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I. Prefatory Notes

1. Central Forces. What I will be discussing in this Book is a fair amount of physics with, as
yet, no theory based, as is general relativity, on simple first principles. So either we must put up
with many assertions with “only” observation and experimental authority as motivation, or else we
must start with vague plausibilities which will ultimately not pan out. I prefer the latter.

So let’s make two assumptions about the action of forces. First we’ll talk merely of “influence”
and we’ll suppose that this influence is neither absorbed, interrupted nor augmented as it travels
through space. Second we’ll assume that geometry is Euclidean, so that the surface of a sphere is
4πr2 and the circumference of a circle is 2πr, where r is the radius in each case.

Then the “influence” per unit area on a sphere concentric with the source of the influence ∝ 1/r2

(or, in 2D, per unit length on a circle ditto ∝ 1/r).

If the “influence” is a force, it has direction and must be a vector

F ∝




x
y
z



 r−3 in 3D

F ∝
(

x
y

)

r−2 in 2D

It is easier to express this as a “potential”

F =





∂x

∂y

∂z



P ∝




∂x

∂y

∂z





1

r
in 3D

F =

(

∂x

∂y

)

P ∝
(

∂x

∂y

)

ln r in 2D

The neat thing about a potential is that it is a scalar, and the contribution from several sources is
just the sum of the separate potentials

P = P1 + P2 + · · · ∝ 1

r1
+

1

r2
+ · · ·
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(instead of having to add up vectors).

Potentials give us a straightforward way of visualizing a force field. We can draw the potential as a
simple function of the underlying space and then imagine what would happen to a small ball placed
anywhere on the surface. Under the imagined influence of everyday gravity (constant in magnitude
and direction), the direction and acceleration with which the ball rolls is the force at the location
of the ball.

Here is the picture for a −1/r potential in one dimension.
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And, from above, in two dimensions
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Using the potential to calculate the effect of multiple charges, or of a distribution of charges, is
generally easier (obviously) than doing it with the vector force field. We must beware, though, of
the subtlety that it is not the value of the potential which is of use but its slope.

For example, here is a line of charges whose potential at (x, y, z) = (r, 0, 0) we need to find.
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We’ll suppose the charge at position j is Qj and we’ll consider all charges to be equal: Qj = Q0, j =

−n : n. The distance from position j to (r, 0, 0) is rj =
√

r2 + (j∆z)2.

So the potential energy of a test charge q at (r, 0, 0) is

P = −
n

∑

j=−n

ECqQj

rj
= −ECqQ0

n
∑

j=−n

1
√

r2 + (j∆z)2

where EC is the “Coulomb” constant relating qQ/r to energy.

It will be better to consider the charge per unit length

λ =
(2n+ 1)Q0

2L
≈ nQ0

L
=
Q0

∆z

So the potential energy of q at (r, 0, 0) now is

P = −ECqλ
L

∑

−L

∆z
√

r2 + (j∆z)2

The sum in this is just

antislopez=−L:L

1√
r2 + z2

= 2 antislopez=0:L

1√
r2 + z2

= 2 ln
(

z +
√

z2 + r2
)L

0

= 2
(

ln
(

L+
√

L2 + r2 − ln(r)
))

which we can check by taking slopez(z +
√
z2 + r2) (or look up in a table of integrals).

Here comes the subtlety: this result can be simplified if L is big enough (and hence so is n). For
large L, the L2 dominates the r2 in the square root, and so the first part of the above is essentially
independent of r.

Thus the slope of that first part, for large L, is essentially zero

sloper ln(L+
√

L2 + r2) ≈ 0 large L

So, even though the first part becomes arbitrarily large as L grows, we can forget about it1, leaving
us only with

P = −ECqλ(−2 ln r) = 2ECqλ ln r

1This is the first instance where a friend rubbed my nose in an insight, rather than a program I wrote. Thanks,
Wolf!
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Now if we make L infinite, we have a line of charge density λ per unit length and the position z = 0
is no longer special in (r, 0, 0):

For any point (r, 0, z) the potential is the above.

Finally, there is nothing special about the x-axis in this discussion. So we have the potential due
to the infinite line of charge at any point (x, y, z), where

√

x2 + y2 = r:

P = 2ECqλ ln
√

x2 + y2

2. Gravity vs. Electricity. Both are central forces if the source is a point,

F = −GNm1m2

r3





x
y
z



 in 3D

using Newton’s gravitational constant GN = 66.7pJm2/kg2;

F = −ECq1q2
r3





x
y
z



 in 3D

using Coulomb’s electric constant EC = 9GJm2/coul2, where Coulomb’s constant is allowed by the
definition of the unit charge, a “coulomb”, to equal exactly 9 × 109.

To compare gravitational with electric forces we’ll imagine, first, two 1-kg masses (each still con-
sidered to be at a point) 1 meter apart.

PEgrav =
GNm1m2

r
= 66.7pJ = 0.42GeV

(using 1 eV = 0.16×10−18J = 0.16 attoJ).

Next, imagine two 1-kg agglomerations of pure “protonium”, an impossible substance made entirely
of protons magically prevented from repelling itself. Each agglomeration is considered to be acting
as a point charge, and the two are also 1 meter apart.

PEelec =
ECq1q2

r
= 83.6 × 1024J

using proton mass 1.66× 10−27kg and proton charge 0.16× 10−18 coulombs so q1 = q2 = 96Mcoul.

The electrostatic example has 1.25 × 1036 times the energy of the gravitational example.

And the signs of the forces are opposite: gravity attracts, but like electric charges repel.

3. Energy and momentum scales. To grasp such large differences in energies we need some
illustration of the range of energies encountered in our universe. We’ll step through energies in
multiples of 1000, as we did in Week ii for lengths and times.

But the range of lengths we considered in Week ii fit on a single scale from femtometer to nonameter
(and the corresponding times from yoctoseconds to exaseconds). Energies are related to masses,
hence volumes, and potentially have the cube of the ranges of length or time, So to avoid new
vocabulary (Notes 8 and 9 of Week ii extend the prefixes but not very satisfactorily and certainly
not conventionally) I’ve introduced a triple scale, each using only the prefixes from yocta to Yotta.

Here are the examples. I’ll explain the new triple scale below. It would take too long to describe
all the details of each example: many of them are from
https://en.wikipedia.org/wiki/Orders of magnitude (energy)
(last accessed 16/4/15); others are from
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ti−ener
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granener BH merge: LIGO 2015

supernove energy
Earth mass−energy

Earth 5.97E24kg@3E4m/s
1 solday
1 light−granmom
Luna 7.35E19kg@1022m/s
two 1kg protonium@1m

world electricity gen.2012
Deimos 1.48E15kg@1.35E3
Krakatoa 1883
1 megaton TNT

SaturnV 730E3@2300m/s
SpaceStation 417E3@7660

1 light−mom
Airbus A330 242E3@253m/s
1KWh or 8T truck@30m/s
cheetah 65kg@34m/s
recommended human daily
sprinter 50kg@8m/s
rubythroat 4g@15m/s
housefly 12mg@2m/s
CERN LHC 6.5TeV proton
mosquito 2.5mg@0.6m/s
Higgs boson mass−energy
proton mass energy
grav PE two 1kg@1m
300XHz gamma ray
300PHz soft X−ray photon
1 light ti−mom
700nm red light photon 1 eV
300Kdeg thermal particle
300GHz infrared photon
700MHz UHF radio photon
100MHz FM radio photon
100KHz AM radio photon
300Hz (radio) photon
1 Hz photon

Joules (MKS)
Energy Ranges:The Triple (TBG) Scale

Sol orbital 1.99E30@23E4

https://www.speedofanimals.com/animals/ or from special searchs, often leading to wikipedia
pages. (I’ve used them verbatim without further checks.) The rubric, e.g., 1.99E30@23E4 means
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that the mass is 1.99 × 1030kg and the speed is 23 × 104 m/s = 230 Km/s. From this, kinetic
energies can be found using mv2/2. For photons the energies are h̄ω = hf for frequency f (angular
frequency ω).

The triple scales (T for “ti”, B for “base”, G for “gran”) are each based on four definitions (because
of the four physical measures, L for length, M for mass, T for time and Q for electric charge—others
will be needed when we come to the weak and strong forces).

The base scale, in the middle, attempts to be a human scale (but different from the Standard
International scale of meter-kilogram-second-coulomb for variety). For energy I chose a sprinter
of 50kg doing 8m/s (well, 65kg and 7m/s would do) which is 1.6 KJoules in MKS. For time, the
usual MKS second. For distance, 8 MKS meters, so the sprinter’s speed is 1. And for charge the
standard MKSQ Coulomb.

The scale needs names for these units, too. I chose suggestive abbreviations from the English. Here
is a table. I derived it from a program

mezh2base(mezh)
where mezh is a row vector of four components giving the powers of L, M, T and Q that make the
physical measures of each unit.

unit of name mezh MKSQ
length len 1 0 0 0 8
mass pond 0 1 0 0
time sec 0 0 1 0 1

charge char 0 0 0 1 1
energy ener 2 1 −2 0 1600

momentum mom 1 1 −1 0
force push 1 1 −2 0
action act 2 1 −1 0
speed vel 1 0 −1 0

pressure presh −1 1 −2 0
voltage epush 2 1 −1 1

capacitance capa 2 1 0 −2
inductance induc 2 1 0 −1
magfield magfield 2 1 0 −1

magflux 0 1 0 −1
current curr 0 0 −1 1

currden −2 0 −1 1

(This is a work in progress.) The MKSQ equivalents are given only for the defining units, length,
time, charge and energy. All the rest can be calculated from these, having found the MKSQ
equivalents for length, time, mass and charge.

That’s the base scale. For smaller quantities I define a new scale, with all names prefixed “ti-”
(pronounced “tee”). Thus the energy scale is in units of ti-ener. The four definitions are

• ti-ener is 1 electron-Volt, or 0.16 attoJoules;

• ti-act is Planck’s constant h = 0.66× 10−33 Joule-sec or 4.14 eV-fs (so time is 1 ti-sec = 4.14
fs);

• length is ti-len = 1 nm;

• charge is the charge on the proton, 0.16 atto-Coulomb;

and the rest follow.
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1 eV electron
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For larger quantities, the “gran” scale is defined:

• 1 gran-ener is the energy given in Note 2 for two 1-kg protonium spheres 1 meter apart, or
83.6YJ;

• length is 1 light year = 9.46Pm;

• time is 1 year = 31.5Ms (so lightspeed is 1);

• and charge is one of those spheres of protonium or 96MCoulombs;

and the rest follow.

With the above definitions and discussion, we can give triple scales for all the quantities in the above
table. I’ve shown the energy scales. The other quantity of fundamental interest is momentum.

The examples are a subset of those for energy. Here momenta are calculated either as mv for objects
with mass, or as h/ℓ = hf/c where ℓ is the wavelength (or f is the frequency and c is lightspeed).
In this chart there is a dashed line. This gives a momentum we’ll be considering shortly.

4. Divergence, gradient and ~div ~grad. An important property of the central forces we discussed
in Note 1 is that their divergence is zero.

~div





x
y
z



 = (∂x ∂y ∂z)





x
y
z





1

r2

=
3

r3
− 3

x2 + y2 + z2

r5

= 0

This further makes precise the discussion in Note 1 about “influences”. In particular, it assumes
that the charge causing the force is isolated at the origin and that there are no sources of charge,
or sinks of charge (which could be charges of the opposite sign) in the space considered to include
the field.

It makes precise the phrase “absorbed, interrupted or augmented” (i.e., sinks or sources) in Note
1.

The introduction of a field, its divergence and this way of thinking makes a major depature from
the original concept of action at a distance, the former framework of Newton and Coulomb.

Then charges q and Q somehow interacted directly. Now a “field” due to source charge Q fills
all the space around it, and the test charge q responds not to Q but to the field in its immediate
locality.

So we must now see what happens if this immediate locality also contains charges.

We’ll look at the central source charge, Q, but now not as a point but as a sphere, of radius R, of
uniform charge density ρ = Q/(4πR3/3).

We must know two things, proved in Book 11c, Note 7. First, to a test charge outside the sphere,
the source charge Q acts exactly as if it were all at the point at the centre of the sphere.

Second, to a test charge inside the sphere at a distance r < R from the centre, the source charges
further from the centre than r have effects which all cancel.

From these two we can conclude that the force on the test charge at radius r is due to the partial
source charge (4/3)πr3ρ acting as if it were at the centre. So the force is

ECq
4

3
πr3ρ





x
y
z





1

r3
= ECq

4

3
πρ





x
y
z




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The divergence of this is

ECq
4

3
πρ ~div





x
y
z



 = ECq
4

3
πρ (∂x ∂y ∂z)





x
y
z





= 4πECqρ

We now have two results for the force ~F .

~div · ~F = 0 in empty space

~div · ~F = 4πECqρ in space with charge densityρ

The first is a special case: in empty space ρ = 0.

So the field law of electrostatics is
~div · ~F = 4πECqρ

This is a purely local law, as we said earler. It describes the force here depending on the charge

density here. If ρ = 0 here then ~div · ~F = 0 here. Otherwise ~div · ~F = 4πECqρ here.

If we prefer to work with potential energy, P , than with forces, ~F , the field law undergoes a subtle
change.

~div · ~gradP = 4πECqρ

or

(∂x ∂y ∂z)





∂x

∂y

∂z



P = 4πECqρ

Both the divergence and the gradient are vector slope operations, applied in different ways.

Because of this it is conventional to write both as the same symbol, ▽. Thus

~div · ~gradP = ▽ ·▽P = (∂2
x ∂

2
y ∂

2
z )P

is written
▽2P

and the field laws of electrostatics and gravity are respectively

▽2PE = 4πECqρE

▽2PG = 4πGNmρG

5. Electrodynamics departs from gravitation. The critical difference between electricity and
gravity is that electricity comes in two kinds: likes repel while unlikes attract. The exact balance
between positive and negative charges cancels out almost all of the stupendous difference between
electrostatic and gravitational energies revealed in Note 2.

But the two-kindedness of electricity does permit currents, as we shall see, and currents give us
all the benefits we derive from electricity—whether by the friction which generates heat and light
or by the magnetic effects which run transformers, generators and motors. Electrostatic effects,
whether lightning strikes or sparks in dry, winter-heated houses, are of little practical use.

How do we get a force from an electrically neutral wire carrying a current? The current consists
of light, negatively-charged electrons moving within the wire through the stationary background of
positively-charged heavy nuclei (and most of their orbiting electrons) that make up the wire.

We consider a free electron outside of the wire moving parallel to and at the same velocity as the
current electrons in the wire.

Since both the current electrons and the test electron are moving and the nuclei are stationary, we
have a situation which needs special relativity for a full description. Even though none of these
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speeds is very high, the miniscule relativistic effects multiplied by the tremendous Coulomb energies
produces a significant result.

For example, the speed of the electrons causing a 1 Ampere current in copper wire of 1 mm
diameter (gauge AWG 18: standard house wiring) is 90 microns/sec.: 1 Ampere is 1 Coulomb/sec
= 6.24 × 1018 electrons/sec; copper has 84.4 × 1027 electrons/m3; AWG 18 wire has cross-section
0.82 mm2; so the electron speed is

6.24 × 1018

84.5 × 1027 × 0.82 × 10−6
= 90 × 10−6 m/s

Here is the relativistic argument, from the points of view of Will on the wire (Will sees the nuclei
as stationary) and of Chas on the free charge (Chas sees the external electron as stationary).

= 0

r

L

q<0
r

L

q<0

ρρ+ ρ+
ρ= 0 v v

ChasWill

v

Because of the Lorentz contraction, the length, L′, of the piece of wire that Chas sees is shorter
than the length, L, that Will sees.

L′ = L
√

1 − v2

(We’ll work with units, such as gran units in Note 3, where lightspeed c = 1. We can use fizzmezh
(physical measures) arguments to put c back in later if we wish.)

The total nuclear charge of this finite piece of wire is a scalar, Q: Q cannot depend on speed or
else, for example, heating the wire up, which would speed up the electrons more than the nuclei,
would charge the wire, an effect never observed. So, if σ is the cross-section area of the wire (the
same for both Will and Chas)

ρLσ = Q = ρ′L′σ

so
ρ′+ = ρ+/

√

1 − v2

(I’ve labelled the nuclear charge density, ρ+, with a + sign.)

For the electron charge density, ρ−, we must switch our viewpoints: electrons are stationary in
Chas’ (primed) frame and moving in Will’s (unprimed) frame. So

ρ− = ρ′
−
/
√

1 − v2

So while Will sees a neutral wire
ρ = ρ+ + ρ− = 0

Chas sees a wire with a net charge density

ρ = ρ′+ + ρ′
−

=
ρ+√

1 − v2
+ ρ−

√

1 − v2

= ρ+

(

1√
1 − v2

−
√

1 − v2

)

= ρ+

v2

√
1 − v2
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(Putting back c this is

ρ+

v2/c2
√

1 − v2/c2
)

Thus, in Chas’ frame, the wire is no longer neutral but has a net positive charge. So it attracts the
negative free electron. The potential energy for the attraction is (see Note 1)

P ′ = 2ECq
Q

L′
ln r/a

= 2ECqπa
2ρ′ ln r/a

=
2ECqπa

2ρ+v
2

√
1 − v2

ln r/a

=
2ECqIv√

1 − v2
ln r/a

where a is the radius of the wire, πa2 = σ is its area of cross-section, the linear charge density
λ′ = Q/L′ relates to the volume charge density ρ′ by λ′ = σρ′ and the current in the wire I = ρ+σv.

That is, doing the fizzmezh, the potential energy is

2ECqIv/c
2

√

1 − v2/c2
ln r/a

and the ratio EC/c
2 is, compared with gravity in MKsQ units, a very large number, 1036/(0.3 ×

109)2.

This sizeable energy gives magnetism. We notice that it is proportional to the current in the wire
times the speed v of the free particle. The following picture shows how large these energies can get.

This was a nice copper tube until a bolt of lightning passed through it in New South Wales in
1905: the currents within the tube attracted each other, collapsing the tube in on itself. (And if
you hear of “Z-pinch fusion”, this is the sort of effect being exploited to extract fusion energy from
a plasma.)

We’ve calculated the potential energy, P ′, in Chas’ frame. We must convert it back to Will’s
frame. Here we see the importance of using potential energy rather than force in our calculations.
From Week 7a, Notes 4 and 9, we saw that energentum—the 4-vector comprising energy and
momentum—transforms relativistically exactly like timespace: with the Lorentz transformation.

So converting back to Will’s frame requires us to extend the potential energy P ′ to a 4-vector by
including a “potential momentuum” M ′. In Will’s frame these will be P and M respectively.

We can work in two dimensions of timespace since the directions perpendicular to the motion are
not affected. Here’s the Lorentz transformation

(

P ′

M ′

)

= γ

(

1 −v
−v 1

) (

P
M

)
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with γ = 1/
√

1 − v2.

Because the wire is neutral in Will’s frame, P = 0, so we have

(

P ′

M ′

)

= γ

(

1 −v
−v 1

) (

0
M

)

= γ

( −vM
M

)

So
−vM√
1 − v2

= P ′ =
2ECqIv√

1 − v2
ln r/a

and thus
M = −2ECqI ln r/a

or

M =
−2ECqI

c2
ln r/a

and we have found a “potential momentum” associated with the current in Will’s frame, even
though there is no potential energy.

Electromagnetism is described by a P -M 4-vector. Gravity, as we found in Book 11c (Part II),
Notes 24 and 30, is described by a metric tensor which is a 4-by-4 matrix. In both cases, the second
slope of this quantity equals another quantity which is a density: the stress-energy tensor in the
case of gravity; and, so far, a charge density in the case of electrostatics.

We’re going to have to add a current density to the charge density in order to get a 4-vector which
equals the second slope of the P -M 4-vector.

The final form for electromagnetism will connect 4-vectors PEM and ρEM

2
2 ~PEM = 4πECq ~ρEM

where we’ll find the 4-dimensional 2
2 operator extends the 3-dimensional ▽2 operator.

We can figure out what this new operator 2
2 should look like by noting that it generalizes

▽2 = ▽ · ▽ = (∂x ∂y ∂z)





∂x

∂y

∂z





from 3D to 4D (including time).

Notes 2 and 3 of Book 11c (Part I) tell us

(

∂t′

∂x′

)

= γ

(

1 v
v 1

) (

∂t

∂x

)

because that matrix is the transpose of the inverse of the timespace transformation. Thus these
slopes have the same kind of invariant that we saw in Note 4 of Week 7a

∂2
t′ − ∂2

x′ = ∂2
t − ∂2

x

or, in 4D,
∂2

t′ −▽′2 = ∂2
t −▽2

We’ll turn this around for direct comparison with the 3D (potential) invariants ▽2 = ∂2
x + ∂2

y + ∂2
z ,

and define
2

2 = ▽2 − ∂2
t
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or, after fizzmesh,

2
2 = ▽2 − 1

c2
∂2

t

Our electromagnetic equation

2
2 ~PEM = 4πECq ~ρEM

can be broken down into two, one relating the one component each of potential energy P and charge
density ρ

▽2P − 1

c2
∂2

t P = 4πECqρ

and one relating the three components each of the potential momentum ~M and the current density
~j (again, fizzmezh dictates j/c2)

▽2 ~M − 1

c2
∂2

t
~M =

4πECq

c2
~j

We’ll show next how these to equations expand to the four “Maxwell’s equations” in conventional
notation.

6. Invariants, cross-products and convention. An ordinary matrix has several “invariants” under
rotations, reflections and more general transformations.

Here is the 2-dimensional rotation transformation.
(

c s
−s c

) (

a d
b e

) (

c −s
s c

)

=

(

c2a+ cs(b+ d) + s2c c2d+ cs(e− a) − s2b
c2b+ cs(e− a) − s2d s2a− cs(b+ d) + c2e

)

From this we can see two things. First, the trace (the sum of the diagonal elements) is invariant.

(c2a+ cs(b+ d) + s2c) + (s2a− cs(b+ d) + c2e) = a+ e

Second, so is the difference of the off-diagonal elements

(c2d+ cs(e− a) − s2b) − (c2b+ cs(e− a) − s2d) = d− b

(A third invariant is the determinant, but this algebra is a tedious way to see it. It’s better
to see that, if we diagonalize the matrix—which we can always do by a suitable rotation if the
matrix is symmetric—the determinant is the product of the resulting diagonal elements (just as
the trace is their sum) and so must be independent of the coordinate system expressing the matrix.
Determinants are too complicated to interest us here.)

Here is a 2-dimensional reflection transformation (y ↔ −y)
(

1
−1

) (

a d
b e

) (

1
−1

)

=

(

a −d
−b e

)

We can see the invariance of the trace (and of the determinant) but the difference d − b changes
sign” this is only “pseudo-invariant” because of that negative effect of mirrors. But note that
mirrors reflect right hands into left hands.

Although the above is only one reflection, it can be rotated into any other reflection, so the in-
variance of trace and b − d under rotation means that what we found for y ↔ −y holds for any
reflection.

The two invariants above hold for any size of matrix (in any number of dimensions) as the argument
about diagonalizing can be extended to show. The pseudo-invariant also holds, in that the difference
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between any element and its transposed element is invariant under rotations, and under reflection
changes sign only,

Now consider a matrix made up of all pairs of combinations of the components of two vectors. In
2D

(

ux

uy

)

(vx vy) =

(

uxvx uxvy

uyvx uyvy

)

The trace is just the dot product of the two vectors—and is invariant, which explains why the dot
product is so useful.

The pseudo-invariant
uxvy − uyvx

is also important, apart from its inconvenient all-handedness. It is called the cross product of the
two vectors.

In 3D the dot product (the trace) is still an invariant scalar. But the cross-product has three
components.





ux

uy

uz



 (vx vy vz) =





uxvx uxvy uxvz

uyvx uyvy uyvz

uzvx uzvy uzvz





These can be written as a vector—a “pseudo-vector”—at the peril of forgetting that it changes
handedness—i.e., direction—under reflection.

~u× ~v =





uyvz − uzvy

uzvx − uxvz

uxvy − uyvx





Note that the convention is to run the indices cyclically through the first of the two terms—
yz, zx, xy—and to identify the components with the complement of their indices—no x in yz, no
y in zx, no z in xy.

In four dimensions the dot product and trace still produce a scalar, but there are six components
in the “cross product”. The conventions that work out by serendipity in 3D fail in any other
number of dimensions. For this reason, I have not developed the electromagnetic equations in the
conventional way, which uses cross-products for the magnetic part.

Since Note 5 (and Notes 1 and 4 before it) deal with vectors of slope operators, here is the 3D
matrix





∂x

∂y

∂z



 (vx vy vz) =





∂xvx ∂xvy ∂xvz

∂yvx ∂yvy ∂yvz

∂zvx ∂zvy ∂zvz





The trace is the divergence: its invariance, again, is what makes it useful.

The cross product is the curl, and is also useful but at the risk of antihandedness.

We can write variously

div ~f curl ~f
~div · ~f ~curl× ~f
~▽ · ~f ~▽× ~f

Unfortunately, the cross product, as well as being quasi-invariant under coordinate changes, also
defies our normal mathematical experience.

For one thing, it anticommutes
~u× ~v = −~v × ~u
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which you can see immediately by swapping ~u and ~v in

~v × ~u =





vyuz − vzuy

vzux − vxuz

vxuy − vyux





Even worse, it is not associative

~u× (~v × ~w) 6= (~u× ~v) × ~w

It is best to show this by example. But we first need five paragraphs of important and elsewhere
useful preliminaries.

It is handy to know that ~u× ~v, written as a vector, is perpendicular to both ~u and ~v

~u · (~u× ~v) = 0 = ~v · (~u× ~v)

and has magnitude | u || v | sin θ where θ is the angle between ~u and ~v.

You can see that ~u · (~u × ~v) = 0 by writing out all the components of the sum and seeing that
they all cancel. And you can use anticommutativity and swapping ~u and ~v to get the second
perpendicularity from the first one.

Since “perpendicular” is ambiguous as to direction, we invoke the “right hand rule”, which brings
in the handedness of the cross product. Use the fingers of your right hand to “rotate” the ~u into
the ~v: your thumb goes in the direction of ~u× ~v.

To work out the magnitude, it is easiest to confine ~u and ~v to the x-y plane and then follow this
up using invariance under rotation to see it for any other coordinate system with ~u and ~v no longer
restricted to the x-y plane. From the definition of ~u× ~v now only the z component is nonzero

(~u× ~v)z = uxvy − uyvx

But the sine of the angle between ~u and ~v is, from the sine of the difference between the direction
of ~u and the direction of ~v, i.e.,

sin(θv − θu) = cos θu sin θv − sin θu cos θv

=
ux

| u |
vy

| v | −
uy

| u |
vx

| v |

So
uxvy − uyvx =| u || v | sin(θv − θu) =| u || v | sin θ

End of preliminaries.

Now we can see the counterexample to the associativity of ~u×~v× ~w. Let ~u = (1, 0, 0), ~v = (0, 1, 0)
and ~w = (0,−1, 0). Then

(~u× ~v) × ~w = ~u

but
~u× (~v × ~w) = 0

(The magnitudes are 1; the angles are π/2 or π; use the right hand rule.)

We did not need all the above properties to figure out

~u× (~v × ~w) = ~v(~u · ~w) − (~u · ~v)~w

and
(~u× ~v) × ~w = ~v(~u · ~w) − ~u(~v · ~w)
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(except not to be surprised that they’re not the same, and to see that the right-hand sides have
components in the right directions). We do it by brute force plus a small trick.

Consider the x-component of

~u× (~v × ~w) = ~u×




vywz − vzwy

vzwx − vxwz

vxwy − vywx





It is

uy(vxwy − vywx) − uz(vzwx − vxwz) = vx(uywy + uzwz) − (uyvy + uzvz)wx

= vx(~u · ~w) − (~u · ~v)wx

where the last line comes from the trick of adding and subtracting uxvxwx to and from the line
before.

A similar operation on the other two components gives the result for ~u× (~v × ~w).

The second result comes directy from this by anticommutativity and the substitution

~u→ ~w ~v → ~u ~w → ~v

What about ~▽ × (~▽ × ~w)? This is almost a direct specialization of the first result above, but

we must be careful about the order: ~▽ is an operator and must be written before its operand.
Fortunately we’ve done this above, always writing the ~w last.

~▽× (~▽× ~w) = ~▽(~▽ · ~w) − (~▽ · ~▽)~w

This is nice. It has a (~▽ · ~▽)~w = ▽2 ~w in it: just what appears in the pair of electromagnetic

equations at the end of Note 5. If ~w happened to be the particle momentum ~M we might be able
to go somewhere with this.

What about the first term? We’re not going to worry about it just yet. Instead we’ll make two
further observations about dot and cross products, then we’ll see if we can use the connection we’ve

just sensed between ~▽× ~▽× and ▽2, finally returning with a slightly different approach to terms
such as the first.

The dot and cross products relate to each other in two important ways.

~v · (~v × ~w) = (vx, vy, vz)





vywz − vzwy

vzwx − vxwz

vxwy − vywx



 = 0

because everything cancels—or because ~v× ~w is perpendicular to ~v and so the dot product is zero.

And, because ~v × ~v = 0 (the angle between ~v and itself is 0)

~v × ~va = (~v × ~v)a = 0

for any scalar a.

These results go directly over from ~v to ~▽ because ~▽ is a vector almost like ~v. (Be careful:
~▽a× ~▽b 6= 0 in general because ~▽a and ~▽b are different vectors—unlike ~va× ~vb = (~v × ~v)ab = 0.

But in ~▽× ~▽a, ~▽ is the same vector as ~▽.)

(They go further. Conversely if ~▽ × ~v = 0 then there must be some a such that ~v = ~▽a; and if
~▽ · ~v = 0 then there must be some ~w such that ~v = ~▽× ~w. Look up the proof!)

The discussion of this Note is headed in the direction of electromagnetic orthodoxy. So to be
conventional I’ll make a final change to the results of Note 5. Instead of using potential energy and
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potential momentum, convention uses specific potential energy and specific potential momentum:
i.e., without the test charge q.

Remembering that q was negative in Note 5, we change signs on the left hand sides of the two
electromagnetic equations there. And we introduce conventional symbols and names, the electric

potential φ = P/ | q | and the magnetic vector potential ~A = ~P/ | q |.
We’ll make two related definitions:

the magnetic field ~B
def
= ~▽× ~A and

the electric field ~E
def
= −~▽φ− ∂t

~A

We see the analogy of the electric field with the gravitational field, which is also the gradient of a
potential. But here we introduce also a time dependence because of the time dependences in the

electromagnetic equations. The magnetic field will exploit our discoveries about ~▽× ~▽× · · ·
Here are the modified electromagnetic equations for the rest of the Note.

▽2φ− 1

c2
∂2

t φ = −4πECρ EM1

▽2 ~A− 1

c2
∂2

t
~A = −4πEC

~j EM2

We now transform these two equations into the four Maxwell equations which are the conventional
way of writing classical electromagnetism.

There is one more preliminary. Because ~B = ~▽× ~A, the vector potential ~A can have any divergence
whatsoever. If

~B = ~▽× ~A = ~▽× ~A′

then
~▽ · ( ~A′ − ~A) = 0

so
~A′ − ~A = ~▽ψ

for any scalar field ψ, and so
~▽ ~A′ = ~▽ ~A+ ▽2ψ

with an arbitrary difference between the divergences of two equally satisfactory vector potentials.

We take advantage of this to include a time dependence in ~A as well as in ~E

~▽ · ~A = − 1

c2
∂tφ

Now we can derive Maxwell’s equations. First, from the definition of ~B

~▽ · ~B = 0 Maxwell 3

Second, from the definition of ~E and ~B

~▽× ~E = ~▽× ~▽φ− ~▽× ∂t
~A

= 0 − ∂t
~▽× ~A

= −∂t
~B

So
~▽× ~E + ∂t

~B = 0 Maxwell 2
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Third, from the assignment of ~▽ · ~A and from EM 1

▽2φ+ ∂t
~▽ · ~A = −4πECρ

and from the definition of ~E
~▽ · ~E = 4πECρ Maxwell 1

Fourth, from the definition of ~B and the assignment of ~▽ · ~A, EM 2, and the definition of ~E

c2 ~▽× ~B = c2 ~▽× ~▽× ~A

= c2(~▽(~▽ · ~A) −▽2 ~A)

= −~▽∂tφ− ∂2
t
~A+ 4πEC

~j

= ∂t(−~▽φ− ∂t
~A) + 4πEC

~j

= ∂t
~E + 4πEC

~j

So
c2 ~▽× ~B = ∂t

~E + 4πEC
~j Maxwell 4

These are Maxwell’s equations

~▽ · ~E = 4πECρ

~▽× ~E + ∂t
~B = 0

~▽ · ~B = 0

c2 ~▽× ~B = ∂t
~E + 4πEC

~j

Maxwell assembled these from the careful work of predecessors—except that, for balance, he added

the time dependence of ~E in the last equation. This led to the wave equation and to Maxwell’s
prediction that light is an electromagnetic wave, and the derivation of the speed of light.

These equations introduce ~B as a counterpart to ~E, with curl replacing divergence. We should try
to visualize this new field. Here’s a picture of iron filings scattered over a flat sheet and re-oriented
by a current going through the wire [Kur12].
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We can see the circular alignment of the filings around the wire. These circles are modelled by

the curl in ~B = ~▽ × ~A. Of course, curl goes too far and insists on a direction which we do not
observe. This handedness is cancelled by a second operation to determine the force on a moving
test charge—it involves a cross product

~F = q( ~E + ~v × ~B)

7. Electromagnetic waves. In Note 5 we found the electromagnetic equation

2
2 ~PEM = 4πECq ~ρEM

in the immediate presence of a charge-current density ~ρEM.

In the absence of any charge or current this becomes

2
2 ~PEM = 0

and, as in Note 5, we can break it into two three-dimensional pieces, a scalar equation for the
potential energy

▽2P =
1

c2
∂2

t P

and a vector equation for the potential momentum

▽2 ~M =
1

c2
∂2

t
~M

These are four copies of the wave equation, which, as we shall see in the next Part, describes a wave
in 3D space.

This wave is propagated with velocity c: lightspeed.

Hence Maxwell inferred that light itself is an electromagnetic wave.

The principle of relativity says that laws of physics are unaffected by uniform motion. We now,
from the above, know that lightspeed is a law of physics. At the risk of circularity in our arguments
in this Part we can now infer the postulate of special relativity, that lightspeed is independent of
the motion of the observer. This is the historical chronology: Maxwell’s electromagnetism came
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first, in 1864, and Einstein’s special relativity followed in 1905.

Part II. Partial Slope Equations and Quantum Mechanics

8. Partial Slope Equations: Laplace’s Equation.

9. The Wave Equation.

10. The Schrödinger Equation I: Physics.

11. The Schrödinger Equation II: Animating in 1D.

12. The Schrödinger Equation III: Animating in 2D.

Part III. Quantum Electromagnetism

13. The electromagnetic Schrödinger equation.

14. Simulating a charged wavepacket moving near a current.

15. Links with geometry.

16. Local action versus action-at-a-distance.

17. Other symmetries, other forces.

Part IV. Quantum Field Theory: Matrix Quantum Mechanics

18. Introduction to Quantum Fields.

19. Small matrices.

20. Tensor products.

21. Spin.

22. Vectors and spinors,

23. Multiple and independent systems.

24. A simple field.

25. The Yukawa potential.

26. Perturbation approximations.

27. Fermions.

28. Slopes and antislopes of 2D numbers, etc.

29. Charge conservation and antimatter.

30. Relativistic quantum field theory redux, so far.

Part V. Functional Integrals

31. Path amplitudes.

32. Functionals.

33. Gaussian integrals.

33. Gaussian integrals.

34. Diagrams and QED.

35. Chirality and electroweak.

36. Green’s functions.

37. Propagators.

38. Quantum Computing.

39. Binary Fourier transform.

40. Quantum Fourier transform.

41. Finding periods.

42. Quantum key distribution.

43. No cloning.

44. Database search.

45. Detecting and correcting errors.
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You’ve seen lots of ideas. Now do something with them!

1. To show that




∂x

∂y

∂z





1

r
=





x
y
z



 r−3 in 3D

and
(

∂x

∂y

)

ln r =

(

x
y

)

r−2 in 2D

you need four things.
1. ∂rr

n = nrn−1 slopes of powers
2. ∂r ln r = 1/r slope of logarithm
3. ∂xf(r) = ∂rf(r)∂xr chain rule

4. ∂xr = ∂x

√

x2 + y2 + z2 = x/r
and similarly for ∂yr and ∂zr (except that in 2D there’s no z).
a) Show these things.
b) Use them to show that the forces follow from the potentials as in Note 1.

2. Why might the potential due to the (infinitely) long charged wire be written

P = 2ECqλ ln(r/a)

where a might be the radius of the wire, just as well as

P = 2ECqλ ln(r)?

3. It is interesting to work with forces instead of potentials for the line of charges in Note 1.
Using the diagram there we’ll focus on the force at (x, y, z) = (r, 0, 0).
Symmetry tells us that the z-components of the force cancel. So all we need calculate is the
net x-component. The net force on a test charge q at (r, 0, 0) is

F =





r
0
0





n
∑

j=−n

ECqQj

r3j
= ECqQ0





r
0
0





n
∑

j=−n

1

r3j

= ECqλ





r
0
0





n
∑

j=−n

∆z

(r2 + (j∆z)2)3/2

If you write a short program to do this sum you’ll find

antislopez=0:∞

1

(r2 + z2)3/2
=

1

r2

and so

F = 2ECqλ





r
0
0





1

r2
= 2ECqλ





1
0
0





1

r

(The 2 comes from summing −∞ to ∞ instead of 0 to ∞.)
For arbitrary x and y position (x, y) = (c, s)r where c and s are cosine and sine respectively
of the position of (x, y)

F = 2ECqλ





c
s
0





1

r

The next Excursion is a more powerful derivation of this.
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4. Gauss’ law. If we can find a surface surrounding a “source” charge such that the force at
the surface due to the charge is perpendicular to the surface everywhere and has the same
magnitude everywhere we may be able to use it to figure out the force dependence on the
position of a test charge q relative to the source charge Q.
This works for simple shapes. For example we can go from a point charge (spherical surface)
to an infinite line of charge (cylindrical surface).
We consider the sum of the normal (perpendicular) force over the whole surface. (This makes
more precise the argument at the beginning of Note 1 about the “influence” of the source
charge.)
For the sphere and the point charge Q

sum Fn = area × Fn

= 4πr2
ECqQ

r2

= 4πECqQ

The basis for moving from the point charge Q to a charge Q stretched into a line of length L
is to say that the sum over the new, cylindrical, surface is the same.

4πECqQ = sum Fn = 2πrLFn

So

Fn =
4πECqQ

2πrL
=

2ECq

r

Q

L

We’ve assumed that the areas at the ends of the cylinder, πr2 each, don’t count because we
intend to go to an infinitely long line of charge, so the cylinder has no ends. But we must
replace Q/L by the charge density λ because L is now infinite.
This is the result of the previous Excursion, F = 2FCqλ/r, or, since the force is directed,
adjusted to the direction (c, s, 0)T ,

5. Show that the 3D divergence of (x, y, z)/r3 is zero as stated in Note 4.

6. Show that the 2D divergence of (x, y)/r2 is zero.

7. The field point of view in Note 4 is uncomfortably asymmetrical. The source charge causes a
field but the test charge apparently does not. Discuss.

8. Feynman [FLS64] starts from Maxwell’s equations (Note 6 above) and explores their use
in multitudinous applications in detail. He also makes a couple of remarks which indicate
that it is better to start with relativity than with Maxwell: he points out [FLS64, p.13-
10] that Faraday’s lines of force do not transform properly to moving frameworks, and he
says [FLS64, p.13-12], of course, that the handedness implicit in the curl operator is not
physical. His volume on electromagnetism, although mostly resolutely classical, gives all the
clues I’ve needed to develop the subject using relativity and, later, quantum physics.

9. Visualizing magnetic fields. The ~E and ~B fields of Note 6 are the conventional repre-
sentation of electromagnetism despite their difficulties, especially those of the magnetic field
~B. For electrostatics the ~E field is already familiar from Newtonian gravitation (although its
dependence also on a time-varying magnetic field adds new twists).

In this Excursion we calculate various static magnetic ~A and ~B fields produced by different
configurations of fixed currents.
The calculations are based on the fields generated by a current in a wire (of radius 1):

~A ∝ − ln(r)(0, 0, 1)

~B ∝ ~curl ~A = (−y, x, 0)/r2
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Write programs wireSection2A and wireSection2B to generate the plots
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Next extend this to a single loop of wire with programs loopSection2Aplot and loopSection2Bplot.
Note that the fields are additive: just add the two scalar results for A or the two vector results

for ~B. (In 2D A is scalar.)
Finally extend the loop calculation to five loops stacked on top of each other. You’ll need
to revisit your loop programs a) to include a parameter for the vertical position of each loop
and b) to refrain from plotting until the field contribution from all five loops are added up:
programs coilSection2A and coilSection2B.
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This last (“coil”) is called a “solenoid”. Notice that the ~B field almost disappears outside the
solenoid but is very strong inside.
The inner field can be reinforced by giving the electromagnet a core of iron or other material
whose ferromagnetism (Note 34 of Book 9c, Part IV) reinforces the inner field.

In the limit of an infinite solenoid the ~B field disappears altogether outside.

10. Look up James Clerk Maxwell (1831–1879). What is he famous for besides electromagnetism?

11. Any part of the Prefatory Notes that needs working through.
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