better.

10. The Schrödinger Equation I: Physics. Quantum mechanics needs the equation of motion

E =
p2

2m
+ V

(relating momentum, p, of a particle to its energy, E, via its mass m) to be formulated as operators
on a wavefunction (Book 8c, Part IV, Note 35).

E = ih̄∂t

p = −ih̄∂x in one dimension

~p = −ih̄ ~grad in > 1 dimension

With wavefunction u(t, x) (or u(t, x, y) or u(t, x, y, z)) this becomes the time-dependent Schrödinger
equation

ih̄∂tu = −
h̄2

2m
∂2

xu+ V u

(Note that the “operator” describing the effect of the potential on the wavefunction is just the
product, V (x, y, z)u.)

Schrödinger’s equation

ih̄∂tu = −
h̄2

2m
▽2 u+ V u

(whether ▽2 is in one, two or three spatial dimensions) is a partial slope equation, and our expe-
rience in Notes 8 and 9 is that we must have a pretty good idea of what such an equation is about
before we can do the numerical calculations to visualize it. For Schrödinger’s equation we are going
to rely a great deal on the physics.

The first physical consideration we’ll exploit is that an isolated system has a definite energy. So we
can take E to be just a number and we can try

u(t, x, y, z) = e−iEt/h̄ψ(x, y, z)

as a decomposition of u into temporal and spatial parts. This of course is motivated by

ih̄∂te
−iEt/h̄ = ih̄

−iE
h̄

e−iEt/h̄

= Ee−iEt/h̄

But we also saw it as the temporal part of the wavefunction in Week 7c, Note 2.

Out of this we find Schrödinger’s time-independent equation for the spatial part, ψ,

Eψ = −
h̄2

2m
▽2 ψ + V ψ
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But we return to the behaviour with time. The exponential, e−iωt, with ω = E/h̄, describes a
helix in three dimensions, where one dimension represents the time, t, and the other two give the
2-number that is the result of

e−iωt = cosωt− i sinωt

Here’s a picture.
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This figure labels the t-axis and the two values axes. R gives the cos(ωt) component and I gives
the sin(ωt) component. The red line at R = 1, I = 0 is the absolute value

(cos ωt− i sinωt)(cosωt+ i sinωt) = 1

For a free particle, the potential V is constant and we can take it to be zero. Then

ψ = eikx = eipx/h̄

(the spatial part in Note 2 of Week 9a) is a solution (in one dimension), giving

Eψ = −
h̄2

2m
∂2

xψ = −
h̄2

2m

(

ip

h̄

)2

eipx/h̄ =
p2

2m
ψ

the classical equation of motion, once we remove ψ from both sides.

This ψ = eikx is also a helix, but in space. Its squared absolute value is interpreted as the probability
that the particle is to be found at a position x. For the moment, with no constant c in front of the
eikx—i.e., ceikx—that probability is 1 everywhere.

This is clearly impossible. Indeed, in infinite space −∞ < x <∞, there is no finite constant c that
can fit the interpretation.

The physics takes us back to square one.

We do not need to limit ourselves to a single energh E. The solution to Schrödinger’s time-
dependent equation can be a superposition—a linear combination—of many different energies, Ej ,
and the helical solution

e−Ejt/h̄
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of each. Since Ej = p2
j/2m, each of these enrgies gives rise to a different momentum, and we have

a linear combination of the helices
epjx/h̄

If we use coefficients in this linear combination which follow a Gaussian bell curve (Week 9, Note
7) we have a Fourier transform something like

∑

j

e−p2

j
/2δ2

eipjx

We saw in Note 7 of Week 9 that this transformation of a bell curve in p-space becomes a bell curve
in x-space, with the net effect that we can also consider the x-values of the wave function to follow
a bell curve such as

e−(x−x0)2/2σ2

(Here, σ is the standard deviation, a measure of the width of the bell curve. In p-space, δ, above,
plays the same role.)

Putting this together with eip0x/h̄ where p0 is an average momentum of all the plane waves making
up the packet, we have the following wavefunction in one spatial dimension.

0
0.2

0.4
0.6

0.8
1

−2

−1

0

1

2
−2

−1

0

1

2

GoldScheySchwar wave packet, t = 0

Again, the red line at I = 0 gives the squared absolute value, i.e., the probability in space, and we
see that this is a localized “wave packet”.

Not only does this give us something that actually looks like a particle, it also has the advantage
that we can keep it far enough from the boundary when we evaluate the Schrödinger equation
numerically that we can simply set the boundary conditions to zero.

In two spatial dimensions we must improvise to fit into a 3-D plot the two dimensions of the
underlying space, plus the two dimensions of 2-numbers that describe the wave function. We do
this by plotting the absolute value of the wavefunction (a function of two variables which needs
three dimensions to plot) and add to this a horizontal arrow at each grid point, whose direction
gives the phase of the 2-number wavefunction.

Here is such a plot: a wave packet in two dimensions.
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In this case and for the case of one spatial dimension, to include a dimension for time t we just
animate the plot.

11. The Schrödinger Equation II: Animating in 1D. In one spatial dimension the Schrödinger
equation

ih̄∂tu = −
h̄2

2m
∂2

xu+ V u

= Ĥu

where Ĥ is the Hamiltonian operator (see Ex. The Hamiltonian). This has the formal solution

u(t, x) = e−i(t−t0)Ĥ/h̄u(t0, x)

in terms of some (initial) value of u at t = t0.

When we change u(t, x) from a continuous function to a discrete one, for numerical solution, and
write tn+1 = tn + δ for successive time steps, then ~un+1 and ~un become vectors over all the space

(x) locations, e.g., u(tn, xj) becomes unj , and the operator Ĥ becomes a matrix Hjj′:

~un+1 = e−iδH/h̄ ~un

H is a hermitian matrix (the 2-number analog of a symmetric matrix) Hjj′ = H∗
j′j where * is the

complex conjugate operator (changing i to −i everywhere). Written in matrix form:

H = H†

Because of this, the squared-magnitude of ~u does not change in time:

~u∗n+1 ~un+1 = ~u∗ne
iδH†/h̄e−iδH/h̄ ~un

= ~u∗ne
iδ(H†−H)h̄ ~un

= ~u∗nI ~un

= ~u∗n ~un

13



Furthermore, the exponential U = e−iδH/h̄ is unitary (the 2-number analog of orthogonal):

U †U = eiδH
†/h̄e−iδH/h̄ = I

i.e., U † = U−1.

If we can find a unitary approximation for

e−iδH/h̄ = I −
iδH

h̄
+

1

2

(

iδH

h̄

)2

+
1

3!

(

iδH

h̄

)3

+ · · ·

the solution cannot blow up and we will not need to worry about stability.

The Cayley approximation gives what we need

e−iδH/h̄ ≈
I − iδH/2h̄

I + iδH/2h̄

This gives us

~un+1 =
I − iδH/2h̄

I + iδH/2h̄
~un

or
(I + iδH/2h̄) ~un+1 = (I − iδH/2h̄) ~un

We can expand ∂2
xu = (uj+1 − 2uj + uj−1)/ǫ

2 as usual for (partial) slope equations, where ǫ =
xj+1 − xj and where I’ve suppressed the time index n because it’s true for any n.

Thus, with

Hu = V u−
1

a
∂2

xu

(I’ve renamed 2m/h̄2 def
= a) we have

un+1,j + i
δ

2h̄

(

Vjun+1,j −
1

aǫ2
(un+1,j+1 − 2un+1,j + un+1,j−1)

)

=

un,j − i
δ

2h̄

(

Vjun,j −
1

aǫ2
(un,j+1 − 2un,j + un,j−1)

)

Note that the potential, V , has different values at different x but does not depend on time.

We rearrange this using λ
def
= 2h̄aǫ2/δ to

un+1,j+1 + (iλ− aǫ2Vj − 2)un+1,j + un+1,j−1 = −un,j+1 + (iλ+ aǫ2Vj + 2)un,j − un,j−1

def
= Ωn,j

in which the latter definition is another notational convenience instead of writing out the long
expression after the first = sign,

We can think of this result

un+1,j+1 + (iλ− aǫ2Vj − 2)un+1,j + un+1,j−1 = Ωn,j

as a matrix equation to be solved for ~un+1, but there’s a trick (the Thomas algorithm for solving
a tridiagonal mattrix) which does it in only two passes.

We invent two auxiliary functions and suppose

un+1,j+1 = en,jun+1,j + fn,j

14



Putting the two equations together

en,jun+1,j + fn,j + (iλ− aǫ2Vj − 2)un+1,j + un+1,j−1 = Ωn,j

we get

un+1,j = (2 + aǫ2Vj − en,j − iλ)−1un+1,j−1 + (2 + aǫ2Vj − en,j − iλ)−1(fn,j − Ωn,j)

Comparing this with the definition of en,j and fn,j

un+1,j+1 = en,jun+1,j + fn,j

we get iterations for both of these auxiliary functions

en,j−1 = (2 + aǫ2Vj − en,j − iλ)−1

fn,j−1 = en,j−1(fn,j − Ωn,j)

or

en,j = 2 + aǫ2Vj − iλ− 1/en,j−1

fn,j = Ωn,j − fn,j−1/en,j−1

There is nothing in this result for en,j which depends on time. so we can drop the time index, n,
and just write

ej = 2 + aǫ2Vj − iλ− 1/ej−1

and the e-function can be calculated just once, before entering the time loop of the simulation we’re
getting to.

Both ej and fn,j can be calculated for all j by starting at the j = 0 boundary condition un0 = 0 (all
n). We will justify this condition, as mentioned in Note 10, by making the initial wavefunction a
Gaussian wavepacket, zero far enough away from its location and especially at the boundaries—and
by keeping it far enough from the boundaries during simulation.

Thus
un+1,2 = (2 + aǫ2V1 − iλ)−1un+1,1 + Ωn,1

and so

e1 = 2 + aǫ2V1 − iλ

fn,1 = Ωn,1

Calculating all these ej and fn.j constitutes the forward pass of the algorithm.

The backward pass finds un+1,j by starting at the maximum j = J and using the other boundary
conditions un,J = 0 all n.

0 = eJ−1un+1,J−1 + fn,J−1

so
un+1,J−1 = −fn,J−1/eJ−1

and
un+1,j = (un+1,j+1 − fn.j)/ej

for all j < J − 1 (and, as usual, all n).

This is the two-pass algorithm we must execute for all n (n = 0 : N) and all j (first j = 2 : J − 1,
second j = J − 1 : −1 : 1).

But we must initialize the wavepacket as that Gaussian

u(0, x) = eik0xe−(x−x0)2/2σ2

0

15



which moves to the right with average momentum k0. We set the starting location

x0 = Jǫ/4

and the standard deviation (width of the Gaussian bell)

σ0 = Jǫ/20

to keep u(0, x) negligible at x = 0 (and at x = Jǫ). To keep the wavepacket from going past 3Jǫ/4,
three quarters of the simulation space, in the time Nδ given for the full run, we have

Jǫ

2Nδ
≈ V =

p

m
=
h̄k0

m
=

2k0

h̄a

so

k0 =
h̄a

2

Jǫ

2Nδ
=
h̄aJ

4N

λ

2h̄aǫ
=

Jλ

8Nǫ

where we defined λ earlier as 2h̄aǫ(ǫ/δ).

We must choose values for ǫ and δ: experiment is a guide. We can choose Jǫ, the size of the space,
to be 1nm (nanometers) and we can work in time units of fs (femtoseconds) and energy units
of eV (electron volts). In these units, for instance, lightspeed is 300nm/fs and Plank’s constant
h̄ = 0.66eV-fs. The constant a = 26/eV-nm2, and λ is dimensionless.

We finally pick λ = 1 and k0ǫ = π/20, i.e., 1/40 of a phase cycle per space-step in the iteration.
Thus 5J = 2Nπ and we can experiment with various initial momenta by choosing reasonable
numbers of spatial steps to simulate.

J N ǫ = 1/J nm k0 E0 = k2
0/a eV

1000 800 10−3 50π 941
1414 1130 0, 707 × 10−3 70.7π 1883
2000 1600 0.5 × 10−3 100π 3766

When we design potentials such as a barrier, we’ll give them energies of the size of the middle of
these three, so that we can experiment with energies less than, equal to, or more than the (barrier)
energy.

The MATLAB function freeSchroeGauss(E,bw) simulates the motions of a Gaussian wavepacket
in one dimension with the above three possible energy levels (E = 1, 2, 3) and for various potential
barriers or wells (bw = ’f’ for free motion with no barrier or well; bw = ’b’ for barrier height 1883
eV and width 0.0432nm; bw = ’w’ for a well of the same depth and width; bw = ’u’ for a step up
(barrier) of the above height; bw = ’d’ for a step down (well); bw = ’h’ for a harmonic oscillator
potential equalling the wave energy at x = Jǫ(1/4−1/10); bw = ’ℓ’ for a Lennard-Jones potential
with minimum at x = Jǫ/4; and bw = ’r’ for an inverse-r potential which is 0 at x = Jǫ/4 and
x = 3Jǫ/4).

The function implements four preliminary steps followed by the double loop (solving the above
two-pass boundary-condition problem for each time step) that does the simulation together with
plotting the animation (pause(0.01) between time steps).

The preliminaries are, after initializing constructs h̄, m (the electron mass, 0.5MeV/c2), a, x0, σ0:
1) setting J and N for the chosen energy level E; 2) creating the potential V for the chosen value of
parameter bw; 3) doing the pass to create the auxiliary function ej 4) initializing the wavefunction

to the Gaussian eixk0e−(x−x0)/2σ2

0 (NB x0 = Jǫ/4 except for the harmonic potential bw = ’h’ when
x0 = Jǫ/2.)

Here are three extracts from the animation for a barrier (bw = ’b’ shown in green) of the same
energy as the wavepacket (E = 2).

16



0
0.2

0.4
0.6

0.8
1

−2

−1

0

1

2
−2

−1

0

1

2

GoldScheySchwar wave packet, t = 0

0
0.2

0.4
0.6

0.8
1

−2

−1

0

1

2
−2

−1

0

1

2

x nm

GoldScheySchwar wave packet, delX = 0.00070721nm, delT = 1.7256e−05fs; t = 0.007955 fs

Rψ

Iψ

0
0.2

0.4
0.6

0.8
1

−2

−1

0

1

2
−2

−1

0

1

2

x

GoldScheySchwar wave packet, delX = 0.00070721, delT = 1.7256e−05; t = 0.019499 fs

Rψ

Iψ

In the middle plot we can see the self-interference as the wavepacket hits the barrier. In the third
plot we can see the “resonance” that persists inside the barrier for quite a long time after the
wavepacket has partly reflected away from the barrier and partly transmitted through it.

The amplitudes of the wave, in red, give the square roots of the probabilities of finding the electron at
given values of x—in this case, at the end, reflection has the greatest probability, then transmission,
then a small chance that the electron is trapped inside the barrier before eventually leaking out.

For a well (E = 2, bw = ’w’) the electron is more likely to be transmitted
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For a step up (E = 2, bw = ’u’) the electron is entirely reflected, except for a resonance
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For the harmonic oscillator (E = 2, bw = ’h’) the electron moves back and forth with no visible
“jaggies” in the amplitude but the wavepacket is squeezed as it reflects
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12. The Schrödinger Equation III: Animating in 2D. Most of the 1D discussion in Note 11 goes
over to two dimensions. But the simple extension of ▽2u, which gives a tridiagonal matrix in 1D,
is no longer tridiagonal—see Note 8—and so the two-pass (Thomas) algorithm no longer works,

The trick is to do the two dimensions in two steps each time. Instead of

un+1,j+1 + un+1,j−1 − (2 + aǫ2Vj − iλ)un+1,j = Ωn,j

we use
un+ 1

2
,j+1,k + un+ 1

2
,j−1,k − (2 + aǫ2Vjk − 2iλ)un+ 1

2
,j,k = Ωn,j,k

followed by

un+1,j+1,k+1 + un+1,j−1,k+1 − (2 + aǫ2Vjk − 2iλ)un+1,j,k = Ωn+ 1

2
,j,k

with Ωn+ 1

2

defined as before in terms of un and Ωn defined in terms of un+ 1

2

. Note the doubling of

λ because of each half step,

Each of these half steps in time involves a spatial boundary-value problem in only one dimension,
which is still tridiagonal. So the two-pass method of Note 11 can be used.

The iterations become

Ωjk = −uj+1,k − uj−1,k + (2 + aǫ2Vjk + 2iλ)ujk

exjk =

{

2 + aǫ2Vjk − 2iλ j = 1
2 + aǫ2Vjk − 2iλ− 1/exj−1,k j > 1

fjk =

{

Ωjk j = 1
Ωjk + fj−1,k/exj−1,k j > 1

ujk =

{

−fj−1,k/exj−1,k j = J

uj+1,k − fj,k/exj,k j < J

and

Ωjk = −uj,k+1 − uj,k−1 + (2 + aǫ2Vjk + 2iλ)ujk
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eyjk =

{

2 + aǫ2Vjk − 2iλ k = 1
2 + aǫ2Vjk − 2iλ− 1/eyj,k−1 k > 1

fjk =

{

Ωjk k = 1
Ωjk + fj,k−1/eyj,k−1 k > 1

ujk =

{

−fj,k−1/eyj,k−1 k = J

uj,k+1 − fj,k/eyj,k k < J

It is this second ujk that is plotted, after this second half-step. We do not need to store the
time-dependence of u (i.e., un+1/2,j,k and un+1,j,k) because we only need it plotted.

Note that we must distinguish ex from ey because these are evaluated once for all before the

simulation loop. Because Ω, f and even u are workspaces, they can be shared across the two
half-steps without damage.

The MATLAB function free2dSchroeGauss(E,bw,v,ang) has the same structure as the 1D rou-
tine of Note 11, with the two-stage simulation loop depicted above. It has two new parameters: ang
is the travelling direction for the wavepacket, in radians from the x-direction; v specifies a viewing
direction for the 3D plots, which the program translates into azimuth and elevation for the MAT-
LAB view(az,el) command. For instance, v = ’3’ translates into the default view(−37.5,30).
Depending on the view chosen the program also decides whether to plot the potential (“ ⁀mesh” or
“cont”our) and how to plot the wave (“quiv”er or “surf”ace)

v az el mesh cont quiv surf
’y’ 90 0

√ √ √

’z’ 0 90
√ √

’3’ −37.5 30
√ √ √

For the sake of speed the 2D routine uses half the number of x- and y- mesh points, J → J/2. And
the number of t-mesh points is doubled, N → 2N .

The values for E remain 1,2,3. The values for bw describe a barrier (’b’), a well (’w’), a barrier
with 1 or 2 slots (’1’, ’2’, respectively), or a uniform gravitational field (’g’).

Here are the start and post-passage snapshots from free2dSchroeGauss(1,’2’,’3’,0)
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Here is an early snapshot from the ’z’ perspective, emphasizing the phase arrows.

2D wave packet, delX,delY = 0.002nm, delT = 0.00013801fs; t = 0.0019321 fs
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Here are three snapshots of an electron being thrown upwards at 45o in a uniform gravitational
field.
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The expected spread of the wavepacket is very evident here.

Part III. Quantum Electromagnetism

13. The electromagnetic Schrödinger equation.

14. Simulating a charged wavepacket moving near a current.

15. Links with geometry.

16. Local action versus action-at-a-distance.

17. Other symmetries, other forces.

Part IV. Quantum Field Theory: Matrix Quantum Mechanics

18. Introduction to Quantum Fields.

19. Small matrices.

20. Tensor products.

21. Spin.

22. Vectors and spinors,

23. Multiple and independent systems.

24. A simple field.

25. The Yukawa potential.

26. Perturbation approximations.

27. Fermions.

28. Slopes and antislopes of 2D numbers, etc.

29. Charge conservation and antimatter.

30. Relativistic quantum field theory redux, so far.

Part V. Functional Integrals

31. Path amplitudes.

32. Functionals.

33. Gaussian integrals.

33. Gaussian integrals.

34. Diagrams and QED.

35. Chirality and electroweak.

36. Green’s functions.

37. Propagators.

38. Quantum Computing.

39. Binary Fourier transform.

40. Quantum Fourier transform.

41. Finding periods.

42. Quantum key distribution.

43. No cloning.

44. Database search.

45. Detecting and correcting errors.

46. Nonlocality: Einstein-Podolsky-Rosen.

47. Building a quantum computer.

II. The Excursions
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You’ve seen lots of ideas. Now do something with them!

1. Write a program demoJacobi(A,Dm1,Dp,b) to test the Jacobian iterative solution of Ax = b
from Note 8. For example

A =





4 −1
−1 4 −1

−1 4



 D =





4
4

4



 D′ =





−1
−1 −1

−1



 b =





2
0
2





and D−1 = I/4

u1 =
1

4





2
0
2



 Au1 =





2
−1
2





u2 =
1

4





2
1
2



 Au2 =
1

4





7
0
7





:

u12 =





0.5714
0.2857
0.5714



 Au12 =





2
0
2





with Au12 being as shown to four decimal places in this example.
(By the way, what does u2 tell us about the exact solution?)

2. Note that the Jacobi iteration takes whole steps from u1 to u2 to .. We could alternatively
adjust only one component of uj per iteration. This is called the Gauss-Seidel iteration, and
is faster and converges at least everywhere Jacobi does. Look up the Gauss-Seidel iterative
solution of sparse matrix equations.

3. Write the MATLAB functions initWave2(), pdeWaveDirich2D() and animMatrix() used
to illustrate the wave equation in Note 9.

4. Stability. In simulating the wave equation numerically, as we did in Note 9, we must be
careful in choosing the temporal snd spatial step sizes. A wrong choice can lead to a system
of equations which blows up numerically: it can be unstable.
Here is a sketch of the stability issue in one spatial dimension. The wave equation
∂2

t u = c2∂2
xu can be expanded, with s = (c∆t/∆x)2

u+◦ − 2u◦◦ + u−◦ = s(u◦+ − 2u◦◦ + u◦−)

with the usual shorthand u+◦ = u(t+ ∆t, x), u−◦ = u(t− ∆t, x), etc. Rearranging,

u+◦ = 2(1 − s)u◦◦ + s(u◦+ + u◦−) − u−◦

And, writing the spatial part of u as a vector

~u+ = B~u− ~u−

with

B =









2(1 − s) s ··
s 2(1 − s)
:

2(1 − s)








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for rigid boundary conditions, and

B =









2(1 − s) s ·· s
s 2(1 − s)
:
s 2(1 − s)









for cyclic boundary conditions.
It seems that there may be a difference in behaviour of these systems as s increases from less
than 1 to greater than 1. We can explore this behaviour independently of initial values u0

and u1. We define matrices Bn and An iteratively.

~un = Bn ~u1 +An ~u0

~un+1 = B ~un − un−1

= B(Bn ~u1 +An ~u0) − (Bn−1 ~u1 +An−1 ~u0)

= (BBn −Bn−1) ~u1 + (BAn −An−1) ~u0

so
Bn+1 = BBn −Bn−1

and
An+1 = BAn −An−1

Since the iterations are identical we can focus on Bn. It starts

~u1 = ~u1

~u2 = B ~u1 − ~u0

so B1 = I and B2 = B
Here are the first few matrices (As as well).

n Bn An

2 B −I
3 B2 − I −B
4 B(B2 − 2I) −(B2 − I)
5 B4 − 3B2 + I −B(B2 − 2I)
:

Write a function which calculates B of various sizes (2-by-2, 3-by-3, etc.) for rigid or cyclic
boundary conditions, and with s as a parameter.
Write a function which uses this B to calculate Bn and show that it becomes arbitrarily large
when s = 2 but is manageable for s ≤ 1.
Look up [Olv08, Sect.11.4] for a more extended clear treatment of this issue.
Why is the stability threshold in two dimensions, compared with s = 1 in one dimension,
s = 1/2? Why did I set c = 1/

√
2 in the last two examples of Note 9?

5. The Hamiltonian. Quantum mechanics conventionally makes much use of the “Hamilto-
nian” operator, Ĥ. This comes from a rearrangement of the time-independent Schrödinger
equation of Note 10 from

Eψ = −
h̄2

2m
▽2 ψ + vψ

to
Ĥψ = Eψ
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with

Ĥ = −
h̄2

2m
▽2 +V

Thus the energies E are the eigenvalues (see, e.g., Week 3, Note 5) of the operator Ĥ, if we

were to think of Ĥ as a matrix and E as a diagonal matrix.

6. An alternative to using phase arrows to visualize the phase of a two-dimensional wave function
(Note 10) is to use colour coding. Look up Bernd Thaller’s [Tha00] for a systematic treatment
along these lines: with Mathematica code but no discussion of the programming.

7. Dispersion relations. For a photon (see week 7a) which is an electromagnetic wave trav-
elling at lightspeed c, show that ω = ck is the relationship between angular frequency ω and
the angular momentum k. For a particle with mass m, E = p2/2m relates kinetic energy E
and momentum p. Show that ω = k2/2m is the (“dispersion”) relationship for particle with
mass.

8. Show that the Cayley approximation to e−iδH/h̄ of Note 11 is unitary.

I − iδH/2h̄

I + iδH/2h̄

I + iδH†/2h̄

I − iδH†/2h̄
= I

9. Show that the Cayley approximation expands to the series for e−iδH/h̄ correctly to order δ2.
(Use the binomial series for (1 + x)−1 in Note 7 of Week ii.)

10. I have followed slavishly the pedagogical initiative of Goldberg, Schey and Schwartz [GSS67]
in setting up the simulations of Note 11. Compare their 1967 simulation (they had to take
individual photos of their screen and merge them into a movie) with your own simulation.

11. Any part of the Prefatory Notes that needs working through.
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