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I. Prefatory Notes
1. With two-dimensional numbers, we can make a vector space of any number of dimensions.

Let’s try 5 dimensions.

Here’s a clue.
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Note 1. It’s jk mod 5, e.g., 3*2 mod 5 = 6 mod 5 = 1

Note 2. (Fk)j = F 5
j k = 1√

5
eijk 2π/5, not just jk.

If we use the conjugation operator, *: i→ −i, these vectors are normalized:

F ∗
0 .F0 =

4
∑

j=0

1√
5
e−ij0 2π/5 1√

5
eij0 2π/5 =

1

5

4
∑

j=0

1 = 1

F ∗
1 .F1 =

4
∑

j=0

1√
5
e−ij1 2π/5 1√

5
eij1 2π/5 =

1

5

4
∑

j=0

ei(j−j)1 2π/5 =
1

5

4
∑

j=0

1 = 1

F ∗
k .Fk =

4
∑

j=0

1√
5
e−ijk 2π/5 1√

5
eijk 2π/5 =

1

5

4
∑

j=0

ei(j−j)k2π/5 =
1

5

4
∑

j=0

1 = 1

They are orthogonal:

F ∗
0 .F1 =

4
∑

j=0

1√
5
e−ij0 2π/5 1√

5
eij1 2π/5

=
1

5

4
∑

j=0

eij(1−0)2π/5 = 0

F ∗
0 .F2 =

4
∑

j=0

1√
5
e−ij0 2π/5 1√

5
eij2 2π/5

=
1

5

4
∑

j=0

eij(2−0)2π/5 = 0

Thus they are orthonormal:

F ∗
l .Fk =

4
∑

j=0

1√
5
e−ijl2π/5 1√

5
eijk2π/5

=
1

5

4
∑

j=0

eij(k−l)2π/5

= δl k
def
= if l=k then 1 else 0

It’s a 5-dimensional space.

And we can do this for any n: use a regular n-gon and its stars instead of the pentagon.
What’s important is that they are closed figures.

So we have n-dimensional space.

2. Is it good for anything?

It’s actually a matrix (a row of column vectors): it’s a transformation, just like rotation,
(

c −s
s c

)

:
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(c,−s)
(

c
−s

)

= 1 ; (s, c)
(

s
c

)

= 1 ; (c,−s)
(

s
c

)

= 0 ; (s, c)
(

c
−s

)

= 0

or shear,

γ
(

1 −v
−v 1

)

:

(1,−v)
(

1
−v

)

= 1/γ2 ; (−v, 1)
( −v

1

)

= 1/γ2 ; (1,−v)
( −v

1

)

= 0 ; (−v, 1)
(

1
−v

)

= 0

So we can transform vectors in 5-dimensional space.

~f ′ = F ~f ; ~f = F ∗T ~f ′

It’s called the Fourier transform (more precisely, DFT, the discrete Fourier transform).

What could these vectors be? Let’s try functions.

E.g., f(x) = x2
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MATLAB:

E5 = [0,0,0,0,0;
0,1,2,3,4;
0,2,4,1,3;
0,3,1,4,2;
0,4,3,2,1];

F5 = exp((i*2*pi/5).*E5)./sqrt(5);
parabPlus = [0;1;4;9;16];
parabPlFT = F5*parabPlus

parabPlFT =

13.4164
-2.3541 - 7.6942i
-4.3541 - 1.8164i
-4.3541 + 1.8164i
-2.3541 + 7.6942i

(Note that 13.4164/
√

5 = 6, the average value of parabPlus. For this reason, the Fourier
transform is usually defined as F/

√
5 and the inverse as

√
5F ∗T . But we’ll stick to our

symmetric definition.)

What is this giving us?

It’s not clear for x2, but let’s try cos(x)

MATLAB:
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function Cn = cosine(n,f) % f is "frequency"
for j=1:n, Cn(j) = cos(2*pi*(j-1)*f/n); end;

F5*cosine(5,1)’

ans =

-0.0000
1.1180 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
1.1180 - 0.0000i

F5*cosine(5,2)’

ans =

-0.0000
0.0000 + 0.0000i
1.1180 + 0.0000i
1.1180 - 0.0000i
-0.0000 + 0.0000i

When frequency is 1, component 1 is nonzero.
When frequency is 2, component 2 is nonzero.

The Fourier transform is picking out the frequencies.

What about the other nonzero components? Working modulo 5, component 4 is component
−1, and component 3 is component −2. So:

When frequency is 1, components 1 and −1 are nonzero.
When frequency is 2, components 2 and −2 are nonzero.

These might each be thought of as waves travelling in both directions.

3. So if we have a function in which some frequencies are much more important than others,
we could take the Fourier transform, store or transmit only the important frequencies, then
when we want the function back, take the inverse Fourier transform of these only, to get a
(good?) approximation.

Let’s try it for cosine

MATLAB:

cosine(5,1)

ans =

1.0000 0.3090 -0.8090 -0.8090 0.3090

cosFTapprox = [0;2.236;0;0;0];
conj(F5)*cosFTapprox
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ans =

1.0000
0.3090 - 0.9510i
-0.8090 - 0.5878i
-0.8090 + 0.5878i
0.3090 + 0.9510i

The real part is exact.

In the case that only a few frequencies are important, F gives us data compression.

4. This is used by JPEG (Joint Photographic Experts Group) to compress images along
something like the following lines.

1. Scan the picture (or 8×8 subpictures of it) diagonally,
e.g. (4×4):

9   12  14   15

2     4    7   10

0     1    3     6

5     8  11   13

2. Fourier transform (e.g., F16).

3. Set the unimportant frequencies to zero (i.e., keep only the important frequencies).

Let’s try it on the 4×4 black and white pattern
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1     1    0    0

1     1    0    0

1     1    0    0

1     1    0    0

MATLAB:
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F16 = makeDFT(16);
leftBlack = [1,1,0,0;

1,1,0,0;
1,1,0,0;
1,1,0,0];

diag = makeDiag(4,leftBlack)
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0

leftBlFT = F16*diag’ conj(leftBlFT).*leftBlFT
1 2.0000 4.0000
2 0.0811 + 0.4077i 0.1728
3 0.1768 + 0.4268i 0.2134
4 0.0542 + 0.0811i 0.0095
5 0.7500 + 0.7500i 1.1250
6 -0.4077 - 0.2724i 0.2405
7 -0.1768 - 0.0732i 0.0366
8 0.2724 + 0.0542i 0.0772
9 0.5000 + 0.0000i 0.2500
10 0.2724 - 0.0542i 0.0772
11 -0.1768 + 0.0732i 0.0366
12 -0.4077 + 0.2724i 0.2405
13 0.7500 - 0.7500i 1.1250
14 0.0542 - 0.0811i 0.0095
15 0.1768 - 0.4268i 0.2134
16 0.0811 - 0.4077i 0.1728

leftBlFTAx = zeros(size(leftBlFT));
leftBlFTAx(1) = leftBlFT(1); % try only frequency component 1
diagAx = conj(F16)*leftBlFTAx;
leftBlAx1 = binarize(unmakeDiag(4,diagAx’));

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

leftBlFTAx(5) = leftBlFT(5); % now add frequency component 5
diagAx = conj(F16)*leftBlFTAx;
leftBlAx5 = binarize(unmakeDiag(4,diagAx’));

1 1 0 0
0 1 0 0
1 1 0 1
1 1 0 0

To store this approximation, instead of 16 numbers keep only 6:

1 2 0
5 0.75 0.75
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(To get it perfect, we must also include components 9, 6 and 3.)

5. The fast Fourier transform

So far, we’ve been using at least n2 operations to calculate F n:

f ′
k =

n−1
∑

j=−0

F n
k jfj

But F n has special properties which may speed this up.

F n
k j = e

2πi
n

kj = ωkj = (ωk)j

So

f ′
k =

n−1
∑

j=−0

fj ∗ (ωk)j = f0 ∗ (ωk)0 + f1 ∗ (ωk)1 + ... + fn−1 ∗ (ωk)n−1

It’s a polynomial in ωk.

And it can be evaluated by Horner’s rule

f ′
k = f0 + ωk ∗ (f1 + ωk ∗ (f2 + ... + ωk ∗ fn−1...))

Now this is still n operations for each k = 0, .., n− 1:
n2(+, *) to be precise.

But that’s all the operations and we don’t have to work out e
2πi
n every time.

Still, we can do better.

f ′
k = P (ωk) for a polynomial P .

And any P (x) can be evaluated at x = a by finding a remainder

P (a) = P (x)mod(x− a)

This is polynomial arithmetic: polynomials obey the same axioms as integers—polynomials
form a ring (see Week 4)—and so we can do long division and get quotients and remainders
(among other things, such as addition, subtraction and multiplication).
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1     1    0    0

1     1    0    0

1     1    0    0

1     1    0    0

Let’s explore this for F16 and

f ′
k =

n−1
∑

j=−0

(ωk)jfj

(fj) = (1; 1; 1; 0; 1; 1; 0; 0; 1; 1; 0; 0; 1; 0; 0; 0)

f ′
k = f ′(ωk) where

4f ′(x) = x0 + x1 + x2 + x4 + x5 + x8 + x9 + x12
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Let’s practice polynomial long division with two examples before we try to reduce the n2

operations for Fourier to fewer.

4f ′(x) = q1(x)d1(x) + r1(x)

4f ′(x) = q2(x)d2(x) + r2(x)

with d1(x) = x8 − ω0 = x8 − 1
and d2(x) = x8 + ω0 = x8 + 1

1.

x4 + x + 1
x8 − 1)x12 + x9 + x8 + x5 + x4 + x2 + x + 1

x12 − x4

x9 + x8 + x5 + 2x4 + x2 + x + 1
x9 − x

x8 + x5 + 2x4 + x2 + 2x + 1
x8 − 1

x5 + 2x4 + x2 + 2x + 2

So

q1(x) = x4 + x + 1

r1(x) = x5 + 2x4 + x2 + 2x + 2

2.

x4 + x + 1
x8 + 1)x12 + x9 + x8 + x5 + x4 + x2 + x + 1

x9 + x8 + x5 + x2 + x + 1
x8 + x5 + x2 + 1

x5 + x2

q1(x) = x4 + x + 1

r1(x) = x5 + x2

So we know that we can find f ′(x1) = r1(x1) for any x1 for which d1(x1) = 0
and f ′(x2) = r2(x2) for x2 making d2(x2) = 0.

That should save some work for x1 and x2.
Can we use this? Can we do it for any ωk? All ωk?

Well, here’s a trick.

d1(x) = (x− ω0)(x− ω8)(x− ω4)(x− ω12)(x− ω2)(x− ω10)(x− ω6)(x− ω14)

= (x2 + ω8) (x2 + ω0) (x2 + ω12) (x2 + ω4)

= (x4 + ω8) (x4 + ω0)

= x8 + ω8

= x8 − ω0

= x8 − 1
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and

d2(x) = (x− ω1)(x− ω9)(x− ω5)(x− ω13)(x− ω3)(x− ω11)(x− ω7)(x− ω15)

= (x2 + ω10) (x2 + ω2) (x2 + ω14) (x2 + ω6)

= (x4 + ω12) (x4 + ω4

= x8 + ω0

= x8 + 1

Why?

(x− ω0)(x− ω8) = x2 − (ω0 + ω8)x + ω8

(x− ω4)(x− ω12) = x2 − (ω4 + ω12)x + ω16

(x2 − ω8)(x2 − ω0) = x4 − (ω8 + ω0)x2 + ω8

and so on:

10 6
789

5

4

3

14
15 0 1

2

13

12

11

ω8 = −ω0 ω0 + ω8 = 0

ω12 = −ω4 ω4 + ω12 = 0

How did we pick 0, 8, 4, 12, 2, 10, 6, 14 for d1? Pairs of opposites!
Similarly d2: 1, 9, 5, 13, 3, 11, 7, 15

In fact, there’s a(nother) trick:

1101

0101

0110
0111

0100

0010
000100001111

1110

0011

10001001
1010

1011

1100

0 8 4 12 2 10 6 14
0000 1000 0100 1100 0010 1010 0110 1110
0000 0001 0010 0011 0100 0101 0110 0111

0 1 2 3 4 5 6 7
1 9 5 13 3 11 7 15

0001 1001 0101 1101 0011 1011 0111 1111
1000 1001 1010 1011 1100 1101 1110 1111

8 9 10 11 12 13 14 15
Bitflip the sequence 0..15 and get pairs of opposites.

So we can find f ′(x1) for x1 = ω0, ω8, ω4, ω12, ω2, ω10, ω6, ω14 by finding r1(x1)
and we can find f ′(x2) for x2 = ω1, ω9, ω5, ω13, ω3, ω11, ω7, ω15 by finding r2(x2)

Is this less work than directly finding f ′(x1) and f ′(x2)?

Each long division costs at most 8 subtractions of a 2-term polynomial: 8*2(+,*)
Total 2*8*2(+,*)

Then solving the remainder, each at most 8 terms, is another 8(+,*)

6. Divide and Conquer
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But we can do the same thing with the remainders:

d11(x) = (x− ω0)(x− ω8)(x− ω4)(x− ω12) = x4 + ω8 = x4 − ω0 = x4 − 1

d12(x) = (x− ω2)(x− ω10)(x− ω6)(x− ω14) = x4 + ω0 = x4 + 1

d21(x) = (x− ω1)(x− ω9)(x− ω5)(x− ω13) = x4 + ω12 = x4 − ω4 = x4 − i

d22(x) = (x− ω3)(x− ω11)(x− ω7)(x− ω15) = x4 + ω4 = x4 + i

x + 2
r1(x)÷ d11(x) = x4 + 1)x5 + 2x4 + x2 + 2x + 2

2x4 + x2 + 3x + 2
x2 + 3x + 4 = r11(x)

x + 2
r1(x)÷ d12(x) = x4 − 1)x5 + 2x4 + x2 + 2x + 2

2x4 + x2 + x + 2
x2 + x = r12(x)

x
r2(x)÷ d21(x) = x4 − i)x5 + x2

x2 + ix = r21(x)
x

r2(x)÷ d22(x) = x4 + i)x5 + x2

x2 − ix = r22(x)

This has cost at most 4*4*2(+,*).

Doing it once more will give 8 linear remainders of the form ax + b,
and a final time will give 16 constant remainders, the final values of the 4f ′(ωk)s

That is, 4 iterations gives 4f ′(ωk) for all ωk, k = 0, .., 15
Now there are no remainders left to evaluate. We need only the divisions.

Cost:
2*8*2(+,*) + 4*4*2(+,*) + 8*2*2(+,*) + 16*1*2(+,*) = 4*16*2(+,*)

versus cost for the Horner’s rule evaluation 16 times:
16*16(+,*)

The divide-and-conquer takes half the cost.

If n = 32: 5*32*2 versus 32*32: one third the cost.

In general, 2n lg n versus n2.

Divide and conquer is frequently used to reduce n2 algorithms to n log n: for example, sorting,
Voronoi diagrams.

7. The Uncertainty Principle
What function is the Fourier transform of itself?

Try Gauss’ bell curve, the gaussian, e−x2/2δ2

√
2πδ2

,

centred at 0 with “width” or standard deviation δ.
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−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

stdev=0.5

stdev=1.5

stdev=2.5

MATLAB:

stdev = ..; plotcolour = ’..’;
g16 = gaussian(16,stdev);
plot(0:15,g16,plotcolour)
hold on
plot(0:15,F16*g16’,plotcolour) % will ignore imaginary parts

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

stdev=1.5

stdev=0.5

stdev=0.5

stdev=2.5

Gaussian

Fourier transform
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The Fourier transform of the gaussian is close to itself at stdev=1.5

More important, the fatter the gaussian, the thinner the Fourier transform, and vice-versa.

The Fourier transform gives “frequencies”.
If we interpret the gaussian as the (uncertain) position of a quantum particle,
then the Fourier transform gives its (uncertain) frequency.
But frequency together with velocity gives momentum

The width of the bell shape is uncertainty:
a very narrow gaussian gives a very precise measure of position;
a very narrow Fourier transform gives a very precise measure of momentum.

But we can’t have both: the QM “uncertainty principle”.

8. Compression and Content
We’ve seen how we can compress data by throwing away the unimportant frequencies of the
Fourier transform before transforming back again.

(Throwing away −→ “lossy” compression.)

There is a sense in which compression is equivalent to knowing the content.
A theory can be seen as a compressed representation.

For instance, γ
(

1 −v
−v 1

)

, the Lorentz transform, captures an extensive understanding of

time and space, and that speed does not change the laws of physics.
Or e1.e2 = −e2.e1, the axiom of Clifford algebra, captures an understanding of surfaces in
spaces.

These are all much more compact than all the particular facts that can be deduced from
them.

So when we compress data by focussing on the most important part, in this case of the
Fourier transform (but there are many other possibilities), we are making a theory about
the content of the data.

The Fourier transform is used for content analysis of multimedia including pictures and time
series (even stock prices).

One of the most common questions about content involve similarities: “how similar are these
two pictures?”, or “find stock price series that are behaving like this one here”. If two things
have the same frequency spectra, revealed by Fourier analysis, this one way in which they
are similar.

9. Summary

(These notes show the trees. Try to see the forest!)

• Orthonormal basis “vectors” for abstract spaces of any number of dimensions.

• Functions are vectors.

• Fourier transforms extract “frequencies” from functions.

• Throwing away unimportant frequencies gives (lossy) data compression.

12



• Divide-and-conquer reduces, e.g., O(n2) algorithms to O(n log n):
fast Fourier transform uses polynomial remainders and opposing sides of the regular
2n-gon to accomplish this.

• Fourier transform of Gauss’ bell curve gives back a bell curve, but fat ←→ thin:
if the two bells are errors of measuring positions and momenta of particles, these
measurements are “complementary” in that both cannot be made exactly.

• Data compression ≡ theory about data ≡ content analysis

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Check that the 5-dimensional basis vectors, Fk, are orthonormal:
F ∗

l .Fk = if l = k then 1 else 0, for l, k = 0 : 4
Draw all the closed figures (pentagon, star, etc.) that show orthogonality.

2. Draw the closed figures that show that similar vectors, Fk, are orthogonal in 6 dimen-
sions.

3. If we take only the “real” parts of the two-dimensional numbers used in Fk (that is, the
projections on the one-dimensional number line, meaning use cos(x) instead of exp(ix))
do we get the same orthonormal relationships? What if we take the “imaginary” parts
(sin(x))?

4. Use MATLAB to Fourier-transform some functions other than x2 and cos(x) from 0
to 4.

5. Explain the fourth component of the Fourier transform of cosine when the frequency
is 1, and the third component when the frequency is 2.

6. The MATLAB code shown in the notes to invert the Fourier transform uses only
conj(F16) and not the transpose, conj(F16’). Why is it still correct?

7. Diagonalize the approximation

1100
0100
1101
1100

to the half-black image and show that it has the period expected from the frequency
components used in the approximation.

8. Take the Fourier transform of the checkerboard image

1100
1100
0011
0011
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approximate it by setting unimportant frequencies to zero, and transform back again
to the approximate image. How many Fourier terms did you keep to get a reasonable
approximation? An exact reproduction?

9. Show that the following vectors are orthonormal and so also provide a basis for func-
tions in 5 dimensions. Why could they be called the “bar chart basis”? They give the
idea for what the computing community calls “wavelets” and the physics community
calls “Green’s functions” [FLS64, p. 25-4]: look these up!

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

10. Why is p(a) = p(x) mod (x− a) for polynomial p? (Write p in terms of x− a and its
quotient and remainder after division.)

11. Do the two last steps of the divide-and-conquer not done in the notes, and check your
result against leftBlFT from the notes.

12. The notes give the worst-case costs for a 16-dimensional fast Fourier transform. How
much did the half-black image example actually cost?

13. Use tic and toc in MATLAB to compare the O(n2) Fourier transform, coded at the
beginning of the notes, with MATLAB’s fft() function.

14. FFT again. Divide and conquer (Note 6) gives a fast Fourier transform (Note 5) for
F n when n is a power of 2. Here is a more straightforward way of dividing F n into
two: just separate odd from even indices.

yk =
1√
n

n−1
∑

j=0

e2πijk/nxj

becomes, for n = 4,









y0

y1

y2

y3









=
1

2









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

















x0

x1

x2

x3









=
1

2









1 1 1 1
1 −1 i −i
1 1 −1 −1
1 −1 −i i

















x0

x2

x1

x3









=
1

2

















1 1
1 −1
1 1
1 −1









(

x0

x2

)

+ (1, i,−1,−i) ∗ ∗









1 1
1 −1
1 1
1 −1









(

x1

x3

)
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where I’ve used ∗∗ as an operator to multiply the row vector (1, i,−1,−i) by the matrix
expression to its right without doing the sum usually implicit in matrix multiplication:
the result could be seen as just the last two columns of the 4-by-4 matrix of the previous
line.
(The rearrangement of the first 4-by-4 to the second, in order to rearrange the column
vector of xs, is done by postmultiplying by

R =









1
1

1
1









)

If the calculations are done carefully, the divided version will cost n∗n/4+n∗n/4+n
which is essentially n2/2 multiplications, and a comparable number of additions (note
that the top and bottom halves of the 4-by-2 matrices are the same, and that the
∗∗ operation can be done after the matrix multiplication that follows it), while the
original version cost essentially n2 multiplications. Further divisions, if n is not just
even but a power of 2, will produce lg n levels, only the lowest of which is a full 2-by-2
Fourier transform, for a cost of O(n lg n).
The general division illustrated by the 4-by-4 example is

yk =
1√
n

n−1
∑

j=0

e2πijk/nxj

=
1√
n





n/2−1
∑

j=0

e2πijk/(n/2)x2j + e2πik/n
n/2−1
∑

j=0

e2πijk/(n/2)x2j+1





and the permutation matrix is generally given by

Rn
jk =











1 if 2j = k
1 if 2(j − 2n/2) + 1 = k
0 otherwise

15. Outline the algorithms for “bubble sort” and for “merge sort”, which are different
ways of sorting sets of records (or numbers, or words). What are the costs of these
algorithms, approximately, as functions of n, the number of records to be sorted?
Comment on the divide-and-conquer aspects. Is there another sorting algorithm which
illustrates divide-and-conquer in a different way? (What is the logarithm of the total
number of permutations n things can form, and why is this related to the cost of
sorting?)

16. Rewrite the Fourier transform code so that it symmetrically gives positive and “nega-
tive” frequencies. (E.g., frequencies 0,1,2 → 0,1,-1 → -1,0,1) Use this to give Fourier
transforms, of the gaussian bell curve, which are themselves symmetrical bell curves.

17. Modified inverse FT. Let’s revisit Note 2 and apply the 5-fold discrete Fourier
transform to the functions cos1 = cos(2πℓ/5) with ℓ = 0, 1, 2, 3, 4, sin1 = sin(2πℓ/5),
cos2 = cos(4πℓ/5), etc. Here they are as vectors.
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2πℓ/5 4πℓ/5 6πℓ/5 8πℓ/5
ℓ cos1 sin1 cos2 sin2 cos3 sin3 cos4 sin4
0 1 0 1 0 1 0 1 0
1 c2 s2 −c1 s1 −c1 −s1 c2 −s2

2 −c1 s1 c2 −s2 c2 s2 −c1 −s1

3 −c1 −s1 c2 s2 c2 −s2 −c1 s1

4 c2 −s2 −c1 −s1 −c1 s1 c2 s2

In this table,

c1 c2 s1 s2

cos(36o) cos(72o) sin(36o) sin(72o)
√

5+1
4

√
5−1
4

1
4

√

10− 2
√

5 1
4

√

10 + 2
√

5

The Fourier transform applied to each of these gives

2πℓ/5 4πℓ/5 6πℓ/5 8πℓ/5
k cos1′ sin1′ cos2′ sin2′ cos3′ sin3′ cos4′ sin4′

0 0 0 0 0 0 0 0 0
1
√

5/2 −i
√

5/2 0 0 0 0
√

5/2 i
√

5/2
2 0 0

√
5/2 −i

√
5/2

√
5/2 i

√
5/2 0 0

3 0 0
√

5/2 i
√

5/2
√

5/2 −i
√

5/2 0 0
4
√

5/2 i
√

5/2 0 0 0 0
√

5/2 −i
√

5/2

We noticed a strange thing: each result vector has two entries. This seems to represent
two frequencies. But if we consider that everything is cyclic with 5 meaning the
same thing as 0, we can see that k = 4 is equivalent to k = −1 and that k = 3
is equivalent to k = −2. Then the two entries in each vector represent positive and
negative “frequencies” of the same magnitude. If we think of these in space rather than
in time, we can imagine the two signs describe displacements in opposite directions.
We can of course invert the above Fourier transform by simply changing the sign in
the exponent:

1√
5

[

e(ikℓ2π)/5
]

cos1′ = cos1

But we still have the two entries in cos1′, no matter how we interpret them.
We’d prefer to have only one entry in cos1′ (and in sin1′, cos2′, etc.), pinpointing just
one “frequency”. So let’s redefine

2πℓ/5 4πℓ/5 6πℓ/5 8πℓ/5
k cos1′′ sin1′′ cos2′′ sin2′′ cos3′′ sin3′′ cos4′′ sin4′′

0 0 0 0 0 0 0 0 0
1
√

5/2 −i
√

5/2 0 0 0 0 0 0
2 0 0

√
5/2 −i

√
5/2 0 0 0 0

3 0 0 0 0
√

5/2 −i
√

5/2 0 0
4 0 0 0 0 0 0

√
5/2 −i

√
5/2
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You can check that the following is the modified inverse Fourier transform.

1√
5

[

e(ikℓ2π)/5
]

cos1′′ +
1√
5

[

e−(ikℓ2π)/5
]

cos1′′∗ = cos1

1√
5

[

e(ikℓ2π)/5
]

sin1′′ +
1√
5

[

e−(ikℓ2π)/5
]

sin1′′∗ = sin1

1√
5

[

e(ikℓ2π)/5
]

cos2′′ +
1√
5

[

e−(ikℓ2π)/5
]

cos2′′∗ = cos2

and so on, where ∗ is the “complex conjugate” that changes the sign on i.

18. FT with vector k, ℓ. We often need Fourier transforms in higher spatial (ℓ for length)
dimensions, and, correspondingly in higher transformed (k) dimensions. Specifically,
both ℓ and k become vectors, and we’ll work with their dot products.
For two spatial dimensions with three samples in each direction, both the exponent
and the exponential matrices are 32-by-32 = 9-by-9.

k · ℓ mod 3 e−ik·ℓ2π/3

ℓ 0 0 0 1 1 1 2 2 2 ℓ 0 0 0 1 1 1 2 2
k 0 1 2 0 1 2 0 1 2 k 0 1 2 0 1 2 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 2 0 1 2 0 1 2 0 1 1 c− is c + is 1 c− is c + is 1 c− is
0 2 0 2 1 0 2 1 0 2 1 0 2 1 c + is c− is 1 c + is c− is 1 c + is
1 0 0 0 0 1 1 1 2 2 2 1 0 1 1 1 c− is c− is c− is c + is c + is
1 1 0 1 2 1 2 0 2 0 1 1 1 1 c− is c + is c− is c + is 1 c + is 1
1 2 0 2 1 1 0 2 2 1 0 1 2 1 c + is c− is c− is 1 c + is c + is c− is
2 0 0 0 0 2 2 2 1 1 1 2 0 1 1 1 c + is c + is c + is c− is c− is
2 1 0 1 2 2 0 1 1 2 0 2 1 1 c− is c + is c + is 1 c− is c− is c + is
2 2 0 2 1 2 1 0 1 0 2 2 2 1 c + is c− is c + is c− is 1 c− is 1

with c = −1/2 and s =
√

3/2.
The functions we can apply this Fourier transform to are now 2-dimensional functions
with periodicities in the x-direction (cos1x, sin1x, cos2x, sin2x below), in the y-direction
(cos1y, sin1y, cos2y, sin2y below) or in both (e.g., c1xy, s1xy below).

ℓ cos1x sin1x cos2x sin2x cos1y sin1y cos2y sin2y c1xy s1xy
0 0 1 0 1 0 1 0 1 0 1 0
0 1 1 0 1 0 c s c −s c s
0 2 1 0 1 0 c −s c s c −s
1 0 c s c −s 1 0 1 0 c s
1 1 c s c −s c s c −s c −s
1 2 c s c −s c −s c s 1 0
2 0 c −s c s 1 0 1 0 c −s
2 1 c −s c s c s c −s 1 0
2 2 c −s c s c −s c s c s

Again the Fourier transforms of these single-frequency functions produce double fre-
quencies (the exponential matrix above is multiplied by 1/3 in this case).
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k cos1x′ sin1x′ cos2x′ sin2x′ cos1y′ sin1y′ cos2y′ sin2y′ c1xy′ s1xy′

0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 3/2 −3i/2 3/2 3i/2 0 0
0 2 0 0 0 0 3/2 3i/2 3/2 −3i/2 0 0
1 0 3/2 −3i/2 3/2 3i/2 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 3/2 −3i/2
1 2 0 0 0 0 0 0 0 0 0 0
2 0 3/2 3i/2 3/2 −3i/2 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 3/2 3i/2

And again we can rearrange the inverse process into pairs.

k cos1x′′ sin1x′′ cos2x′′ sin2x′′ cos1y′′ sin1y′′ cos2y′′ sin2y′′ c1xy′′ s1xy′′

0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 3/2 −3i/2 0 0 0 0
0 2 0 0 0 0 0 0 3/2 −3i/2 0 0
1 0 3/2 −3i/2 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 3/2 −3i/2
1 2 0 0 0 0 0 0 0 0 0 0
2 0 0 0 3/2 −3i/2 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 0

The inverse transform is written the same way as in 1D.

1

3

[

e(ik·ℓ2π)/3
]

cos1x′′ +
1

3

[

e−(ik·ℓ2π)/3
]

cos1x′′∗ = cos1x

1

3

[

e(ik·ℓ2π)/3
]

sin1x′′ +
1

3

[

e−(ik·ℓ2π)/3
]

sin1x′′∗ = sin1x

1

3

[

e(ik·ℓ2π)/3
]

cos1y′′ +
1

3

[

e−(ik·ℓ2π)/3
]

cos1y′′∗ = cos2y

and so on.
Here we see that, except for ℓ = (0, 0), the columns of the Fourier transform sum to
zero.
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0

1

3 *

3 *

1

2

3

1

2

3

12

3

12

3

= (0,1) = (0,2) = (1,0)  = (1,1)

= (1,2) = (2,0) = (2,1) = (2,2)

l l l l

l l l l

These figures can be read off the exponent matrix given at the start of this Excursion.
From that matrix, and the figures above, we see that if we removed one of the com-
ponents of ℓ, say the first component ℓx, from the sum by supposing it fixed to some
particular value, then, except for ℓy = 0, the column sum for each different ℓx is
still zero. In particular, we could multiply the terms of the Fourier transform by any
function of kx without losing the orthogonalities within each group of kx.

19. Continuous FT. It is sometimes easier to do continuous math than discrete math
and so we would need to approximate a sum by an antislope. To make the sum into
an area, which is what the antislope gives, we must multiply it by the step size. Thus

∑

k

f(k)← 1

δk
antislope f(k)

We must pick a range for the antislope. If we are calculating a Fourier transform
involving exp(ikx) there must be a unit of repetition, say length L and we would use
limits 0 ≤ x ≤ L. Then k must be an integer multiple of 2π/L so that kx is a multiple
of 2π when x is 0 or L.
So a (1-dimensional) discrete Fourier transform with k = 2πν/L, for integer ν =
0, 1, 2, .. becomes the continuous Fourier transform (and I’ll assume the exp(ikx) is
incorporated into “f(k)”)

∑

k

f(k) =
∑

ν

f(2πν/L) ← 1

δν
antislopeν f(2πν/L)

=
1

δν

L

2π
antislopekf(k)

=
L

2π
antislopekf(k)

19



with the last because δν, the step size between successive integers, is 1.

20. Artefacts of sampling. a) Write a MATLAB program, sampling(freqs,rate)
which plots cosine for harmonics of a fundamental frequency plotted from 0 to 2π radi-
ans and sampled rate times. Thus sampling([1,2,4],12) should yield the following
plot.

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

radians

sampling points for cosine

Note that the smooth cosines are plotted and that the 12 samples less than 2π (13
including 2π) are highlighted with circles.
b) Run your program as sampling([1,11],12) to get

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

radians

sampling points for cosine

Explore this for different frequencies, including those greater than 12. Why must the
sampling rate be at least twice the highest frequency one needs to detect?
c) Modify your program to interpret negative frequencies by their absolute values but
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with the phase altered by π. Explore the sampling now.
d) Discuss the behaviour of the discrete Fourier transform in the light of your explo-
rations of sampling.

21. Why are the Fourier transforms symmetric in the way shown by the examples in
the notes, if negative frequencies are not used? What do the last component of
F5*cosine(5,1)’ and the next-to-last component of F5*cosine(5,2)’ mean? The
components near frequency 15 of the 16-point gaussians? If we remove these terms
and Fourier transform back again, what is the result?

22. Two aspects of the Fourier transform should be a little puzzling. The first is that
the results are repeated beyond the mid-way point, apart from the change of sign
in the “imaginary” part. The second is the imaginary part itself—the results are 2-
dimensional numbers.
We have addressed the repetition in the previous excursions.
Note that the total number of different values is thus the same for the Fourier transform
as for the input.
We have used the magnitudes of the resulting 2-numbers but not their angles. These
can be interpreted as the relative phases of the waves making up the original data.
For example, we could generate a signal of two waves of different frequency with one
not in phase with the other.

%function Cn = cos2freqNphas(n,f1,f2,p12) THM 110329
% generates n-point vector from sum of cos(f1) + cos(f2+p12)
% frequencies f1, f2 are relative to n: one period shown when f = 1
% relative phase p12 in degrees
function Cn = cos2freqNphas(n,f1,f2,p12)
phase = p12*pi/180; % radians
for j=1:n
C1(j) = cos(2*pi*(j-1)*f1/n);
C2(j) = cos(2*pi*(j-1)*f2/n + phase);

end %for j%
Cn = C1 + C2;

Use makeDFT(n) to find the Fourier transform of this sum of waves and plot the wave,
its components, and the magnitude (frequency) and angle (phase) given by the DFT.
Here are results for a wave (red) with components of frequencies 1 (blue) and 2 (green)
a) in phase and b) 180 degrees out of phase with each other.
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23. Two-dimensional discrete Fourier transform The two-dimensional waves of Note
22 in Book 8c (part II) can be used in a two-dimensional Fourier transform

F2 =
1

3
e2πi(jxkx+jyky)/3

where (jx, jy) runs over the 3×3 points of the crystal lattice and (kx, ky) runs over the
3× 3 points of the reciprocal lattice. jxkx + jyky takes on the following values (shown
modulo 3)

kxky= 00 10 20 01 11 21 02 12 22
jxjy

00 0 0 0 0 0 0 0 0 0
10 0 1 2 0 1 2 0 1 2
20 0 2 1 0 2 1 0 2 1
01 0 0 0 1 1 1 2 2 2
11 0 1 2 1 2 0 2 0 1
21 0 2 1 1 0 2 2 1 0
02 0 0 0 2 2 2 1 1 1
12 0 1 2 2 0 1 1 2 0
22 0 2 1 2 1 0 1 0 2

Confirm this and compare with the “one-dimensional” Fourier transform of Note 1.
Show that the conjugate (i→ −i) of the transpose (jk → kj) of F is its inverse.

24. DSP filters. The Fourier transform is heavily used in digital signal processing. Here
is an excursion.
a) A sequence of values (a “signal”) can be filtered into new sequences (signals). A
running average is an example: fix a “window” size, w, and find the average of the
first w values. Then shift by one position and find the average of the next w values
(overlapping with the first by w− 1). Shift again, and so on. Such a filter can be used
to “smooth” the sequence, effectively by reducing the highest frequencies.
To save arithmetic but cover the same ideas, let’s take running totals. Here is a sequence
and its running total for a window size 3.
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2 3 2 3 3 1 2 2 3 1 0 2
2 5 7 8 8 7 6 5 7 6 4 3

Note that the total starts with the smaller window sizes 1 and 2 to get started until
the first three elements have been processed.
The formula we could use to describe this is

yn = xn + xn−1 + xn−2

or, more generally,
yn = b1xn + b2xn−1 + b3xn−2 + ..

for coefficients bj which for the running sum are b1 = b2 = b3 = 1 and all other bj = 0.
A clear way to do this calculation by hand is to make a multiplication table for the
elements of b and x and then sum the lower-left-to-upper-right diagonals as shown.

y    2  5  7  8  8  7  6  5  7  6  4  3

1

1

2  3  2  3  3  1  2  2  3  1  0  2

2  3  2  3  3  1  2  2  3  1  0  2
2  3  2  3  3  1  2  2  3  1  0  2
2  3  2  3  3  1  2  2  3  1  0  2

b\x

1

And this works for any b not just 1 1 1.
Try it for the 4-running total of the sequence.
Try it for x = three cycles of cosine sampled at twelve points between 0 and 11π/6
inclusively, and b = 1,1,1,1. Show

cosine[12,3] 1 0 −1 0 1 0 −1 0 1 0 −1 0
total run 4 1 1 0 0 0 0 0 0 0 0 0 0

b) Write a MATLAB program myFilter(B,A,data) which applies coefficients B to
the sequence stored in the array data. (For the moment, let A be 1 on invocation and
ignored in myFilter().)
Write a MATLAB program cosine(sampNo,freq) which generates sampNo samples of
cosine over freq complete cycles.
Combine these two programs to study the effect of running totals on sampled cosines
at various frequencies. For instance, I combined them in a program filterSamp()
which I ran on 12 samples at frequencies 1, 2, 3, 4, 5 and 6, totalled with run length
4, so that filterSamp([1,2,3,4,5,6],[1,1,1,1]) made the following plot.
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See how frequency 3 reproduces your manual calculation from (a).
Play with myFilter() on other sequences (data) and coefficients B.
c) Now the Fourier transform, and a generalization of it. The above sequences are in
the time domain, but filters are best analyzed in the frequency domain. In fact, filters
are usually specified by what they do to different frequencies in the signal.
(To complete the time domain description, though, you may want to relate the “nor-
malized”, dimensionless frequencies I’ve been using (1, 3, etc.) to actual cycles per
second. If the sampling frequency is, say, 20kHz (for so-so sound recording, for in-
stance), i.e., the time between samples is 1/20 msec., show that frequency 1 is 20/12
kHz, frequency 2 is 40/12 kHz, and so on.)
With sampling, the frequency is periodic—see the above excursion “artefacts of sampling”—
and so it is plausible to use a periodic function of frequency, eiω, where ω is the normal-
ized frequency in radians, i.e., 2π times the normalized frequency itself. We consider
(radian) frequencies between 0 and 2π, with 2π corresponding to the sampling (radian)
frequency.
In fact, since only frequencies which are half the sampling frequency or less can be
reproduced faithfully (see “artefacts of sampling”, above), we actually consider nor-
malized frequencies between −π and π. And then we drop the negative frequencies.
(But all filter action will be symmetric about zero, which can make the math easier.)
So the Fourier transform of the sequence xn in terms of eiω is

X(eiω) =
∑

xne
−iωn

But we’re going to extend this to the “z-transform”, Z(xn)

X(z) = Z(xn) =
∑

xnz−n

in which z is a 2-number, including, of course, the unit circle eiω.
The reason we go to z is to have the whole 2-number space available to us, which turns
out to be useful. Also it is simpler to write than eiω, and enables us to see easily two
important properties we’ll need.
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The first is linearity,

Z(axn + byn) =
∑

(axn + byn)z−n

= a(
∑

xnz
−n) + b(

∑

ynz
−n)

= aZ(xn) + bZ(yn)

The second is the delay property,

Z(xn−k) =
∑

xn−kz
−n

=
∑

xmz−m−k

= z−k
∑

xmz−m

= z−k
∑

xnz−n

= z−kZ(xn)

where m was introduced as n− k and where the
∑

, although we didn’t say so before,
is from −∞ to ∞ and so the shift by k does not change it. (That’s the “bilateral z-
transform. Alternatively the “unilateral” z-transform sums from 0 to ∞ but is better
defined as zn = 0 for n < 0: the change of variable from n − k to m still makes no
difference to the sum.) (By the way, the bilateral z-transform is “acausal”, as we can
now see, because it involves not only lags of non-negative n but also “leads”—lags
backwards in time—of negative n.)
With these two properties, we can find the z-transform of the “difference equation”
we’ve been playing with, yn = b1xn + b2xn−1 + b3xn−2 + ..:

Z(yn) = b1Z(xn) + b2z
−1Z(xn) + b3z

−2Z(xn) + ..

= (b1 + b2z
−1 + b3z

−2+, , )Z(xn)

And we can consider the behaviour of the filter defined by the coefficients b1, b2, b3, ..
to be the ratio of the z-transform of the output, y to the z-transform of the input, x

H(z) =
Z(yn)

Z(xn)
= b1 + b2z

−1 + b3z
−2 + ..

For the running total of window size 4, show that the filter “system function” is

H(z) = 1 + z−1 + z−2 + z−3 =
1− z−4

1− z−1

d) Part (c) has dealt with turning difference equations into polynomials using the z-
transform. We can just as well go the other way and turn polynomials in z-space
(“frequency space” except that we now cover more than just the unit circle giving
the frequencies from −π to π) into the difference equations (in the time domain) that
actually build the filter.
The appearance at the end of (c) of a fraction of polynomials adds a twist. But we
can take it in stride.
The difference equation corresponding to the polynomial fraction we just met can be
worked out from

Z(yn)

Z(xn)
=

1− z−4

1− z−1
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so
(1− z−1)Z(yn) = (1− z−4)Z(xn)

and turning this into a difference equation by inverting the z-transform

yn − yn−1 = xn − xn−4

And in general,

a1yn + a2yn−1 + a3yn−2 + .. = b1xn + b2xn−1 + b3xn−2 + ..

Working this out is more complicated than the difference equations that involve no y
other than yn. But we can do it by a sort of dynamical multiplication table. Let’s take
the 4-running total of our original sequence.
We start with the b coefficients as in (a).

b\x 2 3 2 3 3 1 2 2 3 1 0 2
1 2 3 2 3 3 1 2 2 3 1 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 −3 −2 −3 −3 −1 −2 −2 −3 −1 −0 −2

2 3 2 3 1 −2 0 −1 0 0 −2 0

Now we repeat the process for the ys but this time we must build the second row as
we go, because y is changing.

2 3 2 3 1 −2 0 −1 0 0 −2 0
1 2 5 7 10 11 9 9 8 8 8 6 6

Compare this with the 4-running total you got for this sequence in (a).
Let’s do another example of a coefficients. This has two a coefficients, better to reveal
the process. With the starting sequence

x 0 1 0 0 0 0 0 0

let’s apply yn − yn−1 − yn−2 = xn.

x   0  1  0  0  0  0  0  0

−a\y   0  1  1  2  3  5  8 13

1       0  1  1  2  3  5  8 13
1       0  1  1  2  3  5  8 13

Note that x is included in the diagonals being added. And note that no column of the
multiplication table can be filled in (except for x) until the corresponding y has been
calculated.
What is the resulting sequence?
Modify your program from (b), myFilter(B,A,data), so that it interprets the A array
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as the a coefficients. Check that it now does exactly what the MATLAB library
program filter() does. Check it for the fractional version of the 4-running total and
for the Fibonacci sequence.
e) Now we explore the filter system function H(z) in z-space, i.e., the frequency domain.
Write a MATLAB program plotFilter(B,A) which, given the coefficient sets B and
A, i) plots H(z) in z-space, ii) plots H(eiω) as a function of ω from 0 to π, and iii) uses
MATLAB’s solve to find the zeros of the numerator polynomial (the zeros of H(z))
and the zeros of the denominator polynomial (the poles of H(z)).
For b = 1,1,1,1 and a = 1

H(z) = 1 + z−1 + z−2 + z−3 =
z3 + z2 + z + 1

z3

and the zeros are the fourth roots of 1 except for 1 itself, i.e., −1, i,−i. There is a
pole at 0, even though a = 1. (MATLAB’s solve will work better if you get rid of the
negative powers in this way.)
For b = 1, 0, 0, 0,−1 and a = 1,−1

H(z) =
1− z−4

1− z−1
=

z4 − 1

z4 − z3

and the zeros are all the fourth roots of unity, i.e., 1,−1, i,−i. But there is a pole at
1 as well as at 0 now, and this pole and the first zero cancel.
So plotFilter([1,1,1,1],1) will give the same result as
plotFilter([1,0,0,0,−1],[1,−1]) except for the above apparent difference in re-
porting zeros and poles. Here is the result your program might give for both of these
runs.
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Note the three fourth roots of 1—you can see them most clearly in the phase plot in
z-space. Note that the amplitude goes to 0 for frequencies π/2 and π—you can see this
in the “frequency response, magnitude” plot: how does this tie up with what you found
in (a) for the cosine with the frequency 1/4 of the sampling frequency, and with what
you found in (b) for cosines with other frequencies up to half the sampling frequency?
Use your plotFilter() program to explore other filters, especially 3-running totals,
5-running totals and so on. What happens to the zeros? What happens to the corre-
sponding cosine plots as in (b) above?
(My plotFilter() program also converts the “frequency response, magnitude” to
decibels, but the MATLAB plotyy() does not seem to align the horizontal axis quite
the same for both plots.)
e) Looking at the “frequency response, magnitude” result for the 4-running total filter
shows that it slightly attenuates frequencies above the zero at the halfway point. This
allows it to serve as a (very poor) “lowpass” filter: frequencies below a certain cutoff
are kept but frequencies above are removed, ideally.
Using the fractional form of H(z), try eliminating zeros other than at z = 1. For
example, b = 1, 0, 0, 0,−1 and a = 1, 1 eliminates z = −1 as a zero, and gives a (very
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poor) “highpass” filter: frequencies above a certain cutoff are kept but those below
eliminated, ideally. Or, b = 1, 0, 0, 0,−1 and a = 1, 0, 1 eliminates z = ±i as zeros, and
gives a (very poor) “bandpass” filter: frequencies below one cutoff or above another
cutoff are eliminated but the ones in between are kept, ideally.
Check the math behind these assertions and figure out where all the zeros will lie.
f) Let’s use one straightforward technique to design a proper lowpass filter. We’ll take
the easy route of leaving the denominator 1, i.e., a = 1. Then our task is to figure out
what the bs should be.
Here is the ideal lowpass filter, drawn symmetrically about 0.

π ππ/2 ωω cc π/2

To find the filter coefficients in the time domain (i.e., for the difference equation)
corresponding to this frequency-domain ideal, we must of course Fourier-transform
back again. Only now we are going from a continuous set of frequencies to a discrete
set of coefficients, so we must use a continuous inverse Fourier transform. That is,
instead of the sum over all coefficients we used to Fourier-transform from sequence to
frequency, we now need an antislope.

hn =
1

2π
antislopeωH(ω)eiωn |π−π

=
1

2π
antislopeω(if − ωc ≤ ω ≤ ωc then 1 else 0)eiωn |π−π

=
1

2π

1

in
eiωn |ωc

−ωc

=
1

2iπn
(eiωcn − e−iωcn)

=
2i sin ωcn

2iπn

=
sin ωcn

πn

which, by the way, is ωc/π when n = 0.
If you have learned enough calculus from other Weeks, you can check this derivation.
Otherwise you’ll have to accept the result that the coefficients are sin(ωcn)/(πn), for
n = −∞ to ∞. Here is a plot, with the specific coefficients marked for the case
ωc = π/2.
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c
 = 1.5708

n

This set of coefficients goes on forever in both directions, so we must truncate to be
practical. We must also shift it so that all the ns are non-negative, otherwise we run
afoul of acausality. Doing this and running plotFilter(lowpassIdeal(pi/2,20),1)
(where lowpassIdeal() is my program to calculate sin(ωcn)/(πn) for ωc = π/2 and
truncated to 20 points each side of 0: you can write it for yourself) gives the following
results.
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You can see how the frequency response plummets at π/2, halfway along the fre-
quency range: it drops, say, 25 decibels, which means that the power drops a factor
of 10(25/10) ≈ 300 (a decibel is 10 log10(power ratio)). Getting rid of the wiggles top
and bottom is what you’ll learn in an engineering course—except that it can never
completely be done because of that truncating we did.
Run this lowpass filter on the various frequencies of cosine from (b) above.
g) An informative but less satisfactory way to design a lowpass filter is the ad hoc
method of just placing poles and zeros at suitable points in the z-plane. An idea is to
space zeros and poles at equal angles around the unit circle, with zeros on the circle
outside the frequencies of interest and poles just inside the circle within the range of
frequencies to be accepted. Here is a picture for six equally-spaced zeros and poles.
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Write a program [zeroes poles] = lowpassAdhoc(wC,wNo,zeroRad,poleRad) so
that lowpassAdhoc(1.22,6,1,.95) corresponds to the picture.
Running plotFilter(zeroes,poles) after [zeroes poles] = lowpassAdhoc(pi/2,24,1,.95)
will give the following, not so good, result.
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In all these discussions, an engineer must remember that there are severe constraints
on the number of coefficients, due to space in the DSP chip and because of running
time for the filter. So the 41 coefficients in (f) and the 24 in (g) are quite impractical.

Filters with poles other than at 0 (i.e., with polynomials in z−1 on the denominator)
are called “infinite impulse response” (IIR)—as opposed to “finite impulse response”
(FIR) filters—and are often designed by transforming from continuous-time designs,
which are beyond the scope of this excursion.

25. In a physical system, frequencies, which are energies, cannot be negative. Feynman
mentions [FW87] a theorem which says that a function which can be Fourier decom-
posed into only positive frequencies must itself be nonzero essentially everywhere, in-
cluding outside the lightcone if it is a function of timespace, such as the amplitude
function for the location of a particle.
Thus any quantum particle has an amplitude, perhaps very small, for moving faster
than light. We’ll call such states “tachyons”. We saw in Weeks 3 and 7 that such
a state can be seen by some relativistic observers as moving backwards in time, and
so we get antimatter. We also get the exclusion principle for fermions, leading to the
structure of matter, and the opposite behaviour of bosons, leading to important quan-
tum applications such as lasers and superconductivity.
(“Tachy” is the root of tachometer, as in a high performance sports car. It is a
Greek word. The Greek word for post office is tachydromio. I’m not sure about the
“dromio”—I get an image of some kind of camel—but the “tachy” means fast—very
fast. In physics a tachyon is a hypothetical particle that always travels faster than
light.)

26. Look up Jean Baptiste Joseph Fourier (1768–1830). What problem was he working on
when he came up with the idea of representing functions by series?

27. Look up James W. Cooley and John W. Tukey’s 1965 paper, “An Algorithm for the
Machine Calculation of Complex Fourier Series”. Did anybody come up with this
method before them?

28. Look up chapter 32 in Kee Dewdney’s The New Turing Omnibus [Dew93] (chapter 29
of the 1989 original book). Where does his description of FFT go wrong?

29. Find other applications of the Fourier transform and use MATLAB to perform the
calculations for simple examples.

30. Any part of the Preliminary Notes that needs working through.
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