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I. Prefatory Notes
1. We’ve described a rotation as a product of matrix and vector,

R.~v =

(

c −s
s c

) (

x
y

)

and a double rotation as a product of two matrices.

RφRθ =

(

c −s
s c

)

φ

(

c −s
s c

)

θ

Can these be replaced by just numbers?

2. Numbers so far are 1-dimensional.

3.1415927..

3 2 1 3210

.5

1.4142135..

.33
2.7182818284..

A quarter-turn (rotation by π/2) rotates it by a right angle into the—unknown. E.g.

Rπ/2

(

1
0

)

=

(

0 −1
1 0

) (

1
0

)

=

(

0
1

)

Two quarter-turns turn 1 into −1

Rπ/2Rπ/2

(

1
0

)

=

(

0 −1
1 0

) (

0 −1
1 0

) (

1
0

)

=

( −1
0

)

3. On the line, we can do this by
−1 × x = −x
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for any x including x = 1.

In the (unknown) two dimensions

(Rπ/2)
2
(

1
0

)

= −
(

1
0

)

So maybe
Rπ/2 =

√
−1

How can we write Rπ/2 (or Rθ) as a number?

4. Try Rθ = cos θ +
√
−1 sin θ, e.g.,

Rπ/2 =
√
−1

Rπ = Rπ/2Rπ/2 = (Rπ/2)
2 = −1

RφRθ = (c +
√
−1s)φ(c +

√
−1s)θ

= cφcθ − sφsθ +
√
−1(cφsθ + sφcθ)

Compare this last with
(

c −s
s c

)

φ

(

c −s
s c

)

θ
=

(

cφcθ − sφsθ −(cφsθ + sφcθ)
cφsθ + sφcθ cφcθ − sφsθ

)

5. So rotations are (weird) numbers.

What about vectors?
(

c −s
s c

) (

x
y

)

=

(

cx − sy
sx + cy

)

Try

(

x
y

)

= x +
√
−1y

(c +
√
−1s)(x +

√
−1y) = cx − sy +

√
−1(sx + cy)

Bingo!

6.
√
−1 is important, if unimaginable.

We’ll call it i for “imagine that!”.

The best we can do is think of it as a right-angle departure from the known numbers to the
unknown.

Think of i = rot90: (rot90)2 = rot180 = −1.

(We could call it ⊥ and write ⊥ in place of
√
−1 from now on, but that would make it harder for

you to read conventional notation.)

(There are in fact two conventions. The second convention is to write j for
√
−1. This is used by

engineers, perhaps because i also means electric current. i is used by mathematicians and scientists.
MATLAB supports both conventions.)

We’ll call these two-dimensional numbers “2-numbers” from now on, to keep it short. If we need
to, we’ll call the old, one-dimensional numbers “1-numbers”.

We could call the two components “horizontal” and “vertical”, respectively, but that would be
unconventional and also confusing later when we use 2-numbers in ways that no longer physically
mean horizontal and vertical. So we will stick to convention and call the components “real” and
“imaginary”, pejorative though that is.
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7. These “2-numbers” have the same formal properties as the “1-numbers”:

+, × – closed

– commutative a + b = b + a, a × b = b × a

– associative (a + b) + c = a + (b + c), (a × b) × c = a × (b × c)

– have identities 0 (+), 1 (×)

+ each element has an inverse a + a′ = 0 = a′ + a

× each element except 0 has an inverse a × a′ = 1 = a′ × a

+, × × is distributive over +: a × (b + c) = a × b + a × c

The above are the “field axioms”. 2-numbers and 1-numbers each exemplify what mathematicians
call a “field”. (This is quite different from what physicists call a “field”, and neither has anything
to do with what a farmer calls a “field”.)

The fact that 2-numbers have the same formal properties as 1-numbers makes them familiar and
easy to use. It also justifies our calling them both “numbers”.

8. Adding 2-numbers

u + v = (u1 + iu2) + (v1 + iv2)

= u1 + v1 + i(u2 + v2)

2

u v u + v

u
u + v

v

1 1 1 1

2

2

2

9. Multiplying 2-numbers

uv = (u1 + iu2)(v1 + iv2)

= u1v1 − u2v2 + i(u1v2 + u2v1)

Try v = | u | (cos 6 u + i sin 6 u) =| u | (c + is)

u = | v | (cos 6 v + i sin 6 v) =| v | (c′ + is′)

| u | = +
√

u2
1 + u2

2

| v | = +
√

v2
1 + v2

2

Now u1v1 − u2v2 = | u || v | (cc′ − ss′) =| u || v | cos(6 u + 6 v)

u1v2 + u2v1 = | u || v | (cs′ + sc′) =| u || v | sin(6 u + 6 v)

Compare

(

c −s
s c

) (

c′ −s′

s′ c′

)

=

(

cc′ − ss′ −(cs′ + sc′)
(cs′ + sc′) cc′ − ss′

)

where the first matrix is rot6 u, the second is rot6 v, and the resulting matrix is rot6 u+ 6 v:
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length |v|

u
u +   v

v

v

u

uv
length |u||v|

length |u|

Since multiplying these 2-numbers by each other just sums their angles, i.e., the resultant 2-number
has an angle which is the sum of the angles of the two elements in the product, the 2-numbers behave
just like exponentials.

We can try writing

u = | u | ei6 u

v = | v | ei6 v

uv = | u || v | ei(6 u+ 6 v)

(whatever e is: it doesn’t really matter to us).

10. Turtle graphics.

If computers are the wave of the future,
graphics is the surfboard Apologies to [Nel78]

Let’s draw a house.

Start.

Turn π/2; Go 4. 4ei0

4ei0
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Turn π/2; Go 4. +4eiπ/2

i  /2+4e

Turn −π/2; Go 2. +2ei0

Turn −π/2; Go 4. +4e−iπ/2

Turn π/2; Go 4. +4ei0

Turn π/2; Go 8. +8eiπ/2

Turn π/4; Go 5
√

2. +5
√

2ei3π/4

Turn π/2; Go 5
√

2. +5
√

2ei5π/4

Turn π/4; Go 8. +8ei3π/2

4

5  25  2

2
4

88

4 4

Note: the turtle ends up in the same position and orientation, and the “total turtle turning”, TTT,
is 2π.

4ei0 + 4eiπ/2 + 2ei0 + 4e−iπ/2 + 4ei0 + 8eiπ/2 + 5
√

2ei3π/4 + 5
√

2ei5π/4 + 8ei3π/2 = 0

11. Closed figures.

Is TTT = 2π always?

Let’s try 4π/5 5 times:

ei4π/5 + ei8π/5 + ei12π/5 + ei16π/5 + ei20π/5
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TTT = 4π and note that the turtle winds up where it started and in the same orientation:

ei4π/5 + ei8π/5 + ei12π/5 + ei16π/5 + ei20π/5 = 0.

12. Summary

(These notes show the trees. Try to see the forest!)

• i (Imagine it!) (or ⊥ or
√
−1 or j) is some weird 2nd dimension.

• i× rotates a 2-number through π/2

• i × i× rotates a 2-number through π, i.e. number→ −number

• 2-numbers, a + ib or a + ⊥ b, behave formally exactly like 1-numbers: both satisfy the “field
axioms”

• (cos θ + i sin θ)× (or (cos θ + ⊥ sin θ)×) rotates a 2-number through θ

• (c + is)(c′ + is′)× (or (c + ⊥ s)(c′+ ⊥ s′)×) rotates a 2-number through 6 (c, s) + 6 (c′s′) ...

• ... so this suggests we write cos θ + i sin θ as eiθ, for some e, just for convenience

• aeiθ + a′eiθ′ + .. models turtle graphics (except that the turtle makes relative turns, but the
angles θ, θ′, .. are absolute orientations).

• Total Turtle Turning TTT, returning to same position and orientation, is an integer multipls
of 2π, and

m
∑

k=1

ei2kπ/m = 0

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. For some 1-number, e, (and we do not need to know just now what its value is), cos θ +
i sin θ = eiθ. We need two arguments to show this: a) the expression cos θ + i sin θ behaves
as though it were something raised to the power θ; b) i must also be in this power. What
are the arguments? From this, what is the relationship among the five important ”numbers”,
0, 1, e, i, π?
(Note. An expression is a combination of mathematical symbols, including operators and
variables, for which a value can be calculated once values are chosen for the variables.)

2. Use MATLAB to plot eix (exp(i*x)). Compare this with a plot of cos(x) + i × sin(x).
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3. Find a running copy of the programming language Logo (politely ask your kid sibling for a
go) and explore “turtle graphics”. Describe the graphics operators in terms of 2-numbers.
Look up “turtle geometry” [AdS81]. What is the turtle’s take on general relativity? (Logo
not only has neat graphics for Grade 3 use, it also is a superb programming language. Explore
all of it!)

4. A colony of the army ant species Eciton burchellii bivouacs for a period of three weeks, while
eggs become pupae, and radiates outward daily in search of food [Mof06]. Their 20 days
of hunting (followed by the 21st day, in which they set off for a new bivouac a couple of
kilometers distant) cover a region of about 80 m. radius as shown:

From
 last cam

p

Day 1

To
 n

ex
t c

am
p

Day 2

Day 3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Describe this pattern using 2-numbers.
How would you include the path along which the ants arrive from their previous bivouac on
day 0?

5. 2-numbers can represent both points and straight lines in two dimensions. The representation
of a line is the difference between the representations of the end points,

L = Pf − Ps

where Ps is the starting point of the line and Pf is the finishing point. (Thus the line, L, has
a length and a direction. It does not have a position: the line from Ps + c to Pf + c has the
same representation as the line from Ps to Pf .)

Given a starting point, Ps, and a line L, we can find the finishing point,

Pf = Ps + L

Armed with this information, find out where to dig for the following treasure, buried on an
island which has an oak tree, a pine tree and a gallows [Gam47]. The instructions you found,
stuck into a musty old book in your elderly relative’s attic, say

(a) starting at the gallows, go to the pine tree, make a left right-angle turn, walk the same
distance again, and mark the spot;

(b) starting again at the gallows, go to the oak tree, make a right right-angle turn, walk the
same distance again, and mark that spot, too;

(c) halfway between the marked spots, dig for the treasure.
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However, when you get to the island, there is no longer any sign of the gallows.

6. If you succeeded in the previous Excursion you will have encountered three quite different
interpretations of 2-numbers:

• as a point, such as the locations of the trees;

• as an interval, such as the separation of pine tree and hypothetical gallows;

• as a multiplier, such as the 90-degree turns.

Check each 2-number you used in hunting the treasure and say which of these three roles it
is playing. Or else go back and try the previous Excursion again, using this insight.
These three interpretations apply equally well to 1-numbers: find examples of each.

7. Think about the following two chains of transformations of a parabola, z = x2, and its
“shadow” parabola in the perpendicular plane, z = −y2. Relate the final equations for z in
each case to z = ax2 + bx + c, and discover the formulas for the “roots”, i.e., the values of x
and y when z = 0.

Chain 1 (read down to next page)

(x’’,y) = (0,0)

z’

x’’

y

z’ = x’’

z’ =   y

2

2

Chain 2 (read down to next page)

(x’’,y) = (0,0)

z’

x’’

y

z’ = x’’

z’ =   y

2

2
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Chain 1 (cont.: read downwards)

2

x’’

y

(x’’,y) = (  e,0)

z

z = z’   e

(x’’,y) = (  e,0)

e

2z = x’’    e

z =   e    y

e

z =   e    y 2

x’

x’ = x’’   f

f

= x’  + 2fx’ + f     e2
z = (x’+f)    e2

2

y

z

(x’,y) = (  e   f,0)(x’,y) = (  e   f,0)

e

(x,y) = (  e   f/g,0)

z =   e    y 2

x

x = x’/g

f/g

2 y

z

(x,y) = (  e   f/g,0)

z = (gx+f)    e
= g  x  + 2fgx + f     e22 2

Chain 2 (cont.: read downwards)

2

x’’

y

z

z = z’ + e

2

z = e    y

e

z = x’’  + e

(x’’,y) = (0,  e)

(x’’,y) = (0,    e)

2

z

y

z = e    y

z = (x’+f) + e

2

x’ = x’’    f

x’

(x’,y) = (  f,  e)

(x’,y) = (  f,    e)

f
e

2

= x’  + 2fx’ + f  + e2

2

z

y

z = (gx+f) + e

x = x’/g

x’

e

2

= gx  + 2fgx + f  + e

(x,y) = (  f/g,  e)

(x,y) = (  f/g,    e)

f/g

z = e    y2

2
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8. The parabola z = x2 in the previous excursion is undefined for negative z, but can be extended
in direction y at right angles to x with z = −y2. What is the corresponding extension for a

circle, x2

r2 + z2

r2 = 1, or for an ellipse, x2

a2 + z2

b2
= 1?

9. Roots of unity. a) Show that e2πi/3 and e4πi/3 are cube roots of 1 as well as 1 itself. Draw
these three cube roots as points in the 2-number plane.
b) The “primitive cube roots of unity” are those cube roots of 1 that have no power less than

the third power which equals 1. Show that e2πi/3 and e4πi/3 are primitive cube roots of unity,
and 1 is not.
c) Find, and draw, the fourth roots of 1, and say which are primitive.
d) Find, and draw, the fifth, sixth and seventh roots of 1, and say which are primitive. Discuss
the patterns you find. For which n are there n− 1 primitive nth roots of 1? What is the rule
for other values of n?

10. Conjugates. If v = x+ iy =| v | ei6 v is any 2-number, its reflection in the line of 1-numbers

is given by a new operation, the conjugate, v∗ = (x+ iy)∗ = x− iy = (| v | ei6 v)∗ =| v | e−i6 v.

Suppose u = c + is = ei6 u is any other 2-number of magnitude | u |= 1, giving the direction
of a line, which we will also call u, and convince yourself that uv∗u is the reflection of v in u.
Using this, go on to show that the projection of v in u (that is the component of v that lies in
the same direction as u) is (v + uv∗u)/2, and that the component of v that is perpendicular
to this is (v−uv∗u)/2. What are the projections of v on the line of 1-numbers and on ⊥, the
line at right angles to it?

11. Two-dimensional numbers support the rotation

(

c −s
s c

)

as c + is, with c2 + s2 = 1 The Lorentz shear

(

a b
b a

)

has a2 − b2 = 1 How might two-dimensional numbers, i in particular, be used to make this
shear look like a rotation?
Does it seem from this that there is a 2-number operator for shear, in the way there is a
2-number operator for rotation (and for reflection and for projection)?

12. a) Show that the eigenvalues of
(

c −s
s c

)

are eiθ and e−iθ, where c is cos θ and s is sin θ, and that the eigenvectors (fixed-point vectors
of the transformation) are

(

1
i

)

and

(

1
−i

)

b) The appearance of 2-numbers suggests that the eigenvectors must somehow be perpen-
dicular to the two dimensions the rotation takes place in. Indeed, if a third dimension were
added, the rotation leaves fixed the vector perpendicular to the plane of rotation.
However, by finding the eigenvalues and eigenvectors of the (2-D) rotation in three dimensions,





c −s
s c

1
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you can see that the extra dimension suggested by the 2-numbers is not the same as the new
third dimension.

13. Find all products of the matrices

(

0 1
1 0

)

,

(

0 −i
i 0

)

,

(

1 0
0 −1

)

Do they commute (xy − yx = 0)? Do they anticommute (xy + yx = 0)? What matrices must
be added so that they form a closed set apart from scalar multiples? What are their inverses?

14. Find the inverse of the matrix

1

2









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









Hint: try multiplying it by itself and then see if you must adjust anything.

How does this compare with finding the inverse of a rotation matrix?

15. On the field axioms (Note 7):
a) Show that, if 1-numbers and i satisfy the field axioms, then so do 2-numbers.
b) Find two matrices whose product does not commute.
c) Are matrix products associative?
d) Compare uvT and vT u for a vector u and a transposed vector vT . Is this operation closed?
e) Find an operation on 1-numbers which is commutative but not associative.
f) Find an operation on strings, such as “hello ” and “world ”, which is associative but not
commutative. (Note. A string is a sequence of characters, often letters and spaces.)
g) Are the field axioms consistent, i.e., do any of them contradict any others? (Other questions
one can ask about axioms: Are they independent—can any be derived from others? Are they
complete—is anything missing?)

16. These axioms are also given by W. W. Sawyer A Concrete Approach to Abstract Alge-
bra [Saw59]. Discuss his demonstration, at the end of the book, that an angle cannot be
trisected using only straight lines and lengths (“ruler and compass”).

17. What important property of 1-numbers is completely ignored by the field axioms? (Hint.
Who is more excellent, the student who got 80% in English and 90% in math, or the student
who got 90% in English and 80% in math?)

18. Field trip a) Show that arithmetic “modulo” 3 is a field. Here are the addition and
multiplication tables. Note how 3 is effectively 0 and the numbers “wrap around” from 2 to
0: the idea of modulo is to use remainders of the result divided by 3.

+ 0 1 2 × 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

It is actually more intuitive to use −1 instead of 2—note how both play the same role in
this arithmetic. So we will rewrite the tables and follow the −1 version for the rest of this
excursion.
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+ 0 1 −1 × 0 1 −1
0 0 1 −1 0 0 0 0
1 1 −1 0 1 0 1 −1

−1 −1 0 1 −1 0 −1 1

b) Now look at linear and quadratic polynomials over this field and try to factor the quadratic
ones.
Show that there are 27 polynomials of the form ax2 + bx + c where a, b and c are in the field.
Here are some of them. Which ones are missing?
In the line below each polynomial are the “roots” of the polynomial. For linear polynomial
equations, bx + c = 0, the root, r, satisfies x − r = 0, so r = −c/b. For quadratic polynomial
equations, ax2 + bc + c = 0, the roots, r1 and r2, satisfy (x − r1)(x − r2) = 0 and can be
found even in this small field using the quadratic formula we derived in an earlier excursion.
Or you can just check them now that they are found.

a 0 1
c 0 1 −1 c 0 1 −1

b 0 0 1 −1 b 0 x2 x2 + 1 x2 − 1
0,0 −√

,
√

1,−1
1 x x + 1 x − 1 0 x2 + x x2 + x + 1 x2 + x − 1

0 −1 1 0,−1 1,1 1 −√
, 1 +

√
−1 −x −x + 1 −x − 1 −1 x2 − x x2 − x + 1 x2 − x − 1

0 1 −1 0,1 −1,−1 −1 −√
,−1 +

√

c) Note that a new element,
√

, has appeared. This is short for either
√

2 or
√
−1, whichever

you prefer: they are both the same in this field. Try squaring either one to see.
Not only

√
but all six possible combinations of

√
with the field elements 0, 1, −1 also appear.

Show that these, together with the elements 0, 1, −1 themselves, also form a field. This new
field is called an extension of the original field. A notation for the two fields is F3 and F3[

√
].

d) To show that x3 is meaningful, even in a field in which 3 = 0, here are all possible powers
of x. Check them carefully. Note that x3 does not give us anything new over F3, but over
F3[

√
] we must go to x8 before we start repeating. Which elements of F3[

√
] are generators of

F3[
√

], in the sense that their powers up to 8 generate all elements of F3[
√

] except 0?

x 0 1 −1
√ −√

1 +
√ −1 −√

1 −√ −1 +
√

x2 0 1 1 −1 −1 −√ −√ √ √

x3 0 1 −1 −√ √
1 −√ −1 +

√
1 +

√ −1 −√

x4 0 1 1 1 1 −1 −1 −1 −1
x5 0 1 −1

√ −√ −1 −√
1 +

√ −1 +
√

1 −√

x6 0 1 1 −1 −1
√ √ −√ −√

x7 0 1 −1 −√ √ −1 +
√

1 −√ −1 −√
1 +

√

x8 0 1 1 1 1 1 1 1 1

e) Show from the above that every element of F3[
√

], and also of F3, has a cube root in the
respective field. Show also that there are no further square roots we can find over F3.
So if there are any cubic polynomials, x3 +ax2+bx+c, which cannot be factored linearly over
F3[

√
] (that is factored completely into linear factors with coefficients, i.e., roots, in F3[

√
]),

we are faced with a new situation.
(The cubic equation formula for ordinary numbers

x = − p

3u
+ u − a

3
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where

u3 = −q

2
±

√

q2

4
+

p3

27

and

p = b − a3

3
, q = c +

2a3 − 9ab

27

will not help us because of those multiples of 3 on the denominators: remember 3 = 0 in F3

as well as in F3[
√

].)
Indeed, there are eight such cubic polynomials (well, 16, if we include all their negatives):
x3 −x+1, x3−x−1, x3 +x2 −1, x3 −x2 +1, x3 +x2 +x−1, x3 −x2 +x+1, x3 +x2 −x+1,
and x3 − x2 − x − 1.
Find all the cubic polynomials with coefficients in F3. How many are there? Find the roots
of all except the eight (well, 16) above. Note that cubic polynomials such as x3 + 1 can
be factored completely into linear factors in F3 although it cannot in the fields of ordinary
numbers.
f) In the new situation we forewarned, above, we cannot use “radicals” to factor cubic poly-
nomials.
(The word “radical” is from “radix” in Latin, which means “root”: radicals are also people
who like to get to the root of things. To avoid confusion with “roots” of polynomials, we use
“radical” to refer to square roots, cube roots, and so on, of the elements of the field. Note
that in the fields of ordinary numbers, we can use radicals to factor any quadratic, cubic or
quartic polynomial, by the formulas given in an earlier excursion (quadratic), this excursion
(cubic), and in Week iii (quartic).)
We can, however, solve all eight of these cubics formally. By this we mean, imagine a root,
say r, of, say x3−x+1 and note that, because we have invented r to be a root, r3−r+1 = 0.
So of course r3 = r − 1 and we can express all further powers of r using only r and r2.
If we extend F3 to F3[r], we will be adding 24 more elements to make the total of 27 including
0, 1 and −1: F3[r] will contain all 27 elements of the form ur2 + vr + w for u, v and w chosen
from 0, 1 and −1. We can get them all, except 0, from the powers of r: verify the following
eleven.

r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13

r − 1 r2 − r −r2 + r − 1 r2 + r + 1 r2 − r − 1 −r2 − 1 r + 1 r2 + r r2 + r − 1 r2 − 1 −1

Show that there are 26 different powers of r. On the other hand, if q is a (formal) root of
x3 − x − 1, show that there are only 13 different powers of q: q is not a generator but r is.
Here are the first three powers of half of the 24 non-F3 elements of F3[r]. Verify them. Show
that they provide three different roots for each of four of the cubic polynomials we identified
above as not having radical factors. What is the simple change needed to find the other 12
and so roots of the other four cubic polynomials?

x r r + 1 r − 1 r2 r2 + 1 r2 − 1
x2 r2 r2 − r + 1 r2 + r + 1 r2 − r −r + 1 −r2 − r + 1
x3 r − 1 r r + 1 r2 + r + 1 r2 + r − 1 r2 + r

x r2 + r r2 − r r2 + r + 1 rr + r − 1 r2 − r + 1 r2 − r − 1
x2 −r2 + r + 1 −r2 − 1 r2 − 1 −r − 1 r2 + r −r
x3 r2 − r r2 − 1 r2 − r + 1 r2 − r − 1 r2 r2 + 1

g) We could not solve eight of the cubics over F3 by radicals simply because there are not
enough radicals. We cannot write down a general formula using radicals to give the roots
of quintic polynomials over the fields of ordinary numbers either. This is surprising and the
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reasons are subtle. We must wait until Book 8c to understand them.
Find out about the people who solved the quadratic, cubic and quartic polynomials over the
fields of ordinary numbers, and about the long and unsuccessful effort to do the same for the
quintic.

19. a) Show that arithmetic modulo 6 is not a field. (Arithmetic modulo 6 is arithmetic limited
to the six integers 0, 1, 2, 3, 4 and 5 that are the remainder when any integer is divided
by 6. You can write out the addition and multiplication tables as 6 × 6 arrays by doing
ordinary arithmetic then writing down the remainder of the result after dividing by 6. Hint:
the multiplication table will show you what you need to argue.)
b) For what integers, n, is arithmetic modulo n a field?

20. If a set is not closed under an operation, can the operation be associative? Revisit the question
of the independence of the field axioms.

21. The integers do not form a field but a “ring”: which field axiom must be omitted to describe
integers? Are the real numbers a ring? Are there more fields than rings or vice-versa? Show
that polynomials (see Week iii) form a ring. (Note that polynomials include the elements of
their field of coefficients as a special case. Why?)

22. “Symmetric polynomials”. a) Show that symmetric expressions, such as r1r2(r1 + r2) or
2(r1 + r2) or r1r2 + r2r3 + r3r1 + r2

1 + r2
2 − r2

3 or (r1 − r2)
2(r1 − r3)

2(r2 − r3)
2, form a ring:

a symmetric expression in terms r1, r2, .., rn is any expression that remains unchanged after
any permutations of the n terms. (I am using the computer-science word “expression” rather
than the mathematical word “polynomial” for these because this excursion will not get far
into the mathematics.)
b) Show that the coefficients, a0, a1, .., an−1, of a polynomial

xn + an−1x
n−1 + .. + a1x + a0 = (x − r1)(x − r2)..(x − rn)

are symmetric expressions in the roots, r1, r2, .., rn.
These are called elementary symmetric expressions. For example, for x3 + ax2 + bx + c,
a = −(r1 + r2 + r3), b = r1r2 + r2r3 + r3r1 and c = r1r2r3.
c) Look up “Newton’s identities”, which relate “power sum” symmetric expressions, such as
r2
1 + r2

2 + r32 or r5
1 + r5

2, to the elementary symmetric expressions.
d) Confirm that the “discriminant” of the polynomials Ax2 +Bx+a and x3 +ax2+bx+c are,
respectively, B2 − 4AC and q2/4 + p3/27 where p = b− a3/3 and q = c + (2a3 − 9ab)/27: the
discriminant is the function of the roots of the polynomial that goes to zero only when two
or more roots are the same,

∑

i<j(ri − rj)
2, e.g., respectively, (r1 − r2)

2, and (r1 − r2)
2(r1 −

r3)
2(r2 − r3)

2. You will need Newton’s identities and some algebra for the second.

23. Look up Leonhard Euler, 1707–83. What are Euler’s identity and Euler’s number? How did
he come across them?

24. Look up Johann Carl Friedrich Gauss, 1777–1855, and his doctoral thesis on the fundamental
theorem of algebra [Gau99]. How does he use two-dimensional numbers? Does he refer to√
−1? Given the completeness of 2-numbers established by Gauss’ proof, how likely is it

that there are “3-numbers”, with the same properties (i.e., satisfying the field axioms) and
describing three dimensions? What property(ies) should be changed to describe 3D?
What mathematical progression did Gauss discover at the age of 10?

25. Expand the terms of the expressions describing the two closed figures of Notes 10 and 11,

4ei0 + 4eiπ/2 + 2ei0 + 4e−iπ/2 + 4ei0 + 8eiπ/2 + 5
√

2ei3π/4 + 5
√

2ei5π/4 + 8ei3π/2
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and
ei4π/5 + ei8π/5 + ei12π/5 + ei16π/5 + ei20π/5

and show that they each sum to zero in both dimensions.

26. Any part of the Preliminary Notes that needs working through.
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